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Let (M™, g) be an m-dimensional complete noncompact manifold. We show
that for all p > 1 and / > 1, any bounded set of p-harmonic /-forms in
Li1(M), with 0 < g < oo, is relatively compact with respect to the uniform
convergence topology if the curvature operator of M is asymptotically non-
negative.

1. Introduction

Let (M™, g) be an m-dimensional complete oriented Riemannian manifold with
associated Riemannian metric g. Let d be the exterior differential operator and let

§=*dx
be the codifferential operator, where the linear operator * is defined pointwise by
*(WI A AO) =01 A AWy,

for a positively oriented orthonormal coframe {w;, wy, ..., w,} at the point. The
Hodge-Laplace-Beltrami operator A acting on the space of smooth [-forms A (M)
is defined by

=—(dé+6d).
Definition 1.1. An /-form w on M is a p-harmonic /-form if w satisfies dw = 0
and 8 (Jw|”2w) =0 for all p > 1.

When p = 2, the p-harmonic /-form w € A!(M) is called a harmonic /-form on

(M, g), that is,
NAgw =0.

When [ =0, let 2 be a compact domain on the Riemannian manifold (M, g), and
let w be a real smooth function on M. For p > 1, the p-energy of w on 2 is

E,,(Q,w)zl/ Vol? dV,.
P Ja
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The function w is said to be p-harmonic on M if w is a critical point of £, (€2, -)
for all Q@ C M, that is, if w satisfies the Euler—Lagrange equation

div(|[Vo|?2Vw) = 0.

A curvature operator K; on manifold M™ is defined as follows:

{lower bound of the curvature operator on M forl > 1;
1 =

(m —1)~! x (lower bound of the Ricci curvature) forl = 1.

We call this curvature operator K; of M asymptotically nonnegative if K; > — K (r),
where
K(r):10, 00) — [0, 00)

is a nonnegative and nonincreasing continuous function of distance r to a fixed
point z € M, with

/OOFK(r) < 0.
0

Yau [1975] proved that any positive harmonic function on a manifold with non-
negative Ricci curvature must be constant. Much work has been done in the finite
dimension of space of polynomial growth harmonic functions of growth order at
most d [Li 1997; Colding and Minicozzi 1997; Li and Tam 1995; Li and Wang
1999]. Concerning general harmonic /-forms, Li [1980] established a dimension
estimate of the space of polynomial growth harmonic forms. In this paper, we
study general p-harmonic /-forms and p-harmonic maps on complete noncompact
manifolds, for p > 1 and [ # 0. For p = 2, Chen and Sung [2007] considered the
space consisting of all harmonic /-forms of polynomial growth for all / > 1, and
gave a dimension estimate of such a space when M has asymptotically nonnegative
curvature. Since the set of p-harmonic /-forms is no longer linear, it is interesting to
study the set of p-harmonic /-forms and to seek topological and geometrical links.
Interestingly, Zhang [2001] proved that any L9 (M) p-harmonic 1-forms must be
zero on a manifold with nonnegative Ricci curvature for p > 1 and 0 < g < o0.
Chang et al. [2010] generalized Zhang’s result to a complete manifold M with
asymptotically nonnegative curvature and finite first Betti number. They proved
that a bounded set of LY(M) p-harmonic 1-forms on (M, g) has a uniformly con-
vergent subsequence.

Next we introduce the Sobolev inequality. A geodesic ball B, (r) in a complete
manifold M is said to admit a Sobolev inequality S(C, v) if there exist constants
C > 0 and v > 2 such that for all f € C;°(Bx(r)), we have

(v=2)/v
([ o) cenverey [ quser,
B, (r) B, (r)
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where V,(r) is the volume of geodesic ball B, (r). Using the Bochner formula, the
Moser iteration [1961] and the Sobolev inequality, Chang et al. [2010] showed that
any bounded set of p-harmonic 1-forms in L7(M), with 0 < g < oo, is relatively
compact with respect to the uniform convergence topology if M has asymptotically
nonnegative Ricci curvature and finite first Betti number. However, the Bochner
formula does not work for p-harmonic /-forms for / > 1. We derive a new type
of Bochner formula to overcome this obstacle. We study the set of p-harmonic
[-forms, for [ > 1, on a complete noncompact manifold M, and then study the set
of p-harmonic maps from a complete manifold M to a complete manifold N. In
Section 2, we derive a different type of Bochner formula for p-harmonic /-forms
and prove that any bounded set of p-harmonic /-forms in L7 (M), with 0 < g < oo,
must be relatively compact with respect to the uniform convergence topology if the
curvature operator of M is asymptotically nonnegative. Of course, this implies that
the linear space of harmonic /-forms must be finite-dimensional when p = 2 and
[ > 0. Also, there is no nonzero p-harmonic /-form on M in L9 (M) if the curvature
operator of M is nonnegative. In Section 3, we also derive a different type of
Bochner formula for p-harmonic maps from M with asymptotically nonnegative
Ricci curvature to N with nonpositive sectional curvature. We prove that the set
of such p-harmonic maps with finite p-energy on M has a uniformly convergent
subsequence. The p-harmonic map is constant if M is compact with nonnegative
Ricci curvature, which is an extension of the fact in the harmonic map case (p =2).

2. p-harmonic /-forms

Any smooth /-form on an m-dimensional manifold M satisfies the Kato inequality:

Lemma 2.1 [Wan and Xin 2004; Calderbank et al. 2000; Herzlich 2000]. Let w
be a differentiable -form on M. Then

|Viol?| < 2lo]|Vol.
Lemma 2.2 [Bochner 1946]. Let w = Z, aj wy be an l-form on M. Then
Alo)? =2(Aw, w) +2|Vo|? + 2K (0, ®).

Let (M, g) be a complete noncompact manifold. We wish to study the set of L?
p-harmonic /-forms on M for/ > 1 and 0 < g < 00. To prove the main theorem
for all / > 1, we show a different type of Bochner formula for p-harmonic /-forms:

Lemma 2.3 (Bochner-type formula for p-harmonic forms). Let w be a p-harmonic
[-form on an m-dimensional complete Riemannian M™. Then

ol Alo]” = (A(0]P20), o)+ o (|V(olP o) = Ve )+ Kilol?,

in the sense of distributions.
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Proof. The Bochner—Weitzenbdck formula for |w|? 2w asserts that
@-1) 1A|lo 20l
= (A" 2w), |0]P20)+ V(P 2o) | + Ki|Jo|" 20|,
The left side of (2-1) is given by
LAl 2ol = LAloP2 = LA(j0l? 1) = |oP 7! Alo]? ! + | V]eP !
Hence,
07~ Alol”™! + [ViwlP |
= (A(0|"2w), [l" )+ |V (|0l 20)[* + Ko~ o],
It follows that
P~ Alo]P!
= 0" 2(A(wl"2w), o)+ (|V(0l20)|* = [VIe” ) + Kol 72 O

For [-forms with / > 1, the volume comparison property holds on M with asymp-
totically nonnegative curvature operator [Li and Tam 1995]. Therefore, inside geo-
desic ball B, (R) with r(x) = 2R, the volume doubling property holds [Li and Tam
1995]. Also, by [Saloff-Coste 1992], a local weak Poincaré inequality holds on
geodesic ball B, (R), and hence we have the Sobolev inequality S(C, v) on B, (R)
[Hajtasz and Koskela 1995]; that is, there exists a real number v > 2 such that

(w=2)/v
(/ |f|2”/<“—2>dv) <C.r2. vV (B) IV FI2aV,
B:(R) By (R)

for all f € Cj°(B«(r)), where r < R.

Theorem 2.4 (main theorem). Let M™ be an m-dimensional complete Riemannian
manifold with asymptotically nonnegative curvature operator Ky, forl > 1. Then a
bounded set of LY(M) p-harmonic l-forms on (M™, g) has a uniformly convergent
subsequence, for 1 < p < oo and 0 < g < o0.

Proof. Let w be a p-harmonic /-form on M™. Lemma 2.3 asserts that

lo|”~! Alw|P™!

= o’ A" 20), o)+ (VP 20) > = VIl [*) + Ko 2.
By the Kato inequality, we have

VIwlP~!| = |V|lolP || < | V(o] o).
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Therefore,
P~ Alo]” ™! = 0P Al 2w). o) — K (R)|o* 72,

where — K (R) is the pointwise lower bound of the curvature operator. Let 1 be a
compactly supported nonnegative smooth function on M.

/ no|” ' AlwP~! > f n*|ol” A (A(jo|” ), ©)— K(R) / n*w|*P 2
M M M
= / n*|w|?2(8d (0| ), ©) — K (R) / n*lw|?P 2
M M

— _K(R) / 2 lwf?P2.
M
Integration by parts yields
K(R) / lof?P~?
M
z/ V(no|”™") - V]wP™!
M
(p—1)? _ 2 _
> = /n2|w|2” ®1Vwl|?| —(p—l)/ |Vl |V]w|?|.
M M
It follows that

Ty
@2 L [ b 9o
M

<(p— 1)f nIVnIIwI2p_4|VIw|2|+K(R)/ n* w2,
M M

for all p > 1.
By Young’s inequality, we have

D

_ (p—1)? _ 2 _
(p— DIVl lolP~*V]w]?| < Tﬁwﬂp ®IVIwl*|” +2|Vn|* o|*P 2.

Since
2

’

|2_ 4

lo|*P 0|V ]w|?|” =
| (p—1)?

|V]w|?~!

then (2-2) can be written as

(2-3) f 7| Viol? [ <4 / V0P lolP~ + 2K (R) / Pl
M M M

for all p > 1.
For R > 0 and x € 9B;(2R), let n € €5°(B,(R)) be a cut-off function satisfying

)= {o if y € M\ By(yR).
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Note that n € [0, 1] on M and |Vn| <2/((y —p)R),forO<p <y < 1.
By the Sobolev inequality and (2-3),

1/a 1/a
( f (|w|P—1)2“) < ( f (n|w|ﬂ—1>2“)
B.(pR) By (yR)

<c;(MVi(R)R*16 (% +K (R)) / w72,
(y—p)°R B.(yR)

where « = v/(v — 2), and ¢, (v) is the Sobolev constant.
By the assumption on function K (R), it is easy to see that

K(R) < %

on ball B, (R). Therefore,
(2-4)

1/a
(/ |w|2<l’“>"’) < V(R 24 (- 2)/ P70,
B.(pR) (v—p)"JB.r

where = v/(v — 2).
Define

p=qoad'+1 and R;=(p+27'(y —p))R,

fori =0,1,2,3,.... Observe that lim; ,oc R; =pR. Let pR=R;; 1 and yR=R;
in inequality (2-4) and iterate the inequality; then

v
@-5) sup lof < VR (L) [ b,
B.(oR) Yy=pP7 JB.(yR)

When g > 2qo, by (2-5), we have

for some constant C. ‘
When 0 < g < 2qo, let hy = Y7227, p = hy, and y = hpy, for all i =
0,1,2,3.... By (2-5), we have

26)  sup |l < CV (R) 2072 / 7 sup |00,
By (hiR) By (hit1R) By (hit1R)
Write M (i) = sup |40, Inequality (2-6) becomes
B.(hiR)
(2-7) M) < CVX(R)_12(i+2)”/ lw|9 M (i 4 1)@20—9)/20
By (R)
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Let A =1—¢g/2q0 € (0, 1); iterating inequality (2-7), we have

j—1 _ j—1 A .
MO <[]e"m" ()= H(cvxun—lz”("“) f |w|'f> MY (j).
i=0

ie0 B((R)

Let j — oco; we have

2q0/q
M(0) < (C)40/V, (R) /4 ( / |w|q) .
B

x(R)

Hence,

1/q
|w|<x)s<C>1/qvx<R>”q(/ |w|‘1> scvxae)”‘f(/ |w|‘f) ,
B.(R) B, (R)

for some constant C.
For w a p-harmonic /-form on M, and x € d B,(2R), we have

1/q
|w|<x>sc<vx(1e>-1 le") .

When the L?(M) norm of w is assumed to be bounded by a fixed constant, since
we also have V,(R) > cR, we conclude that for any given € > 0, by taking R to
be sufficiently large, |w| < € on M \ B;(R). On the other hand, using the standard
elliptic PDE theory, on ball B,(R), the length of @ and all its covariant derivatives
can be bounded by the L9(M) norm of w. In particular, we conclude that any
bounded sequence of such @ admits a uniformly convergent subsequence on M.
This finishes the proof of the theorem. ]

An immediate corollary is obtained from the proof of Theorem 2.4.

Corollary 2.5. Let (M™, g) be a complete noncompact manifold with nonnegative
curvature operator. Then any bounded LY (M) p-harmonic l-forms on (M, g) must
be zero.

3. p-Harmonic maps

Here we derive a different type of Bochner formula for p-harmonic maps and
study the set of p-harmonic maps with finite p-energy. Let (M™, g) be a complete
Riemannian manifold (without boundary) of dimension m with metric g, and let
(N", g) be a complete manifold of dimension n with metric g’. For any smooth
map f : M — N and compact domain 2 C M, we define the p-energy of f on Q:

E(Q. f)= %/wa(xnpdv,
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where |df (x)| is the norm of the differential df (x) of f at x € @, dV, is the
volume element of M, and 1 < p < oo is a fixed number. Let f~!TN be the
induced vector bundle by f over M. Then df can be viewed as a section of the
bundle A'(f~!TN)=T*M ® f~'TN. We denote by |df (x)| its norm at a point
x of M, induced by the metrics g and g’.

A map f is called p-harmonic if it is a critical point of p-energy functional
E,(2, -) for any compact domain  C M. That is, f is a p-harmonic map if and
only if

dE,(f) _
ds
at s = 0 for any one-parameter family of maps f; : M — N with fy = f and
fs(x) = f(x)if x € M\ Q. We define the p-tension field 7,(f) of f by

T,(f) = =8(df|1P~2df),

where § : A'(f~'TN) — A°(f T N) is the codifferential operator. Equivalently,
a smooth map f : M — N is p-harmonic if and only if 7,(f) = 0.

Assume that (M, g) is a complete noncompact manifold with asymptotically
nonnegative Ricci curvature, and that (N, g’) is a complete manifold with non-
positive sectional curvature. We denote the Ricci tensor of (M, g) by Ricciyy, and
the curvature tensor of (N, g’) by Ry. Let {eq, ..., ey} be a local orthonormal
frame on M; by the Weitzenbock formula [Eells and Lemaire 1983], we have

(3-1) 1Aldf1> = (Adf,df) + |VAfI* + Y (df (Riccip (e:)) - df (e;))

(Rn(df (ej). df (en)df (er).df (e;))

>
i=1
2
> (Adf, df) + |Vdf |2 — K|df]?.

Lemma 3.1 (Bochner-type formula for p-harmonic maps). Let u : M — N be a
smooth p-harmonic map and {e;};_ | be an orthonormal basis of the tangent space
of M. Then

(3-2) |dulP~' AldulP™! = |dulP7*(A(dulP 2 du), du)
+(|VAdulP2du) [P = |ViduP~' %)

+ |du|?P~* i (Ricciy (dule;)), du(e;))

— ldu* Y (Ry(du(er), dute)du(er). du(e;)).

i, j=1

in the sense of distributions. Also, if Ricciyy > 0 and Ky < 0, then
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|du|P~' Aldu|P~!
> |dulP 2 (A(ldul? "2 du), du)+ (|V(|dul?2du)|* — |V|du?~|?).

Proof. The Bochner—Weitzenbock formula for |du|P~! asserts that
LAJdulP=2 = LA||du|P~2 dul?
= (A(|du|”"*du), |du|"~*du)+ \V(|du|f’—2du)|2

(ldu|P~*Ricciy (du(e;)), |du|”~*du(e;))

(IdulP~2 Ry (du(e;), du(e;))du(e;), |dulP~*due;))

+
i,j=1

)y
z
et
= (A(dulP~2du), |du|P"2du)+ |V (|du? = du)|?

m
+ |dul*P~* 3" (Ricciy (dule;)), du(e;))
i
n
—|dul?* Y (Ry(duler). du(e;))du(e;), du(e;)).
i,j=1
On the other hand,
LAIdulPP=2 = LA(lduP™)? = |dulP~" Aldul?~" + |V|dul? .
Hence,
\du P~ Aldu P! + |VidulP~! P
= (A(dulP~2du), |dulP"2du)+ |V (|dul?~2du) |’

+1dul* 3" ((Ricciy (du(e,). du(en)

—|du?P™* 3" (Ry(du(e;), dule;))du(e;), du(e;)).
i,j=1
It follows that
ldu|P~'Aldu|P~!
= |dul""2(A(du|?2du), du)+ (|V(dulP2dw)|* - | V|dul?~' )

+1du? Y ((Ricciy (du(e,). dute)

— |du|?P~* Z (Rn(du(e;),du(e;))du(e;), dule;)).
ij=1
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If Ricciy; > 0 and Ky <0, then

|du|”~' Aldu|P™!

> |dulP2(A(|dulP~2du), du)+ (|V (|dulP~2dw)|* = |VIdu?~' ). O
Theorem 3.2. Let (M, g) be a complete noncompact manifold with asymptotically
nonnegative Ricci curvature, and let (N, g") be a complete Riemannian manifold
with nonpositive sectional curvature. Then the set of p-harmonic maps u from M
to N with fM |du|?dV, < C, for some C > 0 and 1 < p < 00, has a uniformly

convergent subsequence.

Proof. Let u be a p-harmonic map; if Ky < 0, the Bochner type formula (3-2)
asserts that

ldu|”~" Aldu|P~" > du|”~*(A(|du|"~*du), du)
+(|V(dulP~2dw) | = |VIdu?"' ) — [dul* 2K (R).

By the Kato inequality, we have
|VIdu|P~t| = |V||dul?~2dul| < |V(|du|”*du))|.
Thus,
(3-3) dul”" ' Aldu|”~" > |dulP~*(A(|du|P~*du), du) — |du|*’ "> K (R).
Dividing both sides of (3-3) by |du|?~2, we get
du|Aldu|P~" > (A(ldu|P~*du), du) — |du|" K (R).
Let 1 be a compactly supported nonnegative smooth function on M ; then
/ n?|du|Aldu|P~" > / n>((d8 + 8d)|du|P~%du, du) — / n°|du|” K (R)
M M M
= f > (d|du|”~*du, d(du)) — / n°ldu”K (R)
M M
= —/ n’|du|”K (R).
M

On the other hand, by integration by parts,
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(3-4)
—/ nzldul”K(R)sf P2 ldul AldulP~!
M M

— _/ V(n?|dul) - V|du|P~!
M
=— f (*VIdu| +|dul2n - V) - ((p — D|du|? "2V |dul)
M
=—<p—1>/ P ldulP~2|V|dul [
M

_2(,,_1)/ n-ValdulP~" - Vdu|.
M

Since

%|V|du|p/2|2 = %|§|du|<l’/2>*lwdu||2 = |dulP~?|V|du] |

and

%ldu|p/2V|du|p/2 = %|du|1’/2§|du|<P/2>*1V|du| = |du|”~'V|du|,
inequality (3-4) can be rewritten as
—f n°ldul”K (R)
M

<_4(P;1)/ n2|V|du|p/2|2—M/ |du|P/2-Vn-n-V|du|p/2.
p M p M

By Young’s inequality,
- / n’ldul”K (R)
M
4(p—1 2 2
< —(”—2)/ | Vidul??| + (;/ P |VIdul?”| +ﬂ/ |Vn|2|du|P),
P M M ¢ Jm
for some positive constants ¢; and 0 < ¢ < 1. Therefore,

o9 (4250 a) [ plviaur

sc—2</ |Vn|2|du|f’+/ n2|du|f’K<R)).
¢ \Ju M

For R > 0 and x € 9B;(2R), let n € C3°(B;(R)) be a cut-off function such that

)= {o if y € M\ By(yR).
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Note that n € [0, 1] on M and |V7| < c3/R, for 0 < p < y <1 and some positive
constant c3.
By the curvature assumption on function K (R), we have

for some constant c4. Let ¢ = (p — 1)/p?; then inequality (3-5) becomes

c C C
/ |V|du|P/2|2 < _52/ |du|? +/ —62|du|p <— |du|?.
By (R) R? Jp, (R B.(R) R B.(R)

Therefore, for # a p-harmonic map from M to N and x € d B,(2R), we have

C
/ }V|du|1’/2\25—2/ |du|”.
B.(R) R Jm

When [ y |du|? is assumed to be bounded by a fixed constant, by taking R to be
sufficiently large, for any € > 0, we have |V|du|P/?| < € on M\B.(R). On the
other hand, |V|du|p/ 2} can be bounded by the finite energy of u# on ball B;(R).
We conclude that the set of such p-harmonic maps admits a uniformly convergent
subsequence. If M is a compact manifold with nonnegative Ricci curvature, then
the p-harmonic map is constant, which is an extension of the fact in the harmonic
map case (p = 2) [Eells and Sampson 1964]. U
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