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STRUCTURE OF SOLUTIONS OF 3D AXISYMMETRIC
NAVIER–STOKES EQUATIONS NEAR MAXIMAL POINTS

ZHEN LEI AND QI S. ZHANG

Let v be a solution of the axially symmetric Navier–Stokes equation. We de-
termine the structure of a certain (possible) maximal singularity of v in the
following sense. Let (x0, t0) be a point where the flow speed Q0 = |v(x0, t0)|
is comparable with the maximum flow speed at and before time t0. We show,
after a space-time scaling with the factor Q0 and the center (x0, t0), that the
solution is arbitrarily close in C2,1,α

local norm to a nonzero constant vector in
a fixed parabolic cube, provided that r0 Q0 is sufficiently large. Here r0 is
the distance from x0 to the z axis. Similar results are also shown to be valid
if |r0v(x0, t0)| is comparable with the maximum of |rv(x, t)| at and before
time t0. This mirrors a numerical result of Hou for the Euler equation: there
exists a certain “calm spot” or depletion of vortex stretching in a region of
high flow speed.

1. Introduction

We study the structure, in a space-time region with maximum flow speed, of solu-
tions to the three-dimensional incompressible Navier–Stokes equations

(1-1)

{
∂tv+ v · ∇v+∇ p = µ1v,

∇ · v = 0,
t ≥ 0, x ∈ R3,

with the axially symmetric initial data

(1-2) v0(x)= ar (r, z, t)er + aθ (r, z, t)eθ + az(r, z, t)ez.

In cylindrical coordinates, the solution v = v(x, t) is of the form

(1-3) v(x, t)= vr (r, z, t)er + v
θ (r, z, t)eθ + vz(r, z, t)ez.

Here x = (x1, x2, z) and r =
√

x2
1 + x2

2 , while

(1-4) er =

x1/r
x2/r

0

 , eθ =

−x2/r
x1/r

0

 , ez =

0
0
1


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are the three orthogonal unit vectors along the radial, angular, and axial directions.
Also, the angular, swirl and axial components vr , vθ and vz of the velocity field
are solutions of the axially symmetric Navier–Stokes equations (or ASNS)

(1-5)



∂tv
r
+ b · ∇vr

−
(vθ )2

r
+ ∂r p =

(
1−

1
r2

)
vr ,

∂tv
θ
+ b · ∇vθ + v

rvθ

r
=

(
1−

1
r2

)
vθ ,

∂tv
z
+ b · ∇vz

+ ∂z p =1vz,

b = vr er + v
zez, ∇ · b = ∂rv

r
+
vr

r
+ ∂zv

z
= 0.

Here, without loss of generality, we set the viscosity constant µ equal to 1.
Although the axially symmetric case is a special instance of the full Navier–

Stokes equations, the main regularity problem is just as wide open. Let us briefly
discuss some interesting results on the axially symmetric Navier–Stokes equations.
When vθ = 0, that is, in the no swirl case, Ladyzhenskaya [1968] and Ukhovskii
and Iudovich [1968] proved that weak solutions are regular for all time. See also
[Leonardi et al. 1999]. More recent activity, in the presence of swirl, includes
[Chen et al. 2008; 2009], where it is proven that suitable axially symmetric solu-
tions bounded by Cr−α

√
|t |−1+α (0 ≤ α ≤ 1) are smooth. Here, r is the distance

from a point to the z axis, and t is time. See also [Koch et al. 2009] and its
local version using different methods, [Seregin and Šverák 2009]. Also in the
presence of swirl, there is [Neustupa and Pokorný 2000], proving that regularity
of one component (either vr or vθ ) implies regularity of the other components of
the solution. Also proving regularity, under an assumption of sufficiently small
zero-dimension scaled norms, is [Jiu and Xin 2003].

We also wish to mention the regularity results of Chae and Lee [2002], who
prove regularity results assuming finiteness of another zero-dimensional integral.
On the other hand, Tian and Xin [1998] constructed a family of singular axis sym-
metric solutions with singular initial data, and Hou and Li [2008] found a special
class of global smooth solutions. See also the recent extension [Hou et al. 2008].

In this paper, we take another approach to ASNS, seeking to understand the
local structure of solutions when the flow velocity is very high. This is akin to
the approach taken by Hamilton and Perelman in the study of Ricci flow. We can
reach understanding when the flow speed |v(x0, t0)| at a space-time point (x0, t0)
is comparable with the maximum flow speed, or r0|v(x0, t0)| at a space-time point
(x0, t0) is comparable with the maximum of r |v(x, t)|, at and before time t0.

In order to present the result, we introduce some notations. Let v = v(x, t) be a
solution to ASNS. Here (x, t) is a point in space-time. Given a number a > 0 and
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a point in space-time (x0, t0), we define the parabolic cube

P(x0, t0, a)≡ {(x, t) : |x0− x |< a, t0− a2
≤ t ≤ t0}.

Unless stated otherwise, we use r, r0, rk to denote the distance between points
x, x0, xk in space and the z-axis, respectively.

Now we are ready to state the main result of the paper.

Theorem 1.1. Let v = v(x, t), with (x, t) ∈ R3
× [0, T0) and T0 > 0, be a smooth

solution to the three-dimensional ASNS, with initial condition v0 satisfying

(1-6) ‖v0‖L∞(R3) ≤ N0, ‖v0‖L2(R3) ≤ N0, |rv0| ≤ N0.

Here N0 is any positive number. For any sufficiently small constant ε > 0 and two
other constants σ0 > 0 and 0< α < 1, there exists some ρ0 = ρ0(ε, N0, σ0, α) > 0
with the following properties.

(a) Suppose
r0|v(x0, t0)| ≥ ρ−2

0

at some point (x0, t0), where x0 ∈ R3 and t0 ∈ (0, T0). Suppose also that (x0, t0) is
an almost maximal point in the sense that

|v(x0, t0)| ≥ 1
4 sup

x∈R3, t≤t0
|v(x, t)|.

Then the velocity v in the cube

P(x0, t0, (σ0εQ)−1), Q ≡ |v(x0, t0)|,

after scaling by the factor Q, that is, Q−1v(Q−1x + x0, Q−2t + t0), is ε-close in
C2,1,α

local norm to a nonzero constant vector.

(b) The conclusion in (a) still holds if

r0|v(x0, t0)| ≥ ρ−2
0

at (x0, t0) and
r0|v(x0, t0)| ≥ 1

4 sup
x∈R3, t≤t0

r |v(x, t)|.

Remark 1.2. According to [Seregin and Šverák 2009] and [Chen et al. 2009],
if a smooth solution blows up in finite time, then the scaling invariant quantity
r |v(x, t)| must also blow up in finite time near singularity. So the condition in (b)
can always be satisfied if the solution develops finite time singularity.

Remark 1.3. The factor 1
4 in the statement of the theorem can be replaced by any

fixed positive number smaller than or equal to 1. In particular, the statement is true
if (x0, t0) is a point such that r0|v(x0, t0)| = supx∈R3, t≤t0 r |v(x, t)|.
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An important open question is to generalize the current result in (a) to the case
when |v(x0, t0)| is very large but still much smaller than maximum.

Another question is: what happens when r0|v(x0, t0)| is not large, but |v(x0, t0)|
is large at almost maximal point (x0, t0)?

Remark 1.4. The result and parameters in the theorem depend only on the norms
of the initial value in (1-6). They do not depend on individual solutions.

We end the introduction by stating the main result in a more intuitive manner.

Definition 1.5 (calm spot). Let v be a solution of (1-5), and ε > 0. We say the ball
B(x, 1/s) is an ε-calm spot of speed s if

sup
B(x,1/s)

|v| = s and sup
B(x,1/s)

|∇v| ≤ εs2.

When ε is small, the gradient of the velocity is much smaller than the speed in
an ε-calm spot, after scaling by s.

Corollary 1.6. Let v be a solution of (1-5) whose initial value satisfies (1-6). If
the flow becomes turbulent, that is, the speed becomes arbitrarily large, then there
exist ε-calm spots of arbitrarily high speed. Here ε is any given positive number.

By axial symmetry, there is a ring of very small vorticity. In [Hou 2009], one can
find a related numerical result for the Euler equation, which is called deletion of
vortex stretching. As an application, the method in this paper has helped to prove
regularity of solutions in the BMO−1 class for axially symmetric Navier–Stokes
equations. See [Lei and Zhang 2011].

2. Proof of Theorem 1.1

Let us prove part (a) first, after which the proof of (b) follows easily.

Proof. From the condition

‖v0‖L∞(R3) ≤ N0, ‖v0‖L2(R3) ≤ N0, |rv0| ≤ N0,

by standard theory (see [Koch et al. 2009, Proposition 4.1], for example), there
exists a time h0 such that

(2-1) ‖v( · , t)‖L∞(R3) ≤ 2N0, t ≤ h0.

The proof is divided into several steps and uses the method of contradiction.

Step 1 (setting up a limit solution). Suppose part (a) of the theorem is false. Then
for some ε > 0 and σ0 > 0, there exists a sequence of solutions vk , with associated
pressure pk= (−1)

−1
∇·(vk ·∇vk) and initial condition satisfying (1-6), defined on

the time interval [0, Tk) for some Tk > h0, which satisfies the following conditions:
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(i) There exist sequences of positive numbers ρk → 0, points xk ∈ R3, and times
tk ∈ [0, Tk) such that

rk |vk(xk, tk)| ≥ ρ−2
k .

(ii) For each k, the solution vk in the parabolic region

P(xk, tk, [cQk]
−1)≡{(x, t)∈ [0, Tk) : |xk−x |<(cQk)

−1, tk−(cQk)
−2
≤ t ≤ tk}

is not, after scaling by the factor Qk , ε close, in C2,1,α norm, to a nonzero constant
vector. Here c = σ0ε and also

Qk = |vk(xk, tk)| ≥ 1
4 sup

t∈[0,tk ], x∈R3
|vk(x, t)|.

Write αk = rk Qk = rk |vk(xk, tk)|. We consider vk in the space-time cube

P
(

xk, tk,
rk
√
αk

)
≡ B

(
xk,

rk
√
αk

)
×

[
tk −

(
rk
√
αk

)2

, tk

]
.

Note that

(2-2) βk ≡
rk
√
αk
=

rk
√

rk Qk
= o(rk),

Qkβk =
√

rk Qk→∞, k→∞.

Define the scaled function

(2-3) ṽk = Q−1
k vk(Q−1

k x̃ + xk, Q−2
k t̃ + tk).

Then ṽk is a solution of the Navier–Stokes equation in the slab R3
×[−(Qkβk)

2, 0].
By the assumption on Qk , we know that |ṽk | ≤ 4 whenever it is defined. Since ṽk

is a bounded mild solution, [Koch et al. 2009, Proposition 4.1] gives, for example,
that the C2,1,α norm of ṽk are uniformly bounded in R3

×[−(Qkβk)
2
+ 1, 0]. The

pressure
Pk = Q−2

k pk(Q−1
k x̃ + xk, Q−2

k t̃ + tk),

satisfying1Pk = div(ṽk ·∇ṽk), also has uniformly bounded C2,1,α
local norm, by virtue

of standard Schauder theory. Indeed, all C p,p/2 norms are bounded for p ≥ 1,
though we do not need this fact here.

Let us restrict the solution ṽk to the cube

P(0, 0, Qkβk)= {(x̃, t̃) : |x̃ | ≤ Qkβk,−(Qkβk)
2
≤ t̃ ≤ 0}.

By the uniform bounds on the C2,1,α
local norm and the fact that Qkβk→∞, we know

there exists a subsequence, still called {ṽk}, that converges to an ancient solution
of the Navier–Stokes equation in C2,1,α

local sense. Let us call this ancient solution ṽ.
Note that ṽ has length 1 at (0, 0) and is hence nontrivial. In the next step, we show
that it is a spatial 2-dimensional solution, one dimension being the z-dimension.
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Step 2 (proving ṽ is a 2D solution). Denote by vθk the angular component of vk .
For the given initial value, it is known that

|vθk (x, t)| ≤
N0

r
.

For x ∈ B(xk, βk), we have, by (2-2),

|vθk (x, t)| ≤
2N0

rk

when k is sufficiently large. Therefore,

(2-4) Q−1
k |v

θ
k (x, t)| ≤

2N0

Qkrk
→ 0, k→∞.

In the standard basis for R3, put xk = (xk,1, xk,2, xk,3), with the third component
being the z-component, and let ξk = (0, 0, xk,3). Since (xk − ξk)/|xk − ξk | are
unit vectors, there exists a subsequence, still labeled by k, that converges to a unit
vector ζ = (ζ1, ζ2, 0). We use

ζ, ζ ′ = (−ζ2, ζ1, 0), (0, 0, 1)

as the basis of a new coordinate. Since this basis is obtained by a rotation around the
z-axis, we know vk is invariant. From now on, when we mention the coordinates of
a point, we use the new basis with the same origin. We still use (θ, r, z) to denote
the variables for the cylindrical system corresponding to this new basis.

For x ∈ B(xk, βk), we recall that θ is the angle between x and ζ . Then

(2-5) cos θ =
(x − ξk) · ζ

|x − (0, 0, x3)T |
=
(xk − ξk) · ζ

|xk − ξk |
+

O(βk)

rk
→ 1, k→∞.

For vk = vk(x, t) in B(xk, βk)×[tk −β2
k , tk], we have defined

ṽk = ṽk(x̃, t̃)= Q−1
k vk(Q−1

k x̃ + xk, Q−2
k t̃ + tk),

where x = Q−1
k x̃ + xk and t = Q−2

k t̃ + tk . Then for x = (x (1), x (2), x (3)) and
x̃ = (x̃ (1), x̃ (2), x̃ (3)), we have

(2-6)



∂rvk(x, t)= ∂x (1)vk(x, t) cos θ + ∂x (2)vk(x, t) sin θ

= Q2
k∂x̃ (1) ṽk(x̃, t̃) cos θ + Q2

k∂x̃ (2) ṽk(x̃, t̃) sin θ,

∂2
r vk(x, t)= Q3

k∂
2
x̃ (1) ṽk(x̃, t̃) cos2 θ + 2Q3

k∂
2
x̃ (1) x̃ (2) ṽk(x̃, t̃) sin θ cos θ

+ Q3
k∂

2
x̃ (2) ṽk(x̃, t̃) sin2 θ,

∂2
z vk(x, t)= Q3

k∂
2
x̃ (3) ṽk(x̃, t̃),

∂2
t vk(x, t)= Q3

k∂
2
t̃ ṽk(x̃, t̃).
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For the pressure pk = pk(x, t), recall that

p̃k = p̃k(x̃, t̃)= Q−2
k pk(Q−1

k x̃ + xk, Q−2
k t̃ + tk).

Therefore,

(2-7) ∂r pk(x, t)= Q3
k∂x̃ (1) p̃k(x̃, t̃) cos θ + Q3

k∂x̃ (2) p̃k(x̃, t̃) sin θ.

Writing vk = v
r
ker + v

θ
k eθ + vz

kez , we get

(2-8) vr
k∂rv

r
k + v

z
k∂zv

r
k = Q3

k
(
vr

k(x̃, t̃)∂x̃ (1) ṽ
r
k(x̃, t̃) cos θ

+ vr
k(x̃, t̃)∂x̃ (2) ṽ

r
k(x̃, t̃) sin θ + ṽz

k∂x̃ (3) ṽ
r
k(x̃, t̃)

)
.

Substituting these identities into the equation for vr
k ,(

∂2
r +

1
r
∂r −

1
r2

)
vr

k − (b · ∇)v
r
k +

(vθk )
2

r
−
∂pk

∂r
−
∂vr

k

∂t
= 0,

we arrive at

(∂2
x̃ (1) + ∂

2
x̃ (3))ṽ

r
k − (ṽ

r
k∂x̃ (1) + ṽ

z
k∂x̃ (3))ṽ

r
k − ∂x̃ (1) p̃k − ∂t̃v

r
k

+
1

Qkr

(
∂x̃ (1) ṽk(x̃, t̃) cos θ+ ∂x̃ (2) ṽk(x̃, t̃) sin θ

)
−

1
(Qkr)2

ṽr
k+

(rvθk )
2

(Qkr)3
+O(θ)=0.

Here O(θ) represents all the terms that vanish when θ→0 as k→∞. In particular,
all terms involving the derivative with respect to x̃ (2) are included in O(θ).

Recall that Qkr is comparable to Qkrk , which goes to∞. Letting k→∞ and
noting that vk and derivatives are uniformly bounded, we know that ṽ1, the limit
of ṽr

k , satisfies

(∂2
x̃ (1) + ∂

2
x̃ (3))ṽ

(1)
− (ṽ(1)∂x̃ (1) + ṽ

(3)∂x̃ (3))ṽ
(1)
− ∂x̃ (1) p̃− ∂t̃v

(1)
= 0.

Here ṽ(3) is the limit of vz
k , for which we have, in a similar manner,

(∂2
x̃ (1) + ∂

2
x̃ (3))ṽ

(3)
− (ṽ(1)∂x̃ (1) + ṽ

(3)∂x̃ (3))ṽ
(3)
− ∂x̃ (3) p̃− ∂t̃v

(3)
= 0.

Note that ṽk and its derivatives are uniformly bounded in the region of concern.
When k→∞, then θ → 0 in the region of concern. Hence ṽθk and derivatives all
vanish when k→∞.

Finally, we need to show that ṽ(1) and ṽ(3) are independent of the variable x̃ (2).
To prove this, let us recall that ∂θvr

k = ∂θv
z
k = 0. Hence

−∂x (1)v
r
k sin θ + ∂x (2)v

r
k cos θ =−∂x (1)v

z
k sin θ + ∂x (2)v

z
k cos θ = 0.

This implies
∂x̃ (2) ṽk = ∂x̃ (1) ṽk tan θ.

Taking k→∞ (and therefore θ→ 0), we see the desired result.
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Step 3. Here we use a regularity result already cited [Koch et al. 2009, Proposition
4.1] and the fact that 2-dimensional ancient (mild) solutions are constants [Koch
et al. 2009] to conclude that ṽk , with k large, is ε-close to a nonzero constant vector
in C2,1,α

local sense. This contradiction with the condition (ii) completes the proof.

Now we prove part (b). Suppose it is false. Then for some ε > 0, there exists a
sequence of solutions vk with normalized initial condition as above, defined on the
time interval [0, Tk) for some Tk ∈ [h0, T0], that satisfies the following conditions.

(i) There exist sequences of positive numbers ρk → 0, points xk ∈ R3, and times
tk ∈ [0, Tk) such that

rk |vk(xk, tk)| ≥ ρ−2
k .

(ii) For each k, the solution vk in the parabolic region

P(xk, tk, [cQk]
−1)≡ {(x, t) ∈ [0, Tk) : |x− xk |< (cQk)

−1, tk− (cQk)
−2
≤ t ≤ tk}

is not, after scaling by the factor Qk , ε-close, in C2,1,α
local norm, to a nonzero constant

vector. Here c = σ0ε and also

rk |vk(xk, tk)| ≥ 1
4 sup

t∈[0,tk ], x∈R3
r |vk(x, t)|.

As before, define Qk = |v(xk, tk)|. Suppose k is large. Then for x ∈ B(xk, βk)

with βk = rk/
√

rk Qk = o(rk), there holds, for t ≤ tk ,

r |v(x, t)| ≤ rk |v(xk, tk)| = rk Qk

and 1
2rk ≤ r ≤ 2rk , when k is large. This shows, in the ball B(xk, βk) and for t ≤ tk ,

that
|v(x, t)| ≤ 2Qk .

Now we can scale by Q−1
k in the above ball again, as in the proof of part (a). By

[Seregin and Šverák 2009, Theorem 2.8], the limit of scaled solutions is again a
bounded, mild, ancient solution. Similar arguments as in part (a) lead to a contra-
diction, proving part (b). �
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in R3”, Z. Anal. Anwendungen 18:3 (1999), 639–649. MR 2000h:76038 Zbl 0943.35066

[Neustupa and Pokorný 2000] J. Neustupa and M. Pokorný, “An interior regularity criterion for an
axially symmetric suitable weak solution to the Navier–Stokes equations”, J. Math. Fluid Mech. 2:4
(2000), 381–399. MR 2001m:76034 Zbl 0980.35129

[Seregin and Šverák 2009] G. Seregin and V. Šverák, “On type I singularities of the local axi-
symmetric solutions of the Navier–Stokes equations”, Comm. Partial Differential Equations 34:1-3
(2009), 171–201. MR 2010k:35356 Zbl 1180.35002

[Tian and Xin 1998] G. Tian and Z. Xin, “One-point singular solutions to the Navier–Stokes equa-
tions”, Topol. Methods Nonlinear Anal. 11:1 (1998), 135–145. MR 99j:35170 Zbl 0923.35121

[Ukhovskii and Iudovich 1968] M. R. Ukhovskii and V. I. Iudovich, “Axially symmetric flows of
ideal and viscous fluids filling the whole space”, J. Appl. Math. Mech. 32 (1968), 52–61. MR 39
#650 Zbl 0172.53405

Received February 16, 2011. Revised September 16, 2011.

http://dx.doi.org/10.1007/s002090100317
http://dx.doi.org/10.1007/s002090100317
http://www.ams.org/mathscinet-getitem?mr=2003d:35205
http://www.emis.de/cgi-bin/MATH-item?0992.35068
http://www.ams.org/mathscinet-getitem?mr=2009i:35233
http://www.emis.de/cgi-bin/MATH-item?1154.35068
http://dx.doi.org/10.1080/03605300902793956
http://dx.doi.org/10.1080/03605300902793956
http://www.ams.org/mathscinet-getitem?mr=2010f:35279
http://www.emis.de/cgi-bin/MATH-item?1173.35095
http://dx.doi.org/10.1017/S0962492906420018
http://dx.doi.org/10.1017/S0962492906420018
http://www.ams.org/mathscinet-getitem?mr=2010g:35224
http://www.ams.org/mathscinet-getitem?mr=2010g:35224
http://www.emis.de/cgi-bin/MATH-item?05622314
http://dx.doi.org/10.1002/cpa.20212
http://dx.doi.org/10.1002/cpa.20212
http://www.ams.org/mathscinet-getitem?mr=2009j:35253
http://www.ams.org/mathscinet-getitem?mr=2009j:35253
http://www.emis.de/cgi-bin/MATH-item?1138.35077
http://dx.doi.org/10.1080/03605300802108057
http://dx.doi.org/10.1080/03605300802108057
http://www.ams.org/mathscinet-getitem?mr=2009g:35219
http://www.emis.de/cgi-bin/MATH-item?1146.76010
http://www.ams.org/mathscinet-getitem?mr=2005i:35210
http://www.emis.de/cgi-bin/MATH-item?1054.35053
http://dx.doi.org/10.1007/s11511-009-0039-6
http://dx.doi.org/10.1007/s11511-009-0039-6
http://www.ams.org/mathscinet-getitem?mr=2010i:35281
http://www.emis.de/cgi-bin/MATH-item?1208.35104
http://www.ams.org/mathscinet-getitem?mr=39:3170
http://dx.doi.org/10.1016/j.jfa.2011.06.016
http://dx.doi.org/10.1016/j.jfa.2011.06.016
http://www.ams.org/mathscinet-getitem?mr=2824580
http://www.emis.de/cgi-bin/MATH-item?05956041
http://www.ams.org/mathscinet-getitem?mr=2000h:76038
http://www.emis.de/cgi-bin/MATH-item?0943.35066
http://dx.doi.org/10.1007/PL00000960
http://dx.doi.org/10.1007/PL00000960
http://www.ams.org/mathscinet-getitem?mr=2001m:76034
http://www.emis.de/cgi-bin/MATH-item?0980.35129
http://dx.doi.org/10.1080/03605300802683687
http://dx.doi.org/10.1080/03605300802683687
http://www.ams.org/mathscinet-getitem?mr=2010k:35356
http://www.emis.de/cgi-bin/MATH-item?1180.35002
http://www.ams.org/mathscinet-getitem?mr=99j:35170
http://www.emis.de/cgi-bin/MATH-item?0923.35121
http://dx.doi.org/10.1016/0021-8928(68)90147-0
http://dx.doi.org/10.1016/0021-8928(68)90147-0
http://www.ams.org/mathscinet-getitem?mr=39:650
http://www.ams.org/mathscinet-getitem?mr=39:650
http://www.emis.de/cgi-bin/MATH-item?0172.53405


344 ZHEN LEI AND QI S. ZHANG

ZHEN LEI

SCHOOL OF MATHEMATICAL SCIENCES

LMNS AND SHANGHAI KEY LABORATORY FOR CONTEMPORARY APPLIED MATHEMATICS

FUDAN UNIVERSITY

SHANGHAI 200433
CHINA

zlei@fudan.edu.cn

QI S. ZHANG

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

RIVERSIDE, CA 92521
UNITED STATES

qizhang@math.ucr.edu

mailto:zlei@fudan.edu.cn
mailto:qizhang@math.ucr.edu


PACIFIC JOURNAL OF MATHEMATICS
http://pacificmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.

The subscription price for 2011 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Pacific Journal of Mathematics

http://pacificmath.org/
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://pacificmath.org/
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 254 No. 2 December 2011

257Curvatures of spheres in Hilbert geometry
ALEXANDER BORISENKO and EUGENE OLIN

275A formula equating open and closed Gromov–Witten invariants and its applications
to mirror symmetry

KWOKWAI CHAN

295A note on p-harmonic l-forms on complete manifolds
LIANG-CHU CHANG and CHIUNG-JUE ANNA SUNG

309The Cheeger constant of curved strips
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