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We establish a sharp relative volume comparison theorem for small balls
on Kähler manifolds with lower bound on Ricci curvature, assuming real
analyticity of the metric. The model spaces being compared to are complex
space forms, that is, Kähler manifolds with constant holomorphic sectional
curvature. Moreover, we give an example showing that on Kähler mani-
folds, the pointwise Laplacian comparison theorem does not hold when the
Ricci curvature is bounded from below.

1. Introduction

Comparison theorems are fundamental tools in geometric analysis. They are vi-
tal in estimates of spectra, heat kernels and the Sobolev constants. The classi-
cal Bishop–Gromov relative volume comparison theorem [Bishop and Crittenden
1964; Gromov 1981; Li 1993] in Riemannian geometry is this:

Theorem 1.1. Let Mn be a complete Riemannian manifold of dimension n such
that Ric ≥ (n− 1)K . For any p ∈ M and 0 < a < b, the volume of geodesic balls
satisfies

Vol Bp(b)
Vol Bp(a)

≤
Vol BMK (b)
Vol BMK (a)

,

where MK is the simply connected real space form with sectional curvature K and
Vol BMK (r) is the volume of the geodesic ball in MK with radius r . Equality holds
if and only if Bp(b) is isometric to BMK (b).

The key ingredient in Theorem 1.1 is the Laplacian comparison theorem [Cheeger
and Ebin 2008; Schoen and Yau 1994]:

Theorem 1.2. Let Mn be a complete Riemannian manifold with Ric ≥ (n− 1)K .
Let Mk be the simply connected real space form with sectional curvature K . De-
note by rM(x) the distance function from p to x in M. Let rMk be the distance
function on Mk . Then for any x ∈ M and y ∈ Mk with rM(x)= rMk (y),

1rM(x)≤1rMk (y).
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The model spaces in the theorems above are real space forms. In the Kähler
category, a natural question is whether we can replace the model spaces by Kähler
models, that is, complex space forms which are Kähler manifolds with constant
holomorphic sectional curvature. Li and Wang [2005] showed that when the bi-
sectional curvature has a lower bound, both of the theorems above hold with Kähler
models. So the question left is: what can we get if we only assume the lower bound
of the Ricci curvature? This note addresses the local case. Our main theorem is:

Theorem 1.3. Let Mn be a Kähler manifold of complex dimension n with a real
analytic metric. Assume Ric ≥ K , where K is any real number. Given any point
p ∈ M , there exists r = r(p,M) > 0 such that for any 0 < a < b < r , the volume
of geodesic balls satisfies

Vol BMn (p, b)
Vol BMn (p, a)

≤
Vol BNK (b)
Vol BNK (a)

,

where NK denotes the rescaled complex space form with Ric= K and1NK r is the
Laplacian of distance function on NK . Equality holds if and only if M is locally
isometric to NK .

Remark. Theorem 1.3 is a local version of the Bishop–Gromov relative volume
comparison theorem on Kähler manifolds. However, one cannot directly extend
the result to any radius. A simple counterexample is a product of several P1 with
the standard product metric: the diameter is greater than that of the complex space
form. Thus, when r is large, the inequality in Theorem 1.3 does not hold.

We will prove a slightly stronger result:

Theorem 1.4. Under the hypotheses of Theorem 1.3, there exists r0=r0(p,M)>0
such that for any r < r0, the average Laplacian comparison holds,∫

∂Bp(r)
1r

A(∂Bp(r))
≤1NK r(r),

where 1NK r is the Laplacian of distance function on NK . Moreover, the equality
holds if and only if M is locally isometric to NK .

Remark. Theorem 1.4 is a local version of Theorem 1.2 in the average sense.
However, on Kähler manifolds with lower bound on Ricci curvature, the pointwise
Laplacian comparison does not even hold locally (see Section 6).

The idea of the proof of Theorem 1.4 is very simple. We shall expand the area
of the geodesic sphere A(∂Bp(r)) as a power series, then compare the coefficients
with those of the rescaled complex space form. The computation is complicated
since it involves the covariant derivatives of the curvature tensor of arbitrary order.

This note is organized as follows:
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In Section 2, we state two propositions which demonstrate the relation between
the derivatives of A(∂Bp(r)) and the covariant derivatives of the curvature tensor
at p. Section 3 is the first part of the proof of Proposition 2.1. We shall estimate
the derivatives of A(∂Bp(r)) up to order 4. In the estimate of the 4-th derivative,
the Kähler condition is employed. The most important part is Section 4. We use
induction to prove Proposition 2.1. Besides the routine computation, there are two
technical lemmas (Lemma 4.4 and Lemma 4.6) which simplify the computation of
higher order covariant derivatives of the curvature tensor significantly. One should
note that the Kähler condition is essential in these two lemmas. We complete the
proof of Proposition 2.2 and Theorem 1.4 in Section 5. The last section is devoted
to giving an example showing that the pointwise Laplacian comparison with the
complex space form does not necessarily hold if the complex dimension is greater
or equal to 2.

2. Basic set up

Throughout this note, we implicitly evaluate derivatives of functions of r at r = 0.
Given a point p on a Kähler manifold Mn , fix a unit vector e0 ∈ Tp M . Along
the geodesic l from p with initial direction e0, consider the Jacobian equation
J ′′ = R(e0, J ) e0. Set up an orthonormal frame {ek} at p such that

Je2i = e2i+1 and Je2i+1 =−e2i

for 0 ≤ i ≤ n− 1. Parallel transport the frame along the geodesic l. Consider the
Jacobian field Ju with initial value Ju(0)= 0, J ′u(0)= eu .

We may write

(2-1) Ju = Ju(r, e0)=
∞∑

i=1

2n−1∑
v=0

r i Cv
u,i ev

where Cv
u,i are constants independent of r . Denote Re0 eu e0 ev by Ruv when e0 is

fixed. Plugging (2-1) into the Jacobian equation, we get

(2-2)
∑

i

∑
v

i(i − 1)r i−2Cv
u,i ev =

∑
k

∑
w

r kCw
u,k R(e0, ew) e0.

Along the geodesic l,

R(e0, ew) e0 =
2n−1∑
s=0

∞∑
j=0

R( j)
sw
j !

esr j

where R( j)
sw denotes the j-th covariant derivative of Rsw along e0 at p.
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Inserting this into (2-2), we get∑
i,v

i(i − 1)r i−2Cv
u,i ev =

∑
k, j,w,s

r k+ j Cw
u,k

R( j)
sw
j !

es .

Comparing coefficients, we obtain

(2-3) Cv
u,i =

∑
k+ j=i−2, w

Cw
u,k

R( j)
vw

j ! i(i−1)
.

A simple iteration now gives the constants Cv
u,i . First we have Cv

u,1 = δ
v
u and

Cw
u,2 = 0. Then we get

Cv
u,3 =

∑
w

Cw
u,1

Rvw
6
=

Ruv
6
, Cv

u,4 =
∑
w

Cw
u,1

Rvw′

12
=

Rvu
′

12
,

Cv
u,5 =

∑
w

(
Cw

u,1
Rvw′′

40
+Cw

u,3
Rvw
20

)
=

1
120

(∑
s

Rus Rsv + 3R′′uv
)
.

Plugging these values into (2-1), we have

(2-4) Ju = reu +
r3

6
Ruvev +

r4

12
R′uvev +

r5

120

(∑
s

Rus Rsv + 3R′′uv
)

ev + O(r6).

We write dA for the standard measure of the unit tangent bundle U Tp(M) at p,
and we write

∫
∂B(p,r) dA as

∫
. We define

W =

∫ √
det〈Ju, Jv〉
r2n−1 ,

and introduce two propositions:

Proposition 2.1. Assume the hypotheses of Theorem 1.3. Let the derivatives of W
of order from 1 to 2m−1 for m ≥ 1 be the same as that of the complex space form.

(1) If m = 1, 2, then Ric= K at p.
If m ≥ 3, then

Ri jkl =
K

n+1
(δi jδkl + δilδ jk)

at p. Moreover, if u, v, e0 ∈ U Tp(M) are any unit vectors, then R(λ)uv = 0 for
1≤ λ≤m−3 and Ric(l)(e0, e0)= 0 for 1≤ l ≤ 2m−4. The superscripts are
the orders of covariant derivatives along the direction e0.

(2) In either case, W (2m) is less than or equal to that of the complex space form.

Proposition 2.2. Under the same conditions as in Theorem 1.3, if the derivatives
of W of order 1 to 2m for m ≥ 1 are the same as the complex space form, then
W (2m+1)

= 0.

We divide the proof of Proposition 2.1 into two parts: m = 1, 2 and m ≥ 3.
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3. The proof of Proposition 2.1, case m = 1, 2

By (2-1), we have

(3-1) 〈Ju, Jv〉
r2 =

∑
i, j,w

r i+ j−2Cw
u,i C

w
v, j .

By (2-4),

〈Ju, Ju〉

r2 = 1+ 1
3 Ruur2

+
1
6 R′uur3

+

(
2
45

∑
s

R2
us +

1
20 R′′uu

)
r4
+ O(r5).

If u 6= v,

〈Ju, Jv〉
r2 =

1
3 Ruvr2

+
1
6 R′uvr

3
+

(
2

45

∑
s

Rus Rvs +
1
20 R′′uv

)
r4
+ O(r5).

Now use the above two expressions to see that

(3-2) det〈Ju, Jv〉
r4n−2 = 1+ 1

3

∑
u

Ruur2
+

1
6

∑
u

R′uur3

+

(
2

45

∑
u,s

R2
us +

1
20

∑
u

R′′uu +
1
9

∑
u<v

(
Ruu Rvv − R2

uv
))

r4
+ O(r5).

Considering the identity
√

1+ x = 1+ 1
2 x − 1

8 x2
+ O(x3), we get

(3-3)
√

det〈Ju, Jv〉
r2n−1 = 1+ 1

6

∑
u

Ruur2
+

1
12

∑
u

R′uur3

+

(
1

45

∑
u,s

R2
us+

1
40

∑
u

R′′uu+
1
18

∑
u<v

(
Ruu Rvv−R2

uv
)
−

1
72

(∑
u

Ruu

)2)
r4
+O(r5).

Since W = 1
r2n−1

∫ √
det〈Ju, Jv〉, we find

W ′(0)= 0 and W ′′(0)=−c s,

where c is a positive constant depending only on n, and s is the scalar curvature
at p. Therefore W ′′(0) is less than or equal to that of the complex space form. This
proves Proposition 2.1 for m = 1.

Now we consider m = 2. According to the assumption of Proposition 2.1, W ′′

is the same as that of the complex space form. Therefore s = nK at p. Since the
Ricci curvature is bounded from below by K , Ric= K g at p. By (3-3), it is simple
to see that the r3 coefficient of W is 0 by symmetry. Thus to complete the proof
for m = 2, we just need to show that the 4th derivative of W is less than or equal
to that of the complex space form.
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We keep in mind that Ric= K g at p. The r4 coefficient of W is

c4 =

∫ (
1

45

∑
u,s

R2
us +

1
40

∑
u

R′′uu +
1

18

∑
u<v

(
Ruu Rvv − R2

uv
)
−

1
72

(∑
u

Ruu

)2 )
=

1
360

∫ (
8
∑
u

R2
uu + 16

∑
u<v

R2
uv + 9

∑
u

R′′uu

+ 20
∑
u<v

Ruu Rvv − 20
∑
u<v

R2
uv − 5

(∑
u

Ruu

)2 )
=

1
360

∫ (
−2

∑
u

R2
uu + 10(

∑
u

Ruu)
2
− 4

∑
u<v

R2
uv + 9

∑
u

R′′uu − 5
(∑

u
Ruu

)2 )
=

1
360

∫ (
9
∑
u

R′′uu − 4
∑
u<v

R2
uv − 2

∑
u

R2
uu + 5

(∑
u

Ruu

)2 )
.

Note that the Ricci curvature attains the minimum K at p, so∑
u

R′′uu =−Ric′′(e0, e0)≤ 0.

Therefore we have

(3-4) c4 =
1

360

∫ (
9
∑
u

R′′uu − 4
∑
u<v

R2
uv − 2

∑
u

R2
uu + 5K 2

)
≤−

1
360

∫ (
2
∑
u

R2
uu − 5K 2

)
=−

1
360

∫ (
2
∑
u 6=1

R2
uu + 2R2

11− 5K 2
)

≤−
1

360

∫ ( 1
n−1

( ∑
u 6=1

Ruu

)2
+ 2R2

11− 5K 2
)

=−
1

360

∫ ( 1
n−1

(Ric(e0, e0)+ R11)
2
+ 2R2

11− 5K 2
)

=−
1

360

∫ ( 1
n−1

K 2
+

2
n−1

K R11+

( 1
n−1

+ 2
)

R2
11− 5K 2

)
≤−

1
360

( ∫ 1
n−1

K 2
+

2
n−1

K
∫

R11+C1

(∫
R11

)2
−

∫
5K 2

)
= C2K 2,

where C1,C2 are constants depending only on n.
We explain the inequalities above. In the first inequality, we drop the two terms∑
u<v R2

uv and
∑

u R′′uu . In the second inequality, we apply the Schwartz inequality
for directions eu that are perpendicular to e1, e0. In the third inequality we use the
Schwartz inequality

∫
R2

11 ≥ C
(∫

R11
)2. We make use of the Kähler condition to
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obtain
∫

R11 = C3 s = nC3K , where C3 is a constant depending only on n. This
explains the last equality.

The right hand side of (3-4) is exactly the case of the complex space form.
Therefore when W ′ and W ′′ are the same as the complex space form, W (3)

= 0
and W (4) is less than or equal to that of the complex space form. Equation (3-4)
becomes an equality if and only if the holomorphic sectional curvature is constant
at p and Ric′′(e0, e0)= 0 for any e0 ∈U Tp M . This completes the proof for m = 2.

4. The proof of Proposition 2.1, case m ≥ 3

Denote Ric(l)(e0, e0) by Ric(l). According to the assumption of Proposition 2.1,
the derivatives of W of order 1 to 2m−1 are the same as the complex space form.
From results in the last section, the holomorphic sectional curvature is constant at
p and Ric′′ = 0 for any e0. That is to say,

Ri jkl =
K

n+1
(δi jδkl + δilδ jk) and Ric′′ = 0

at p. Therefore, we have proved part (1) of Proposition 2.1 for m = 3.
Now we use induction. Assuming that part (1) of Proposition 2.1 holds for

k = m, we shall prove that it holds for k = m+ 1.

Claim 4.1. Let Cv
u,i be the coefficients defined in (2-1) for i ≤ m. Under the hy-

pothesis of the induction above, Cv
u,i are constants independent of the direction e0.

In fact, they are the same as that of the complex space form.

Proof. The claim follows if we insert the induction hypothesis into (2-3). �

Let us write

(4-1)
det〈Ju, Jv〉

r4n−2 = 1+
m−1∑
i=1

air i
+

2m∑
j=m

b jr j
+ O(r2m+1).

Combining Claim 4.1 with (3-1), we find that ai are constants independent of
the direction e0. Equation (3-1) also yields Cv

u,m+1 = Cu
v,m+1 for all u, v. Direct

expansion of the determinant via (3-1) gives

(4-2) b2m =
∑
u,v

(
Cv

u,m+1
)2
+ 4

∑
u<v

Cu
u,m+1Cv

v.m+1+ 2
∑
u

Cu
u,2m+1

−4
∑
u<v

Cv
u,m+1Cu

v,m+1+
m∑

i=1
Cv

u,m+i Ci,m,u,v +C0,m

where Ci,m,u,v and C0,m are all constants independent of the direction e0.
Note also

(4-3) bm = 2
∑
u

Cu
u,m+1+Constant .
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Let us set γm =
∑m−1

i=1 air i
+
∑2m

j=m b jr j for m ≥ 1. Applying the Taylor series
expansion

√
1+ x = 1+

1
2

x −
1
8

x2
+

∞∑
k=3

λk xk

for |x |< 1, we obtain

(4-4)
√

det〈Ju, Jv〉
r2n−1 = 1+ 1

2γm −
1
8γ

2
m +

∞∑
k=3

λkγ
k
m + O(r2m+1).

Lemma 4.2. The 2m-th order coefficient of the expansion of W is

(4-5) c2m =

∫ (
1
2

∑
u,v

(
Cv

u,m+1
)2
+ 2

∑
u<v

Cu
u,m+1Cv

v,m+1+
∑
u

Cu
u,2m+1

−2
∑
u<v

Cv
u,m+1Cu

v,m+1−
1
2

(∑
u

Cu
u,m+1

)2
+

m∑
i=1

Cv
u,m+i C̃i,m,u,v

)
+ C̃0,m

where C̃i,m,u,v and C̃0,m are constants independent of the direction e0.

Proof. It suffices to find out the contribution of each term in (4-4) to c2m . We keep
in mind that coefficients ai in (4-1) are independent of e0.

By (4-2), the contribution of the term 1+ 1
2γm to c2m is

(4-6)
∫

1
2

∑
u,v

(
Cv

u,m+1
)2
+ 2

∑
u<v

Cu
u,m+1Cv

v,m+1+
∑
u

Cu
u,2m+1

−2
∑
u<v

Cv
u,m+1Cu

v,m+1+
1
2

( m∑
i=1

Cv
u,m+i Ci,m,u,v +C0,m

)
.

The contribution of the term −1
8γ

2
m to c2m is

(4-7) −

∫ (
1
8 b2

m +
m∑

i=1
Cv

u,m+i pi,m,u,v

)
+ p0,m .

By (4-3), it could be written as

(4-8) −

∫ (
1
2

(∑
u

Cu
u,m+1

)2
+

m∑
i=1

Cv
u,m+i pi,m,u,v

)
+ p0,m .

The contribution of
∑
∞

k=3 λkγ
k
m to c2m is

(4-9)
∫ m∑

i=1
Cv

u,m+i qi,m,u,v + q0,m .

In (4-7), (4-8), (4-9), pi,m,u,v, qi,m,u,v, p0,m and q0,m are all constants indepen-
dent of the direction e0. Lemma 4.2 follows if we combine (4-6), (4-7), (4-8) and
(4-9). �
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Lemma 4.3. There is a negative definite quadratic form Q, constants hm,i and C
and a negative constant Cm such that

(4-10) c2m =

∫
Q
(
R(m−2)

uv
)
+

m−4∑
i=−2

hm,i

∫
R(m+i)

11 +Cm

∫
Ric(2m−2)

+C.

Proof. By the induction hypothesis and (2-3), we have

(4-11) Cu
u,2m+1

=

∑
k+ j=2m−1,w

Cw
u,k R( j)

uw

j ! (2m+1)2m

=
1

(2m+1)2m

(∑
w

(
R(m−2)

uw Cw
u,m+1

(m−2)!
+

2m−2∑
j=m−1

B j,m,w,u R( j)
uw

)
+ RuuCu

u,2m−1

)
where B j,m,w,u are constants. For i ≤ m, we have

(4-12) Cv
u,m+i =

m+i−3∑
j=m−2

dm,i, j,w,u R( j)
uw +C

where C and dm,i, j,w,u are constants. In particular, we have

(4-13) Cv
u,m+1=

∑
k+ j=m−1,w

Cw
u,k

R( j)
vw

j !m(m+1)
=

1
m(m+1)

(
R(m−2)
vu

(m−2)!
+Cv

u,m−1 Rvv

)
.

By the induction hypothesis,

(4-14)
∑
u

R(m−2)
uu =−Ric(m−2)

= 0.

Therefore

(4-15)

∑
u

(
R(m−2)

uu
)2
=

(∑
u

R(m−2)
uu

)2
− 2

∑
u<v

R(m−2)
uu R(m−2)

vv

=−2
∑
u<v

R(m−2)
uu R(m−2)

vv .

Inserting (4-11), (4-12), (4-13) into (4-5), we find

(4-16) c2m =

∫
Q
(
R(m−2)

uv
)
+

m−2∑
i=−2

∫ ∑
u,v

hm,i,u,vR(m+i)
uv +C.

Now we prove that Q is negative definite. Let us check each term in (4-5). By
(4-13), the term 1

2

∑
u,v

(
Cv

u,m+1

)2 in (4-5) contributes to the quadratic term

(4-17)
∑
u,v

1
2m2(m+1)2((m−2)!)2

(
R(m−2)

uv
)2
.
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The term 2
∑

u<v Cu
u,m+1Cv

v,m+1 contributes to the quadratic term

(4-18)
∑
u<v

2
m2(m+1)2((m−2)!)2

R(m−2)
uu R(m−2)

vv .

By (4-15), it could be written as

(4-19) −
1

m2(m+1)2((m−2)!)2
∑
u

(
R(m−2)

uu
)2
.

By (4-11) and (4-13), the term
∑

u Cu
u,2m+1 contributes to the quadratic term

(4-20)
∑
u,v

1
2m2(m+1)(2m+1)((m−2)!)2

(
R(m−2)

uv
)2
.

The term −2
∑

u<v Cv
u,m+1Cu

v,m+1 contributes to the quadratic term

(4-21) −
∑
u<v

2
m2(m+1)2((m−2)!)2

(
R(m−2)

uv
)2
.

The term −1
2

(∑
u Cu

u,m+1

)2 is obviously negative semidefinite.
By combining (4-17), (4-18), (4-19), (4-20) and (4-21), it follows that the qua-

dratic form in (4-10) is negative definite.
Consider the linear terms in (4-16). By the induction hypothesis, the coefficients

hm,i,u,v are unchanged if we take a unitary transformation keeping the direction e0

fixed. Comparing the coefficients of the linear order terms, we see that hm,i,u,v = 0
if u 6= v, and hm,i,u,u = hm,i,v,v if u 6= e1 and v 6= e1. Therefore, the linear terms
hm,i,u,u R(m+i)

uu could be absorbed into Ric(m+i) with the terms −hm,i R(m+i)
11 left.

Also note that by induction hypothesis, Ric(l) = 0 for 0 < l ≤ 2m − 3 (the term
Ric(2m−3) vanishes as the Ricci curvature attains its minimum at p). Finally, one
verifies that

∑
u Cu

u,2m+1 is the only term in (4-5) that has contribution to R(2m−2)
uv .

Therefore the linear terms in (4-16) could be written as
m−4∑
i=−2

hm,i

∫
R(m+i)

11 +Cm

∫
Ric(2m−2).

From (4-11), it is simple to check that Cm is negative. �

By the induction hypothesis and that the Ricci curvature attains its minimum at
p, we have Ric(2m−2)

≥ 0. It follows from Lemma 4.3 that

(4-22) c2m ≤
m−4∑
i=−2

hm,i

∫
R(m+i)

11 +Constant .

We would like to prove that the linear terms
∫

R(m+i)
11 vanish for−2≤ i ≤m−4.

Note that by symmetry, if m+ i is odd, the integral equals 0. Let us deal with case
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when m+ i is even. We shall check when i = m− 4. The other cases are similar.
Let

(4-23) A =−1
4

∫
R(2m−4)

11 .

Set up an orthonormal frame { fi } at p such that J f2 j = f2 j+1 and J f2 j+1=− f2 j

for 0 ≤ j ≤ n− 1. Letting β j =
1
2( f2 j −

√
−1 f2 j+1), in a small neighborhood of

p, we parallel transport the frame along each geodesic through p. Suppose that

(4-24) e0 =
n−1∑
j=0

(
z jβ j + z jβ j

)
.

Lemma 4.4. Under the assumption of the induction in Proposition 2.1, Rm(λ)
= 0

at p for 1 ≤ λ ≤ m − 3, where Rm(λ) denotes any covariant derivative of the
curvature tensor of order λ at p.

Proof. We use induction. If λ = 0, the result automatically holds since there is
nothing to prove. Suppose the result holds for k < λ. For k = λ, we plug (4-24)
in R(λ)uv .

Claim 4.5. We can commute the covariant derivatives of R(λ)uv .

Proof. To prove the claim, we only need to consider the case λ≥2. By the induction
hypothesis of Lemma 4.4, the covariant derivatives of the curvature tensor vanish
up to order λ− 1 at p. If λ > 3, the claim follows from the Ricci identity. Now
suppose λ = 2. By the Ricci identity, the difference of commuting the covariant
derivatives is a function of the curvature tensor. Note that the curvature tensor at p
is the same as of the complex space form. This completes the proof for λ= 2. �

We insert (4-24) into R(λ)Je0 Je0
. By Claim 4.5 and the Bianchi identities, R(λ)Je0 Je0

becomes a polynomial in the variables z j , z j . The coefficients of the polynomial
are exactly all the covariant derivatives of Rm at p of order λ. According to the
assumption of Lemma 4.4, R(λ)Je0 Je0

is identically 0 for all e0. Therefore, the coeffi-
cients of the polynomial are all 0. This completes the induction of Lemma 4.4. �

Lemma 4.6. Under the assumption of the induction in Proposition 2.1, A could
be written as

∑m−2
i=1 gi,m1

i s, where s denotes the scalar curvature, and gi,m are
constants depending only on n,m and i.

Proof. Define X = 1
2(e0−

√
−1Je0), then A=

∫
RX X X X ,e0e0...e0

, where the number
of e0 is 2m− 4. Integrating and plugging (4-24) into the result, we find

(4-25) A =
∑

α1α2...α2m

(∫
α1α2 . . . α2m

)
Rα1α2...α2m
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where each αi is either z j or zk for 0≤ j, k ≤ n−1, with the further condition that
α1, α3 ∈ {z j }, and α2, α4 ∈ {zk}. Under the subscript of R, z j stands for β j , and zk

stands for βk .
From the expression of (4-25), we see that zi , zi must all go in pairs in the

sequence α1α2 . . . α2m , otherwise the integral
∫
α1α2 . . . α2m would equal 0. Us-

ing the Kähler identities, we can switch the covariant derivatives in (4-25) and
rearrange it as

(4-26) A =
∑

I1,I2,...In

C I1 I2...In RI1 I2...In + B.

Here the symbol I j denotes z j z j . . . z j z j ; we have
∑

j |I j | = 2m; subscripts after
the fourth subscript of R denote covariant derivatives; C I1 I2...In are the coefficients
in (4-25); and B is a combination of covariant derivatives of Rm of lower order.

From (4-23), we see that the coefficients C I1 I2...In in (4-26) are unitary invariants.
For fixed I3, I4, . . . , In , let d = |I1| + |I2|. Denote the coefficient C I1 I2...In by C p,
where 0≤ |I1| = p≤ d . We want to find relations between the different C p. Define
a unitary transformation by setting β̃i = βi for i 6= 1, 2 and let

β1 = cos θβ̃1+ sin θβ̃2 and β2 =− sin θβ̃1+ cos θβ̃2.

Insert the unitary transformation above in (4-26). Then the new coefficient C̃d

becomes
∑d

p=0 C p cos2p θ sin2(d−p) θ . Therefore we have:

(4-27)
d∑

p=0
C p cos2p θ sin2(d−p) θ = Cd = Cd(cos2 θ + sin2 θ)d .

Claim 4.7. C p = Cd
(d

p

)
.

Proof. Divide by cos2dθ on both sides, then (4-27) becomes

d∑
p=0

C p tan2(d−p) θ = Cd = Cd(1+ tan2 θ)d .

Since θ is arbitrary, the claim follows. �

By Claim 4.7, C p/Cd =
(d

p

)
. Since we can substitute any index u, v for 1, 2, the

ratios of all coefficients in (4-26) are determined. Note that to get the relations be-
tween C p, we only use the condition that the form (4-23) is unitary invariant. Since
1m−2s is also unitary invariant with respect to the frame, we can write it in the same
form as (4-26). By the same argument, the ratios of coefficients of 1m−2s are the
same as of coefficients in (4-26). It follows that the term

∑
I1,I2,...In

C I1 I2...In RI1 I2...In

in (4-26) equals C(m, n)1(m−2)s modulo lower order covariant derivatives, where
C(m, n) is a constant depending only on m, n.
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Now we make an important observation. From the Ricci identity,

Ri1i2...i pαβi p+3...i2m
− Ri1i2...i pβαi p+3...i2m

is the sum of (Rm Rm(p−4)),i p+3...i2m . By Lemma 4.4, Rm(λ)
= 0 for 1≤ λ≤m−3.

It follows that (Rm Rm,i5...i p),i p+3...i2m can be expanded as a linear combination of
the covariant derivatives of curvature tensor. Therefore A−C(m, n)1(m−2)s can
be written as a linear combination of the covariant derivatives of the curvature
tensor with the highest order 2m− 6. Furthermore it is unitary invariant since the
curvature tensor is unitary invariant at p. By induction, we have completed the
proof of Lemma 4.6. �

From the induction in Proposition 2.1, Ric(l)= 0 for 1≤ l ≤ 2m−4. Integrating
over the unit sphere in Tp M we find, by similar arguments as in the proof of
Lemma 4.6, that for l even

(4-28) 0=
∫

Rice0e0,e0e0...e0 =

l/2∑
k=1

Cl,k1
ks

where the order of the covariant derivative above is l. It is straightforward to
check that the highest order coefficient Cl,l/2 is not equal to 0. Then, by induction,
1ks = 0 at p for 1 ≤ k ≤ m − 2. Combining this with Lemma 4.6, it follows that
A = 0. Similarly all linear terms in (4-10) vanish. Therefore, under the induction
hypothesis in Proposition 2.1, in order that c2m in (4-10) achieves the maximum,
we must have Ric(2m−2)

= 0 and R(λ)uv = 0 for 1 ≤ λ ≤ m − 2. This is exactly the
case of the complex space form. Therefore we have completed the induction step
for part (1) in Proposition 2.1 and, as a byproduct, we have proved part (2) as well.
The proof is thus complete. �

5. The proof of Theorem 1.4

Proof of Proposition 2.2. Using the same argument as in the last section, we find
that W (2m+1) is a linear combination of

∫
R(m+i)

11 for 1 ≤ i ≤ m − 3 (the terms of
order greater than 2m − 3 can be absorbed into Ric(m+i)). Then W (2m+1) is equal
to 0 by similar arguments as in the proof of Lemma 4.6. �

Proof of Theorem 1.4. Consider the two cases below:
1. All coefficients of the power series of W are equal to that of the complex

space form. From Proposition 2.1, all covariant derivatives of the curvature tensor
at p are the same as the complex space form. Since the metric is real analytic, we
conclude that near p, the manifold is isometric to the complex space form.

2. There is a i0 ≥ 1 such that for all i < i0, the coefficients of the power series
of W are equal to that of the complex space form, but the i0-th coefficient is less
than that of the complex space form. Checking the power series of W ′/W at p,
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we find that for sufficiently small r , W ′/W is less than that of the complex space
form. From the definition of W we have, for small r ,∫

∂Bp(r)
1r

A(∂Bp(r))
=

∫ √
det〈Ju, Jv〉 ′∫ √
det〈Ju, Jv〉

<1NK r(r). �

6. An example

In this section we give an example showing that the analogous Laplacian compar-
ison theorem is not true on Kähler manifolds when the Ricci curvature is bounded
from below by a nonzero constant. The example is in dimension 2. For higher
dimensions, the construction is similar.

Identify R4 with C2 in the usual way. The corresponding almost complex struc-
ture J is given by

J ∂

∂x1
=

∂

∂x2
, J ∂

∂x2
=−

∂

∂x1
, J ∂

∂x3
=

∂

∂x4
and J ∂

∂x4
=−

∂

∂x3
.

Given a small ball near the origin of C2, define a function f to be

f = |z1|
2
+ |z2|

2
+ a|z1|

4
+ 8a|z1|

2
|z2|

2
+ a|z2|

4
+

8
3a2
|z1|

6

+28a2
|z1|

4
|z2|

2
+ 28a2

|z1|
2
|z2|

4
+

8
3a2
|z2|

6
+ p(|z1|, |z2|),

where a is a nonzero constant and p is a homogeneous polynomial of degree 8 to
be determined later. We define

ω =
√
−1
2 ∂∂̄ f =

√
−1
2

∑
i, j

gi j dzi ∧ dz j .

It is straightforward to check that ω defines a Kähler metric g if the ball is suffi-
ciently small (note that the metric is not complete).

Direct computation gives

g11 = 1+ 4a|z1|
2
+ 8a|z2|

2
+ 24a2

|z1|
4

+112a2
|z1|

2
|z2|

2
+ 28a2

|z2|
4
+ O((|z1| + |z2|)

6),

g12 = 8a z1z2+ 56a2z1z 2
1 z2+ 56a2z1z2

2z2+ O((|z1| + |z2|)
6),

and g22 = g11. Therefore

det(gi j )= g11g22− |g12|
2

=
(
1+ 4a|z1|

2
+ 8a|z2|

2
+ 24a2

|z1|
4
+ 112a2

|z1|
2
|z2|

2
+ 28a2

|z2|
4)2

−
∣∣8az1z2+ 56a2z1z2

1z2+ 56a2z1z2
2z2
∣∣2+ O((|z1| + |z2|)

6)

= 1+ 12a(|z1|
2
+ |z2|

2)+ 84a2(|z1|
4
+ |z2|

4)

+240a2
|z1|

2
|z2|

2
+ O((|z1| + |z2|)

6).
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Using log(1+ x)= x − 1
2 x2
+ O(x3), we have

Ric+ 12ag = ∂∂(− log(det gi j )+ 12a f )= ∂∂ O((|z1| + |z2|)
6).

Therefore Ric+12ag vanishes up to order 3 at the origin. If we choose the function
p to be −λ(|z1|

8
+ |z2|

8
+ 8(|z1|

6
|z2|

2
+ |z1|

2
|z2|

6)), a direct computation gives

Ric+ 12ag = ∂∂(24λ(|z1|
2
+ |z2|

2)3+ O((|z1| + |z2|)
6)

where the term O((|z1| + |z2|)
6) does not depend on λ. If λ is sufficiently large,

Ric+ 12ag ≥ 0 near the origin. Set K = −12a. Thus, near the origin, Ric ≥ K .
By direct computation R1212 = R1313 = R1414 = 4a and R1u1v = 0 at the origin if
u 6= v. Combining this with the fact that the second derivatives of the Ricci tensor
vanish at the origin we find, after a slight computation, that the fourth order term
of (3-3) is greater than that of the complex space form if e0 = ∂/∂x1. So when r is
very small,

√
det〈Ju, Jv〉 is greater than that of the complex space form along the

geodesic with initial direction ∂/∂x1 at the origin. Since

1r =
∂ log
√

det〈Ju, Jv〉
∂r

,

it follows that the pointwise Laplacian comparison with the complex space forms
is not true for Kähler manifolds.
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