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Let k be a field of characteristic not 2 or 3. Infinitely many mutually non-
isomorphic structurable algebras of rank 20 over kŒX; Y � are constructed
whose fiber is a given structurable algebra over k of skew-rank 1.

Introduction

Let R be a ring such that 1
6
2 R and k a field of characteristic not 2 or 3. Let A

be a unital nonassociative algebra over R with an involution . The pair .A; / is
called a structurable algebra if

fx; y; fz; w; qgg� fz; w; fx; y; qgg D ffx; y; zg; w; qg� fz; fy; x;wg; qg

for x; y; z; w; q 2 A, where

fx; y; zg D .x Ny/zC .z Ny/x� .z Nx/y:

Structurable algebras were introduced in [Allison 1978]: an analogue of the
Koecher–Kantor–Tits functor gives a correspondence between a structurable alge-
bra and a Lie algebra. Using this functor all classical simple isotropic Lie algebras
can be obtained [Allison 1979].

In [Parimala et al. 1999], nontrivial Albert algebra bundles over the affine plane
were constructed whose associated principal F4 bundle admits no reduction of the
structure group to any proper connected reductive subgroup. (For an analogous
result with the associated principal G bundle being of type G2, see [Parimala et al.
1997; 1999].) Over a field, every Albert algebra arises from the first or second
Tits construction and the associated F4 bundle admits reduction of the structure
group to SL1.B/ for a central simple algebra B either over k or to SU.B; �/ for
a central simple algebra B over a quadratic field extension of k, � an involution
of the second type. Hence the patched Albert algebras over the affine plane arise
neither from a first nor a second Tits construction (and correspondingly, there are
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patched octonion algebras over the affine plane which do not arise from a Cayley-
Dickson doubling process or are constructed involving a ternary hermitian form
and a two-dimensional subalgebra).

In the present paper we employ the patching arguments from [Parimala et al.
1999] to obtain infinitely many structurable algebras Mi of rank 20 over the affine
plane A2

k
, which are not extended from k and mutually nonisomorphic and whose

fiber is a given matrix algebra over k (Theorem 4). In order to achieve this, we
show that the matrix algebraM.T;N;N_/ over kŒX; Y � admits a unique extension
to a matrix algebra over P2

k
in Section 2. In Section 3, we look at forms of these

matrix algebras. For a nonfree projective left DŒX; Y �-module P of rank one, the
structurable algebra S.D; �; P;N / over kŒX; Y � admits a unique extension to a
structurable algebra S.D; �; zP ;N / over P2

k
, where zP is an indecomposable vector

bundle. We use this result to construct infinitely many mutually nonisomorphic
structurable algebras Ai over A2

k
such that

Ai ˝k K ŠMi ;

where K is a separable quadratic field extension of k (Theorem 9). In Section 4,
some general results on extending structurable algebras from affine to projective
space are obtained.

If a structurable algebra over A2
k

has rank 56, it corresponds to the structure
group E7. Such bundles were constructed in [Raghunathan 1989] for a connected
reductive absolutely almost simple k-group G, which is k-anisotropic and is not
of type F4 or G2 (for the type G2 and F4, see [Knus et al. 1994; Parimala et al.
1997; 1999]). The results show that although GL.r/-bundles over the affine plane
An
k

are trivial, this is not the case for a general reducible structure group.
It is also known that if G is a k-anisotropic reductive absolutely almost simple

algebraic k-group, there are infinite families of mutually nonisomorphic, nontrivial
(sometimes indecomposable) principal G-bundles over A2

k
, which do not admit a

reduction of its structure group to any proper connected reductive subgroup of G.
The author is not able to say whether the new principal G-bundle constructed in

this paper admit a reduction of their structure group to a proper reductive subgroup
or not.

We use the results and terminology from [Achhammer 1995] (see also [Pumplün
2008; 2010a; 2010b) and [Parimala et al. 1999]. The approach in this last work is
mostly functorial and formulated for base rings R which are domains with 1

6
2R,

the one in [Achhammer 1995] works instead for arbitrary base rings. Both were
originally developed to generalize the first and second Tits construction for Jordan
algebras over rings.

For the standard terminology on Jordan algebras, see [McCrimmon 2004; Jacob-
son 1968; Schafer 1966].
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1. Preliminaries

1.1. Algebras over R. For P 2 SpecR, let RP be the local ring of R at P and
mP the maximal ideal of RP . The corresponding residue class field is denoted by
k.P / D RP =mP . For an R-module F the localization of F at P is denoted by
FP . The rank of F is defined to be supfrankRP

FP jP 2 SpecRg. The term “R-
algebra” always refers to nonassociative R-algebras which are unital and finitely
generated projective of finite constant rank as R-modules.

An antiautomorphism � WA!A of order 2 is called an involution on A. Define
H.A; �/ D fa 2 A j �.a/ D ag and S.A; �/ D fa 2 A j �.a/ D �ag. Then A D
H.A; �/˚S.A; �/.

1.2. Structurable algebras. An algebra with involution is a pair .A; / consisting
of an R-algebra A and an involution W A ! A. A structurable algebra is an
algebra with involution .A; / satisfying

fx; y; fz; w; qgg� fz; w; fx; y; qgg D ffx; y; zg; w; qg� fz; fy; x;wg; qg

for all elements x; y; z; w; q 2 A, where

fx; y; zg D .x Ny/zC .z Ny/x� .z Nx/y

[Allison 1978, (3) and Corollary 5]. If B is an R-submodule if A closed under
multiplication, we call B a subalgebra of A. If, additionally, B DB we call .B; /
a subalgebra of .A; /.

An isotopy from .A; /! .A0; 0/ is an R-linear bijective map a WA!A0 such
that

afx; y; zg D fax; Oay; azg

for all x; y; z 2 A and some R-linear map Oa W A! A0. Two structurable algebras
.A / and .A; / are isotopic if there exists an isotopy from A to A0. This is equiva-
lent to .A0; 0/Š .A; /hui for some invertible u2A. Every isomorphism between
structurable algebras is an isotopy.

In the following, we will only deal with structurable algebras .A; / over R
whose residue class algebrasA.P /DAP˝RP

k.P / are central simple structurable
algebras of skew-dimension 1.

1.3. Let W and W 0 be two finitely generated projective R-modules of constant
rank with cubic forms N WW ! R and N 0 WW 0! R, paired by a nondegenerate
bilinear form T WW �W 0!R. That is, T induces R-module isomorphisms

T WW ! HomR.W 0; R/; x 7! T .x; � /

and
T WW 0! HomR.W;R/; y0 7! T . � ; y0/:
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We say that the triple .T;N;N 0/ is defined on .W;W 0/. Let N.x; y; z/ denote the
trilinear form associated with N and N 0.x0; y0; z0/ the trilinear form associated
with N 0. Let x 2W , x0 2W 0 and define quadratic maps

] WW !W 0 and ]0 WW 0!W

via

DyN.x/D T .y; x
]/ and Dy0N 0.x0/D T .x0 ]

0

; y0/

for all elements x; y 2W , x0; y0 2W 0; i.e.,

3N.x; x; y/D T .y; x]/ and 3N 0.x0; x0; y0/D T .x0]
0

; y0/

for all elements x; y 2 W , x0; y0 2 W 0. The triple .T;N;N 0/ satisfies the adjoint
identities if

.x]/ ]
0

DN.x/x and .x0 ]
0

/] DN 0.x0/x0:

If N D 0 and N 0 D 0 these identities are trivially satisfied. If N 6D 0 or N 0 6D 0
then both N and N 0 are nonzero and .T;N;N 0/ is called nontrivial.

Let .T;N;N 0/ be a triple defined on .W;W 0/. Define symmetric bilinear maps
� WW �W !W 0 and �0 WW 0 �W 0!W via

x �y D .xCy/]� x]�y]; x0 �0 y0 D .x0Cy0/]
0

� x0]
0

�y0]
0

:

Then

x] D 1
2
x � x; x0 ]

0

D
1
2
x0 �0 x0;

N.x; y; z/D T .x; y � z/; N 0.x0; y0; z0/D T .x0 �0 y0; z0/:

If the triple .T;N;N 0/ satisfies the adjoint identities then the matrix algebra

ADM.T;N;N 0/D

�
R W

W 0 R

�
with multiplication�

a x

x0 b

� �
c y

y0 d

�
D

�
acCT .x; y0/ ayC dxC x0 �0 y0

cx0C by0C x �y bd CT .y; x0/

�
and involution �

a x

x0 b

�
D

�
b x

x0 a

�
is a structurable algebra [Allison and Faulkner 1984, p. 194; [Pumplün 2010b,
Theorem 1]. We have S.A; /D s0R with

s0 D

�
1 0

0 �1

�
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invertible and s20 D 1 2R
� and the residue class algebras A.P /DAP ˝k.P / are

central simple structurable algebras of skew-dimension 1 over k.P / [Allison and
Faulkner 1984; Pumplün 2010b]. Let

uD

�
a x

x0 b

�
and v D

�
c y

y0 d

�
with a; b; c; d 2R and x; y 2W , x0; y0 2W 0. The (conjugate) norm

� WM.T;N;N 0/!R

is given by

�.u/D 4aN.x/C 4bN 0.x0/� 4T .x0 ]
0

; x]/C .ab�T .x; x0//2

and is isotropic since �.u/D 0 for

uD

�
1 0

0 0

�
:

The trace � WM.T;N;N 0/�M.T;N;N 0/!R is defined by

�.u; v/D 2.ad C bcCT .x; y0/CT .y; x0//:

Note that �.u; u/D 0.

1.4. Let B be an Azumaya algebra over R of degree 3, BC D .NB ; ]B ; 1/ with
.NB ; ]B ; 1/ a cubic form with adjoint and base point (see for instance [Pumplün
2010b, 1.4]). Let PiclB denote the set of isomorphism classes of locally free left
B-modules of rank 1. Let P 2PiclB such thatNB.P /ŠR and letN WP !R be a
norm on P . Let N_ WP_!R be the uniquely determined norm and ] WP !P_,
L] W P_! P be the uniquely determined adjoints satisfying

(1) hw;w]i DN.w/1,

(2) h Lw L]; Lwi DN_. Lw/1, and

(3) w] L] DN.w/w

for all w 2 P , Lw 2 P_ (these are identities (7), (8), (9) in [Pumplün 2010b]). Let
� W P_ �P_! P denote the bilinear map associated to the quadratic map ] and
L� W P_ � P_ ! P the bilinear map associated to the quadratic map L] (see for
instance [ibid., 3.2]). Define T W P �P_!R via

T .w; Lw/D TB.hw; Lwi/:



366 SUSANNE PUMPLÜN

For any�2R�, the triple .�T; �N;�2N_/ satisfies the adjoint identities [Pumplün
2010b, Theorem 6], hence

M DM.�T;�N;�2N_/D

�
R P

P_ R

�
is a structurable algebra overRwith automorphism group isomorphic to the semidi-
rect product of Z=2 and the group of bijective norm isometries of P ; see [ibid.,
Corollary 7 and Theorem 18].

The group Inv.M/ defined in Section 4 is an absolutely almost simple linear
algebraic group, which is connected except in the case that M has rank 9. In that
case its connected component is a subgroup of index 2 in Inv.M/ [Krutelevich
2007, p. 941 ff.].

1.5. Let R0 be a ring and B a unital separable associative algebra over R0. Let
� WR0!R0 be an involution on R0 and �B an involution on B such that �B jR0 D

�. Let .NB ; ]B ; 1/ be a cubic form with adjoint and base point on B such that
BC D J.NB ; ]B ; 1/, with 1 the unit element in B , and that the conditions

xyx D TB.x; y/x� x
]B �B y;

NB.xy/DNB.x/NB.y/;

N.x�B /DN.x/�B

are satisfied for all x; y 2B (these are identities (1), (2), (3) in [Pumplün 2010b]).
Let .H.B;�B/;H.R0;�B// be a B-ample pair, and define R D H.R0;�B/. Let
P 2 Picl B be such that NB.P / Š R0 and such that there is a nondegenerate
hermitian form h W P �P �! B satisfying

h.w;w/ 2H.B;�B/ and NB.h.w;w//DN.w/N.w/
�B

for w 2 P . Denote by � the H.B;�B/-admissible involution jh W P ! P_ on P
induced by h. LetN WP !R0 be a norm on P . LetN_ WP_!R0 be the uniquely
determined norm and ] WP!P_, L] WP_!P be the uniquely determined adjoints
satisfying equations (1), (2), (3). We can also write

hu; v�i D h.u; v/; v� D jh.v/ and Lv L� D j�1h . Lv/

for jh W P ! P_ induced by h. The R-module S.B;�B ; P;N; h/ D R0 ˚ P

together with the multiplication

.a; u/.b; v/D .abCTB.hu; v
�
i/; b�BuC avC .u� v/ L�/

and the involution
.a; u/D . Na; u/
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for a; b 2 R0, u; v 2 P is a structurable algebra over R, which is a form of the
structurable algebra M.T;N;N_/ [Pumplün 2010b, Theorem 20]. We define the
(conjugate) norm � W S.B;�B ; P;N; h/!R of S.B;�B ; P;N; h/ via

�..�;w//DNB.��
�
� h.w;w//:

If R0 is a field this definition coincides with [Allison and Faulkner 1992, Theorem
6.1]. � is a quartic form. Even if B is a division algebra and R0 is a field, the norm
is isotropic: then �..�;w//D 0 if and only if .�;w/ is an admissible scalar; i.e.,
� 2R0�, w 2H.B;�B/� and NB.w/D ���.

If R0 is a quadratic étale ring extension of the ring R then R0 D Cay.R; P;N /
with L 2 PicR of order 2, since 2 2 R�. For A D S.B;�B ; P;N; h/ this means
S.A; / D f.r; 0/ j r 2 S.R0;�/g D L. If R is a domain and R0 D Cay.R; c/ D
R.
p
c/ then S.A; /D .

p
c; 0/R and s0D .

p
c; 0/ satisfies s20 D .c; 0/D c1A with

c 2R�. This means we can define the (conjugate) norm � W A!R also by

�.x/D
1

12c
�.s0x; fx; s0x; xg/;

and also a trace � W A�A!R on A by

�.x; y/D
2

c
 .s0x; y/s0 D

2

c
.V ıy;xs0/s0;

analogously as in [Allison and Faulkner 1984; 1992], where  .x; y/ D x Ny � y Nx
[Allison and Faulkner 1992, 5.4]. � is a nondegenerate symmetric bilinear form
independent of the choice of s0 and �.1; 1/ D 4. (Nondegeneracy follows from
[Allison and Faulkner 1984, Proposition 2.5] applied to the residue class forms.)

2. Nontrivial structurable algebras over the affine plane which locally are
matrix algebras

2.1. We mostly use the results and notation of [Parimala et al. 1999, Section 4].
Occasionally, we also use the notation of [Pumplün 2008]: in the notation of [Pari-
mala et al. 1999], the map � in [Pumplün 2008] or Section 1.4 is denoted by �
and the map L� in Section 1.4 by ��. There is the obvious notion of a structurable
algebra over a locally ringed space; see [Pumplün 2010b]. We identify structurable
algebras over kŒX; Y � and over A2

k
using the canonical equivalence described in

[ibid., 6.2]. Let X D P2
k

.

Remark 1. Let D be a central simple algebra over k of degree 3. Once we have
picked a locally free left DŒX; Y �-module of rank 1 with NDŒX;Y �.P /Š kŒX; Y �,
the choice of a norm N W P ! kŒX; Y � automatically determines N_ and the
adjoints ] and L]; see [ibid., 3.2]. This fact is expressed in [Parimala et al. 1999]
by explicitly choosing a trivialization z� W NDŒX;Y �.P /! kŒX; Y � which in turn
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determines uniquely the choice of N , hence of N_, ] and L]. Recall that the norm
N is uniquely determined up to a scalar � 2 k�. For any � 2 k�, the adjoint
belonging to �N is �] and .�N/_ D �2N_, .� ]/_ D �2 ].

2.2. Let D be a central division algebra over k of degree 3. Let De be a free
module of rank 1 over D with e as a basis element such that ND.De/ Š k and
let �0 W ND.De/! k be such an isomorphism. Let fgig be an infinite family of
mutually coprime polynomials in kŒX�. Then there exist nonfree projective left
modules Pi of rank 1 over DŒX; Y � and polynomials fi 2 kŒX� with .fi ; fj /D 1
for i 6D j , .fi ; gj / D 1 for all i; j , such that Pi ˝ kŒX�fi

ŒY � is free for each i .
Further, there exists

z�i WNDŒX;Y �.Pi /! kŒX; Y �

such that .Pi ; z�i / modulo Y is .De; �0/˝k kŒX�; see [Parimala et al. 1999, 4.1].
The Pi are mutually nonisomorphic DŒX; Y �-modules [ibid., 4.2].

2.3. Let P be a nonfree projective DŒX; Y �-module such that NDŒX;Y �.P / Š
kŒX; Y �, the isomorphism given by the trivialization z� W NDŒX;Y �.P /! kŒX; Y �

of the reduced norm. Then the pair .P; z�/ is a principal SL1.D/-bundle over A2
k

which admits an extension . zP ; z�/ to P2
k

; the bundle zP is simply an extension of the
DŒX; Y �-module P [ibid., p. 31] (by abuse of notation, we denote both z� and its
extension by the same name). Let N WP ! kŒX; Y � be the norm on P determined
by the choice of the trivialization z�. The choice of z� also determines the maps
� W P �P ! P_, L� W P_ �P_ ! P , and N_, and therefore also ] and L]; see
[ibid., p. 16]. Take T .u; Lv/ D TDŒX;Y �.hu; Lvi/. The adjoints satisfy the adjoint
identities [ibid., 1.2].

Analogously, z� determines extensions

(�) zN W zP ! OX ; zN_ W zP_! OX ; z]; and zL]

of N , N_, ] and L], respectively, which satisfy the adjoint identities. Let zT .u; Lv/D
TD˝OX

.hu; Lvi/.

Proposition 2. The matrix algebra

M.T;N;N_/D

�
kŒX; Y � P

P_ kŒX; Y �

�
over kŒX; Y � admits a unique extension to a matrix algebra

M. zT ; zN; zN_/D

�
OX zP
zP_ OX

�
over P2

k
. The vector bundles zP and zP_ are indecomposable and zP and zP_ are

not isomorphic as vector bundles on X .
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Proof. There is a unique extension zP over X D P2
k

of P of norm one that is a
locally free right D˝OX -module: by [Parimala et al. 1999, p. 29], P extends to a
vector bundle zP , which is unique up to a line bundle L. Since we require zP to be
of norm one this implies L3ŠOX , hence LDOX and the extension is unique. Let
N W P ! kŒX; Y � be the norm on P determined by the choice of the trivialization
z�. Two extensions zN W zP ! OX and, say zN 0 W zP ! OX of N , can only differ
by a scalar � 2 k�. Being its extension, the algebra M. zT ; zN; zN_/ restricts to the
structurable matrix algebra

M.T;N;N_/D

�
kŒX; Y � P

P_ kŒX; Y �

�
over A2

k
. Therefore zN jA2

k
D N D zN 0jA2

k
implies that �D 1. Thus the maps listed

in (�), which are the extensions of N , N_, ] and L] from A2
k

to P2
k

determined by
the trivializations z� and �, are uniquely determined as well.[-2pt]

The proof of the second statement follows from [Parimala et al. 1999, 3.2]. �

More precisely, by [ibid., Remark] and [Arason et al. 1992], zP Š t rl=k.P0/

for some cubic field extension l=k and a suitable vector bundle P0 over P2
l

that is
absolutely indecomposable and of rank 3.

2.4. Let J be an Albert algebra over k that is a first Tits construction and a division
algebra. Choose two cyclic division algebras D1;D2 of degree 3 over k such that
the Jordan algebras DC1 and DC2 are subalgebras of J with DC1 \D

C
2 D k. By

[Parimala et al. 1999, 4.3], these can be even chosen such that DC2 D ˆ.D
C
1 / for

a suitable automorphism ˆ of J ; that is, we can and will assume that additionally
we have DC1 Š D

C
2 . Then J D J.D1; e1; �1/ D J.D2; e2; �2/ for some ei 2 J

and isomorphisms �i WN.Diei /! k. Again, the choice of �i determines a norm
Ni W Di ! k, (a scalar multiple of NDi

) and an adjoint ]i W Di ! Di (a scalar
multiple of ]Di

), so with Ti .a; b/D TDi
.ab/ we obtain the structurable algebra

M DM.T1; N1; N1/ŠM.T2; N2; N2/

over k. By 2.2, for every i � 1 there exists a pair .P 1i ; z�
1
i /, where P 1i is a nonfree

projective D1ŒX; Y �-module of rank 1 and z�1i a trivialization of its reduced norm
and a polynomial fi 2 kŒX� such that:

(4) The polynomials fi and fj are coprime for i 6D j and .P 1i /fi
is free.

(5) The reduction of .P 1i ; z�
1
i / modulo Y is .D1e1; �1/˝ kŒX�.

Similarly, for every i � 1, there is a pair .P 2i ; z�
2
i /, where P 2i is a nonfree projec-

tive D2ŒX; Y �-module of rank 1 and z�2i a trivialization of its reduced norm and a
polynomial gi 2 kŒX� such that:
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(6) The polynomials gi and gj are coprime for i 6D j , the polynomials fi and gj
are coprime for all i , j , and .P 2i /gi

is free.

(7) The reduction of .P 2i ; z�
2
i / modulo Y is .D2e2; �2/˝ kŒX�.

For each pair .P ji ; z�
j
i /, j D 1; 2, let

N
j
i W P

j
i ! kŒX; Y �

be the norm on P ji induced by z�ji , let

T
j
i W P

j
i � .P

j
i /
_
! kŒX; Y �

be the usual trace, given by T ji .u; Lv/ D TDj
.hu; Lvi/, and let ]ji be the induced

adjoint.
Define matrix algebras

M 1
i DM.T

1
i ; N

1
i ; N

1
i

_
/D

�
kŒX; Y � P 1i
.P 1i /

_ kŒX; Y �

�
and

M 2
i DM.T

2
i ; N

2
i ; N

2
i

_
/D

�
kŒX; Y � P 2i
.P 2i /

_ kŒX; Y �

�
of rank 20. Then fM j

i j j D 1; 2; i � 1g is a family of structurable algebras over
kŒX; Y � such that M j

i DM ˝ kŒX� modulo Y and

M 1
i ˝ kŒX�fi

ŒY �ŠM ˝ kŒX�fi
ŒY �; M 2

i ˝ kŒX�gi
ŒY �ŠM ˝ kŒX�gi

ŒY �;

with .fi ; fj / D 1 D .gi ; gj / for i 6D j , .fi ; gj / D 1 for all i; j . As in [Parimala
et al. 1997, 4.5] we can then conclude:

Proposition 3. The matrix algebras M 1
i , respectively M 2

i , over kŒX; Y � are mu-
tually nonisomorphic.

Proof. Suppose there are i 6D j such that M 1
i Š M 1

j . Since M 1
i and M 1

j are
extended after inverting fi and fj , respectively, and since .fi ; fj / D 1, M 1

i is
extended from M ˝ kŒX�. Let � W X ! k be the structure morphism. Since
the extension zM 1

i of M 1
i to P2

k
is unique, it must be thus isomorphic to ��.M/.

Therefore, the underlying vector bundles must be isomorphic; i.e.,

O2X ˚
zP 1i ˚ .

zP 1i /
_
Š O20X :

This is a contradiction, since zP 1i is an indecomposable vector bundle by [Parimala
et al. 1999, 3.2]. �
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2.5. Let
�1i W .P

1
i ; z�

1
i /˝ kŒX�fi

ŒY �! .D1e1; �1/˝ kŒX�fi
ŒY �

and

�2i W .P
2
i ; z�

2
i /˝ kŒX�gi

ŒY �! .D1e2; �2/˝ kŒX�gi
ŒY �

be isomorphisms such that �ji D id, j D 1; 2 (we may assume this by [Parimala
et al. 1997, 6.1]). These canonically induce isomorphisms

M.�1i / WM
1
i ˝ kŒX�fi

ŒY �!M ˝ kŒX�fi
ŒY �

and

M.�2i / WM
2
i ˝ kŒX�gi

ŒY �!M ˝ kŒX�gi
ŒY �

with M.�ji / D id, j D 1; 2. Let Mi be the structurable algebra obtained by
patching M 1

i on kŒX�gi
ŒY � and M 2

i on kŒX�fi
ŒY � over kŒX�figi

ŒY � by �i D
M.�2i /

�1M.�1i /.
We obtain an involution W Mi ! Mi by analogously patching the involu-

tions of M 1
i on kŒX�gi

ŒY � and of M 2
i on kŒX�fi

ŒY � over kŒX�figi
ŒY � by �i D

M.�2i /
�1M.�1i /.

SinceM j
i DM modulo Y andM.�ji /D id, we get �i D id andM i DM˝kŒX�

modulo Y . By construction,

Mi ˝ kŒX�figi
ŒY �ŠM ˝ kŒX�figi

ŒY �

and the polynomials ri WD figi are mutually coprime. The algebras Mi are mutu-
ally nonisomorphic by the same argument as given in [Parimala et al. 1999, p. 33],
and thus we can conclude:

Theorem 4. The structurable algebras Mi on A2
k

have the following properties:

(i) M i DM ˝ kŒX� modulo Y .

(ii) There are mutually coprime polynomials ri 2kŒX� such thatMi˝kŒX�ri
ŒY �Š

M ˝ kŒX�ri
ŒY �.

(iii) The algebras Mi are nonextended and mutually nonisomorphic.

Proof. By construction, we have

Mi ˝ kŒX�figi
ŒY �ŠM ˝ kŒX�figi

ŒY �

and the polynomials ri D figi are mutually coprime. To show that the algebras
Mi are mutually nonisomorphic, suppose that there are i 6D j such that Mi ŠMj .
Then both .Mi /ri

and .Mi /rj are extended from M . Since .ri ; rj / D 1, Mi Š

M ˝ kŒX; Y �. Restrict Mi to kŒX�gi
ŒY �. This yields that M 1

i ˝ kŒX�gi
ŒY � and

M 1
i ˝ kŒX�fi

ŒY � are extended. Since .fi ; gi /D 1, M 1
i is extended from M . This

contradicts Proposition 3. �
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Note that all the ingredients for these proofs have been provided in [Parimala
et al. 1999, Section 4].

It is not clear that these structurable algebras are again matrix algebras. We are
not able to say if the corresponding principalG-bundlePMi

admits reduction of the
structure group to a proper reductive subgroup of G or not. They are subalgebras
of a 56-dimensional matrix algebra:

2.6. Let J 1i and J 2i be the infinitely many mutually nonisomorphic Albert algebras
over kŒX; Y � used in [Parimala et al. 1999, Proposition 4.5]. They give rise to
infinitely many matrix algebras

M.J 1i /D

�
kŒX; Y � J 1i
J 1i kŒX; Y �

�
and M.J 2i /D

�
kŒX; Y � J 2i
J 2i kŒX; Y �

�
over kŒX; Y � of rank 56 which contain the mutually nonisomorphic subalgebras

M 1
i DM.T

1
i ; N

1
i ; N

1
i

_
/D

�
kŒX; Y � P 1i
.P 1i /

_ kŒX; Y �

�
and

M 2
i DM.T

2
i ; N

2
i ; N

2
i

_
/D

�
kŒX; Y � P 2i
.P 2i /

_ kŒX; Y �

�
of rank 20, which are stable under the involution . They also contain the subal-
gebras

M.D1/DM.TD1
; ND1

; ND1
/D

�
kŒX; Y � D1
D1 kŒX; Y �

�
and

M.D2/DM.TD2
; ND2

; ND2
/D

�
kŒX; Y � D2
D2 kŒX; Y �

�
of rank 20, which are again stable under the involution [Pumplün 2010b, Theo-
rem 10].

Let Ji be the Jordan algebra we get if we patch J 1i on kŒX�gi
ŒY � and J 2i on

kŒX�fi
ŒY � over kŒX�figi

ŒY � using the isomorphisms J.�1i / and J.�2i / respectively,
that are canonically induced by the �ji , j D 1; 2, as described in [Parimala et al.
1999, p. 32]. The algebras Ji are nonextended, mutually nonisomorphic and no
longer a first Tits construction starting with some Azumaya algebra of degree 3
[Parimala et al. 1999, 6.3]. The matrix algebra

M.Ji /D

�
kŒX; Y � Ji
Ji kŒX; Y �

�
can then be also viewed as obtained from the matrix algebras

M.J 1i /D

�
kŒX; Y � J 1i
J 1i kŒX; Y �

�
and M.J 2i /D

�
kŒX; Y � J 2i
J 2i kŒX; Y �

�
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by patching them using the obvious induced isomorphisms. Call them S.�
j
i /,

j D 1; 2.
By construction, Mi is then clearly a subalgebra of the matrix algebra M.Ji /

(the isomorphisms used to patch it are restrictions of the S.�ji /) and there are mutu-
ally coprime polynomials ri 2 kŒX� withM.Ji /˝kŒX�ri

ŒY �ŠM.J /˝kŒX�ri
ŒY �

and Mi˝kŒX�ri
ŒY �ŠM ˝kŒX�ri

ŒY �, where M ŠM.DC1 /ŠM.D
C
2 /�M.J /.

Remark 5. We observe independently of this that be the infinitely many mutually
nonisomorphic reduced Albert algebras Ai over kŒX; Y � constructed in [Parimala
et al. 1997, Step I and 6.2], also give rise to matrix algebras

Hi D

�
kŒX; Y � Ai
Ai kŒX; Y �

�
over kŒX; Y � of rank 56 which are mutually nonisomorphic, which is proved anal-
ogously to [Parimala et al. 1997, 6.2].

3. Structurable algebras over A2
k

which are forms of matrix algebras

Remark 6. Let T be a quadratic étale algebra over kŒX; Y � with anisotropic norm.
As in [Parimala et al. 1997, 4.6], one can see that T extends uniquely to a quadratic
étale algebra T D Cay.OX ;L; N / over X D P2

k
. Since PicX D Z, L Š OX

and T is defined over k, thus so is T . We conclude that every quadratic étale
algebra over kŒX; Y �with anisotropic norm is of the kindK˝kkŒX; Y �ŠKŒX; Y �
with K D k.

p
c/ a separable quadratic field extension. As a consequence, every

quadratic étale ring extension R0 of kŒX; Y � satisfies R0D k.
p
c/ŒX; Y � and every

form of a matrix algebra of the type S.B;�; P;N; h/, B a central simple algebra
over R0 has S.A; /D .

p
c; 0/R.

3.1. LetK be a separable quadratic field extension of k. LetD be a central division
algebra over K of degree 3 with an involution � of the second kind over K=k. Let
X D P2

k
, X 0 DX ˝k K D P2K and DDD˝K OX 0 .

Proposition 7. LetP be a nonfree projective leftDŒX; Y �-module of rank one. The
structurable algebra S.D; �; P;N /DKŒX; Y �˚P over kŒX; Y � admits a unique
extension to a structurable algebra S.D; �; zP ;N / D OX 0 ˚ zP over X D P2

k
. The

vector bundle zP over X 0 is indecomposable.

Proof. There is a unique extension of the quadratic étale algebra KŒX; Y � over
kŒX; Y � to a quadratic étale algebra OX 0 D K ˝k OX over X . There is a unique
extension zP over X 0 D P2K of P of norm one that is a locally free left D-module:
by [Parimala et al. 1999, p. 29], P extends to a vector bundle zP over X 0 that is
unique up to a line bundle L 2 PicX 0. Since we require zP to be of norm one this
implies L3 Š OX 0 , hence L D OX 0 and the extension is unique. More precisely,
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by [ibid., Remark] and [Arason et al. 1992], zP Š t rL0=K0.P0/ for some cubic
field extension L0=K 0 and a suitable vector bundle P over P2L0 that is absolutely
indecomposable and must have rank 3. In particular, N and h can be extended as
well.

The algebra S.D; �; zP ;N /D OX 0 ˚ zP restricts to the structurable algebra

S.D; �; P;N /DKŒX; Y �˚P

over A2
k

. The second statement follows from [Parimala et al. 1999, 3.2]. �

3.2. LetK be a separable quadratic field extension of k. LetD be a central division
algebra over K of degree 3 with an involution � of the second kind over K=k. Let
.u; �/ be an admissible scalar; i.e., � 2 K�, c 2H.B;�B/� and NB.c/ D ���.
By [ibid., p. 33], there exists a projective leftDŒX; Y �-module P of rank 1 together
with a nondegenerate hermitian form h W P � P ! DŒX; Y � and a trivialization
z� W disc.h/! .KŒX; Y �; h1i/ such that:

(8) The reduction of .P; h; z�/ modulo Y is isomorphic to .D; hui; �/, where hui
denotes the hermitian form a! au�.a/ and � is treated as a trivialization of
the discriminant of hui. Moreover, .De; ue; �e/˝ kŒX�D .P; h; z�/ modulo
Y , whereDe is the free module of rank one overD with e a basis element, ue
the hermitian form onDe given by ue.xe; ye/D xu�.y/ and �eND.e/D�.

(9) There exists f 2 kŒX�, f .0/ 6D 0, such that

.P; h; z�/˝ kŒX�f ŒY �Š .D; hui; �/˝ kŒX�f ŒY �:

(10) The principal SU.D; �/-bundle on A2
k

associated to .P; h; z�/ admits no re-
duction of the structure group to any proper connected reductive subgroup of
SU.D; �/. In particular, .P; h; z�/ is not extended from .D; hui; �/.

Now let J be an Albert division algebra over k that is a second Tits construction
but not a first one. We may write

J D J.D1e1; ue1
; �e1

/D J.D2e2; ue2
; �e2

/

where D1, D2 are two isomorphic central simple algebras of degree 3 over a
quadratic extension F=k with involution �1, �2 of the second kind and norms N1
and N2, such that H.D1; �1/\H.D2; �2/D k; see [ibid., 5.2].

Define the structurable algebra

AD S.D1; �1;D1; N1; ue1
/Š S.D2; �2;D2; N2; ue2

/:

By [Parimala et al. 1999, p. 35], there exist nontrivial hermitian spaces .P i1 ; h
i
1; z�

i
1/

over .D1ŒX; Y �; �1/ and .P i2 ; h
i
2; z�

i
2/ over .D2ŒX; Y �; �2/ of rank 1, and fi ; gi 2

kŒX� such that:
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(11) .P i1 ; h
i
1; z�

i
1/ modulo Y reduces to .D1e1; ue1

; �e1
/, .P i2 ; h

i
2; z�

i
2/ modulo Y

reduces to .D2e2; ue2
; �e2

/.

(12) .P i1 ; h
i
1; z�

i
1/˝kŒX�fi

ŒY � is isomorphic to .D1e1; ue1
; �e1

/˝kŒX�fi
ŒY � and

.P i2 ; h
i
2; z�

i
2/˝kŒX�gi

ŒY � is isomorphic to .D2e2; ue2
; �e2

/˝kŒX�gi
ŒY �with

.fi ; fj /D 1D .gi ; gj / for all i 6D j and .fi ; gj /D 1 for all i; j .

(13) The vector bundles .P i1 ; h
i
1/ and .P i2 ; h

i
2/ are not extended from D1 and D2,

respectively.

Let N i
j W P

i
j !Dj ŒX; Y � denote the norm on P ij determined by the choice of z�ij ,

j D 1; 2. We define two families of structurable algebras

Ai1 D S.D
1; �1; P i1 ; N

i
1 ; h

i
1/ and Ai2 D S.D

2; �2; P i2 ; N
i
2 ; h

i
2/

over kŒX; Y � with underlying modules structures

Ai1 ŠKŒX; Y �˚P
i
1 and Ai2 ŠKŒX; Y �˚P

i
2 :

Let
� i1 W .P

i
1 ; h

i
1; z�

i
1/fi
! .D1e1; ue1

; �e1
/˝ kŒX�fi

ŒY �;

� i2 W .P
i
2 ; h

i
2; z�

i
2/gi
! .D2e2; ue2

; �e2
/˝ kŒX�gi

ŒY �

be isometries such that � ij D id for j D1; 2. These isometries induce isomorphisms

A.� i1/ W A
i
1˝ kŒX�fi

ŒY �! A˝ kŒX�fi
ŒY �;

A.� i1/ W A
i
2˝ kŒX�gi

ŒY �! A˝ kŒX�gi
ŒY �;

which reduce to the identity map modulo Y .

Proposition 8. The structurable algebras Ai1 and Ai2 over kŒX; Y � have the fol-
lowing properties:

(i) Ai1 and Ai2 modulo Y reduce to A.

(ii) Ai1˝ kŒX�fi
ŒY � is extended from A˝ kŒX�fi

ŒY � and Ai2˝ kŒX�gi
ŒY � is ex-

tended fromA˝kŒX�gi
ŒY �, with .fi ; fj /D1D .gi ; gj / for i 6Dj , .fi ; gj /D1

for all i; j .

(iii) Aij ˝k K ŠM.T
i
j ; N

i
j ; N

i _
j /DM i

j for j D 1; 2, where the matrix algebras
M i
j are the ones constructed in Section 2.4.

(iv) All the Ai1 are mutually nonisomorphic and all the Ai2 are mutually noniso-
morphic.
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Proof. Properties (i) and (ii) are immediate consequences of the properties of
.P ij ; h

i
j ; z�

i
j /. Property (iii) follows from the construction of the algebras. We

use the identification from the proof of [Pumplün 2010b, Theorem 20].

(iv) SinceAi1˝kKŠM.T
i
j ; N

i
j ; N

i
j / is not extended fromM DM.TD1 ; N 1; N 1/

and P i1 is not free, it follows that Ai1 is not extended from A by [Bass et al. 1977].
Thus the algebras Ai1 are mutually nonisomorphic. The same argument holds for
the Ai2. �

We now patch the structurable algebras .Ai1/gi
over kŒX�gi

ŒY � and .Ai2/fi
over

kŒX�fi
ŒY � over kŒX�figi

ŒY � and their involutions using the isomorphism

 i W A
i
1˝ kŒX�figi

ŒY �! Ai2˝ kŒX�figi
ŒY �;  i D A.�

i
2/
�1A.� i1/:

This way we obtain a structurable algebra Ai over kŒX; Y �.

Theorem 9. The structurable algebras Ai over A2
k

have the following properties:

(1) Ai D A˝ kŒX� modulo Y .

(2) There exists � i WAi˝kŒX�si ŒY �!A˝kŒX�si ŒY � such that � i D id, for some
si 2 kŒX� with .si ; sj /D 1 for i 6D j .

(3) The Ai are mutually nonisomorphic.

(4) Ai ˝k K ŠMi with the Mi as constructed in Section 2.5.

Proof. Since Aij reduces modulo Y to A and  i D id, Ai reduces modulo Y to A.
By construction,

Ai ˝ kŒX�figi
ŒY �Š A˝ kŒX�figi

ŒY �

and the polynomials si WD figi satisfy .si ; sj / D 1 for i 6D j . As in the proof of
Theorem 4, it follows that the Ai are mutually nonisomorphic. �

Again, the ingredients for the results were provided in [Parimala et al. 1999,
Section 5].

4. On extending structurable algebras from the affine to the projective plane

We conclude with some general results about extending structurable algebras from
the affine to the projective plane, imitating the techniques used in [Parimala et al.
1997, 4.1, 4.2, 4.3]. Let R be a domain with 1

6
2R.

4.1. For a structurable algebra .A; /, an isotopy from .A; / to .A; / is an ele-
ment ˛ 2 GL.A/ such that

˛fx; y; zg D f˛.x/;b̨.y/; ˛.z/g
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for all x; y; z 2 A and some b̨ 2 GL.A/. b̨ is uniquely determined by ˛. The
structure group �.A; / of .A; / is the subgroup of GL.A/ which consists of all
isotopies of .A; / onto itself.

Let .A; / be a structurable algebra of skew-rank one such that S.A; /D s0R
for some s0 2S.A; / that is conjugate invertible, which means that left multiplica-
tion Ls0 with s0 is invertible. Sincebs0 2S.A; / for its conjugate inversebs0, there
is ˇ 2R, ˇ 6D 0, such thatbs0 D ˇs0 and since s0bs0 D�1A we obtain ˇs20 D�1A.
Assume that ˇ 2 R� and denote c D ˇ�1. Then s20 D c1A with c 2 R�. Suppose
in addition that the invertible elements in .A; / are Zariski dense in A. Then we
can define a (conjugate) norm � W A!R on A via

�.x/D
1

12c
�.s0x; fx; s0x; xg/;

a trace � W A�A!R on A by

�.x; y/D
2

c
 .s0x; y/s0 D

2

c
.V ıy;xs0/s0;

and a nondegenerate skew-symmetric bilinear form on A

hx; yi D  .x; y/s0 D
1
2
�.s0x; y/

analogously as in [Allison and Faulkner 1984; 1992], where  .x; y/ D x Ny � y Nx
[Allison and Faulkner 1992, 5.4]. (The nondegeneracy of h ; i follows from [Alli-
son and Faulkner 1984, p. 192], applied to the residue class forms.) � is a quartic
form such that �.1A/D 1. � is a nondegenerate symmetric bilinear form indepen-
dent of the choice of s0 and �.1A; 1A/ D 4. (Nondegeneracy follows from [ibid.,
Proposition 2.5], applied to the residue class forms.) Note that if desired, A can be
viewed as a F reudenthal triple system as explained in [ibid., 2.18], in this setting.
An element x 2 A is conjugate invertible if and only if �.x/ 6D 0 [ibid., 4.4]. So
if the norm is anisotropic, every nonzero element of A is conjugate invertible and,
if R is a field, .A; / a conjugate division algebra [Allison and Faulkner 1984,
2.11]. The norm � is a semi-invariant for the structure group �.A; /, which is
proved analogously as in [Allison and Faulkner 1992, 4.7]. Denote the group of
all invertible linear transformations on A that preserve the norm and the skew-
symmetric bilinear form h ; i by Inv.A/.

Theorem 10. Let .A1; / and .A2; / be structurable algebras of skew-rank one
over R. Suppose that .A2; / satisfies all of the criteria in Section 4.1 (i.e., it
carries a conjugate norm), and that the conjugate norm of .A2 ˝ R=.p/; / is
anisotropic. Let

˛ W .A1˝RŒ1=p�; /! .A2˝RŒ1=p�; /
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be an isotopy of structurable algebras. Then ˛ extends uniquely to an isotopy

Q̨ W .A1; /! .A2; /:

In particular, every isomorphism ˛ W .A1 ˝ RŒ1=p�; / ! .A2 ˝ RŒ1=p�; / of
the structurable algebras .A1; / and .A2; / extends uniquely to an isomorphism
Q̨ W .A1; /! .A2; /.

Proof. We show that ˛.A1/D A2, which is sufficient: let x 2 A1 and assume that
˛.x/ 62A2. Let n be the least integer such that y D pn˛.x/ 2A2 and pn�1˛.x/ 62
A2. Then n � 1. � is a semi-invariant for the structure group of .A; /, i.e.,
there is 0 6D r 2 R such that �.˛.x// D r�.x/ for all x 2 A1. Thus we obtain
�.y/D rp4n�.x/. Hence �.y/D0modulo p and y 6D0modulo p. This contradicts
the assumption that the norm �˝R=.p/ of .A2˝R=.p/; / is anisotropic. �

4.2. There is an obvious notion of a structurable algebra over a locally ringed space
[Pumplün 2010b, Section 6]. Let .A; / be a structurable algebra of skew-rank one
overXDPn

k
such that S.A; /D s0OX for some s02H 0.X; S.A; //Dk which is

conjugate invertible, which means that left multiplication Ls0 with s0 is invertible.
Sincebs0 2H 0.X; S.A; // for its conjugate inversebs0, there is c 2 k�, such thatbs0 D�c�1s0 and since s0bs0 D�1A we obtain s20 D c1A. Suppose in addition that
the invertible elements in H 0.U; .A; // are Zariski dense in H 0.U;A/ for every
open subset U �X . Then we can define a (conjugate) norm � W A! OX via

�.x/D
1

12c
�.s0x; fx; s0x; xg/;

a trace � W A�A! OX on A by

�.x; y/D
2

c
 .s0x; y/s0 D

2

c
.V ıy;xs0/s0

and a nondegenerate skew-symmetric bilinear form � W A�A! OX

hx; yi D  .x; y/s0 D
1

2
�.s0x; y/

analogously as in 4.1,  .x; y/D x Ny�y Nx. � is a quartic form such that �.1A/D 1.
� is a nondegenerate symmetric bilinear form independent of the choice of s0 and
�.1A; 1A/D 4.

Theorem 10 now implies:

Corollary 11. Let .A1; 1/, .A2; 2/ be two structurable algebras of skew-rank
one over Pn

k
which satisfy the assumptions of 4.2. Suppose that the restrictions

.A1/� and .A2/� to the generic point � have anisotropic norms. Then every isotopy
˛ W A1 ! A2 over An

k
extends uniquely to an isotopy z̨ W A1 ! A2 over Pn

k
.
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In particular, every isomorphism ˛ W A1 ! A2 over An
k

extends uniquely to an
isomorphism z̨ WA1!A2 over Pn

k
.

The proof is verbatim to the proof of [Parimala et al. 1997, 4.3], substituting
“isotopy” (and “isomorphism”) for “isometry” throughout.

From Corollary 11 and [Parimala et al. 1997, 4.5], we obtain:

Corollary 12. Let k have characteristic 0. Let .A; / be a structurable algebra
of skew-rank one over A2

k
satisfying the conditions of Section 4.1, such that its

restriction A� to the generic point � has an anisotropic norm. Then .A; / extends
uniquely to an algebra .A; / over P2

k
.

If H D Inv.A/ is a connected reductive algebraic group defined over k then
every H -bundle over A2

k
extends to P2

k
as an H -bundle.

If the structurable algebra bundle has rank 56 and admits a reduction of the
structure group to a proper connected reductive subgroup of E7, its corresponding
extension to P2

k
has the same property.
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