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We give an integral representation of K -positive definite functions on a real
rank n connected, noncompact, semisimple Lie group with finite centre.
Moreover, we characterize the λ’s for which the τ -spherical function φτσ,λ
is positive definite for the group G = Spine(n, 1) and the complex spin rep-
resentation τ .

1. Introduction

A continuous function f on R is said to be positive definite if for any real numbers
x1, . . . , xm and complex numbers ξ1, . . . , ξm the following holds:

m∑
k, j=1

f (x j − xk)ξkξ j ≥ 0.

This definition is equivalent to∫
R

f (x)(φ ∗φ∗)(−x)dx ≥ 0 for all φ ∈ C∞c (R),

where φ∗(x) = φ(−x). Also, an even continuous function f on R is said to be
evenly positive definite if∫

R

f (x)(φ ∗φ∗)(−x)dx =
∫

R

f (x)(φ ∗φ∗)(x)dx ≥ 0 for all φ ∈ C∞c (R)e,

where C∞c (R)e denotes the set of infinitely differentiable compactly supported even
functions on R. Then it is clear that the set of even positive definite functions is
a subset of the set of evenly positive definite functions. Bochner’s theorem and
M. G. Krein’s theorem respectively give integral representations of positive definite
functions and evenly positive definite functions. Precisely, for a positive definite
function f on R, there exists a finite positive measure µ on R such that

f (x)=
∫

R

eiλx dµ(λ).
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Also for an evenly positive definite function f on R, there exists a finite positive
even measure σ on R∪ iR such that

f (x)=
∫

R∪iR

eiλx dσ(λ).

From this integral representation it follows that a bounded evenly positive definite
function is a positive definite function. We note that the measure σ in the integral
representation of an evenly positive definite function is not unique, whereas the
measure µ in the integral representation of a positive definite function is unique.
However, if an evenly positive definite function satisfies a certain restriction on its
growth for |x |→∞, then the integral representation becomes unique [Gelfand and
Vilenkin 1964].

Let G be a connected, noncompact semisimple Lie group with finite centre, and
let K be a fixed maximal compact subgroup of G. Integral representations of K -
positive definite distributions and K -positive definite functions have been derived
for real rank-one semisimple Lie groups with finite centre in [Sitaram 1978] and
[Pusti 2011], respectively.

An analogue of Krein’s theorem on Rn has been obtained by N. Bopp [1979].
In this case, instead of evenly positive definite functions, one considers functions
which are positive definite relative to the action of a finite subgroup of O(n). Here
too, if we impose a certain growth condition, then the integral representation of
these functions is unique. In this paper, using Bopp’s result, we derive an integral
representation for the K -positive definite functions on a real rank n connected,
noncompact, semisimple Lie group with finite centre. We observe that the set
of positive definite functions is a proper subset of the set of K -positive definite
functions. Next, we consider the τ -positive definite functions, τ ∈ K̂ . The K -
positive definite functions are a special instance of the τ -positive definite functions
(for τ equals the trivial representation). We give an example in which the set
of τ -positive definite functions is same as the set of positive definite functions.
That is, the same conclusion (as in K -positive definite function) is not true for τ -
positive definite functions. Finally we characterize the λ’s for which the τ -spherical
function φτσ,λ is a positive definite function for the group G = Spine(n, 1) and the
complex spin representation τ . We note that G. van Dijk and A. Pasquale [1999]
studied positive definiteness of φτσ,λ for the group G = Sp(1, n).

2. Preliminaries

Most of our notations are standard and can be found in [Anker 1991]. Let G be a
real rank n connected, noncompact, semisimple Lie group with finite centre with
Lie algebra g, and let U(g) be the universal enveloping algebra of g. Let g= k+ s

be a Cartan decomposition of g, and let K be the maximal compact subgroup of G
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with Lie algebra k. We fix a maximal abelian subspace a of s. Since G is of real
rank n, we have dim a= n. We denote the real dual of a by a∗ and its complex dual
by a∗

C
. The Killing form of g induces an Ad K -invariant scalar product on s and

hence a G-invariant Riemannian metric on G/K (or K\G). With this structure,
G/K is a Riemannian globally symmetric space of the noncompact type. Also,
the Killing form of g induces a scalar product on a and hence on a∗. We denote by
〈 · , · 〉 its C-bilinear extension to a∗

C
.

Let g= g0⊕(⊕α∈6gα) be the root space decomposition of g. Here, g0=m⊕a,
where m is the centralizer of a in k and 6 ⊆ a∗ is the root system of (g, a). Let
W be the Weyl group associated to 6. We choose a set 6+ of positive roots. Let
a+ ⊆ a be the corresponding positive Weyl chamber and let a+ be its closure. We
denote by (a∗)+ and (a∗)+ the similar cones in a∗. Let n=

⊕
α∈6+ gα. Then n is

a nilpotent subalgebra of g. The element ρ ∈ a∗ is defined by

ρ(H)= 1
26α∈6+mαα(H),

where mα = dim gα. Let A be the analytic subgroup of G with Lie algebra a. Then
A is a closed subgroup of G and the exponential map is an isomorphism from a

onto A. We set A+ = exp a+. Its closure is A+ = exp a+. Let N be the analytic
subgroup of G with Lie algebra n, and let M be the centralizer of A in K .

The group G can be decomposed as G = K A+K . It is called the Cartan de-
composition of G and every element x of G can be decomposed as x = k1ak2

with k1, k2 ∈ K and a ∈ A+. We let x+ be the a+-component of x ∈ G in the
decomposition G = K (exp a+)K and let |x | = ‖x+‖. Viewed on G/K , | · | is the
distance to the origin 0 = {K }. Also, the group G has Iwasawa decomposition
G = K AN . Let k(x) and H(x) be the components of x ∈G in K and a. Then any
element x ∈ G can be expressed as x = k(x) exp H(x)n for some n ∈ N .

For λ ∈ a∗
C

, the elementary spherical function φλ on G is given by

φλ(x)=
∫

K
e−(iλ+ρ)H(x

−1k)dk.

It satisfies the following properties:

(1) It is K -biinvariant, that is, φλ(k1xk2) = φλ(x) for all k1, k2 ∈ K and x ∈ G.
Also, it is W -invariant in λ ∈ a∗

C
, that is, φw·λ(x) = φλ(x) for all w ∈ W and

x ∈ G.

(2) The function φλ(x) is C∞ in x and holomorphic in λ.

(3) It is a joint eigenfunction for all G-invariant differential operators on G/K ;
in particular for the Laplacian 1 on G/K ,

1φλ =−(〈λ, λ〉+ ‖ρ‖
2)φλ.
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A function f on G is called K -biinvariant if f (k1xk2)= f (x) for all k1, k2 ∈ K
and x ∈G. For a K -biinvariant function f on G, its spherical Fourier transform is
defined by

f̂ (λ)=
∫

G
f (x)φλ(x−1)dx

for suitable λ ∈ a∗
C

.
The set of infinitely differentiable compactly supported K -biinvariant functions

and infinitely differentiable K -biinvariant functions are denoted by C∞c (G//K ) and
C∞(G//K ), respectively. For 0 < p ≤ 2 the L p-Schwartz space Cp(G//K ) is the
set of all functions f ∈ C∞(G//K ) such that

sup
x∈G

(1+ |x |)sφ0(x)−2/p
| f (D; x; E)|<∞

for any D, E ∈ U(g) and any integer s ≥ 0. The Schwartz space Cp(G//K ) is
topologized by the seminorms

σ
p
D,E,s( f )= sup

x∈G
(1+ |x |)sφ0(x)−2/p

| f (D; x; E)| .

Then it follows that C∞c (G//K ) is dense in Cp(G//K ) and Cp(G//K ) is dense in
L p(G//K ).

Let P(a∗
C
) be the space of entire functions on a∗

C
, which are of exponential type

and rapidly decreasing. The set of W -invariant elements in P(a∗
C
) is denoted by

P(a∗
C
)W .

For fixed ε > 0, let Cερ be the convex hull of the set W · ερ in a∗, and let
a∗ε = a∗+ iCερ be the tube in a∗

C
with base Cερ . For ε = 0, a∗ε reduces to a∗. Let

S(a∗) be the symmetric algebra over a∗. We define the Schwartz space S(a∗ε) as
the space of all complex valued functions h such that the following hold true.

(1) h is holomorphic in the interior of a∗ε .

(2) h and all its derivatives extend continuously to a∗ε .

(3) for any polynomial P ∈ S(a∗) and any (integer) t ≥ 0,

sup
λ∈a∗ε

(1+‖λ‖)t
∣∣∣P( ∂

∂λ

)
h(λ)

∣∣∣<∞.
The space S(a∗ε) is topologized by the seminorms

τ εP,t(h)= sup
λ∈a∗ε

(1+‖λ‖)t
∣∣∣P( ∂

∂λ

)
h(λ)

∣∣∣.
We denote by S(a∗ε)

W the subspace of W -invariant functions in S(a∗ε). For ε = 0,
S(a∗ε) becomes the classical Schwartz space on a∗. Then for ε ≥ 0, S(a∗ε)

W is a
Fréchet algebra (under pointwise multiplication) and P(a∗

C
)W is a dense subalgebra

of S(a∗ε)
W .
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We consider the function

coshερ(H)=
1
|W |

∑
w∈W

ew·ερ(H) on a.

Then we define the space Sερ(a) consisting of all functions g ∈ C∞(a) such that

sup
H∈a

(1+‖H‖)s coshερ(H)
∣∣∣P( ∂

∂H

)
g(H)

∣∣∣<∞
for any polynomial P ∈ S(a) (the symmetric algebra over a) and any s ≥ 0.

Theorem 2.1 [Anker 1991]. (1) The spherical Fourier transform f 7→ f̂ is a
topological isomorphism between C∞c (G//K ) and P(a∗

C
)W and also between

Cp(G//K ) and S(a∗ε)
W , where ε = 2/p− 1.

(2) The Euclidean Fourier transform f 7→ f̃ is a topological isomorphism be-
tween Sερ(a)

W and S(a∗ε)
W , where f̃ (λ)=

∫
a f (H)e−iλ(H)d H, λ ∈ a∗.

For a suitable K -biinvariant function f on G, the Abel transform is defined by

Af (H)= eρ(H)
∫

N
f (exp Hn) dn.

It satisfies the relation f̂ (λ) = Ãf (λ) for a suitable K -biinvariant function f on
G. Therefore it follows from Theorem 2.1 that the Abel transform f 7→ Af is a
topological isomorphism between Cp(G//K ) and Sερ(a)

W for ε = 2/p− 1.

3. M. G. Krein’s theorem

For α ≥ 0, we define

Sα(R
n)= {φ ∈ C∞(Rn) : ‖φ‖p <∞for any nonnegative integer p},

where
‖φ‖p = max

|q|≤p
sup
x∈Rn

(1+ |x |2)peα|x |
∣∣Dqφ(x)

∣∣ .
Then Sα(Rn) becomes a Fréchet space and C∞c (R

n) is a dense subspace of Sα(Rn).
For a finite subgroup E of O(n), let Sα(R

n)E be the subspace of E-invariant func-
tions in Sα(R

n).

Theorem 3.1 [Bopp 1979]. Let E be a finite subgroup of O(n) and let

T : Sα(Rn)→ C

be a continuous, linear functional such that

(1) T (η ·φ)= T (φ) for all η ∈ E, φ ∈ Sα(R
n).

(2) T (φ ∗φ∗)≥ 0 for all φ ∈ Sα(R
n)E .
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Then there exists a unique positive tempered measure σ , invariant under the E-
action, such that for all φ ∈ Sα(R

n),

T (φ)=
∫

M∩Tα
φ̃(ξ)dσ(ξ),

where M = {ξ ∈ Cn
: there exists η ∈ E such that η.ξ = ξ} and

Tα = {ξ ∈ Cn
: |Im ξ | ≤ α}.

Since we have an isomorphism between Sερ(R
n) and Sερ(a) we can rewrite the

theorem above in the following way:

Theorem 3.2. Let T : Sερ(a)W → C be a continuous, linear functional such that

T (φ ∗φ∗)≥ 0 for all φ ∈ Sερ(a)
W .

Then there exists a unique positive tempered measure σ , invariant under the W -
action, such that for all φ ∈ Sερ(a),

T (φ)=
∫

M∩a∗ε

φ̃(λ)dσ(λ),

where M= {λ ∈ a∗
C
: there exists w ∈W such that w.λ= λ}.

We call a K -biinvariant continuous function f on G K -positive definite if for
all g ∈ C∞c (G//K ), ∫

G
f (x)(g ∗ g∗)(x−1)dx ≥ 0,

where g∗(x) = g(x−1) for all x ∈ G. If the equation above is true for every g ∈
C∞c (G) we say that f is a positive definite function. We prove the following
analogue of M. G. Krein’s theorem for K -positive definite functions on semisimple
Lie groups.

Theorem 3.3. For a K -positive definite function f ∈Cp(G//K )′ (0< p≤2), there
exists a unique finite positive measure σ on M∩a∗ε , invariant under the Weyl group
action, such that for all x ∈ G

f (x)=
∫

M∩a∗ε

φλ(x)dσ(λ),

where ε = 2/p− 1.

Proof. We define a linear functional T f : Sερ(a)
W
→ C by

T f (h)=
∫

G
f (x)(A−1h)(x−1)dx .
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The integral exists and is continuous by the given condition on f and the iso-
morphism of the Abel transform on Cp(G//K ). Since f̂ (λ) = Ãf (λ) for all
f ∈ Cp(G//K ), it follows that

Â−1h = h̃ for all h ∈ Sερ(a)
W .

Using this, we easily check that

A−1(h1 ∗ h2)=A−1h1 ∗A−1h2 and A−1h∗1 =
(
A−1h1

)∗
for all h1, h2 ∈ Sερ(a)

W. Then

T f (h ∗ h∗)=
∫

G
f (x)

(
A−1h ∗ (A−1h)∗

)
(x−1) dx ≥ 0,

since f is K -positive definite. Therefore, by Theorem 3.2, there exists a unique
positive tempered measure σ on M ∩ a∗ε , invariant under the Weyl group action,
such that

T f (h)=
∫

M∩a∗ε

h̃(λ)dσ(λ) for all h ∈ Sερ(a)
W .

This shows that

(3-1)
∫

G
f (x)g(x−1) dx =

∫
M∩a∗ε

ĝ(λ)dσ(λ) for all g ∈ Cp(G//K ).

Now we show that the measure σ is finite. For this let {gn} be a Dirac-delta se-
quence in Cp(G//K ). Then {gn ∗ g∗n} is also a Dirac-delta sequence in Cp(G//K ).
Applying this sequence to the previous equation we get∫

G
f (x)(gn ∗ g∗n)(x

−1) dx =
∫

M∩a∗ε

|ĝn(λ)|
2 dσ(λ).

Now we take the limit as n→∞ on both sides of the equation and apply Fatou’s
lemma to get σ(M∩a∗ε)≤ f (e). Therefore the measure σ is finite. From (3-1) we
get, using Fubini’s theorem,∫

G
f (x)g(x−1) dx =

∫
M∩a∗ε

ĝ(λ) dσ(λ)=
∫

G
g(x−1)

∫
M∩a∗ε

φλ(x)dσ(λ) dx .

This is true for every g ∈ Cp(G//K ). Hence

f (x)=
∫

M∩a∗ε

φλ(x)dσ(λ) with ε = 2
p
− 1. �

We can easily check that a function f on G which has an integral representation
as in Theorem 3.3 is a K -positive definite function. That is, the converse of the
Theorem 3.3 holds.
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A K -biinvariant distribution T on G is called a K -positive definite distribution
if T (φ ∗ φ∗) ≥ 0 for all φ ∈ C∞c (G//K ). It is a positive definite distribution if the
inequality above holds for all φ∈C∞c (G). Barker [1975, p. 201] raised the question
whether a K -positive definite distribution is a positive definite distribution. We
shall see that the answer is negative, that is, the set of positive definite distributions
is a proper subset of the set of K -positive definite distributions. For this let us
consider λ0 ∈ M \ a∗1. Our claim is that φλ0 is a K -positive definite distribution
but not a positive definite distribution. By the Helgason–Johnson theorem φλ is
bounded if and only if λ ∈ a∗1. Since λ0 /∈ a∗1, φλ0 is not bounded. Therefore, φλ0

is not a positive definite function. Hence φλ0 is not a positive definite distribution.
Now λ0 ∈M implies that there exists w ∈W such that w.λ0 = λ0. This shows that
φλ0
= φλ0 . Therefore, for a suitable K -biinvariant function f on G,∫

G
φλ0(x)( f ∗ f ∗)(x−1) dx = f̂ (λ0) f̂ ∗(λ0)= | f̂ (λ0)|

2
≥ 0.

This proves our claim.
The same example also shows that the set of positive definite functions is a

proper subset of the set of K -positive definite functions.
We now see in the real rank-one case that if we restrict our attention to cer-

tain classes of functions, then the set of positive definite functions is same as the
set of K -positive definite functions. Any real rank-one connected, noncompact,
semisimple Lie group G with finite centre can be classified (up to coverings) as

(1) G = SOe(1, n), for which mα = n− 1 and m2α = 0,

(2) G = SU(1, n), for which mα = 2n− 2 and m2α = 1,

(3) G = Sp(1, n), for which mα = 4n− 4 and m2α = 3, or

(4) G = F4(−20), for which mα = 8 and m2α = 7.

Let PK and P be the set of K -positive definite functions and the set of positive
definite functions on G respectively.

Proposition 3.4. (1) For the groups G = SOe(1, n) and G = SU(1, n), we have
PK ∩ L∞(G//K )= P∩ L∞(G//K ).

(2) For the group G = Sp(1, n), we have PK ∩ Lr (G//K ) = P∩ Lr (G//K ), for
any 2< r ≤ (2n+ 1).

(3) For the group G = F4(−20), we have PK ∩Lr (G//K )=P∩Lr (G//K ), for any
2< r ≤ 11

3 .

Proof. It is known [Flensted-Jensen and Koornwinder 1979] that φλ is positive
definite if and only if λ ∈ R or λ = iη for η ∈ [−s0, s0] ∪ {±ρ}, where s0 = ρ if
m2α = 0, otherwise s0 =

1
2 mα + 1. Therefore:
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(a) For the groups G = SOe(1, n) and G = SU(1, n), φλ is positive definite if and
only if λ ∈ R or λ= iη with η ∈ [−ρ, ρ].

(b) For the group G = Sp(1, n), φλ is positive definite if and only if λ ∈ R or
λ= iη with η ∈ [−(2n− 1), (2n− 1)] ∪ {±(2n+ 1)}.

(c) For the group G=F4(−20), φλ is positive definite if and only if λ∈R or λ= iη
with η ∈ [−5, 5] ∪ {±11}.

We know that

φλ ∈ L∞(G//K ) if and only if λ ∈ S1,(3-2)

where Sr = {λ ∈ C : |Im λ| ≤ (2/r − 1)ρ}, r > 0. Also, for r > 1,

φλ ∈ Lr ′(G//K ) if and only if λ ∈ S◦r ,(3-3)

where 1/r + 1/r ′ = 1 [Pusti et al. 2011]. Now, from Theorem 3.3, a K -positive
definite function can be expressed as

f (x)=
∫

R

φλ(x)dµ1(λ)+

∫
iR

φλ(x)dµ2(λ),

where µ1 is a finite positive measure and µ2 is a positive measure such that the
integral

∫
R
φiλ(x)dµ2(λ) exists for every x ∈ G.

If the K -positive definite function f is in L∞(G//K ), the measure µ2 must be
supported in i [−ρ, ρ] by (3-2). Therefore a K -positive definite function f which
is in L∞(G//K ) has an integral form:

f (x)=
∫

R

φλ(x)dµ1(λ)+

∫
i [−ρ,ρ]

φλ(x)dµ2(λ).

However, this is a positive definite function for the groups G = SOe(1, n) and
G = SU(1, n), by (a). This proves (1).

To prove (2), note that if the K -positive definite function f is in Lr (G//K ),
2< r ≤ (2n+ 1) by (3-3) it follows that the measure µ2 must be supported in

iR∩ S◦r ′ ⊆ i(−(2n− 1), (2n− 1)).

This proves that the function f is positive definite.
The proof of (3) is similar. �

Remark 3.5. For the groups G = SOe(1, n) and G = SU(1, n), it follows from
the above that a K -positive definite function is a positive definite function if and
only if f ∈ L∞(G//K ). However, a similar statement is not true for the groups
G = Sp(1, n) and G = F4(−20). In fact, for the group G = Sp(1, n), the function
φ(2n+1)i is K -positive definite as well as positive definite, but it does not belong to
any Lr (G//K ), 2< r ≤ (2n+1). Similarly, for the group G = F4(−20), the function
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φ11i is K -positive definite as well as positive definite but it does not belong to any
Lr (G//K ), 2< r ≤ 11

3 .

Let f ∈C2(G//K ) be a K -positive definite function. Then by Theorem 3.3 there
exists a finite positive measure σ , invariant under the Weyl group action such that

f (x)=
∫

M∩a∗
φλ(x)dσ(λ).

However, this is a positive definite function on G because φλ is positive definite for
λ∈ a∗. Hence PK ∩C2(G//K )=P∩C2(G//K ) (cf. [Bopp 1979] for distributions).

4. τ -positive definite functions

In this section we give an example in which the set of τ -positive definite functions is
same as the set of positive definite functions (without imposing any decay condition
on functions). For defining the τ -positive definite functions we recall some basic
facts [Camporesi 1997; Camporesi and Pedon 2001].

Definition 4.1. For τ ∈ K̂ a scalar valued function f on G is said to be τ -radial if
f (kxk−1)= f (x) for all k ∈ K , x ∈ G and if dτχ τ ∗ f = f = f ∗dτχ τ , where χτ
and dτ are respectively the character and dimension of τ .

When τ is the trivial representation of K , a τ -radial function is a K -biinvariant
function. We note that the τ -radial functions are radial sections of the homogeneous
vector bundle over G/K associated with the representation τ ∈ K̂ . The set of
all compactly supported τ -radial infinitely differentiable functions and infinitely
differentiable τ -radial functions are denoted by C∞c,τ (G) and C∞τ (G), respectively.

Definition 4.2. A τ -radial continuous function f on G is called τ -positive definite
if ∫

G
f (x)(g ∗ g∗)(x−1) dx ≥ 0, for all g ∈ C∞c,τ (G).

Let G=Spine(n, 1), the identity component of Spin(n, 1). Then, in the notation
of the previous section, K =Spin(n) and M=Spin(n−1). In the rest of the section
we fix these meanings for G, K ,M .

Let τn be the complex spin representation of K . The following proposition gives
information about the irreducibility of τn .

Proposition 4.3 [Camporesi and Pedon 2001]. (1) If n is even, then τn splits into
two irreducible components given by the positive and negative half-spin rep-
resentations τn = τ

+
n ⊕τ

−
n and τ±n |M = σn−1, where σn−1 is the spin represen-

tation of M.

(2) If n is odd, then τn is irreducible and τn|M = σ
+

n−1 ⊕ σ
−

n−1, where σ±n−1, are
irreducible components of the spin representation σn−1 of M.
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It is known that (G, K , τ ) is a Gelfand triple, that is, the convolution algebra
C∞c,τ (G) is commutative when τ ∈ K̂ is either τ+n or τ−n if n is even and τn if n is
odd. For n even the τ±n -spherical function is given by

φ
τ±n
λ (x)=

∫
K

e−(iλ+ρ)H(xk)χτ±n (kK (xk)−1)dk.

Also, it satisfies φτ
±
n
−λ(x)= φ

τ±n
λ (x).

For n odd the τn-spherical functions are denoted by φτn

σ+n−1,λ
and φτn

σ−n−1,λ
. They

are given by the integral formula

φ
τn

σ±n−1,λ
(x)= 2dσ±n−1

∫
K

∫
M

e−(iλ+ρ)H(xk)χτn (km−1K (xk)−1)χσ±n−1
(m)dm dk.

They satisfy φτn

σ+n−1,−λ
(x)= φτn

σ−n−1,λ
(x).

From now on by τ ∈ K̂ we will mean either τ = τ+n or τ = τ−n if n is even
and τ = τn if n is odd. For n even we shall write the τ±n -spherical functions φτσ,λ
instead of φτ

±
n
σn−1,λ

. Also for n odd we write the τn-spherical functions

φτσ±,λ instead of φ
τn

σ±n−1,λ
.

Henceforth while dealing with G = Spine(n, 1) and τ as above we shall simply
say when n is even and when n is odd to distinguish between these two cases.

For a τ -radial function f its spherical Fourier transform is defined by

f̂ (σ, λ)=
∫

G
f (x)φτσ,λ(x

−1)dx

when n is even. For n odd it is defined by

f̂ (σ±, λ)=
∫

G
f (x)φτσ±,λ(x

−1)dx .

Theorem 4.4 [Gelfand and Vilenkin 1964, Theorem 3, p. 157, Theorem 5, p. 226].
(a) Let T be a positive definite distribution on R, that is,

T (φ ∗φ∗)≥ 0 for all φ ∈ C∞c (R).

Then there exists a positive tempered measure µ on R such that

T (φ)=
∫

R

φ̃(λ)dµ(λ) for all φ ∈ C∞c (R).

(b) Let T be an evenly positive definite distribution on R, that is, T (φ ∗ φ∗) ≥ 0
for all φ ∈ C∞c (R)e. Then there exists positive even measures µ1 and µ2 such
that

T (φ)=
∫

R

φ̃(λ)dµ1(λ)+

∫
R

φ̃(iλ)dµ2(λ) for all φ ∈ C∞c (R)e,
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where µ1 is a tempered measure and µ2 is such that∫
R

ea|λ|dµ2(λ) <∞ for all a > 0.

The next theorem gives integral representations of τ -positive definite functions
on G = Spine(n, 1).

Theorem 4.5. Let G=Spine(n, 1) and let τ denote one of {τ+n , τ
−
n } when n is even

and τn when n is odd.

(a) Let n be even and let f be a τ -positive definite function on G. Then there
exists even positive measures µ1 and µ2 such that for all x ∈ G

f (x)=
∫

R

φτσ,λ(x)dµ1(λ)+

∫
R

φτσ,iλ(x)dµ2(λ),

where µ1 is finite measure and µ2 is such that∫
R

ea|λ|dµ2(λ) <∞ for all a > 0.

(b) Let n be odd and let f be a τ -positive definite function on G. Then there exists
a finite positive measure µ such that for all x ∈ G

f (x)=
∫

R

φτσ+,λ(x)dµ(λ).

Proof. We shall prove (b). The proof of (a) is similar. Let n be odd and let f be
a τ -positive definite function on G. We define the linear functional T f on C∞c (R)
as follows:

T f (h)=
∫

G
f (x)(A−1h)(x−1)dx for all h ∈ C∞c (R).

Here A is the Abel transform, which is a topological isomorphism between C∞c,τ (G)
and C∞c (R). We also have f̂ (−λ) = Ãf (λ) for all f ∈ C∞c,τ (G). Then it follows

that Â−1h(−λ)= h̃(λ) for all h ∈ C∞c (R). Using this, we easily check that

A−1(h1 ∗ h2)=A−1h1 ∗A−1h2

and A−1h∗1 = (A
−1h1)

∗ for all h1, h2 ∈ C∞c (R). Then

T f (h ∗ h∗)=
∫

G
f (x)(A−1h ∗ (A−1h)∗)(x−1)dx ≥ 0

as f is τ -positive definite. Therefore, by (a), there exists a positive tempered
measure µ on R such that for all h ∈ C∞c (R)

T f (h)=
∫

R

h̃(λ)dµ(λ).
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This shows that for all g ∈ C∞c,τ (G)

(4-1)
∫

G
f (x)g(x−1)dx =

∫
R

ĝ+(λ)dµ(λ).

Using approximate identity techniques we can easily prove that the measure µ is
finite. Then from Equation (4-1), using Fubini’s theorem we get∫

G
f (x)g(x−1)dx =

∫
R

∫
G

g(x)φτσ+,λ(x
−1)dx dλ

=

∫
G

g(x−1)

∫
R

φτσ+,λ(x)dµ(λ)dx .

Since this is true for every g ∈ C∞c,τ (G), it follows that

f (x)=
∫

R

φτσ+,λ(x)dµ(λ). �

It is easy to check that the converse of Theorem 4.5 holds true. We get the
following corollary from Theorem 4.5(b):

Corollary 4.6. The set of τ -positive definite functions is same as the set of positive
definite functions when τ = τn and n is odd.

Remark 4.7. We saw after Theorem 3.3 that the function φλ0, λ0 ∈ M \ a∗1 is K -
positive definite but not positive definite. When τ = τn and n is odd, we could try to
find a similar example by considering the function φτ

σ+,λ0
, λ0 ∈ iR \ i [−1, 1]. But

φτ
σ+,λ0

is neither a τ -positive definite function nor a positive definite function. The
argument used in the K -positive definite case does not work here. Indeed, unlike
the case of the spherical functions φλ, which are W -invariant in λ ∈ a∗

C
, there is no

relation between φτ
σ+,λ

and φτ
σ+,−λ

when τ = τn and n is odd.

We Now characterize the λ’s for which φτσ,λ is positive definite for

G = Spine(n, 1)

when τ is the irreducible component of the complex spin representation.

Theorem 4.8. Let G=Spine(n, 1) and let τ denote one of {τ+n , τ
−
n } when n is even

and τn when n is odd. Then

(a) φτσ,λ is positive definite if and only if λ ∈ R when n(≥ 4) is even, and

(b) φτ
σ±,λ

are positive definite if and only if λ ∈ R when n is odd.

Proof. (a) Let n be even and n ≥ 4. The τ -spherical function φτσ,λ is positive
definite if and only if τ is contained in the unitary principal, discrete or comple-
mentary series representations. It is well-known that there is no discrete series
representation which contains τ . Also, by [Knapp and Stein 1971, Proposition 55]
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and the Frobenius reciprocity theorem there is no complementary series containing
τ . Hence φτσ,λ is positive definite if and only if λ ∈ R.

(b) For the case n odd we prove the result without using representation theory. By
Corollary 4.6 the τ -spherical function φτ

σ+,λ
is positive definite if and only if it is

a τ -positive definite function. That is equivalent to∫
G
( f ∗ f ∗)(x)φτσ+,λ(x

−1)dx ≥ 0 for all f ∈ C2
τ (G),

where C2
τ (G) is the set of τ -radial L2-Schwartz class functions on G. That is,

(4-2) f̂ (σ+, λ) f̂ (σ+, λ)≥ 0 for all f ∈ C2
τ (G),

since φτσ,λ(x)= φ
τ

σ,λ
(x−1). Let us consider a function

f ∈ C2
τ (G)

such that f̂ (σ+, λ)= λe−λ
2
. Such a function exists by the Schwartz space isomor-

phism theorem [Camporesi and Pedon 2001, Theorem 6.3]. Then (4-2) is true if
and only if λ ∈ R. �
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