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The Harish-Chandra–Howe local character expansion expresses the charac-
ters of reductive, p-adic groups in terms of Fourier transforms of nilpotent
orbital integrals on their Lie algebras, and Murnaghan–Kirillov theory ex-
presses many characters of reductive, p-adic groups in terms of Fourier
transforms of semisimple orbital integrals (also on their Lie algebras). In
many cases, the evaluation of these Fourier transforms seems intractable,
but for SL2, the nilpotent orbital integrals have already been computed. We
compute Fourier transforms of semisimple orbital integrals using a variant
of Huntsinger’s integral formula and the theory of p-adic special functions.
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1. Introduction

1A. History. Harish-Chandra’s p-adic Lefschetz principle suggests that results in
real harmonic analysis should have analogues in p-adic harmonic analysis. This
principle has had too many successes to list, but it is interesting that the paths to
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results in the Archimedean and non-Archimedean settings are often different. One
striking manifestation of this is that the characters for the discrete series of real
groups were found before the representations to which they were associated were
constructed (see [Harish-Chandra 1966, Theorem 16; Schmid 1968, Theorem 4]),
whereas, in the p-adic setting, we now have explicit constructions of many repre-
sentations (see [Howe 1971; Corwin 1989; Moy 1986; Morris 1992; Bushnell and
Kutzko 1993a; 1993b; 1994; Moy and Prasad 1994; Adler 1998; Yu 2001; Stevens
2008], among many others), but explicit character tables are still very rare.

This scarcity is of particular concern because, as suggested by Sally, it should
be the case that “characters tell all” [Sally and Spice 2009, p. 104]. Note, for
example, the recent work of Langlands [2011], which uses in a crucial way (see
[ibid., Section 1.d]) the character formulae of [Sally and Shalika 1968] to show the
existence of a transfer map dual to the transfer of stable characters, but only for SL2.
It seems likely that one of the main obstacles to extending the results of [Langlands
2011] to other groups is the absence of explicit character formulae for them.

The good news here is that much is known about the behaviour of characters
in general. For example, the Harish-Chandra–Howe local character expansion
[Howe 1973; Harish-Chandra 1999; DeBacker 2002] and Murnaghan–Kirillov the-
ory [Murnaghan 1995a; 1995b; 1996a; 1996b; 2000; Kim and Murnaghan 2003;
2006] give information about the asymptotics (near the identity element) of charac-
ters of p-adic groups in terms of Fourier transforms of orbital integrals (nilpotent or
semisimple) on the Lie algebra, and many existing character formulae are stated in
terms of such orbital integrals; see, for example, [DeBacker 1997, Theorem 5.3.2;
Spice 2005, Theorems 6.6 and 7.18; Adler and Spice 2009, Theorem 7.1; DeBacker
and Reeder 2009, Lemma 10.0.4]. See also [Adler and Spice 2009, Section 0.1]
for a more exhaustive description of what is known in the supercuspidal case.

The bad news is that many applications require completely explicit character
tables — in particular, the evaluation of Fourier transforms of orbital integrals when
they appear — but Hales [1994] has shown that the orbital integrals may themselves
be “nonelementary”. This term has a technical meaning, but, for our purposes, it
suffices to regard it informally as meaning “difficult to evaluate”. (Note, though,
that the asymptotic behaviour of orbital integrals “near ∞” is understood in all
cases; see [Waldspurger 1995, Proposition VIII.1].) Since SL2 is both simple
enough for many explicit computations to be tractable (for example, the Fourier
transforms of nilpotent orbital integrals have already been computed [DeBacker
and Sally 2000, Appendix A.3–A.4]), and complicated enough for interesting phe-
nomena to be apparent (for example, unlike GL2 and PGL2, it admits nonstable
characters), it is a natural focus for our investigations.

Another perspective on the behaviour of characters in the range where Murnaghan–
Kirillov theory holds is offered in [Corwin et al. 1995, Theorem 4.2(d); Takahashi
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2003, Proposition 2.9(2); 2005, Theorem 2.5], where explicit mention of orbital
integrals is replaced (on the “bad shell” — see Section 10B) by arithmetically in-
teresting sums, identified in [Takahashi 2003; 2005] as Kloosterman sums. In fact,
exponential sums — specifically, Gauss sums — have long been observed in p-adic
harmonic analysis; see, for example, [Corwin et al. 1995, Proposition 3.7; Wald-
spurger 1995, Section VIII.1; DeBacker 1997, p. 55; Shalika 2004, Section 1.3;
Adler and Spice 2009, Section 5.2].

The work recorded here was carried out while preparing [Adler et al. 2011],
which provides a proof of the aforementioned SL2 character formulae [Sally and
Shalika 1968] by specialising the results of [Adler and Spice 2009; DeBacker and
Reeder 2009]. As discussed above, these general results are stated in terms of
Fourier transforms of orbital integrals (see Definition 5.5); so, in order to obtain
completely explicit formulae, it was necessary to evaluate those Fourier transforms.
The author of the present paper was surprised to discover that this latter evaluation
reduced to the computation of Bessel functions (see Section 7 and Proposition 8.11).
In retrospect, by the p-adic Lefschetz principle mentioned on the first page, it
seems natural that the “special functions” described in [Sally and Taibleson 1966]
will play some important role in p-adic harmonic analysis, since their classical
analogues are so integral to real harmonic analysis (see, for just one example,
[Gindikin and Karpelevič 1962, Theorem 2], where Harish-Chandra’s c-function
is calculated in terms of 0-functions). Relationships between a different sort of
Bessel function and a different sort of orbital integral (adapted to the Jacquet–Ye
relative trace formula) have already been demonstrated by Baruch [1997; 2001;
2003; 2004; 2005]. We will investigate further applications of complex-valued
p-adic special functions in future work.

See also [Cunningham and Gordon 2009, Section 4] for a motivic approach to
the calculation of Fourier transforms of semisimple orbital integrals.

1B. Outline of the paper. We need a lot of notation in order to be completely
explicit; we describe it in Sections 2–7. Specifically, Sections 2–4 describe the
basic notation for working with groups over p-adic fields, adapted to the particular
setting of the group SL2. Since our formulae will be written “torus-by-torus” (à la
[Harish-Chandra 1970, Theorem 12]), we need to describe the tori in SL2. This
can be done very concretely; see Definition 4.1.

In Section 5, we define the functions µ̂G
X∗ (Fourier transforms of orbital integrals)

that we want to compute as representing functions for certain invariant distributions
on sl2 (see Definition 5.5 and Notation 5.7). Since these functions are defined
only up to scalar multiples, it is important to be aware of the normalisations in-
volved in their construction. We specify the (Haar) measures that we are using in
Definition 2.1 and Proposition 11.2.
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As mentioned in Section 1A, p-adic harmonic analysis tends to involve Gauss
sums and other fourth roots of unity, and our calculations are no exception; we de-
fine and compare some of the relevant constants in Section 6. Finally, with these in-
gredients in place, we can follow [Sally and Taibleson 1966] in defining the Bessel
functions that we will use to evaluate µ̂G

X∗ . Already, [Sally and Taibleson 1966]
offers considerable information about the values of these functions, but we need to
carry the calculations further, especially far from the identity (see Proposition 7.5)
and on the “bad shell” (see Proposition 7.7), where (twisted) Kloosterman sums
make an appearance.

In Section 8, we define a function MG
X∗ (see Definition 8.4), which we will

spend most of the rest of the paper computing. This is a reasonable focus because,
once the computations are completed, Proposition 11.2 will show that we have
actually been computing µ̂G

X∗ . The definition of MG
X∗ involves a rather remarkable

function ϕθ (see Definition 8.2 and Lemma 8.3); it seems likely that generalising
our techniques will require understanding the proper replacement for ϕθ .

Proposition 8.11 describes MG
X∗ in terms of Bessel functions, and Proposition

8.13 uses Theorem 7.4 to describe their behaviour near 0.
We now proceed according to the “type” of X∗ (as in Definition 4.4). The calcu-

lations when X∗ is split, and when it is unramified, are quite similar; we combine
them in Section 9. We split into cases depending on whether the argument to MG

X∗ is
far from (as in Section 9A) or close to (as in Section 9B) zero; there are qualitative
differences in the behaviour, as can be seen by comparing, for example, Theo-
rems 9.5 and 9.7. When X∗ is ramified, it turns out that, in addition to the behaviour
far from (as in Section 10A) and close to (as in Section 10C) zero, there is a third
range of interest in the middle. This is the so called “bad shell” (see Section 10B),
and it seems likely that the particularly complicated nature of the formulae here
is a reflection of the “nonelementary” behaviour of orbital integrals (hence, by
Murnaghan–Kirillov theory, also of characters) described in [Hales 1994].

Finally, we show in Section 11 that the function we have been evaluating actually
does represent the desired distribution, that is, equals µ̂G

X∗ . (See Proposition 11.2.)
We close with some observations (see Theorem 11.3) about the qualitative be-
haviour of orbital integrals that does not depend (much) on the “type” of X∗.

2. Notation

Suppose that k is a nondiscrete, non-Archimedean local field. We do not make any
assumptions on its characteristic, but we assume that its residual characteristic p is
not 2. (We occasionally cite [Shalika 2004], which works only with characteristic-0
fields, but we shall not use any results from there that require this restriction.) Let
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R denote the ring of integers in k, ℘ the prime ideal of R, and ord the valuation
on k with value group Z.

Let f denote the residue field R/℘ of k. Write q = |f| for the number of elements
in f, and put |x | = q− ord(x) for x ∈ k. If α ∈C, then write να for the (multiplicative)
character x 7→ |x |α of k×.

Put G = SL2 and G = G(k), and let g and g∗ denote the Lie algebra and dual
Lie algebra of G, respectively.

It is important for our calculations to be quite specific about the Haar measures
that we are using. For convenience, we fix the ones used in [Sally and Taibleson
1966, p. 280].

Definition 2.1. Throughout, we shall use the (additive) Haar measure dx on k that
assigns measure 1 to R, and the associated (multiplicative) Haar measure d×x =
|x |−1 dx on k× that assigns measure 1− q−1 to R×. When convenient, we shall
write dt instead of dx .

Definition 2.2. If 8 is an (additive) character of k, then define 8b : x 7→ 8(bx)
for b ∈ k. The depth of 8 is

d(8) :=
{

min{i ∈ Z :8 is trivial on ℘i+1
} if 8 is nontrivial,

−∞ otherwise.

The depth of a character is related to what is often called its conductor by d(8)=
ω(8)− 1 (in the notation of [Shalika 2004, Section 1.3]). We have that

(2.3) d(8b)= d(8)− ord(b).

The notion of depth and the symbol d will be used in multiple contexts (see
Definition 4.9); we rely on the context to disambiguate them.

Notation 2.4. 8 is a nontrivial (additive) character of k.

One of the crucial tools of Harish-Chandra’s approach to harmonic analysis is
the reduction, whenever possible, of questions about a group to questions about
its Lie algebra. The exponential map often allows one to effect this reduction, but,
since it might converge only in a very small neighbourhood of 0, we replace it with
a “mock-exponential map” (see [Adler 1998, Section 1.5]) which has many of the
same properties (see Lemma 2.6).

Definition 2.5. The Cayley map c : k \ {1} → k \ {−1} is defined by

c(X)= (1+ X)(1− X)−1 for X ∈ k \ {1}.

The Cayley function is available in many settings; we are using it only as a
function defined almost everywhere on k.
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Lemma 2.6.

• The map c is a bijection.

• c(−X)= c(X)−1
= c−1(X) for X ∈ k \ {±1}.

• The map c carries ℘i to 1+℘i for all i ∈ Z>0.

• In the notation of Definition 2.1, the pullback along c of the measure d×x on
1+℘ is the measure dx on ℘.

• If X ∈ ℘i and Y ∈ ℘ j , with i, j ∈ Z>0, then

c(X + Y )≡ c(X)+ 2Y (mod 1+℘n),

where n = j +min {2i, j}.

Proof. It is easy to check that x 7→ (1− x)(1+ x)−1 is inverse to c and satisfies
the desired equalities and check that c(℘i ) ⊆ 1+ ℘i and c−1(1+ ℘i ) ⊆ ℘i . If
f ∈ C∞(1+℘), then there is some i ∈ Z>0 such that f ∈ C(1+℘/1+℘i ). Since
measdx(℘

i )= q−i
=measd×x(1+℘i ), we see that∫

1+℘
f (x) d×x =

∑
x∈1+℘/1+℘i

f (x)measd×x(1+℘
i )

=

∑
x∈℘/℘i

( f ◦ c)(x)q−i measdx(℘
i )=

∫
℘

( f ◦ c)(x) dx .

Finally, under the stated conditions on X and Y ,(
c(X)+ 2Y

)(
1− (X + Y )

)
= c(X) · (1− X)+ Y

(
2(1− (X + Y ))− c(X)

)
= (1+ X + Y )+ Y

(
(1− 2X − c(X))− 2Y

)
.

Since c(X) = 1+ 2X (1− X)−1, we have that 1− 2X − c(X) ∈ ℘2i . The result
follows. �

3. Fields and algebras

Definition 3.1. For θ ∈ k×, write kθ for the k-algebra that is k ⊕ k (as a vector
space), equipped with multiplication (a, b) · (c, d)= (ac+ bdθ, ad + bc). Write
√
θ for the element (0, 1) ∈ kθ , so that (a, b)= a+ b

√
θ .

We also use the notation
√
θ for a matrix (see Definition 4.1); we shall rely on

context to make the meaning clear.
If θ 6∈ (k×)2, then kθ is isomorphic to k(

√
θ) (as k-algebras) via the map (a, b) 7→

a+ b
√
θ , and we shall not distinguish between them.

If θ = x2, with x ∈ k, then kθ is isomorphic to k⊕ k (as k-algebras) via the map
(a, b) 7→ (a+ bx, a− bx).
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Definition 3.2. Define

Nθ (a+ b
√
θ)= a2

− b2θ, trθ (a+ b
√
θ)= 2a,

Reθ (a+ b
√
θ)= a, Imθ (a+ b

√
θ)= b,

ordθ (a+ b
√
θ)= 1

2 ord
(
Nθ (a+ b

√
θ)
)

for a+ b
√
θ ∈ kθ . Write Cθ = ker Nθ and Vθ = ker trθ , and let sgnθ be the unique

(multiplicative) character of k× with kernel precisely Nθ (k×θ ).

If θ 6∈ (k×)2, then Nθ and trθ are the usual norm and trace maps associated to the
quadratic extension of fields kθ/k, and ordθ is the valuation on kθ extending ord.
In any case, k×θ = {z ∈ kθ : Nθ (z) 6= 0}.

We can describe the signum character explicitly by

sgnθ (x)=
{

1 θ split,
(−1)ord(x) θ unramified,

(3.3) { sgnθ (θ)= sgnf(−1)
sgnθ (x)= sgnf(x) for x ∈ R×,

(3.4)

where sgnf is the quadratic character of f× and x 7→ x the reduction map R→ f.

4. Tori and filtrations

We begin by defining a few model tori.

Definition 4.1. For θ ∈ k, put

Tθ =
{(

a b
bθ a

)
: a2
− b2θ = 1

}
.

Then

tttθ := Lie(Tθ )=
{(

0 b
bθ 0

)}
.

Write
√
θ for the element (

0 1
θ 0

)
so that tθ = Spank

√
θ . Call a maximal k-torus in G standard exactly when it is of

the form Tθ for some θ ∈ k.

We also denote by
√
θ a specific element of an extension of k (see Definition 4.1);

we shall rely on context to make the meaning clear.

Remark 4.2. The group Tθ is isomorphic to Cθ = ker Nθ and the Lie algebra tθ to
Vθ = ker trθ in each case via the map(

a b
bθ a

)
7→ (a, b).
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We shall use the terms “split”, “unramified”, and “ramified” in many different
contexts.

Remark 4.3. If T is a maximal k-torus in G and t= Lie(T ), then we shall iden-
tify t (respectively, t∗) with the spaces of fixed points for the adjoint (respectively,
coadjoint) action on g (respectively, g∗). By abuse of language, we shall sometimes
say that X∗ ∈ g∗ or Y ∈ g lies in, or belongs to, the torus T to mean that X∗ ∈ t∗ and
Y ∈ t; equivalently, that CG(X∗)= T = CG(Y ). In particular, “X∗ and Y belong
to a common torus” is shorthand for “CG(X∗)= CG(Y )”.

Definition 4.4. A maximal k-torus in G is called (un)ramified if it is elliptic and
splits over an (un)ramified extension of k. An element θ ∈ k is called split, un-
ramified, or ramified if Tθ has that property. A regular, semisimple element of g

or g∗ is called split, unramified, or ramified if the torus to which it belongs has that
property.

Remark 4.5. To be explicit, squares in k× are split, and a nonsquare θ ∈ k is
unramified or ramified if max {ord(x2θ) : x ∈ k} is even or odd, respectively.

Notation 4.6. If T is a maximal k-torus in G with T =T (k), then write W (G, T )=
NG(T )/T for the absolute and W (G, T )= NG(T )/T for the relative Weyl group
of T in G.

Every maximal k-torus in G is G-conjugate to some Tθ . (See, for example,
[DeBacker and Sally 2000, Section A.2].) In particular,

Int
(

1 1
−1/2 1/2

){(
a 0
0 d

)
: ad = 1

}
= T1.

Remark 4.7. For all θ ∈ k, the group W (G, Tθ ) has order 2, with the nontrivial
element acting on Tθ by inversion. If sgnθ (−1) = 1 (in particular, if θ is split or
unramified), say, with Nθ (a+ b

√
θ)=−1, then W (G, Tθ ) also has order 2, with

the nontrivial element represented by(
a b
−bθ −a

)
.

If θ = 1, then we may take (a, b) = (0, 1) to recover the familiar Weyl group
element. Otherwise (that is, if sgnθ (−1)=−1), W (G, Tθ ) is trivial.

The concept of stable conjugacy was introduced by Langlands [1979, pp. 2–3]
as part of the foundation of the Langlands conjectures.

Definition 4.8. Two

• maximal k-tori Ti in G,

• regular semisimple elements X∗i ∈ g∗, or

• regular semisimple elements Yi ∈ g,
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with i = 1, 2, are called stably conjugate exactly when there are a field extension
E/k and an element g ∈ G(E) such that

• Int(g)T1 = T2 ,

• Ad∗(g)X∗1 = X∗2 , or

• Ad(g)X1 = X2,

where Ti = Ti (k) for i = 1, 2. If the conjugacy can be carried out without passing
to an extension field (that is, if we may take g ∈ G), then we will sometimes
emphasise this by saying that the tori or elements are rationally conjugate.

The Zariski-density of Ti in Ti implies that Int(g)T1 = T2, but that this is a
strictly weaker condition; indeed, given any two maximal tori, there is an element g,
defined over some extension field of k, satisfying this condition. In our special
case (of G = SL2), two tori or elements are stably conjugate if and only if they are
conjugate in GL2(k).

More concretely, two tori Tθ and Tθ ′ are stably conjugate if and only if θ ≡
θ ′ (mod (k×)2). The stable conjugacy class of the split torus T1 is also a rational
conjugacy class.

Suppose that ε is an unramified and $ a ramified, nonsquare. Then the stable
conjugacy class of Tε splits into 2 rational conjugacy classes, represented by Tε
and T$ 2ε . The stable conjugacy class of T$ is also a rational conjugacy class if
sgn$ (−1)=−1, but it splits into 2 rational conjugacy classes, represented by T$
and Tε2$ , if sgn$ (−1)= 1.

We also need filtrations on the Lie algebra and dual Lie algebra of a torus. These
definitions are standard (see, for example, [Adler 1998, Section 1.4]) and can be
made in far more generality (see [Moy and Prasad 1994, Section 3; 1996, Sec-
tion 3.3]); we give only simple definitions adapted to G = SL2.

Definition 4.9. Let T be a maximal k-torus in G. Recall that T is G-conjugate to
Tθ for some θ ∈ k, so that t= Lie(T ) is isomorphic to Vθ = ker trθ ⊆ kθ . For r ∈R,
write tr for the preimage of {Y ∈ Vθ : ordθ (Y )≥ r} and tr+ for the preimage of
{Y ∈ Vθ : ordθ (Y ) > r}; then write t∗r ={X

∗
∈ t∗ :8(〈X∗, Y 〉)=1 for all Y ∈ t(−r)+}

(where 8 is the additive character of Notation 2.4).
If X∗ ∈ t∗ and Y ∈ t, then define d(X∗) = max {r ∈ R : X∗ ∈ t∗r } and d(Y ) =

max {r ∈ R : Y ∈ tr }.

One can define a notion of depth in more generality (see, for example, [Adler
and DeBacker 2002, Section 3.3 and Example 3.4.6; Kim and Murnaghan 2003,
Section 2.1 and Lemma 2.1.5]), but we only need the special case above. (The
only remaining case to consider for g= sl2(k) is the depth of a nilpotent element,
which is∞.)
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5. Orbital integrals

Our goal in this paper is to compute Fourier transforms of regular, semisimple
orbital integrals on g (see Definition 5.5 below). Since the Fourier transforms
of nilpotent orbital integrals were computed in [DeBacker and Sally 2000, Appen-
dix A], this covers all Fourier transforms of orbital integrals on g (for our particular
case G = SL2). The case of orbital integrals on G was discussed in [Sally and
Shalika 1984], as the culmination of the series of papers that began with [Sally and
Shalika 1968; 1969].

We begin by choosing a representative for the regular, semisimple orbit of in-
terest. By Section 4, we may choose this representative in a standard torus (in the
sense of Definition 4.1).

Notation 5.1. β, θ ∈ k×, and X∗ = β ·
√
θ ∈ t∗θ .

Here, we are implicitly using the identification of tθ with t∗θ via the trace form;
what we really mean is that 〈X∗, Y 〉 = trβ ·

√
θ · Y for Y ∈ tθ , where 〈 · , · 〉 is the

usual pairing between t∗θ and tθ .
As in Definition 2.2, we may define a new character 8β of k, which we use

often in our calculations.

Notation 5.2. −r = d(X∗), 8′ =8β , and r ′ = d(8′).

By Definition 4.9, Y 7→8(〈X∗, Y 〉) is trivial on (tθ )r+, but not on (tθ )r . There-
fore, r ′ = r + 1

2 ord(θ).
Since CG(X∗) = Tθ is Abelian, it is unimodular, so there exists a measure on

G/CG(X∗) invariant under the action of G by left translation.

Notation 5.3. Let dġ be a translation-invariant measure on G/CG(X∗).

Since the orbit, OG
X∗ , of X∗ under the coadjoint action of G is isomorphic as a

G-set to G/CG(X∗), we could transport to it the measure on the latter space; but
we do not find it convenient to do so.

Since X∗ is semisimple, OG
X∗ is closed in g∗; see, for example, [Tauvel and Yu

2005, Proposition 34.3.2]. Therefore, the restriction to OG
X∗ of a locally constant,

compactly supported function on g∗ remains locally constant and compactly sup-
ported, so that the following definition makes sense.

Definition 5.4. The orbital integral of X∗ is the distribution µG
X∗ on g∗ defined by

µG
X∗( f ∗)=

∫
G/CG(X∗)

f ∗(Ad∗(g)X∗) dġ for all f ∗ ∈ C∞c (g
∗).

We are interested in the Fourier transform of µG
X∗ . The definition of the Fourier

transform (of distributions or of functions) requires, in addition to a choice of
additive character (see Notation 2.4), also a choice of Haar measure dY on g∗; but
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we shall build this choice into our representing function (see Notation 5.7), so that
it will not show up in our final answer.

Definition 5.5. The Fourier transform of the orbital integral of X∗ is the distribu-
tion µ̂G

X∗ on g defined for all f ∈ C∞c (g) by

µ̂G
X∗( f )= µG

X∗( f̂ ),

where

f̂ (Y ∗)=
∫

g
f (Y )8(〈Y ∗, Y 〉) dY for all Y ∗ ∈ g∗.

It is a result of Harish-Chandra [1999, Theorem 1.1] that µ̂G
X∗ is representable

on g, that is, there exists a locally integrable function F on g such that

µ̂G
X∗( f )=

∫
G

f (Y )F(Y ) dY for all f ∈ C∞c (g).

One can say more about the behaviour and asymptotics of the function F . For
example, it blows up as Y approaches 0, but its blow-up is controlled by a power
of a discriminant function.

Definition 5.6. The Weyl discriminant on g is the function Dg : g→ C such that,
for all Y ∈ g, Dg(Y ) is the coefficient of the degree-1 term in the characteristic
polynomial of ad(Y ). Concretely,

Dg

(
a b
c −a

)
= 4(a2

+ bc).

Our main interest, however, is in the restriction of the function F above to the
set grss of regular, semisimple elements, where it is locally constant.

Notation 5.7. By abuse of notation, write again µ̂G
X∗ for the function that represents

the restriction to grss of µ̂G
X∗ .

When we refer to the computation of the Fourier transform of an orbital integral,
it is actually the (scalar) function of Notation 5.7 that we are trying to compute.
The main tool in this direction is a general integral formula of Huntsinger (see
[Adler and DeBacker 2004, Theorem A.1.2]), but we find it easier to evaluate an
integral adapted to our current setting (see Definition 8.4). The computation of this
integral will occupy most of the paper; we finally prove it actually represents the
distribution µ̂G

X∗ in Proposition 11.2.
Finally, we fix an element at which to evaluate the functions of interest. Since

µ̂G
X∗ , as just defined, and MG

X∗ in Definition 8.4 are G-invariant functions on grss,
we may again consider only elements of standard tori.

Notation 5.8. s, θ ′ ∈ k×, and Y = s ·
√
θ ′ ∈ tθ ′ .
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We phrase our computations in terms of the values of two “basic” functions at Y .

Lemma 5.9. d(Y )= 1
2 ord(s2θ ′) and Dg(Y )= 4s2θ ′.

Proof. This is a straightforward consequence of Definitions 4.9 and 5.6. �

6. Roots of unity and other constants

The computation of Fourier transforms of orbital integrals on g via Murnaghan–
Kirillov theory [Murnaghan 1995a; Kim and Murnaghan 2003; 2006; Adler and
DeBacker 2004; Adler and Spice 2009] and also of the values near the identity
of characters of G (see [Sally and Shalika 1968; Adler et al. 2011]) involves a
somewhat bewildering array of 4-th roots of unity, for each of which there is a
variety of notation available. All of these can be expressed in terms of a single
“basic” quantity, the Gauss sum, denoted by G(8) in [Shalika 2004, Lemma 1.3.2].
The definition there implicitly depends on a choice of uniformiser, denoted there
by π . Although the choice is arbitrary, for later convenience we denote it by −$ .
Recall from Notation 2.4 that 8 is a nontrivial (additive) character of k.

Definition 6.1. If $ is a uniformiser of k, then

G$ (8) := q−1/2
∑

X∈R/℘

8(−$)d(8)(X
2).

It is possible to compute these values exactly (see, for example, [Lidl and Nieder-
reiter 1997, Theorem 5.15]), but we only require a few transformation laws.

Lemma 6.2. If $ is a uniformiser of k, then

Gb$ (8)= sgn$ (b)
d(8)G$ (8) for b ∈ R×,

G$ (8b)= sgn$ (b)G$ (8) for b ∈ k×,

G$ (8)
2
= sgn$ (−1),

G$ (8)= q−1/2 sgn$ (−1)d(8)
∑

X∈f× 8(X) sgnf(X),

where sgnf is the quadratic character of f×, and 8 the (additive) character of
f= R/℘ arising from the restriction to R of the depth-0 character 8$ d(8) of k.

Proof. Since
∑

X∈f8(X)= 0, we have that∑
X∈f×

8(X) sgnf(X)=8(0)+
∑
X∈f×

8(X)
(
1+ sgnf(X)

)
=8(0)+ 2

∑
X∈(f×)2

8(X)=
∑
X∈f

8(X2)= q1/2G$ (8(−1)d(8)).

In other words,

(∗) G$ (8(−1)d(8))= q−1/2G(sgnf,8),
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where the notation on the right is as in [Lidl and Niederreiter 1997, Section 5.2] (ex-
cept that their ψ is our sgnf, the quadratic character of f×, and their χ is our8). The
third equality, and the second equality for b ∈ R×, now follow from [ibid., Theorem
5.12]. The first equality follows from the second since Gb$ (8) = G$ (8bd(8)).
Taking b = (−1)d(8) and combining with (∗) gives the fourth equality. Finally, by
definition, G$ (8(−$)n )= G$ (8)= sgn$ (−$)

nG$ (8) for all n ∈ Z. �

By Proposition 8.11 and Theorem 7.4, our calculations will involve the 0-factors
defined in [Sally and Taibleson 1966, Section 3]. The factor 0(ν1/2 sgn$ ) is of
particular interest. By [ibid., Theorem 3.1(iii)], 0(ν1/2 sgn$ )

2
= sgn$ (−1), so by

Lemma 6.2, 0(ν1/2 sgn$ )=±G$ (8). It will be useful to identify the sign.

Lemma 6.3. If $ is a uniformiser of k, then

0(ν1/2 sgn$ )= sgn$ (−1)d(8)+1G$ (8).

Proof. Write 8 = 8$ d(8) ; this is a depth-0 character of k. The definitions of
[Sally and Taibleson 1966] depend on a depth-(−1) additive character χ ; we take
it to be 8$ . The definition of 0(ν1/2 sgn$ ) involves a principal-value integral
(see Definition 8.4), but, as pointed out in the proof of [Sally and Taibleson 1966,
Theorem 3.1], by [ibid., Lemma 3.1] and (3.4) it simplifies to

0(ν1/2 sgn$ )=
∫

ord(x)=−1
8$ (x)|x |1/2 sgn$ (x) d×x

=

∫
R×
8$ ($

−1x)|$−1x |1/2 sgn$ ($
−1x) d×x

= q1/2 sgn$ (−1)measd×x(1+℘)
∑

x∈R×/1+℘

8(x) sgnf(x),

where d×x is the Haar measure on k× giving R× measure 1−q−1 (see Definition 2.1).
Since measd×x(1+℘)= q−1, the result now follows from Lemma 6.2. �

We will also need some constants associated to specific elements.
Waldspurger [1995, Proposition VIII.1] describes the “behaviour at∞” of Fou-

rier transforms of semisimple orbital integrals on general reductive, p-adic Lie
algebras. His description involves a 4-th root of unity γψ(X∗, Y ) (see [ibid., p. 79]);
since his ψ is our 8 (Notation 2.4), we denote it by γ8(X∗, Y ). See Theorem 11.3
for our quantitative analogues (for the special case of sl2) of his result.

We would like to avoid choosing “standard” representatives for k×/(k×)2 (see
Remark 6.9), but doing this is notationally unwieldy. Although our proofs will
make use of these choices, none of the statements of the main results (except
Theorems 10.8 and 10.9, via Remark 10.7) relies on them.

Notation 6.4. Let ε be a lift to R× of a nonsquare in f× and $ a uniformiser of k.
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Definition 6.5. Recall Notations 5.1 and 5.8. If X∗ and Y lie in stably conjugate
tori, so that θ ≡ θ ′ (mod (k×)2), then

γ8(X∗, Y )=


1 θ ≡ 1,
γun(s) θ ≡ ε,

γram(s) θ ≡$,

−γun(s)γram(s) θ ≡ ε$,

where all congruences are taken modulo (k×)2 and where

γun(s) := (−1)r
′
+1 sgnε(s) and γram(s) := sgn$ (−s)G$ (8

′)

(with notation as in Notation 5.2 and Definition 6.1). It simplifies our notation
considerably also to put γ8(X∗, Y )= 1 if X∗ is elliptic and Y is split, and otherwise
put γ8(X∗, Y )= 0 if X∗ and Y do not lie in stably conjugate tori.

Remark 6.6. The dependence of γ8(X∗, Y ) on X∗ is via r ′ and 8′ (see Notation
5.2). Expanding these definitions shows that γ8(X∗, Y )= cθ,φ · sgnθ (βs) when X∗

and Y lie in stably conjugate tori, using Notations 5.1 and 5.8.
We have defined γ8(X∗, Y ) only when X∗ and Y belong to (possibly different)

standard tori, in the sense of Definition 4.1. A direct computation shows that, if
we replace X∗ or Y by a rational conjugate, or replace the pair (X∗, Y ) by a stable
conjugate, such that X∗ and Y still lie in standard tori, then the constant γ8(X∗, Y )
does not change. (In the notation of Definition 8.2, Ad∗(g)X∗ lies in a standard
torus if and only if ϕθ (g)= (α, 0), in which case Ad∗(g)X∗=βNθ (α)·

√

Nθ (α)−2θ ;
and similarly for Y .) This allows us to define γ8(X∗, Y ) for all pairs of regular,
semisimple elements, if desired.

By Lemma 6.2,

(6.7) γram(s)2 = sgn$ (−1).

To make use of Propositions 7.5 and 7.7 below, we need the computation

sgn$ (v)G$ (8
′

$ r ′+1)= sgn$ ($
−(r ′+1)sθ) · sgn$ ($

r ′+1)G$ (8
′)(6.8)

= sgn$ (−θ)γram(s).

Remark 6.9. We will be interested exclusively in the case when θ ∈ {1, ε,$ }.
This means we seem to be omitting the cases when θ ∈ {$ 2ε, ε2$, ε±1$ }, but,
actually, this problem is not serious. Indeed, for b ∈ k, write

gb :=

(
1 0
0 b

)
∈ GL2(k).

Then
Ad∗(gb)X∗ = Ad∗(gb)(β ·

√
θ)= βb−1

·

√
b2θ
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(where we identify t∗θ with tθ via the trace pairing, as in Notation 5.1); and µ̂G
X∗ =

µ̂G
Ad∗(gb)X∗

◦ Ad(gb). This covers θ = $ 2ε (by taking b = $−1) and θ = ε2$

(by taking b = ε−1). Handling θ ∈ {ε±1$ } requires a different observation: since
our choice of uniformiser was arbitrary, it could as well have been ε±1$ (or, for
that matter, ε2$ ) as $ itself. Thus, the formulae for the cases θ = εn$ can be
obtained by simple substitution.

The definition of γ8(X∗, Y ) when θ ≡ ε$ (mod (k×)2) is an instance of this;
namely, by Lemma 6.2,

−γun(s)γram(s)= (−1)r
′

sgnε(s) · sgn$ (−s)G$ (8
′)

= sgnε$ (−s) · sgn$ (ε)
r ′G$ (8

′)= sgnε$ (−s)Gε$ (8
′),

where we have used that sgnε(−1)= 1 and sgn$ (ε)=−1.

We next define a constant c0(X∗) for use in Theorems 9.7 and 10.10. Those theo-
rems (and Proposition 11.2) show that, as the notation suggests, it is the coefficient
of the trivial orbit in the expansion of the germ of µ̂G

X∗ in terms of Fourier trans-
forms of nilpotent orbital integrals (see [Harish-Chandra 1999, Theorem 5.11]).

Definition 6.10.

c0(X∗)=


−2q−1 X∗ split,

−q−1 X∗ unramified,

−
1
2q−2(q + 1) X∗ ramified.

Recall that µ̂G
X∗ is defined in terms of the measure dġ of Proposition 11.2; in the

notation of that proposition, whenever X∗ is elliptic,

c0(X∗)= (q − 1)−1 measdġ(K̇ ).

7. Bessel functions

Our strategy for computing Fourier transforms of orbital integrals is to reduce them
to p-adic Bessel functions (see Proposition 8.11, (9.3), and (10.2)). In this con-
text, we are referring to the complex-valued Bessel functions defined in [Sally and
Taibleson 1966, Section 4], not the p-adic-valued ones defined in [Dwork 1974].

The definition of these functions depends on an additive character, denoted by χ
in [Sally and Taibleson 1966], and a multiplicative character π of k. For internal
consistency, we will instead denote the additive character by 8 and the multiplica-
tive character by χ ; but, for consistency with their work, we require throughout
this section that d(8)=−1, that is, 8 is trivial on R but not on ℘−1.
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Definition 7.1 [Sally and Taibleson 1966, (4.1)]. For χ ∈ k̂×, the p-adic Bessel
function of order χ is given by

Jχ (u, v)= P
∫

k×
8(ux + vx−1)χ(x) d×x for u, v ∈ k×,

where d×x is the Haar measure on k× fixed in Definition 2.1. Also put J θχ =
1
2(Jχ + Jχ sgnθ ), with notation as in Definition 3.2.

The locally constant K -Bessel function K (z|χ) of [Trimble 1994, Definition 3.2]
is Jχ ($ t ,$ t) (in the notation of that definition), where $ is a uniformiser.

For χ 6= 1, it is natural to extend the Bessel function by putting Jχ (u, 0) =
χ(u)−10(χ) and Jχ (0, v) = χ(v)0(χ−1), where the 0-factors are as in [Sally
and Taibleson 1966, Section 3]. Under some conditions on χ , we can even define
Jχ (0, 0) (either as 0 or the sum of a geometric series), but we do not need to do this.

The notation J θχ arises naturally in our computations; see Proposition 8.11.

Definition 7.2. We say that a character χ ∈ k̂× is mildly ramified if χ is trivial on
1+℘, but nontrivial on k×.

Since our orbital-integral calculations require information about Jχ only for χ
mildly ramified, and since more precise information in that case is available in
general, we focus our attention there.

Notation 7.3. Fix the following notation for the remainder of the section.

• u, v ∈ k×,

• m =− ord(uv), and

• χ ∈ k̂×.

This is consistent with Notation 8.6. After Proposition 7.5, we will assume that
χ is mildly ramified.

Of particular interest to us later will be the cases where χ is an unramified twist
of one of the characters sgnθ ′ of Definition 3.2 (that is, is of the form να sgnθ for
some α ∈ C). Note that sgnε = ν

π i/ ln(q).

Theorem 7.4 [Sally and Taibleson 1966, Theorems 4.8 and 4.9].

Jχ (u, v)=


χ(v)0(χ−1)+χ(u)−10(χ) m ≤ 1,

χ(u)−1 Fχ (m/2, uv) m ≥ 2 and m even,

0 m > 2 and m odd,

where the 0-factors are as in [Sally and Taibleson 1966, Section 3], and

Fχ (m/2, uv) :=
∫

ord(x)=−m/2
8(x + uvx−1)χ(x) d×x .
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The 0-factor tables of [Sally and Taibleson 1966, Theorem 3.1], together with
Lemma 6.3, mean that we understand Jχ (u, v) completely when m < 2, but further
calculation is necessary in the remaining cases.

Proposition 7.5. If

• h ∈ Z>0,

• χ is trivial on 1+℘h , and

• m ≥ 4h− 1,

then Jχ (uv)= 0 if uv 6∈ (k×)2; and, if w ∈ k× satisfies uv = w2, then

Jχ (u, v)= q−m/4χ(u−1w)

×

{
8(2w)+χ(−1)8(−2w) 4 | m,
sgn$ (w)G$ (8)

(
8(2w)+ (χ sgn$ )(−1)8(−2w)

)
4 - m.

Proof. If m is odd, then the vanishing result follows from Theorem 7.4, so we
assume that m is even. In this case, m ≥ 4h, and, by Theorem 7.4, Jχ (u, v) =
χ(u)−1 Fχ (m/2, uv).

We evaluate the integral defining Fχ (m/2, uv) by splitting it into pieces. Write

Suv =
{

x ∈ k : ord(x)=−m/2 and ord(x − uvx−1) <−m/2+ h
}
,

Tuv =
{

x ∈ k : ord(x)=−m/2 and ord(x − uvx−1)≥−m/2+ h
}
.

Both Suv and Tuv are invariant under multiplication by 1+℘, and if x ∈ Tuv , then
uv ∈ x2(1+℘h) ⊆ (k×)2. We claim that the relevant integral may be taken over
only Tuv.

If X ∈℘m/2−h , then by Lemma 2.6 and the fact that 2(m/2−h)≥m/2, we have

c(X)≡ 1+ 2X (mod ℘m/2) and c(X)−1
≡ 1− 2X (mod ℘m/2),

so ∫
Suv

8(x + uvx−1)χ(x) d×x

= (?)

∫
℘m/2−h

∫
Suv

8
(
x · c(X)+ uvx−1

· c(X)−1)χ(x · c(X)) d×x dX

= (?)

∫
Suv

8(x + uvx−1)χ(x)
∫
℘m/2−h

82(x−uvx−1)(X) dX d×x,

where (?) = measdX (℘
m/2−h)−1 is a constant and we used that 8 is trivial on

x℘m/2
∪ uvx−1℘m/2

⊆ R and χ is trivial on c(℘m/2−h) = 1+℘m/2−h
⊆ 1+℘h .

By (2.3), we have that d(82(x−uvx−1)) > m/2− h+ 1 (that is, 82(x−uvx−1) is a non-
trivial character on ℘m/2−h) whenever x ∈ Suv , so the inner integral is 0. This shows
that, as desired, the integral defining Fχ (m/2, uv) may be taken over only Tuv.
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If uv 6∈ (k×)2, then Tuv =∅, so Jχ (u, v)= χ(u)−1 Fχ (m/2, uv)= 0; whereas,
if w ∈ k× satisfies w2

= uv, then Tuv = w(1+℘h)t−w(1+℘h), so

(∗) Jχ (u, v)= χ(u)−1
(∫

w(1+℘h)

8(x + uvx−1)χ(x) d×x

+

∫
−w(1+℘h)

8(x + uvx−1)χ(x) d×x
)
.

Note that ord(w)=−m/2.
We show a detailed calculation of the first integral; of course, that of the second

is identical. Note that the integral no longer involves χ . By Lemma 2.6 again,
X 7→ w · c(X) is a measure-preserving bijection from ℘h to w(1+℘h), so∫

w(1+℘h)

8(x + uvx−1)χ(x) d×x = χ(w)
∫
℘h
8w

(
c(X)+ c(X)−1) dX,

where we used uvw−1
= w and again that χ is trivial on c(℘h)= 1+℘h . We will

evaluate the latter integral by breaking it into “shells” on which ord(X) is constant,
using the following facts. By direct computation (and Definition 2.5),

c(X)+ c(X)−1
= 2c(X2)

for X ∈ k \ {1}. If ord(X)= i and ord(Y )= j , then Lemma 2.6 implies

c
(
(X + Y )2

)
≡ c(X2

+ 2XY ) (mod ℘2 j ),

c(X2
+ 2XY )≡ c(X2)+ 4XY (mod ℘2 j ).

(The second congruence could be made much finer, but we do not need this.)
In particular, fix i ≥ h with 2i <m/2−1, so that d(8)=m/2−1<2(m/2−1−i)

(that is, 8 is trivial on ℘2(m/2−1−i)). Then∫
ord(X)=i

8w
(
c(X)+ c(X)−1) dX

= (?)

∫
℘m/2−1−i

∫
ord(X)=i

(82w ◦ c)
(
(X + Y )2

)
dX dY

= (?)

∫
ord(X)=i

(82w ◦ c)(X2)

∫
℘m/2−1−i

88wX (Y ) dY dX,

where (?)=meas(℘m/2−1−i )−1 is a constant. Since d(88wX )=d(8w)−ord(8X)=
m/2− 1− i , the inner integral is 0.

Note that d(m/2− 1)/2e ≥ h. Thus

Jχ (u, v)=
∫
℘d(m/2−1)/2e

(82w ◦ c)(X2) dX.
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If m/2 is even, then the integral is over ℘m/4, and c(X2)≡ 1 (mod ℘m/2
⊆ ker82w)

for all X ∈ ℘m/4. Thus, in that case,

Jχ (u, v)=measdX (℘
m/4)82w(1)= q−m/48(2w).

If m/2 is odd, then the integral is over ℘m/4−1/2, and c(X2)≡ 1+2X2 (mod ℘m/2)

for all X ∈ ℘m/4−1/2. So, in that case,

Jχ (u, v)=measdX (℘
m/4+1/2)82w(1)

∑
X∈℘m/4−1/2/℘m/4+1/2

84w(X2)

= q−m/48(2w)q−1/2
∑

X∈R/℘

84w$m/2−1(X2).

By Lemma 6.2, and the fact that m/2 is odd, this can be rewritten as

q−m/48(2w) sgn$ (−1)m/2−1G$ (84w)= q−m/48(2w) sgn$ (w)G$ (8).

The result now follows from (∗). �

From now on, we assume that χ is mildly ramified. In particular, we may take
h = 1, so that Proposition 7.5 holds whenever m > 2.

Definition 7.6. For

• ξ ∈ f×,

• 8 an (additive) character of f, and

• χ a (multiplicative) character of f×,

define the corresponding twisted Kloosterman sum by

K (χ,8; ξ) :=
∑
x∈f×

8(x + ξ x−1)χ(x).

Proposition 7.7. If m = 2, then

Jχ (u, v)= q−1χ(u$)−1K (χ,8; ξ).

Here,

• ξ is the image in f× of $ 2uv ∈ R×,

• 8 is the (additive) character of f = R/℘ arising from the restriction to R of
the depth-0 character 8$−1 of k, and

• χ is the (multiplicative) character of f× ∼= R×/1+℘ arising from the restric-
tion to R× of χ .
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Proof. By Theorem 7.4,

χ(u$)Jχ (u, v)= χ($)
∫

ord(x)=−1
8(x + uvx−1)χ(x) d×x

=

∫
R×
8($−1x + uv ·$ x−1)χ(x) d×x

=measd×x(1+℘)
∑

x∈R×/1+℘

8$−1(x +$ 2uvx−1)χ(x) d×x .

Since measd×x(1+℘)= q−1, the result follows. �

Corollary 7.8. Suppose m = 2. Then for α ∈ C,

Jνα (u, v)= qα−1
|u|−α

∑
c∈℘−1/R

c2
6=uv

8(2c) sgn$ (c
2
− uv),

Jνα sgn$ (u, v)= qα−1/2
|u|−α sgn$ (v)G$ (8)

∑
c∈℘−1/R

c2
=uv

8(2c).

Proof. If χ = να , then χ = 1, so [Lidl and Niederreiter 1997, Theorem 5.47] gives

K (χ,8; ξ)=
∑
c∈f

c2
6=ξ

8(2c) sgnf(c
2
−α)

=

∑
c∈R/℘

c2
6=$ 2uv

8(2c) sgn$ (c
2
−$ 2uv)

=

∑
c∈℘−1/R

c2
6=uv

8(2c) sgn$ (c
2
− uv).

(Note that our8 is their χ , and they write K (χ; a, b) where we write K (8, 1; ab).)
If χ = να sgn$ , then χ = sgnf, therefore [Lidl and Niederreiter 1997, Exercises

5.84–85] gives that

K (χ,8; ξ)= sgnf(ξ)G(sgnf,8)
∑
c∈f

c2
=ξ

8(2c)= sgn$ (uv)G(sgnf,8)
∑

c∈℘−1/R
c2
=uv

8(2c),

where G(sgnf,8)=
∑

X∈f×8(X) sgnf(X). (Note that our 8 is their χ and our χ
their η, and our K (χ,8; ξ) is their K (η, χ; 1, ξ).) Since d(8)=−1, Lemma 6.2
gives that G(sgnf,8)= q1/2 sgn$ (−1)G$ (8).

The result now follows from Proposition 7.7. �
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The following apparently specialised corollary allows simplification of many of
our “shallow” computations (see Section 9A and Section 10A).

Corollary 7.9. If m ≥ 2 and ord(u) = ord(v), then Jναχ (u, v) is independent of
α ∈ C; in particular,

J εχ (u, v)= Jχ (u, v) and J$χ (u, v)= J$χ sgnε
(u, v).

If m ≥ 2 and ord(u)= ord(v)+ 2, then Jναχ (u, v)= qα Jχ (u, v); in particular,

J εχ (u, v)= 0 and J$χ (u, v)=−J$χ sgnε
(u, v).

Proof. Suppose that m > 2. If uv 6∈ (k×)2, then Jναχ (u, v) = 0 for all α ∈ C.
If uv = w2, then the only dependence on α in Proposition 7.5 is via the factor
χ(u−1w). If ord(u) = ord(v), then also ord(w) = ord(u), so να(u−1w) = 1. If
ord(u)= ord(v)+ 2, then ord(w)= ord(u)− 1, so να(u−1w)= qα.

Now suppose that m = 2, that is, that ord(uv)=−2. Since ναχ = χ , the only
dependence on α in Proposition 7.7 is via the factor χ(u$)−1. If ord(u)= ord(v),
then ord(u) = −1, so να(u$) = 1. If ord(u) = ord(v)+ 2, then ord(u) = 0, so
να(u$)= q−α. �

8. A mock Fourier transform

We introduce a function MG
X∗ specified by an integral formula (see Definition 8.4)

reminiscent of the usual one for (the function representing) µ̂G
X∗ (see [Adler and

DeBacker 2004, Theorem A.1.2]). We will eventually show (see Proposition 11.2)
that it is actually equal to µ̂G

X∗ , but first we spend some time computing it.
In the notation of Definition 4.1, we have

(8.1) tr g ·
√
θ · g−1

·
√
θ ′ = Nθ (α) · θ ′+ Nθ (γ ),

where

g =
(

a b
c d

)
,

α = a+ b
√
θ , and γ = c+ d

√
θ . Since 1 = ad − bc = Imθ (α · γ ), we have that

γ = α−1
· (t +

√
θ) for some t ∈ k; specifically, t = Reθ (α · γ )= ac− bdθ . This

calculation motivates the definition of the following map.

Definition 8.2. Define ϕθ : G→ k×θ × k by

ϕθ (g)= (a+ b
√
θ, ac− bdθ)

for

g =
(

a b
c d

)
∈ G.
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Note that ϕθ is a bianalytic map (of k-manifolds), with inverse

(α, t) 7→
(

Reθ (α) Imθ (α)
Nθ (α)

−1
(
t ·Reθ (α)+θ ·Imθ (α)

)
Nθ (α)

−1
(
Reθ (α)+t ·Imθ (α)

)).
It is not an isomorphism, but its restrictions to Tθ , A, and{(

1 0
b 1

)
: b ∈ k

}
are isomorphisms onto Cθ × {0}, k×× {0}, and {1} × k, respectively. In fact, the
next lemma says a bit more.

Lemma 8.3. If g ∈ G satisfies ϕθ (g)= (α, t), and

• h ∈ Tθ is identified with η ∈ Cθ ,

• a =
(
λ 0
0 λ

)
with λ ∈ k×, and

• u =
(

1 0
b 1

)
with b ∈ k,

then

ϕθ (gh)= (αη, t),

ϕθ (ag)= (λα, t),

ϕθ (ug)= (α, t + Nθ (α)b).

Proof. This is a straightforward computation. �

We can now define our “mock orbital integral”. Again, Proposition 11.2 will
eventually show that it is actually equal to the function in which we are interested.

Definition 8.4. For α ∈ k×θ and t ∈ k, put

〈X∗, Y 〉α,t := βs
(
Nθ (α) · θ ′+ Nθ (α)−1

· θ − Nθ (α)−1
· t2).

The dependence on α is only via Nθ (α). Thus, we may define

MG
X∗(Y ) := P

∫
k×θ /Cθ

P
∫

k
8(〈X∗, Y 〉α,t) dt d×α̇,

where

P
∫

k
f (x) dt :=

∑
n∈Z

∫
ord(x)=n

f (x) dt,

P
∫

k×
f (x) d×x :=

∑
n∈Z

∫
ord(x)=n

f (x) d×x,

P
∫

k×θ /Cθ
( f ◦ Nθ )(α) d×α̇ := P

∫
k×
[Nθ (k×)](x) f (x) d×x
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(for those f ∈ C∞(k) for which the sum converges) are “principal-value” integrals,
as in [Sally and Taibleson 1966, p. 282]. Here, dt and d×x are the measures of
Definition 2.1, and [S] denotes the characteristic function of S.

By (8.1) (and Notations 5.1 and 5.8), we have that

(8.5) 〈X∗, Y 〉α,t = 〈Ad∗(g)X∗, Y 〉 when ϕθ (g)= (α, t),

where the pairing 〈 · , · 〉 on the right is the usual pairing between g∗ and g.

Notation 8.6. u =$−(r
′
+1)sθ ′, v =$−(r

′
+1)sθ , and m =− ord(uv).

This is a special case of Notation 7.3. These particular values of u and v will
be fixed for the remainder of the paper. It follows that

(8.7) uv = ($−(r
′
+1)s)2 · θθ ′,

therefore

(8.8) uv ∈ (k×)2 ⇔ θθ ′ ∈ (k×)2.

We use Lemma 5.9 to compute

ord(u)=−(r ′+ 1)+ ord(sθ ′)=−
(
r ′+ 1+ 1

2 ord(θ ′)
)
+ d(Y ),(8.9)

m = 2(r ′+ 1)− ord(s2θ ′)− ord(θ)= 2(r ′+ 1− d(Y ))− ord(θ).(8.10)

8A. Mock Fourier transforms and Bessel functions. We can now evaluate the
integral occurring in Definition 8.4 in terms of Bessel functions — or, rather, the
sums J θχ of Definition 7.1.

Proposition 8.11. Let J θχ be as in Definition 7.1 and γun(s) and γram(s) be as in
Definition 6.5. Then

MG
X∗(Y )=

1
2 |s|
−1/2q−(r

′
+1)/2

×

((
J θ
ν1/2(u, v)+ γun(s)J θν1/2 sgnε

(u, v)
)

+ γram(s)
(
J θ
ν1/2 sgn$

(u, v)− γun(s)J θν1/2 sgnε$
(u, v)

))
,

Proof. Recall the notation 8′ =8β from Notation 5.2. By Definition 8.4,

MG
X∗(Y )= P

∫
k×θ /Cθ

8′s
(
Nθ (α) · θ ′+ Nθ (α)−1

· θ
)
· P
∫

k
8′(−s Nθ (α)−1t2) dt d×α̇(∗)

= q−(r
′
+1)/2 P

∫
k×
[Nθ (k×θ )](x)j (θ

′, θ; x)H(8′,−sx−1) d×x,

where
• j (θ ′, θ; x) :=8′s(θ

′x + θx−1)=8
(
βs(θ ′x + θx−1)

)
for x ∈ k×, and

• H(8′, b)= P
∫

k
8′(bt2) d8′ t for b ∈ k× is as in [Shalika 2004, p. 6].
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In particular, d8′ t is the 8′-self-dual Haar measure on k; by [Shalika 2004, p. 5],
it satisfies dt = q−(r

′
+1)/2 d8′ t . This is the reason for the appearance of q−(r

′
+1)/2

on the last line of the computation.
The significance of j is that integrating it against a (multiplicative) character χ

of k× corresponds to evaluating a Bessel function of order χ , in the sense of
Definition 7.1. To be precise, our character 8′ has depth r ′, not −1, so we must
work instead with 8′$ r ′+1 . Then

j (θ ′, θ; x)=8′$ r ′+1
(
($−(r

′
+1)sθ ′)x + ($−(r

′
+1)sθ)x−1)

=8′$ r ′+1(ux + vx−1),

where (u, v) is as in Notation 8.6, so

(†) P
∫

k×
j (θ ′, θ; x)χ(x) d×x = Jχ (u, v)

for χ ∈ k̂×.
Now 1

2(1+ sgnθ ) is the characteristic function of Nθ (k×θ ), so we may rewrite (∗):

(∗∗) q−(r
′
+1)/2 P

∫
k×

1
2(1+ sgnθ (x)) · j (θ

′, θ; x)H(8′,−sx−1) d×x .

By [Shalika 2004, Lemma 1.3.2] and Lemma 6.2, we have

H(8′, b)= |b|−1/2
{

sgn$ (b)G$ (8
′) r ′− ord(b) even,

1 r ′− ord(b) odd.

We find it useful to describe H(8′, b) without explicit use of cases. As above,
1
2(1+ (−1)n sgnε) is the characteristic function of {b ∈ k× : ord(b)≡ n (mod 2)},
so we may rewrite

H(8′, b)= 1
2(1+ (−1)r

′

sgnε(b)) sgn$ (b)G$ (8
′)+ 1

2(1− (−1)r
′

sgnε(b)).

Plugging this into (∗∗) with b =−st−1 gives

MG
X∗(Y )=

1
2 |s|
−1/2q−(r

′
+1)/2

× P
∫

k×

1
2(1+ sgnθ (x))

×
(
(1− γun(s) sgnε(x))γram(s) sgn$ (x)+ (1+ γun(s) sgnε(x))

)
× |x |1/2j (θ ′, θ; x) d×x .

Expanding the product and applying (†) gives the desired formula. �

8B. “Deep” Bessel functions. By Proposition 8.11, one approach to computing
MG

X∗(Y ) (hence µ̂G
X∗(Y ), by Proposition 11.2) is to evaluate many Bessel functions,

and this is exactly what we do. As Theorem 7.4 makes clear, the behaviour of
Bessel functions is more predictable when m < 2 than otherwise. We introduce a
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convenient shorthand for referring to Bessel functions in this range; we will only
use it in this section, and Sections 9B and 10C.

Notation 8.12. Define

[A; B]θ,r ′(θ ′) := |θ |1/2 A+ q−(r
′
+1)
|Dg(Y )|−1/2 B(θ ′).

We usually suppress the subscript on [A; B] and sometimes write

[A; B(1), B(ε), B($), B(ε$)](θ ′)

for the same quantity.

Proposition 8.13. With Notations 5.2, 5.8, 8.6, and the notation of Definition 6.5,
if m < 2, then

|s|−1/2q−(r
′
+1)/2 Jν1/2χ (u, v)

=


[Q3(q−1/2); 1](θ ′) χ = 1,

γun(s)[sgnε(θ)Q3(−q−1/2); sgnε](θ
′) χ = sgnε,

γram(s)−1
[sgn$ (θ)q

−1
; sgn$ ](θ

′) χ = sgn$ ,

−γun(s)γram(s)−1
[sgnε$ (θ)q

−1
; sgnε$ ](θ

′) χ = sgnε$ ,

where
Q3(T )=−T (T 2

+ T + 1).

The unexpected factor |s|−1/2q−(r
′
+1)/2 on the left-hand side crops up repeat-

edly in calculations (see, for example, Proposition 8.11), so it simplifies matters to
include it in this calculation.

Proof. By Theorem 7.4 and Lemma 5.9,

Jν1/2χ (u, v)= (ν
1/2χ)(v)0(ν−1/2χ)+ (ν−1/2χ)(u)0(ν1/2χ)

= (ν1/2χ)(vθ−1)

×
(
(ν1/2χ)(θ)0(ν−1/2χ)+ (ν−1/2χ)(uvθ−1)0(ν1/2χ)

)
= |s|1/2q(r

′
+1)/2χ($ r ′+1s)

[
χ(θ)0(ν−1/2χ);0(ν1/2χ) ·χ

]
(θ ′)

whenever χ2
= 1.

In particular, using [Sally and Taibleson 1966, Theorem 3.1(i, ii)] to compute
the 0-factors, we see that |s|−1/2q−(r

′
+1)/2 Jν1/2χ (u, v) is given by

(∗)


[Q3(q−1/2); 1](θ ′) χ = 1,

γun(s)[sgnε(θ)Q3(−q−1/2); sgnε](θ
′) χ = sgnε,

sgn$ ($
r ′+1s)0(ν1/2 sgn$ )[sgn$ (θ)q

−1
; sgn$ ](θ

′) χ = sgn$ ,

γun(s) sgn$ ($
r ′+1s)0(ν1/2 sgnε$ )[sgnε$ (θ)q

−1
; sgnε$ ](θ

′) χ = sgnε$ .
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By [ibid., Theorem 3.1(ii)] again and the fact that sgnε$ = ν
iπ/ ln(q) sgn$ , we have

0(ν1/2 sgnε$ )=−0(ν
1/2 sgn$ ); and, by Lemma 6.3, Definition 6.5, and (6.7),

sgn$ ($
r ′+1s)0(ν1/2 sgn$ )= sgn$ (−1)r

′
+1 sgn$ (s) · sgn$ (−1)r

′
+1G$ (8

′)

= sgn$ (s)G$ (8
′)

= γram(s)−1.

This shows that (∗) reduces to the table in the statement. �

9. Split and unramified orbital integrals

Throughout this section, we have

(9.1) θ = 1 or θ = ε, so that r ′ = r.

In the split case, J 1
χ = Jχ for χ ∈ k̂×, so Proposition 8.11 gives

(9.2) MG
X∗(Y )=

1
2 |s|
−1/2q−(r+1)/2

×

((
Jν1/2(u, v)+ γun(s)Jν1/2 sgnε (u, v)

)
+ γram(s)

(
Jν1/2 sgn$ (u, v)− γun(s)Jν1/2 sgnε$ (u, v)

))
.

In the unramified case, J εχ = J εχ sgnε
for χ ∈ k̂×, so Proposition 8.11 gives

(9.3) MG
X∗(Y )=

1
2 |s|
−1/2q−(r+1)/2

×
(
(1+γun(s))J εν1/2(u, v)+γram(s)(1−γun(s))J εν1/2 sgn$

(u, v)
)
.

By (6.8) and (6.7),

(9.4) sgn$ (v)G$ (8
′

$ r+1)=

{
sgn$ (−1)γram(s)= γram(s)−1 θ = 1,
sgn$ (−ε)γram(s)=−γram(s)−1 θ = ε.

9A. Far from zero. The results of this section are special cases for split and un-
ramified orbital integrals of results of Waldspurger [1995, Proposition VIII.1]. We
prove analogues of these results for ramified orbital integrals in Section 10A.

The qualitative behaviour of unramified orbital integrals does not change as we
pass from elements of depth less than r to those of depth exactly r ; this is unlike
the situation for ramified orbital integrals. See Section 10B.

Theorem 9.5. If d(X∗)+d(Y )≤ 0 and X∗ is split or unramified, then MG
X∗(Y )= 0

unless X∗ and Y lie in G-conjugate tori.

Proof. Recall that θ = 1 if X∗ is split, and θ = ε if X∗ is unramified.
By (8.10), m ≥ 2; in fact, m > 2 (indeed, m is odd) unless ord(θ ′) is even.
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If m> 2, then Proposition 7.5 and (8.8) show that MG
X∗(Y )= 0 unless θθ ′ ∈ (k×)2.

By Section 4, it therefore suffices to consider the cases when θ = ε and θ ′ =$ 2ε,
that is, X∗ and Y lie in stably, but not rationally, conjugate tori; and when m = 2
and {θ, θ ′} = {1, ε}, that is, one of X∗ or Y is split, and the other unramified.

Suppose first that θ = ε and θ ′ = $ 2ε, so that ord(u) = ord(v) + 2. By
Corollary 7.9, (9.3) becomes MG

X∗(Y )= 0.
Now suppose {θ, θ ′}= {1, ε} and m= 2. By Corollary 7.9, since ord(u)= ord(v),

Jν1/2(u, v)= Jν1/2 sgnε (u, v) and Jν1/2 sgn$ (u, v)= Jν1/2 sgnε$ (u, v),

so (9.2) agrees with (9.3). We shall work with (9.3), since it is simpler.
By Corollary 7.8 and (8.8), Jνα sgn$ (u, v) = 0 for all α ∈ C, in particular, for

α = 1/2 and α = 1/2+ iπ/ ln(q). By (8.10), ord(s) = r , so, by Definition 6.5,
γun(s)=−1, and (9.3) (hence also (9.2)) becomes

MG
X∗(Y )=

1
2 |s|
−1/2 J ε

ν1/2 sgn$
(u, v)= 0. �

Theorem 9.6. If d(X∗)+ d(Y )≤ 0 and X∗ and Y lie in a common split or unram-
ified torus T (with T = T (k)), then

MG
X∗(Y )= q−(r+1)

|Dg(Y )|−1/2γ8(X∗, Y )
∑

σ∈W (G,T )

8(〈Ad∗(σ )X∗, Y 〉),

where γ8(X∗, Y ) is as in Definition 6.5.

Proof. The hypothesis implies that θ = θ ′, so u = v. By Corollary 7.9,

Jν1/2(u, v)= Jν1/2 sgnε (u, v) and Jν1/2 sgn$ (u, v)= Jν1/2 sgnε$ (u, v),

so (9.2) agrees with (9.3). We again work with (9.3), since it is simpler.
By Remark 4.7, W (G, Tθ )= {1, σθ }, where Ad∗(σθ )X∗ =−X∗.
We may take the square root w of uv in Proposition 7.5 to be just u. By (8.10),

(∗) q−m/4
= q−(r+1)/2qord(s)/2

= q−(r+1)/2
|s|−1/2.

By Notations 5.2 and 8.6,

(∗∗) 8′
$ r+1(±2w)=8′(±2sθ)=8(±2βsθ)=8(±〈X∗, Y 〉)

(the last equality following, for example, from (8.5)).
Suppose ord(s) 6≡ r (mod 2), so γun(s)= 1 and γ8(X∗, Y )= 1. By Corollary 7.9,

since u = v, (9.3) (hence also (9.2)) becomes

(†) MG
X∗(Y )=

1
2 |s|
−1/2q−(r+1)/2

· 2 · J ε
ν1/2(u, v)

= |s|−1/2q−(r+1)/2 Jν1/2(u, v).
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Since m > 2 and 4 | m by (8.10), combining Proposition 7.5, (∗), and (∗∗) gives

Jν1/2(u, v)= q−(r+1)/2
|s|−1/2(8(〈X∗, Y 〉)+8(−〈X∗, Y 〉)

)
(††)

= q−(r+1)/2
|s|−1/2

∑
σ∈W (G,Tθ )

8(〈Ad∗(σ )X∗, Y 〉)

= q−(r+1)/2
|sθ ′|−1/2γ8(X∗, Y )

∑
σ∈W (G,Tθ )

8(〈Ad∗(σ )X∗, Y 〉).

The result (in this case) now follows from Lemma 5.9 by combining (†) and (††).
Suppose now that ord(s)≡ r (mod 2), so that γun(s)=−1 and

γ8(X∗, Y )=
{

1 θ = 1,
−1 θ = ε.

Again by Corollary 7.9, since u = v, (9.3) (hence also (9.2)) becomes (as in (†))

(†′) MG
X∗(Y )= |s|

−1/2q−(r+1)/2γram(s)Jν1/2 sgn$ (u, v).

Since 4 - m by (8.10), if m > 2, then combining Proposition 7.5, (∗), (9.4), and (∗∗)
gives (as in (††))

(††′<r ) Jν1/2 sgn$ (u, v)

= q−(r+1)/2
|sθ ′|−1/2γram(s)−1γ8(X∗, Y )

∑
σ∈W (G,Tθ )

8(〈Ad∗(σ )X∗, Y 〉).

If m = 2, then |s| = q−r and ord(u)=−1 by Lemma 5.9, (8.9), and (8.10). Thus,
combining Corollary 7.8, (9.4), and (∗∗) gives

Jν1/2 sgn$ (u, v)(††′
=r )

= q−1/2γram(s)−1γ8(X∗, Y )
∑

σ∈W (G,Tθ )

8(〈Ad∗(σ )X∗, Y 〉)

= q−(r+1)/2
|sθ ′|−1/2γram(s)−1γ8(X∗, Y )

∑
σ∈W (G,Tθ )

8(〈Ad∗(σ )X∗, Y 〉).

The result follows by combining (†′) and (††′<r ) or (††′
=r ) with Lemma 5.9. �

9B. Close to zero.

Theorem 9.7. If d(X∗)+d(Y )>0, and X∗ is split or unramified, then let γ8(X∗,Y )
and c0(X∗) be as in Definitions 6.5 and 6.10, respectively. Then

MG
X∗(Y )= c0(X∗)+

2
n(X∗)

q−(r+1)
|Dg(Y )|−1/2γ8(X∗, Y ),

where

n(X∗)=
{

1 for X∗ split,
2 for X∗ elliptic.
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Proof. By (8.10), m < 2.
By Proposition 8.13, using Notation 8.12, (9.2) becomes

MG
X∗(Y )=

1
2

[
Q3(q−1/2)+Q3(q−1/2)−q−1

−q−1
; 1+sgnε + sgn$ + sgnε$

]
(θ ′).

Since

(9.8) Q3(q−1/2)+ Q3(−q−1/2)=−2T 2∣∣
T=q−1/2 =−2q−1,

this simplifies (by the Plancherel formula on k×/(k×)2!) to

MG
X∗(Y )= [−2q−1

; 2, 0, 0, 0].

Similarly, (9.3) becomes

MG
X∗(Y )=

1
2

(
1
2(1+ γun(s))

[
Q3(q−1/2)+ γun(s)Q3(−q−1/2); 1+ γun(s) sgnε

]︸ ︷︷ ︸
(I)

+
1
2(1− γun(s))

[
−(1− γun(s))q−1

; (1− γun(s) sgnε) sgn$
]︸ ︷︷ ︸

(II)

)
(θ ′).

Since γun(s)=±1 (see Definition 6.5), we may replace γun(s) by 1 in (I) and by −1
in (II), then use (9.8) and check case-by-case to see that the formula simplifies to

MG
X∗(Y )= [−q−1

; 1, γun(s), 0, 0](θ ′). �

10. Ramified orbital integrals

Throughout this section, we have

(10.1) θ =$, so that r ′ = r + 1
2 =: h.

Then J$χ = J$χ sgn$
for χ ∈ k̂×, so Proposition 8.11 gives

(10.2) MG
X∗(Y )

=
1
2 |s|
−1/2((1+ γram(s))J$ν1/2(u, v)+ γun(s)(1− γram(s))J$ν1/2 sgnε

(u, v)
)
.

By (6.8),

(10.3) sgn$ (v)G$ (8
′

$ h+1)= sgn$ (−$)γram(s)= γram(s).

10A. Far from zero. As in Section 9A, the results of this section are special cases
of [Waldspurger 1995, Proposition VIII.1].

Theorem 10.4. If d(X∗)+ d(Y ) < 0 and X∗ is ramified, then MG
X∗(Y )= 0 unless

X∗ and Y lie in G-conjugate tori.
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Proof. By (8.10), m > 2, so Proposition 7.5 and (8.8) show that MG
X∗(Y ) = 0

unless $θ ′ ∈ (k×)2. By Section 4, it therefore suffices to consider the case when
−1 ∈ (f×)2 (so sgn$ (−1)= 1) and θ ′ = ε2$ , that is, X∗ and Y lie in stably, but
not rationally, conjugate tori.

By (8.7), we may take the square root w of uv to be w =$−hsε = ε−1u. Then
u−1w = ε−1, so Proposition 7.5 shows (whether or not 4 divides m) that, if χ is
mildly ramified and trivial at −1, then

Jχ sgn$ (u, v)= sgn$ (u
−1$)Jχ (u, v)=−Jχ (u, v),

hence J$χ (u, v)=0. In particular, this equality holds for χ =ν1/2 and χ =ν1/2 sgnε .
It follows from (10.2) that MG

X∗(Y )= 0. �

Theorem 10.5. If d(X∗) + d(Y ) < 0, and X∗ and Y lie in a common ramified
torus T (with T = T (k)), then

MG
X∗(Y )= q−(h+1)

|Dg(Y )|−1/2γ8(X∗, Y )
∑

σ∈W (G,T )

8(〈Ad∗(σ )(X∗), Y 〉),

where γ8(X∗, Y ) is as in Definition 6.5.

Proof. Since we have fixed θ = $ , the hypothesis implies that θ ′ = $ . In par-
ticular, u = v. Write σ$ for the nontrivial element of W (G, T$ )(k$ ), so that
Ad∗(σ$ )X∗ = −X∗. It is possible that σ$ is not k-rational. More precisely, by
Section 4, we have that

W (G, T$ )=
{
{1, σ$ } sgn$ (−1)= 1,
{1} sgn$ (−1)=−1.

By (8.10),

(∗) q−m/4
= q−(h−ord(s))/2

= q−h/2
|s|−1/2.

By Corollary 7.9, since u = v,

J$
ν1/2(u, v)= J$

ν1/2 sgnε
(u, v),

so (10.2) becomes

(†) MG
X∗(Y )=

1
2 |s|
−1/2q−(h+1)/2((1+γram(s))+γun(s)(1−γram(s))

)
J$
ν1/2(u, v).

It remains to compute J$
ν1/2(u, v).

We will use Proposition 7.5, but, for simplicity, we want to avoid splitting into
cases depending on whether or not 4 | m. By (8.10), the restrictions to k \℘h−1

of 1
2(1+ (−1)h sgnε)=

1
2(1− γun) and 1

2(1+ γun) are characteristic functions that
indicate whether 4 | m or 4 - m, respectively. (We omit ℘h−1 because we are
concerned with the case where d(Y ) < r , so that ord(s) < r − 1

2 = h− 1.)
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Thus, if sgn$ (−1)=−1, then combining Proposition 7.5, (∗), and (10.3) gives

(∗ns) Jνα (u, v)= q−h/2
|s|−1/2

×

(
1
2

(
(1− γun(s))+ (1+ γun(s))γram(s)

)
×8′

$ h+1(2$−hs)

(§)
+

1
2

(
(1− γun(s))

(¶)
− (1+ γun(s))γram(s)

)
×8′

$ h+1(−2$−hs)
)

=
1
2q−(h+1)/2

|sθ ′|−1/2

×

((
(1+ γram(s))− γun(s)(1− γram(s))

)
8(〈X∗, Y 〉)

+
(
(1− γram(s))− γun(s)(1+ γram(s))

)
8(〈Ad∗(σ$ )X∗, Y 〉)

and (changing the sign at (§), but not at (¶)) that

Jνα sgn$ (u, v)=
1
2q−(h+1)/2

|sθ ′|−1/2

×

((
(1+ γram(s))− γun(s)(1− γram(s))

)
8(〈X∗, Y 〉)

−
(
(1− γram(s))− γun(s)(1+ γram(s))

)
8(〈Ad∗(σ$ )X∗, Y 〉)

)
,

so that

(‡ns) J$να (u, v)

=
1
2q−(h+1)/2

|sθ ′|−1/2((1+ γram(s))− γun(s)(1− γram(s))
)
8(〈X∗, Y 〉).

Similarly, if sgn$ (−1)= 1, then (changing the sign at (¶), but not at (§), in (∗ns))
we obtain

(∗s) Jνα (u, v)= Jνα sgn$ (u, v)

=
1
2q−(h+1)/2

|sθ ′|−1/2((1+ γram(s))− γun(s)(1− γram(s))
)

×
(
8(〈X∗, Y 〉)+8(〈Ad∗(σ$ )X∗, Y 〉)

)
,

so that

(‡s) J$να (u, v)= Jνα (u, v)

=
1
2q−(h+1)/2

|sθ ′|−1/2((1+ γram(s))− γun(s)(1− γram(s))
)

×
(
8(〈X∗, Y 〉)+8(〈Ad∗(σ$ )X∗, Y 〉)

)
.

We may write (‡ns) and (‡s) uniformly as

(‡) J$να (u, v)=
1
2q−(h+1)/2

|sθ ′|−1/2((1+ γram(s))− γun(s)(1− γram(s))
)

×

∑
σ∈NG(T$ )/T$

8(〈Ad∗(σ )X∗, Y 〉).
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Upon combining (†), (‡), and Lemma 5.9, we obtain the desired formula from(
(1+ γram(s))+ γun(s)(1− γram(s))

)
·
(
(1+ γram(s))− γun(s)(1− γram(s))

)
= (1+ γram(s))2− γun(s)2(1− γram(s))2 = 4γram(s)= 4γ8(X∗, Y )

(since γun(s)2 = 1). �

10B. The bad shell. We shall be concerned in this section with the behaviour
of MG

X∗ (hence µ̂G
X∗ , by Proposition 11.2) at the “bad shell”, that is, on those regular,

semisimple elements Y such that d(Y )= r . We assume this is the case throughout
the section. By (8.10), this implies that m = 2 and that ord(θ ′) is odd, that is, Y
belongs to a ramified torus. By Section 4, we can in fact assume ord(θ ′)= 1. Then,
by Lemma 5.9,

(10.6) ord(s)= h− 1 ⇒ sgnε(s)= (−1)h−1 and |sθ ′| = q−h .

By Definition 6.5, the formula that holds in the situation of Theorem 10.9 holds
also, suitably understood, in the situation of Theorem 10.8. We find it useful to
separate them anyway.

Remark 10.7. In this section only, we need to name the specific ramified torus
in which we are interested. We therefore assume in Theorems 10.8 and 10.9 that
X∗ ∈ t∗$ . See Remark 6.9 for a discussion of how to handle other ramified tori.

Theorem 10.8. If d(X∗)+d(Y )= 0, and Y lies in a ramified torus that is not stably
conjugate to T$ , then

MG
X∗(Y )=

1
2q−(h+1)

· q−1/2
|Dg(Y )|−1/2

∑
Z∈(t$ )r :r+

8(〈X∗, Z〉) sgn$ (Y
2
− Z2),

where we identify the scalar matrices Y 2 and Z2 with elements of k in the natu-
ral way.

Proof. By Section 4, it suffices to consider the case where θ ′ = ε$ .
By Corollary 7.9, since ord(u)= ord(v),

J$
ν1/2(u, v)= J$

ν1/2 sgnε
(u, v),

and, by Corollary 7.8 and (8.8), Jν1/2 sgn$ (u, v)= 0, so

J$
ν1/2(u, v)= 1

2 Jν1/2(u, v).
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Hence, by (10.2) and (10.6),

(∗) MG
X∗(Y )=

1
4 |s|
−1/2q−(h+1)/2

×
(
(1+ γram(s))− (−1)h sgnε(s)(1− γram(s))

)
Jν1/2(u, v)

=
1
4 |s|
−1/2q−(h+1)/2

· 2 · Jν1/2(u, v)

=
1
2 |s|
−1/2 Jν1/2(u, v).

Finally, another application of Corollary 7.8, together with (8.9), gives that

Jν1/2(u, v)= q−1
∑

c∈℘−1/R

8′
$ h+1(2c) sgn$ (c

2
− ($−hs)2ε).

Replacing c by $−hc and using (10.6) again allows us to rewrite

(∗∗) Jν1/2(u, v)= q−(h+2)/2
|sθ ′|−1/2

∑
c∈℘h−1/℘h

8(2β$c) sgn$ (c
2
− s2ε).

By Definition 4.9, the isomorphism c 7→ c ·
√
$ of k with t$ identifies ℘h−1/℘h

with (t$ )(h−1/2):(h+1/2)= (t$ )r :r+. If c is mapped to Z , then (by (8.5), for example)
2β$c = 〈X∗, Z〉, and

sgn$ (c
2
− s2ε)= sgn$ (s

2ε$ − c2$)= sgn$ (Y
2
− Z2).

Combining this with (∗), (∗∗), and Lemma 5.9 yields the desired formula. �

Theorem 10.9. If d(X∗)+ d(Y )= 0, and Ỹ is a stable conjugate of Y that lies in
a torus with X∗, then

MG
X∗(Y )=

1
2q−(h+1)

|Dg(Y )|−1/2

×

(
γ8(X∗, Y )

∑
σ∈W (G,T$ )

8(〈Ad∗(σ )X∗, Ỹ 〉)

+ q−1/2
∑

Z∈(t$ )r :r+
Z 6=±Ỹ

8(〈X∗, Z〉) sgn$ (Y
2
− Z2)

)
,

where γ8(X∗, Y ) is as in Definition 6.5.

Proof. Implicit in the statement is the hypothesis that t = tθ ′ is stably conjugate
to t$ , so that, by Section 4, we have θ ′ = x2$ for some x ∈ R×. The proof
proceeds much as in Theorem 10.8.

By (10.6) and Corollary 7.9, since ord(u)= ord(v), (10.2) becomes

(∗) MG
X∗(Y )= |s|

−1/2q−(h+1)/2 J$
ν1/2(u, v).

By (8.7), we may take the square root w of uv to be w =$−h xs.
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Combining Corollary 7.8 with (8.7), (8.9), and (10.6) gives

Jνα (u, v)= q−1
∑

c∈℘−1/R
c 6=±$−h xs

8′
$ h+1(2c) sgn$ (c

2
− ($−h xs)2)

= q−1
∑

c∈℘h−1/℘h

c 6=±xs

8(2β$c) sgn$ (c
2
− x2s2)

= q−(h+2)/2
|sθ ′|−1/2

∑
c∈℘h−1/℘h

c 6=±xs

8(2β$c) sgn$ (c
2
− x2s2).

Note that Y 2
= s2θ ′ = x2s2$ , and that

Ỹ := xs
√
$ = Ad

(√
x 0

0
√

x −1

)
Y

is a stable conjugate of Y that lies in t$ . (Here,
√
$ is an element of g, but

√
x is

an element of an extension field of k.) As in Theorem 10.8, if Z = c ·
√
$ , then

〈X∗, Z〉= 2β$c and sgn$ (c
2
−x2s2)= sgn$ (Y

2
−Z2). That is, upon using again

the bijection ℘h−1/℘h
→ (t$ )r :r+ given by c 7→ c ·

√
$ , we obtain

(∗∗1) Jν1/2(u, v)= q−(h+2)/2
|sθ ′|−1/2

∑
Z∈(t$ )r :r+
Z 6=0,±Ỹ

8(〈X∗, Z〉) sgn$ (Y
2
− Z2).

Similarly, combining Corollary 7.8 with (8.9), Lemma 5.9, and (10.3) gives

Jν1/2 sgn$ (u, v)= q−1/2γram(s)
(
8(2β$ xs)+8(−2β$ xs)

)
(∗∗$ )

= q−(h+1)/2
|sθ ′|−1/2γram(s)

∑
σ∈W (G,T )

8(〈Ad∗(σ )X∗, Ỹ 〉).

Combining (∗), (∗∗1), (∗∗$ ), and Lemma 5.9 gives the desired formula. �

10C. Close to zero.

Theorem 10.10. If d(X∗)+ d(Y ) > 0, and X∗ is ramified, then let γ8(X∗, Y ) and
c0(X∗) be as in Definitions 6.5 and 6.10, respectively. Then

MG
X∗(Y )= c0(X∗)+ q−(h+1)

|Dg(Y )|−1/2γ8(X∗, Y ).

Proof. By (8.10), m < 2.
By Proposition 8.13 and (6.7), using Notation 8.12 changes (10.2) into

MG
X∗(Y )

=
1
2

(
1
2(1+γram(s))

[
Q3(q−1/2)+γram(s)q−1

; 1+γram(s)−1 sgn$
]

+
1
2(1−γram(s))×

[
−Q3(−q−1/2)+γram(s)q−1

; (1−γram(s)−1 sgn$ ) sgnε
])
(θ ′).
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By (9.8) and the fact that

Q3(q−1/2)− Q3(−q−1/2)=−2T (T 2
+ 1)

∣∣
T=q−1/2 =−2q−3/2(q + 1),

we may check case-by-case to see that this simplifies to

MG
X∗(Y )=

[
−

1
2q−3/2(q + 1); 1, 0, γram(s), 0

]
(θ ′). �

11. An integral formula

Our efforts so far have focused on computing the function MG
X∗ of Definition 8.4,

whereas we are really interested in the function µ̂G
X∗ of Notation 5.7. We can now

show that they are actually equal.

Lemma 11.1. If f ∈ L1(G), then∫
G

f (g)dg =
∫

k×θ

∫
k

f
(
ϕ−1
θ (α, t)

)
dt d×α.

In Lemma 11.1, dg, dt , and d×α are Haar measures on the obvious groups.
Given any two of them, the third can be chosen so that the identity is satisfied.
Since Definition 5.4 requires a measure on G/CG(X∗), not on G, we do not worry
much here about normalisations (although a specific one is used in the proof).

Proof. With respect to the coordinate charts

(a, b, c) 7→
(

a b
c (1+bc)/a

)
(for a 6= 0) on G and

(a, b, t) 7→ (a+ b
√
θ, t)

on k×θ × k, the Jacobian of ϕθ at

g =
(

a b
c d

)
(with a 6= 0) is a−1 Nθ (α), where ϕθ (g)= (α, t).

In particular, the Haar measure

|a|−1 da db dc

on G is carried to the measure

|Nθ (a+ b
√
θ)|−1 da db dt = |Nθ (α)|−1 dα dt = d×α dt

on k×θ × k, as desired. �
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Proposition 11.2. If X∗ ∈ g∗ and Y ∈ g are regular and semisimple, then

µ̂G
X∗(Y )= MG

X∗(Y ),

where MG
X∗ is as in Definition 8.4, and the Haar measure dġ on G/CG(X∗) of

Notation 5.3 is normalised so that

measdġ(K̇ )=


q−1(q + 1) for X∗ split,

q−1(q − 1) for X∗ unramified,
1
2q−2(q2

− 1) for X∗ ramified,

where K̇ is the image in G/CG(X∗) of SL2(R).

Proof. We will maintain Notation 5.1. In particular, X∗ ∈ t∗θ .
By the explicit formulae of the previous sections (specifically, Theorems 9.5,

9.6, 9.7, 10.4, 10.5, 10.8, 10.9, and 10.10), MG
X∗ ∈ C∞(grss). This result plays the

role of [Adler and DeBacker 2004, Corollary A.3.4]; we now imitate the proof of
[ibid., Theorem A.1.2].

If f ∈ Cc(g
rss), then there is a lattice L⊆ g such that f ·MG

X∗ is invariant under
translation by L. Then∫

g
f (Y )MG

X∗(Y ) dY =measdY (L)
∑

Y∈g/L

f (Y ) · P
∫

k×θ /Cθ
P
∫

k
8(〈X∗, Y 〉α,t) dt d×α̇.

Since the sum is finitely supported, we may bring it inside the integral. By (8.5)
and Definition 5.5,∫

g
f (Y )MG

X∗(Y ) dY(∗)

= P
∫

k×θ /Cθ
P
∫

k
measdY (L)

∑
Y∈g/L

f (Y )8
(
〈Ad∗(ϕ−1

θ (α, t))X∗, Y 〉
)

dt d×α̇

= P
∫

k×θ /Cθ
P
∫

k

∫
g

f (Y )8
(
〈Ad∗(ϕ−1

θ (α, t))X∗, Y 〉
)

dY dt d×α̇

= P
∫

k×θ /Cθ
P
∫

k
f̂
(
Ad∗(ϕ−1

θ (α, t))X∗
)

dt d×α̇,

where ϕθ is as in Definition 8.2.
On the other hand, again by Definition 5.5,

µ̂G
X∗( f ) :=µG

X∗( f̂ )=
∫

G/Tθ
f̂
(
Ad∗(g)X∗

)
dġ=

∫
U\G/Tθ

∫
U

f̂
(
Ad∗(ug)X∗

)
du dg̈,

where
U =

{(
1 0
b 1

)
: b ∈ k

}
.
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By Lemmata 11.1 and 8.3, and (∗), if dġ is properly normalised, then

µ̂G
X∗( f )=

∫
k×θ /Cθ

∫
k

f̂
(
Ad∗(ϕ−1

θ (α, t))X∗
)

dt d×α̇ =
∫

g
f (Y )MG

X∗(Y ) dY.

It remains only to compute the normalisation of dġ. We do so case-by-case. If
X∗ is split, so that we may take θ = 1, then the image under ϕ1 of

(1+℘1)×℘ ⊆ k×1 × k

is precisely the kernel K+ of the (component-wise) reduction map SL2(R) →
SL2(f). Here, we have written 1+℘1 = {(a, b) ∈ k1 : a ∈ 1+℘, b ∈ ℘}. Thus,

(1+℘1)C1/C1×℘
∼
→ K+T1/T1.

Now N1 : 1+℘1→ 1+℘ is surjective, so by Definitions 2.1 and 8.4, the measure
(in k1/C1× k) of the domain is

measd×x(1+℘) ·measdx(℘)= q−2.

Since K̇ = SL2(R)T1/T1 is tiled by[
SL2(R)T1 : K+T1

]
=
[
SL2(R) : K+(T1∩SL2(R))

]
=
[
SL2(f) : T1(f)

]
= q(q+1)

copies of K+T1/T1, where

T1 :=

{(
a b
b a

)
: a2
− b2
= 1

}
,

we see that, in this case, dġ assigns K̇ measure q−2
· q(q + 1)= q−1(q + 1).

The remaining cases are easier, since Cθ is contained in the ring Rθ of integers
in kθ , and (for our choices of θ ) Tθ is contained in SL2(R). If X∗ is unramified, so
that we may take θ = ε, then the image under ϕε of R×ε × R is precisely SL2(R).
Since Nε : R×ε → R× is surjective, we see that, in this case, dġ assigns K̇ measure
measd×x(R

×
ε ) ·measdx(R)= q−1(q − 1).

If X∗ is ramified, so that we may take θ = $ , then the image under ϕ$ of
R×$ ×℘ is precisely the Iwahori subgroup I, that is, the preimage in SL2(R) of

B(f) :=
{(

a b
0 a

)
: a ∈ f×, b ∈ f

}
under the reduction map SL2(R)→ SL2(f). Since N$ : R×$ → R× has cokernel
of order 2, we see that, in this case, dġ assigns K̇ measure

1
2 measd×x(R

×) ·measdx(℘) ·
[
SL2(f) : B

]
=

1
2q−2(q2

− 1). �
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Thus, all the results we have proven for MG
X∗ are actually results about µ̂G

X∗ . We
close by summarising some results that can be stated in a fairly uniform fashion
(that is, mostly independent of the “type” of X∗, in the sense of Definition 4.4).
This theorem does not cover everything we have shown about Fourier transforms
of semisimple orbital integrals (in particular, it says nothing about the behaviour
of ramified orbital integrals on the “bad shell”, as in Section 10B); for that, the
reader should refer to the detailed results of Sections 9–10.

Theorem 11.3. If d(X∗) + d(Y ) < 0 (or d(X∗) + d(Y ) ≤ 0 and X∗ is split or
unramified), then

µ̂G
X∗(Y )= q−(r

′
+1)
|Dg(Y )|−1/2γ8(X∗, Y )

∑
σ∈W (G,T )

8(〈Ad∗(σ )X∗, Y 〉)

if X∗ and Y lie in a common torus T (with T = T (k)), and

µ̂G
X∗(Y )= 0

if X∗ and Y do not lie in G-conjugate tori. Here, r ′ is as in Notation 5.2, and
γ8(X∗, Y ) is as in Definition 6.5.

If d(X∗)+ d(Y ) > 0, then

µ̂G
X∗(Y )= c0(X∗)+ q−(r

′
+1)
|Dg(Y )|−1/2γ8(X∗, Y ).

Here, γ8(X∗, Y ) and c0(X∗) are as in Definitions 6.5 and 6.10, respectively.

Proof. This is an amalgamation of parts of Theorems 9.5, 9.6, 9.7, 10.4, 10.5, and
10.10 and Proposition 11.2. �
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