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In this paper, we will study the τ -quasi-Einstein metrics on complete non-
compact Riemannian manifolds and get a rigid property. We will also ob-
tain lower and upper estimates for scalar curvatures on these metrics by
using the maximum principle.

1. Introduction

For a given smooth potential function f , the τ -Bakry–Émery Ricci curvature tensor

Ric f,τ = Ric+Hess f −
∇ f ⊗∇ f

τ

is always used to replace the Ricci curvature tensor when one tries to study the
weighted measure dµ = e− f dx , where 0 < τ ≤ +∞ and dx is the Riemann–
Lebesgue measure determined by the metric. There has been an active interest
in the study of the weighted measure under some conditions about the τ -Bakry–
Émery Ricci curvature tensor; see [Li 2005; Wang 2010] and the references therein.

According to [Kim and Kim 2003; Case 2010; Case et al. 2011; Wang 2011], we
call a metric g τ -quasi-Einstein with potential function f , if for some constant λ,

(1-1) Ric+Hess f −
∇ f ⊗∇ f

τ
= λg,

where 0< τ ≤+∞ . A τ -quasi-Einstein metric becomes an Einstein metric when
the potential function f is constant. We note that an ∞-quasi-Einstein metric
indicates a gradient Ricci soliton. As in [Hamilton 1995; Perelman 2002; Cao and
Zhu 2006], a gradient Ricci soliton is shrinking, steady or expanding when λ > 0,
λ= 0 or λ < 0, respectively.

For a positive integer τ , the τ -quasi-Einstein metric is closely relative to the
existence of warped product Einstein manifolds [Besse 1987; Case 2010; Case
et al. 2011]. Let (M, g) and (N τ , h) be two Riemannian manifolds. Then, for
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some potential function f on M , the warped product manifold (M × N , g̃) with
product metric

g̃ = g⊕ exp
(
−

2 f
τ

)
h

is Einstein if and only if (N τ , h) is Einstein and the Ricci curvature tensor of M
satisfies the quasi-Einstein equation (1-1) for some constant λ.

It was proved in [Qian 1997; Wei and Wylie 2007] that a manifold with a τ -
quasi-Einstein metric (τ is finite) is automatically compact when λ > 0. It was
also proved in [Ivey 1993] that any expanding or steady gradient Ricci solitons
on closed manifolds should be trivial. The same rigid properties for the τ -quasi-
Einstein metrics on closed manifolds were proved in [Kim and Kim 2003; Wang
2011]. But for the τ -quasi-Einstein metrics on closed manifolds with λ > 0, the
rigid properties rely on the constant µ which appears in the following identity:

(1-2) R+ τ−1
τ
|∇ f |2+ (τ − n)λ= µe2 f/τ ,

where R is the scalar curvature. This identity was proved in [Kim and Kim 2003].
See also [Wang 2011], where the author proved that the quasi-Einstein metrics
with λ > 0 should be trivial when µ ≤ 0. In fact, the authors of [Lü et al. 2004]
constructed nontrivial τ -quasi-Einstein metrics with λ > 0 and τ > 1, which also
satisfy µ > 0.

In this paper, we will study the τ -quasi-Einstein metrics on complete noncom-
pact Riemannian manifolds with λ ≤ 0. Our first result is Theorem 1.1, which is
about the rigidity.

Theorem 1.1. Let M be a complete noncompact Riemannian manifold and g a
τ -quasi-Einstein metric on M with potential function f and λ≤ 0 a constant. If

(1-3) R−2
0

∫
B2R0\BR0

|∇ f |2 exp
(
−
τ+2
τ

f
)

dx→ 0

as R0→∞, where BR0 denotes the geodesic ball centered at a fixed point O ∈ M
with radius R0, then e f is a harmonic function on M , that is, 1e f

= 0. Moreover,
if λ < 0, then g is trivial in the sense that f is constant.

The following theorem for gradient Ricci solitons was proved in [Zhang 2009].
In fact, part 1 is a consequence of [Chen 2009, Corollary 2.5].

Theorem 1.2. Let (Mn, g) be a complete noncompact gradient Ricci soliton with
potential function f and soliton constant λ.

(1) If the gradient Ricci soliton is shrinking or steady, then R ≥ 0.
(2) If the gradient Ricci soliton is expanding, then there exists a positive constant

C(n) such that R ≥ C(n)λ.
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Zhang [2011] pointed out that R ≥ nλ is right in Theorem 1.2(2). The lower
bound estimates for scalar curvatures play important roles in the study of geometric
properties of gradient Ricci solitons. Based on these estimates, compactness the-
orems for gradient Ricci solitons were proved in [Zhang 2006] and some results
about the volume growth for noncompact gradient Ricci solitons were deduced in
[Cao 2009; Cao and Zhou 2010; Munteanu 2009; Zhang 2011].

In [Case et al. 2011], the authors got estimates for R on closed τ -quasi-Einstein
metrics. Later, Wang [2011] studied the lower bound estimate for scalar curvature
R on complete noncompact τ -quasi-Einstein metrics with λ ≤ 0. We state this
result as follows.

Theorem 1.3. Let M be an n-dimensional complete noncompact Riemannian man-
ifold, metric g is τ -quasi-Einstein with potential function f and constant λ ≤ 0,
where τ ≥ 1. If µ≤ 0 or µ> 0 and f is bounded from above by a constant C , then

(1-4) R(y)≥ nλ

for any y ∈ M.

The proof of this theorem in [Wang 2011] relies on a gradient estimate of f ,
this gradient estimate shows that |∇ f |2 is bounded from above if µ ≤ 0 or µ > 0
and f is bounded from above by a constant C . We will give a nontrivial τ -quasi-
Einstein metric with λ < 0, but f is not bounded from above; see Example 2.1.
The second main result of this paper is to improve Theorem 1.3. That is to say, we
will show that the lower estimate (1-4) is always right for τ -quasi-Einstein metrics
with λ≤ 0.

Theorem 1.4. Let M be an n-dimensional complete noncompact Riemannian man-
ifold, g be a τ -quasi-Einstein metric with potential function f and λ ≤ 0 be a
constant, where τ > 0. Then (1-4) holds for any y ∈ M.

Remark 1.5. If τ =∞, we recover the lower bound estimate for R on a complete
noncompact steady or expanding gradient Ricci soliton given in [Zhang 2011].

It remains interesting to find out whether R is bounded from above by a con-
stant for noncompact quasi-Einstein metrics. The following theorem states that the
scalar curvature of a quasi-Einstein metric with λ ≤ 0 is bounded from above if
µ≤ 0.

Theorem 1.6. Let g be a τ -quasi-Einstein metric with λ≤ 0 and µ≤ 0. Then

(1-5) R(y)≤ (n−max {τ, 1})λ

for any y ∈ M.
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2. Examples of quasi-Einstein metrics

In this section, we assume that M = R× N n−1 is a warped product manifold with
the product metric given by

ds2
M = dt2

+ϕ2(t)ds2
N ,

where ds2
N is a fixed metric on N and ϕ is a positive function on R. Consider the

orthonormal coframe {θα : 2≤ α ≤ n} on N n−1; then

{ω1 = dt, ωα = ϕ(t)θα : 2≤ α ≤ n}

is an orthonormal coframe on Mn . We use RM,i jkl and RN ,αβγ δ to denote the
Riemannian curvature tensors of M and N respectively. After the same calculation
as in [O’Neill 1983; Wang 2011], we conclude that

(2-1) RM,1αi j =


−(logϕ(t))′′− ((logϕ(t))′)2 if i = 1, j = α,
(logϕ(t))′′+ ((logϕ(t))′)2 if i = α, j = 1,
0 otherwise

and

(2-2) RM,αβi j

=

{
ϕ−2(t)RN ,αβγ θ + ((logϕ(t))′)2(δαθδβγ − δαγ δβθ ) if i = γ, j = θ,
0 otherwise.

If we use RN ,αβ to denote the Ricci curvature tensor on N , by (2-1) and (2-2), the
Ricci curvature tensor of M can be expressed as

RM,1i =−(n− 1)
(
(logϕ(t))′′+ ((logϕ(t))′)2

)
δ1i ,(2-3)

RM,αβ = ϕ
−2(t)RN ,αβ −

(
(logϕ(t))′′+ (n− 1)((logϕ(t))′)2

)
δαβ .(2-4)

Example 2.1. For τ > 0, we assume that N is a flat manifold with

RN ,αβ = 0.

Let
f (t, x)= f (t)= τ t, ϕ(t)= e−t .

It is easy to testify that

(2-5) RM,i j + fi j −
fi f j

τ
= λgi j

for λ=−(n+τ −1). Hence M is τ -quasi-Einstein with potential function f = τ t
and λ=−(n+ τ − 1). Moreover, by (2-3) and (2-4), the scalar curvature of M is

RM =−n(n− 1),

which means that (1-2) follows with µ = 0. It is easy to see that the potential
function f is not bounded from above.
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Example 2.2. For τ > 0, we assume that N is an Einstein manifold with

RN ,αβ =−(n+ τ − 2)δαβ .

Choose
f (t, x)= f (t)=−τ log cosh t, ϕ(t)= cosh t.

It is easy to testify that (2-5) holds for λ = −(n + τ − 1). Hence M is τ -quasi-
Einstein with potential function f =−τ log cosh t and λ=−(n+τ−1). Moreover,
by (2-3) and (2-4), the scalar curvature of M is

RM =−n(n− 1)−
(n− 1)τ

cosh2 t
,

which means that (1-2) follows with

µ=−τ(τ + n− 2).

It is easy to see that µ < 0 and RM is bounded from above.

3. Basic formulas

In this section, we will first give some basic formulas for quasi-Einstein metrics
in Lemma 3.1. These formulas are well-established in [Case et al. 2011; Kim and
Kim 2003; Wang 2011].

Lemma 3.1. If g is a τ -quasi-Einstein metric with potential function f and λ is a
constant, then one can get

(3-1) 1
21R− τ+2

2τ
∇ f · ∇R

=−
τ−1
τ

∣∣∣Ric− 1
n

Rg
∣∣∣2− n+τ−1

nτ
(R− nλ)

(
R− n(n−1)

n+τ−1
λ
)
.

Moreover, there exists a constant µ such that

(3-2) R+ τ−1
τ
|∇ f |2+ (τ − n)λ= µe2 f/τ .

And also one can get

∇1 f · ∇ f = 2
τ
1 f |∇ f |2− 2Ric(∇ f,∇ f )(3-3)

1 f − |∇ f |2− τλ+µe2 f/τ
= 0.(3-4)

In the following, we will calculate the weighted Laplacian of ϕ(R + 2xe2 f/τ )

by using Lemma 3.1, where x > 0 is a constant and ϕ is a smooth cutoff function.

Lemma 3.2. Let

(3-5) Q = ϕ(R+ 2xe2 f/τ ),
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where x > 0 is a constant and ϕ is a smooth cutoff function. If τ > 1 and µ > 0,
then for ε > 0,

(3-6) 1
21 f Q ≤

1 f ϕ

2ϕ
Q+
∇ϕ · ∇Q

ϕ
−
|∇ϕ|2

ϕ2 Q+
ϕ2

4ετ

∣∣∣∣∇Q
ϕ
−

Q∇ϕ
ϕ2

∣∣∣∣2
+

4x(n+τ−1)
nτ

Qe2 f/τ
−

n+τ−1
nτϕ

Q2

+

(2n−2+τ
τ

λ−
ε

(τ−1)ϕ

)
Q+ϕA−

n(n− 1)ϕ
τ

λ2
+

n−τ
τ−1

ελ

holds at y ∈ M with ϕ(y) 6= 0, where

(3-7) 1 f =1−∇ f · ∇

and A, depending on x, n, τ, µ, λ, ε, ϕ, is defined in (3-14).

Proof. Let

(3-8) G = R+ 2xe2 f/τ .

It is easy to see that

(3-9) 1 f e2 f/τ
=1e2 f/τ

−∇e2 f/τ
· ∇ f =

(4−2τ
τ 2 |∇ f |2+ 2

τ
1 f

)
e2 f/τ ,

which, together with (3-1), shows that, for ε > 0,

1
21 f G

≤
1
τ
∇R·∇ f+x

(4−2τ
τ 2 |∇ f |2+ 2

τ
1 f

)
e2 f/τ
−

n+τ−1
nτ

(R−nλ)
(

R− n(n−1)
n+τ−1

λ
)

=
1
τ
∇G ·∇ f +x

(
−

2
τ
|∇ f |2+ 2

τ
1 f

)
e2 f/τ
−

n+τ−1
nτ

(R−nλ)
(

R− n(n−1)
n+τ−1

λ
)

≤
ϕ

4ετ
|∇G|2+ ε

τϕ
|∇ f |2+ x

(
−

2
τ
|∇ f |2+ 2

τ
1 f

)
e2 f/τ

−
n+τ−1

nτ
(R− nλ)

(
R− n(n−1)

n+τ−1
λ
)

holds at y ∈ M when ϕ(y) 6= 0 . By (3-8) and (3-2), we get

(3-10) R = G− 2xe2 f/τ

and

(3-11) |∇ f |2 =− τ

τ−1
G+

τ(2x +µ)
τ − 1

e2 f/τ
+
τ(n−τ)
τ−1

λ.
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Plugging (3-8), (3-10), (3-11) and (3-4) into 3 yields

(3-12) 1
21 f G ≤

ϕ

4ετ
|∇G|2+ 4x(n+τ−1)

nτ
Ge2 f/τ

−
n+τ−1

nτ
G2

+

(2n−2+τ
τ

λ−
ε

(τ−1)ϕ

)
G−

4x2(n+ τ − 1)+ 2xnµ
nτ

e4 f/τ

−

(
4x(n−1)

τ
λ−

ε(2x +µ)
(τ − 1)ϕ

)
e2 f/τ

−
n(n−1)
τ

λ2
+

n−τ
(τ−1)ϕ

ελ.

Since for all a > 0,

−ax2
+ bx ≤ b2

4a
,

we conclude that

(3-13) −
4x2(n+ τ − 1)+ 2xnµ

nτ
e4 f/τ

−

(
4x(n−1)

τ
λ−

ε(2x +µ)
(τ − 1)ϕ

)
e2 f/τ

≤ A

with

(3-14) A = nτ
16x2(n+τ−1)+8nxµ

(
4x(n−1)

τ
λ−

ε(2x +µ)
(τ − 1)ϕ

)2

.

It is easy to see that

∇G =
∇Q
ϕ
−

Q∇ϕ
ϕ2

and

1 f Q =
Q
ϕ
1 f ϕ+ 2∇ϕ · ∇G+ϕ1 f G.

Hence

(3-15) 1 f Q =
1 f ϕ

ϕ
Q+

2∇ϕ · ∇Q
ϕ

−
2|∇ϕ|2

ϕ2 Q+ϕ1 f G.

Plugging (3-5), (3-12) and (3-13) into (3-15) yields (3-6). �

4. A rigid property

In this section, we will prove Theorem 1.1, a rigid property of τ -quasi-Einstein
metrics with λ≤ 0 on complete noncompact Riemannian manifolds.

Proof. Consider a smooth function θ(t) : [0,+∞)→ [0, 1]:

(4-1) θ(t)=
{

1 if 0≤ t ≤ 1,
0 if t ≥ 2,

so that

(4-2) −10
√
θ ≤ θ ′ ≤ 0.
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For R0 > 0, let

ϕ(x)= θ
(r(x)

R0

)
be a cutoff function, where r(x) is the distance function determined by O ∈ M .
Then

0≤ ϕ ≤ 1, |∇ϕ|(x)≤ C
R0

and ϕ(x)= 1 on BR0 , ϕ(x)= 0 outside of B2R0 . Let

α =−
τ+2
τ
.

Plugging (1-1) into (3-3) yields

(4-3) −∇1 f · ∇ f +∇|∇ f |2 · ∇ f = 2λ|∇ f |2+ 2
τ
|∇ f |4− 2

τ
1 f |∇ f |2.

Integrating (4-3) on M and using the fact that λ≤ 0, we obtain

(4-4) −
∫

M
∇1 f · ∇ f ϕeα f dx +

∫
M
∇|∇ f |2 · ∇ f ϕeα f dx

≤
2
τ

∫
M
|∇ f |4ϕeα f dx − 2

τ

∫
M
1 f |∇ f |2ϕeα f dx .

Integrating by parts yields

(4-5)
∫

M
∇|∇ f |2 · ∇ f ϕeα f dx =−

∫
M
|∇ f |2(1 f ϕ+α|∇ f |2ϕ+∇ f · ∇ϕ)eα f dx

and

(4-6)
∫

M
∇1 f ·∇ f ϕeα f dx =−

∫
M

(
(1 f )2ϕ+α1 f |∇ f |2ϕ+1 f∇ f ·∇ϕ

)
eα f dx .

Taking (4-5) and (4-6) into (4-4) yields∫
M

(
(1 f )2− 21 f |∇ f |2+ |∇ f |4

)
ϕeα f dx

≤−

∫
M

(
1 f∇ f · ∇ϕ− |∇ f |2∇ f · ∇ϕ

)
eα f dx

≤

(∫
M
(1 f − |∇ f |2)2ϕeα f dx

)1/2(∫
B2R0\BR0

|∇ f · ∇ϕ|2

ϕ
eα f dx

)1/2

.

Observing that

|∇ f · ∇ϕ| ≤ |∇ f | |∇ϕ| ≤ C
R0
|∇ f |,
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we get ∫
BR0

(1 f − |∇ f |2)2eα f dx
≤

∫
M
(1 f − |∇ f |2)2ϕeα f dx

≤ C R−2
0

∫
B2R0\BR0

|∇ f |2eα f dx .

Letting R0→∞, by (1-3), we conclude that∫
M
(1 f − |∇ f |2)2eα f dx = 0.

Hence 1e f
= 0.

When λ< 0, we deduce from 1e f
= 0 that 1 f = |∇ f |2. Equation (4-3) is then

equivalent to 2λ|∇ f |2 = 0, which means that f is constant. �

5. Lower bound of the scalar curvature

In this section, we will prove Theorem 1.4 and Theorem 1.6 by using the weighted
Laplacian comparison theorem and the maximum principle. We first introduce the
weighted Laplacian comparison theorem, which can be found in [Lott 2003; Wang
2010].

Lemma 5.1. Let (M, g) be an n-dimensional complete Riemannian manifold, f a
real value smooth function on M and 1 f = 1−∇ f · ∇ the weighted Laplacian.
Assume that the τ -Bakry–Émery Ricci curvature on M is bounded by

Ric f,τ ≥ λ

with constant λ and r(x) = dist(O, x) is the distance function determined by a
fixed point O. If aλ is a solution to the Riccati equation

∂aλ
∂r
= λ−

a2
λ

n+ τ − 1
, lim

r↘0
raλ = n+ τ − 1,

then at y /∈ Cut(O),
1 f r ≤ aλ(r).

In particular, if λ≤ 0,

1 f r ≤ n+τ−1
r

(
1+

√
−

λ

n+τ−1
r
)
.

We need the following estimate, which can be proved by using the maximum
principle [Pigola et al. 2005; Schoen and Yau 1994; Yau 1975; Cheng and Yau
1975].
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Theorem 5.2. Let M be an n-dimensional complete noncompact Riemannian man-
ifold, g a τ -quasi-Einstein metric with potential function f and λ ≤ 0 a constant.
We also assume that τ > 1 and µ > 0. Then for x > 0,

(5-1) R(y)+ 2xe2 f/τ(y)
≥

n(2n−2+τ)+n
√
1

2(n+τ−1)
λ

holds for any y ∈ M , where

(5-2) 1= τ 2
+

8(n+τ−1)(n−1)2x
2x(n+τ−1)+nµ

.

Proof. Consider a smooth function θ(t) : [0,+∞)→ [0, 1],

θ(t)=
{

1 if 0≤ t ≤ 1,
0 if t ≥ 2,

so that

(5-3) −10θ1/2
≤ θ ′ ≤ 0, θ ′′ ≥−10.

For a large enough constant R0 > 0, define the smooth cutoff function ϕ : M→ R

by

ϕ(x, t)= θ
(r(x)

R0

)
.

Then

(5-4) ∇ϕ =
θ ′∇r

R0
.

By Lemma 5.1, we have that for y ∈ B2R0 ,

(5-5) 1 f ϕ(y)=1ϕ−∇ϕ · ∇ f = θ ′′

R2
0
+
θ ′1 f r

R0

≥
θ ′′

R2
0
+
(n+ τ − 1)θ ′(1+

√
K R0)

R2
0

,

where
K =− λ

n+τ−1
≥ 0.

Let
Q = ϕG = ϕ(R+ 2xe2 f/τ ).

If for any R0 > 0 the minimal value of G on BR0 is not smaller than zero, then
Theorem 5.2 holds. Hence we can assume that for some large enough value of
R0 > 0, the minimal value of G on BR0 is negative. If we assume that Q achieves
its minimal value at x0 on B2R0 , then

Q(x0)≤ min
x∈BR0

Q(x)= min
x∈BR0

G(x) < 0,
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which means that x0 is not on the boundary of B2R0 . Hence ϕ(x0) > 0 and

∇Q = 0,(5-6)

1 f Q ≥ 0(5-7)

hold at x0. By (3-6), (5-6) and (5-7), we get that, at x0,

(5-8) 0≤
1 f ϕ

2
Q−
|∇ϕ|2

ϕ
Q+
|∇ϕ|2

4ετϕ
Q2
+

4x(n+ τ − 1)ϕ
nτ

Qe2 f/τ
−

n+τ−1
nτ

Q2

+

(2n−2+τ
τ

ϕλ−
ε

τ−1

)
Q+ϕ2 A−

n(n− 1)ϕ2

τ
λ2
+

n−τ
τ−1

ϕελ.

Noticing that, at x0,

(5-9)
4x(n+ τ − 1)ϕ

nτ
Qe2 f/τ

≤ 0.

Taking (5-4), (5-5) and (5-9) into (5-8), and using (5-3), we get that, at x0,

(5-10) 0≤−
105Q

R2
0
−

5(n+ τ − 1)(1+
√

K R0)Q
R2

0
+

25
ετ R2

0
Q2
−

n+τ−1
nτ

Q2

+

(2n−2+τ
τ

ϕλ−
ε

τ−1

)
Q+ϕ2 A−

n(n− 1)ϕ2

τ
λ2
+

n−τ
τ−1

ϕελ.

By (3-14) and the fact that λ≤ 0, we have that, at x0,

(5-11) ϕ2 A ≤ B,

where

(5-12) B = nτ
16x2(n+τ−1)+8nxµ

(
4x(n−1)

τ
λ−

ε(2x +µ)
τ − 1

)2

.

For a large enough value of R0 > 0, define

σ(R0)=
inf{G(x) : x ∈ B(O, R0)}

inf{G(x) : x ∈ B(O, 2R0)}
.

It is easy to see that

Q(x0)= ϕ(x0)G(x0)≤ inf{G(x) : x ∈ B(O, R0)}

and
Q(x0)= ϕ(x0)G(x0)≥ ϕ(x0) inf{G(x) : x ∈ B(O, 2R0)}.

Using the assumption that inf{G(x) : x ∈ B(O, R0)}< 0, we get that

(5-13) σ(R0)≤ ϕ(x0)≤ 1.
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From (5-10), (5-11) and (5-13), it follows that, at x0,

(5-14) 0≤−
105Q

R2
0
−

5(n+ τ − 1)(1+
√

K R0)Q
R2

0
+

25
ετ R2

0
Q2
−

n+τ−1
nτ

Q2

+

(2n−2+τ
τ

σ (R0)λ−
ε

τ−1

)
Q+ B− n(n−1)σ 2(R0)

τ
λ2
−
|n− τ |
τ − 1

ελ.

Now, assume that R0 is large enough so that

25
ετ R2

0
<

n+τ−1
nτ

.

Then (5-14) gives us that, at x0,

(5-15) Q ≥
−E(R0)−

√
E2(R0)+ 4D(R0)F(R0)

2D(R0)
,

where

D(R0)=
n+τ−1

nτ
−

25
ετ R2

0
,

E(R0)=
105+ 5(n+ τ − 1)(1+

√
K R0)

R2
0

−
(2n− 2+ τ)σ (R0)λ

τ
+

ε

τ−1
,

F(R0)= B−
n(n− 1)σ 2(R0)λ

2

τ
−
|n−τ |
τ−1

ελ.

Hence, for all y ∈ BR0 ,

(5-16) G(y)= ϕ(y)G(y)≥ Q(x0)≥
−E(R0)−

√
E2(R0)+ 4D(R0)F(R0)

2D(R0)
.

Noting that 0≤ σ(R0)≤ 1 and B is a constant independent of R0, we deduce from
(5-16) that for a large enough value of R0, G is bounded from below by a constant
independent of R0. Hence

lim
R0→∞

σ(R0)= 1,

which means that

D = lim
R0→∞

D(R0)=
n+τ−1

nτ
,

E = lim
R0→∞

E(R0)=−
(2n−2+τ)λ

τ
+

ε

τ−1
,

F = lim
R0→∞

F(R0)= B− n(n−1)λ2

τ
−
|n−τ |
τ−1

ελ.
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By (5-16), we obtain that, for all y ∈ M , x > 0 and ε > 0,

(5-17) G(y)≥
−E −

√
E2+ 4DF

2D
.

Note that

lim
ε↘0

E =−(2n−2+τ)λ
τ

, lim
ε↘0

F = 2xn(n−1)2λ2

(2x(n+τ−1)+nµ)τ
−

n(n−1)λ2

τ
.

Letting ε↘ 0 in (5-17) leads to (5-1). �

The following result is useful.

Theorem 5.3. If λ < 0 and µ < 0, then for all y ∈ M ,

(5-18) f (y)≤ τ
2

ln τλ
µ
.

Proof. Let ϕ be the cutoff function defined in the proof of Theorem 5.2 and

H = ϕe2 f/τ .

Noting that

∇H =∇ϕe2 f/τ
+ϕ∇e2 f/τ ,

by (3-4) and (3-9), we have that

1 f e2 f/τ
≥

2
τ
1 f f e2 f/τ

=−
2µ
τ

e4 f/τ
+ 2λe2 f/τ .

Hence

(5-19) 1 f H = ϕ1 f e2 f/τ
+ e2 f/τ1 f ϕ+ 2∇ϕ · ∇e2 f/τ

≥−
2µϕ
τ

e4 f/τ
+ 2λϕe2 f/τ

+
1 f ϕ

ϕ
H + 2

∇ϕ · ∇H
ϕ

− 2
|∇ϕ|2

ϕ2 H

holds at y ∈ M when ϕ(y) > 0. We assume that H achieves its maximum at x0 on
B2R0 . If ϕ(x0)= 0, then for all x ∈ BR0 ,

e2 f/τ(x)
= ϕ(x)e2 f/τ(x)

= H(x)≤ H(x0)= 0,

which is impossible, so ϕ(x0) > 0. Noting that

1 f H ≤ 0, ∇H = 0
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hold at x0, by (5-3), (5-4), (5-5) and (5-19), we get that, at x0,

0≥−
2µϕ
τ

e4 f/τ
+ 2λϕe2 f/τ

+
1 f ϕ

ϕ
H −

2|∇ϕ|2

ϕ2 H

≥−
2µ
τϕ

H 2
+ 2λH +

θ ′′+ (n+ τ − 1)(1+
√

K R0)θ
′

R2
0ϕ

H −
2|θ ′|2

R2
0ϕ

2
H

≥−
2µ
τϕ

H 2
+ 2λH −

210+ 10(n+ τ − 1)(1+
√

K R0)
√
ϕ

R2
0ϕ

H.

By using the fact that 0< ϕ(x0)≤ 1, we have that, at x0,

(5-20) −
2µ
τ

H 2
≤−2λϕH +

210+ 10(n+ τ − 1)(1+
√

K R0)
√
ϕ

R2
0

H

≤−2λH +
210+ 10(n+ τ − 1)(1+

√
K R0)

R2
0

H

or

H(x0)≤
τλ

µ
−

105τ + 5τ(n+ τ − 1)(1+
√

K R0)

µR2
0

.

Hence, for all y ∈ BR0 ,

e2 f/τ(y)
= ϕ(y)e2 f/τ(y)

= H(y)≤ H(x0)m

≤
τλ

µ
−

105τ + 5τ(n+ τ − 1)(1+
√

K R0)

µR2
0

.

Letting R0→∞ yields (5-18). �

Remark 5.4. Equation (1-1) still holds if we shift the function f by a constant.
However, from Equation (3-2), the constant µ will change after this shift.

Proof of Theorem 1.4. When τ ≥ 1 and µ ≤ 0, (1-4) follows from Theorem 1.3.
When τ > 1 and µ > 0, (1-4) follows by letting x ↘ 0 in (5-1). We only need to
consider the case that 0< τ ≤ 1. Now if µ≥ 0, (3-2) tells us that

R = µe2 f/τ
+ (n− τ)λ+ 1−τ

τ
|∇ f |2 ≥ (n− τ)λ≥ nλ.

If µ < 0 and λ < 0, by Theorem 5.3, we have

R ≥ µe2 f/τ
+ (n− τ)λ≥ nλ.

Hence (1-4) follows. If µ < 0 and λ = 0, [Wang 2011, Theorem 3.2] tells us that
f is constant, and Theorem 1.4 follows. �
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Proof of Theorem 1.6. When µ≤ 0, (3-2) tells us that

R ≤ (n− τ)λ+ 1−τ
τ
|∇ f |2.

If τ ≥ 1, then R ≤ (n−τ)λ. If 0< τ < 1, by the gradient estimate in [Wang 2011],
we have |∇ f |2 ≤−τλ. Hence R ≤ (n− 1)λ. �
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