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We generalize Illusie’s result to prove the decomposition of the de Rham
complex with smooth horizontal coefficients for a semistable S -morphism
f W X ! Y which is liftable over Z=p2Z. As an application, we prove
the Kollár vanishing theorem in positive characteristic for a semistable S -
morphism f W X ! Y which is liftable over Z=p2Z, where all concerned
horizontal divisors are smooth over Y .
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1. Introduction

The decomposition of de Rham complexes is one of the most important results
in algebraic geometry of positive characteristic, which has been discovered by
Deligne and Illusie [1987] and successfully used to give a purely algebraic proof
of the Kodaira vanishing theorem. More precisely, let k be a perfect field of char-
acteristic p > 0, and W2.k/ the ring of Witt vectors of length two of k. Let S be a
k-scheme, zS a lifting of S over W2.k/, X a smooth S -scheme, and F W X ! X1
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466 QIHONG XIE

the relative Frobenius morphism of X over S . If X has a lifting zX over zS and
dim.X=S/ < p, then we have a decomposition in D.X1/:M

i

�iX1=S
Œ�i �

�
! F��

�

X=S :

Illusie [1990] generalized the result above to the relative case for a semistable
S -morphism f WX! Y to obtain the decomposition of de Rham complexes with
coefficients in the Gauss–Manin systems. Roughly speaking, let E be the branch
divisor of f , DDX �Y E, and HD

L
i R

if��
�

X=Y
.logD=E/ the Gauss–Manin

system. If f W X ! Y has a lifting zf W zX ! zY over zS and dim.X=S/ < p, then
we have a decomposition in D.Y1/:M

i

gri ��Y1=S
.logE1/.H1/

�
! F��

�

Y=S .logE/.H/:

In this paper, we generalize Illusie’s result to the case where smooth horizontal
coefficients are taken into account. Roughly speaking, let D be an adapted divisor
on X , i.e., D consists of three parts: all singular fibers of f , some smooth fibers
of f , and some smooth horizontal divisors with respect to f (see Definition 2.2
for more details). Let

HD
L
i R

if��
�

X=Y
.logD=Ea/:

Then we prove that if f W .X;D/! .Y;Ea/ has a lifting zf W . zX; zD/! . zY ; zEa/

and dim.X=S/ < p, then there is a decomposition in D.Y1/ (see Theorem 5.9 for
more details):L

i gri ��
Y1=S

.logEa1/.H1/
�
! F��

�

Y=S
.logEa/.H/;

from which follows the Kollár vanishing theorem in positive characteristic, saying
that

H i
�
Y;L˝Rjf�!X=S .D/

�
D 0

holds for any i >0, j � 0, and any ample invertible sheaf L on Y (see Theorem 6.3
for more details). It should be mentioned that the proofs of all of the results in this
paper follow Illusie’s arguments very closely.

In general, we may put forward the following conjecture, called logarithmic
Kollár vanishing for semistable reductions in positive characteristic (see [Kollár
1995, Theorem 10.19] for the logarithmic Kollár vanishing theorem in character-
istic zero):

Conjecture 1.1. LetX and Y be proper and smooth S -schemes, f WX!Y anE-
semistable S -morphism, and D a simple normal crossing divisor on X containing
the divisor X �Y E. Let H be a Q-divisor on X such that the support of the



DECOMPOSITION OF DE RHAM COMPLEXES 467

fractional part of H is contained in D and H �Q f
�L, where L is an ample Q-

divisor on Y . Assume that f W .X;D/! .Y;E/ has a lifting zf W . zX; zD/! . zY ; zE/

over zS and dim.X=S/ < p. Then H i
�
Y;Rjf�OX .KX=S C dHe/

�
D 0 holds for

any i > 0 and j � 0, where dHe denotes the round-up of H .

There are several difficulties in dealing with this conjecture. First, we need some
technique to change the Q-divisor argument into the integral divisor argument.
Second, the situation of the horizontal divisors contained inD orH is complicated.
Third, the decomposition of de Rham complexes with horizontal coefficients is
completely unknown. In this sense, all of the results obtained in this paper may be
regarded as the first step to resolving Conjecture 1.1.

Notation. We denote the support of a divisorD by Supp.D/, the relative dualizing
sheaf of f WX ! Y by !

X=Y
, and the divisor defined by x D 0 by div0.x/.

2. Definitions and preliminaries

This section is parallel to [Illusie 1990, §1], and all proofs follow Illusie’s proofs
very closely.

Definition 2.1. Let S be a scheme, X and Y smooth S -schemes, and f WX ! Y

an S -morphism. Let E � Y be a divisor relatively simple normal crossing over S
(RSNC for short), and EX D X �Y E. We say that f W X ! Y is E-semistable,
or that f has a semistable reduction along E if, locally for the étale topology, f
is the product of S -morphisms of one of the following types:

(i) pr1 W A
n
S ! A1S , E D∅;

(ii) h W AnS ! A1S , h�y D x1 � � � xn, where AnS D Spec OS Œx1; : : : ; xn�, A1S D

Spec OS Œy�, and E D div0.y/.

Definition 2.2. Let f WX! Y be an E-semistable morphism as in Definition 2.1.
A divisor D �X is said to be adapted to f if the following conditions hold:

(i) D admits a decomposition D D EX CDaCDh of irreducible components,
whereDa is the sum of the irreducible components ofD whose images under
f are divisors not contained in E and Dh is the sum of those whose images
under f are the whole Y .

(ii) D is RSNC over S , Dh is RSNC over Y , and the union of the divisor A WD
f .Da/ and E is RSNC over S .

Remark 2.3. (1) The divisor EX is adapted to f .

(2) In Definition 2.2, for any irreducible component Dh1 of Dh, the restriction
morphism f jDh1

WDh1! Y is smooth.
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Definition 2.4. Let f WX!Y be anE-semistable S -morphism with an adapted di-
visorD as in Definition 2.2. For simplicity, denoteECA byEa. Let��

X=S
.logD/

and ��
Y=S

.logEa/ be the de Rham complexes of X and Y with logarithmic poles
alongD and Ea, respectively. We define��

X=Y
.logD=Ea/, the de Rham complex

ofX over Y with relative logarithmic poles alongD overEa, in the following way.
By Lemma 2.5, the quotient

�1X=Y .logD=Ea/ WD
�1
X=S

.logD/

Im
�
f ��1

Y=S
.logEa/

�
is a locally free sheaf on X of rank d D n � e, where n D dim.X=S/ and e D
dim.Y=S/. Let �i

X=Y
.logD=Ea/ D

Vi
�1
X=Y

.logD=Ea/, and define the differ-
ential d by passage to the quotient of that of the complex ��

X=S
.logD/.

It is easy to see that if f is smooth, then ��
X=Y

.logD=Ea/ D ��X=Y .logDh/
in the usual sense.

Lemma 2.5. With notation as in Definition 2.4, there is an exact sequence of lo-
cally free sheaves of finite type:

(2-1) 0! f ��1Y=S .logEa/!�1X=S .logD/!�1X=Y .logD=Ea/! 0:

Proof. We only have to prove the statement locally for the étale topology, so it
suffices to check for the following three types, where AnS D Spec OS Œx1; : : : ; xn�

and A1S D Spec OS Œy�:

(i) pr1 WA
n
S!A1S , where ED∅, AD∅, pr�1.y/D x1, andDhD div0.x2 � � � xr/

for 1� r � n;

(ii) pr1 W A
n
S ! A1S , where E D ∅, A D div0.y/, pr�1.y/ D x1, Da D div0.x1/,

and Dh D div0.x2 � � � xr/ for 1� r � n;

(iii) h W AnS ! A1S , where E D div0.y/, h�y D x1 � � � xs , A D ∅, and Dh D
div0.xsC1 � � � xn/ for 2� s � n.

(i) f ��1
Y=S

.logEa/ is generated by f �.dy/Ddx1,�1
X=S

.logD/ is generated by
dx1, dx2=x2, . . . , dxr=xr , dxrC1, . . . , dxn; hence,�1

X=Y
.logD=Ea/ is generated

by dx2=x2, . . . , dxr=xr , dxrC1, . . . , dxn, so the conclusion is clear.

(ii) f ��1
Y=S

.logEa/ is generated by f �.dy=y/D dx1=x1, and �1
X=S

.logD/ is
generated by dx1=x1, . . . , dxr=xr , dxrC1, . . . , dxn; hence, �1

X=Y
.logD=Ea/ is

generated by dx2=x2, . . . , dxr=xr , dxrC1, . . . , dxn, so the conclusion is clear.

(iii) f ��1
Y=S

.logEa/ is generated by f �.dy=y/D
Ps
iD1 dxi=xi , �

1
X=S

.logD/
is generated by dx1=x1, . . . , dxn=xn; hence
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�1X=Y .logD=Ea/DOX

�
dx1

x1
; : : : ;

dxs

xs

��� sX
iD1

dxi

xi

�L
OX

�
dxsC1

xsC1
; : : : ;

dxn

xn

�
;

so the conclusion is clear. �

Remarks 2.6. 1. Let fi W Xi ! Yi be Ei -semistable S -morphisms with adapted
divisorsDi as in Definition 2.2. LetX , Y , and f WX!Y be the external products
over S ofXi , Yi , and fi , respectively. Then��

X=Y
.logD=Ea/ is the external tensor

product of ��
Xi=Yi

.logDi=Eai / over S .

2. In the exact sequence (2-1), taking the top exterior tensor product gives rise to
the canonical isomorphism

f ��eY=S .logEa/˝�dX=Y .logD=Ea/
�
!�nX=S .logD/:

Since �e
Y=S

.logEa/D !Y=S .Ea/, �
n
X=S

.logD/D !
X=S

.D/, we have

�dX=Y .logD=Ea/Š !X=Y .Dh/:

3. Let f 0 WX 0! Y 0 be deduced from f WX! Y by a base change Y 0! Y . Put

(2-2) ��X 0=Y 0.logD0=E 0a/D�
�

X=Y .logD=Ea/˝OX
OX 0 :

Note that, in general,X 0 is no longer smooth over S , and that it is no longer possible
to interpret ��

X 0=Y 0
.logD0=E 0a/ as a de Rham complex with relative logarithmic

poles.

4. Let j W U ,! X be the open subset over which f is smooth. Then we have a
canonical isomorphism:

(2-3) ��X=Y .logD=Ea/
�
�! j��

�

U=Y .logDjU =Ea/:

In fact, for any point s 2 S , Xs � Us is of codimension at least 2 in Xs; there-
fore, ��

X=Y
.logD=Ea/ is the unique prolongation of ��

U=Y
.logDjU =Ea/ with

components being locally free of finite type.

From now on, let S be a scheme of characteristic p > 0, and f W X ! Y an
E-semistable S -morphism with an adapted divisor D as in Definition 2.2. Let
FX and FY be the absolute Frobenius morphisms of X and Y , which fit into the
commutative diagram

(2-4)
X

f   

F // X 0

f 0

��

// X

f

��
Y

FY // Y

where the square is cartesian and the composition of the upper horizontal mor-
phisms is equal to FX .
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The differential d of the complex F���X=Y .logD=Ea/ is OX 0-linear, so we
would like to calculate its cohomology OX 0-modules by a Cartier-type isomor-
phism. Consider the following commutative diagram with cartesian square:

(2-5)
X

  

FX=S // X1

��

// X

��
S

FS // S;

where FX=S WX !X1 is the relative Frobenius morphism of X over S .
By [Katz 1970, 7.2], we have the Cartier isomorphism

C�1 W�1X1=S
.logD1/

�
!H1

�
FX=S��

�

X=S .logD/
�
;

where D1 is the pullback of D by FS . By adjunction of .F �S ; FS�/ and abuse of
notation, we have the homomorphism

C�1 W�1X=S .logD/!H1
�
FX��

�

X=S .logD/
�
;

which sends dx and dx=x to the cohomology class of, respectively, xp�1dx and
dx=x in the OX -module H1

�
FX��

�

X=S
.logD/

�
. The natural surjective morphism

of complexes of OX -modules FX���X=S .logD/!FX��
�

X=Y
.logD=Ea/ induces

a natural homomorphism

� WH1
�
FX��

�

X=S .logD/
�
!H1

�
FX��

�

X=Y .logD=Ea/
�
;

which kills all cohomology classes of yp�1dy (respectively, dy=y), where dy
(respectively, dy=y) are local sections of f ��1

Y=S
.logEa/. The composition

� ıC�1 W�1X=S .logD/!H1
�
FX��

�

X=Y .logD=Ea/
�

vanishes on f ��1
Y=S

.logEa/, which defines the homomorphism

C�1 W�1X=Y .logD=Ea/!H1
�
FX��

�

X=Y .logD=Ea/
�
:

By adjunction of .F �Y ; FY �/, we have the Cartier homomorphism

C�1 W�1X 0=Y .logD0=Ea/!H1
�
F��

�

X=Y .logD=Ea/
�
:

The exterior product gives rise to a homomorphism of graded OX 0-algebras:

(2-6) C�1 W��X 0=Y .logD0=Ea/!H�
�
F��

�

X=Y .logD=Ea/
�
:

Proposition 2.7. The homomorphism (2-6) is an isomorphism.
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Proof. Since (2-6) is compatible with étale topology and external tensor products
over S , it suffices to prove the statement for those three types described in the proof
of Lemma 2.5.

(i) and (ii) In these cases, f is smooth; hence,��
X=Y

.logD=Ea/D��X=Y .logDh/.
Thus (2-6) is just the usual Cartier isomorphism [Katz 1970, 7.2].

(iii) In this case, we can further assume S D Spec Fp. Diagram (2-4) corresponds
to the following diagram of rings:

B // B 0
F // B

A

f �

OO

FA // A;

f 0�

OO

f �

>>

where A D FpŒy�, B D FpŒx1; : : : ; xn�, f �.y/ D x1 � � � xs , FA.y/ D yp, and
F.xi /Dx

p
i . If we identify B with the A-algebra FpŒx1; : : : ; xn; y�=.y�x1 � � � xs/,

then B 0 can be identified with the A-algebra FpŒx1; : : : ; xn; y�=.y
p � x1 � � � xs/

since y 2 A is sent to yp. Thus B 0 can also be identified with the A-algebra
FpŒx

p
1 ; : : : ; x

p
s ; xsC1; : : : ; xn; x1 � � � xs�. Define

B1 D FpŒx1; : : : ; xs�; B 01 D FpŒx
p
1 ; : : : ; x

p
s ; x1 � � � xs�;

B2 D FpŒxsC1; : : : ; xn�; B 02 D FpŒxsC1; : : : ; xn�:

Then B DB1˝B2, B 0DB 01˝B
0
2, F WB 0!B factorizes into the external tensor

product of F1 W B 01 ! B1 defined by the inclusion and F2 W B 02 ! B2 defined
by the p-th power map, and B ! B 0 factorizes into the external tensor product
of Bj ! B 0j for j D 1; 2, where B1 ! B 01 is defined by xi 7! x

p
i (1 � i � s)

and B2 ! B 02 is defined by xi 7! xi (s C 1 � i � n). To prove that (2-6) is an
isomorphism, it suffices to prove that

(2-7) C�1 W��
B 0

j
=A
.logD0=Ea/!H�

�
F��

�

Bj =A
.logD=Ea/

�
is an isomorphism for j D 1; 2. When j D 1, it was proved in [Illusie 1990,
Proposition 1.5]. When j D 2, (2-7) is just the usual Cartier isomorphism [Katz
1970, 7.2]. �

Remark 2.8. Note that in case (iii), f is no longer smooth,X 0 is no longer smooth
over S , and F WX !X 0 is no longer flat.

3. Decomposition of de Rham complex with relative logarithmic poles

This section is parallel to [Illusie 1990, §2], and all proofs follow Illusie’s proofs
very closely.
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Definition 3.1. Let S be a scheme of characteristic p > 0. A lifting of S over
Z=p2Z is a scheme zS , defined and flat over Z=p2Z such that

zS �Spec Z=p2Z Spec Fp D S:

A lifting of the absolute Frobenius morphism FS W S ! S over zS is an endo-
morphism F zS W

zS ! zS of zS such that F zS jS D FS . A lifting of an E-semistable
S -morphism f W X ! Y with an adapted divisor D over zS is an zE-semistable
zS -morphism zf W zX ! zY with an adapted divisor zD as in Definition 2.2, such that
zX� zS S DX , zY � zS S D Y , zD� zS S DD, zE� zS S DE, and zf jX D f . We say that
zf W . zX; zD/! . zY ; zEa/ is a lifting of f W .X;D/! .Y;Ea/ over zS if no confusion

is likely.

In this section, let S be a scheme of characteristic p > 0, zS a lifting of S over
Z=p2Z, and F zS W zS! zS a lifting of the absolute Frobenius morphism FS W S! S

over zS . Let f W X ! Y be an E-semistable S -morphism with an adapted divisor
D as in Definition 2.2, and zf W . zX; zD/! . zY ; zEa/ a lifting of f W .X;D/! .Y;Ea/

over zS as in Definition 3.1. Let zD1� zX1 be the zS -schemes deduced from zD� zX by
the base change F zS , and zF W zX! zX1 an zS -morphism lifting the relative Frobenius
morphism F WX !X1 of X over S :

zX

��

zF // zX1

��

// zX

��
zS

F zS // zS

We say that zF is compatible with zD if

zF �O zX1
.� zD1/D O zX .�p

zD/:

Locally for the étale topology on X , there exists a lifting zF W zX ! zX1 compatible
with zD. Indeed, if zX is étale over An

zS
via coordinates fzx1; : : : ; zxng and zD D

div0.zx1 � � � zxr/, then there exists a unique lifting zF such that zF �.zxi ˝1/D zx
p
i for

1� i � n.[-3pt]
We recall the following results from [Deligne and Illusie 1987, 4.2.3]. Two

compatible liftings zF1, zF2 differ by a derivation

h12 D . zF
�
2 �
zF �1 /=p W�

1
X1=S

.logD1/! F�OX :

In fact, if zX is étale over An
zS

via coordinates fzx1; : : : ; zxng and zDD div0.zx1 � � � zxr/,
then we can write zF �j .zxi ˝ 1/D .1Cpaij /zx

p
i for 1 � i � r and j D 1; 2. By an

easy calculation, we have h12.dxi=xi˝1/D ai2�ai1 for 1� i � r . Furthermore,
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any lifting zF compatible with zD gives rise to a quasi-isomorphism of complexes:

(3-1) � zF W
M
i<p

�iX1=S
.logD1/Œ�i �! �<pF��

�

X=S .logD/;

which is given in degree 1 by �1
zF
D zF �=p and prolonged canonically through the

exterior powers.

Theorem 3.2. Let f W X ! Y be an E-semistable S -morphism with an adapted
divisor D, and zf W . zX; zD/ ! . zY ; zEa/ a lifting of f W .X;D/ ! .Y;Ea/ over
zS . Let zFY=S W zY ! zY1 be a lifting over zS of the relative Frobenius morphism
FY=S W Y ! Y1 of Y over S , which is compatible with the divisor zEa. Then there
is a canonical isomorphism in D.X 0;OX 0/:

(3-2) �
. zf ; zFY=S /

W

M
i<p

�iX 0=Y .logD0=Ea/Œ�i �! �<pFX=Y ��
�

X=Y .logD=Ea/;

which induces the Cartier isomorphism C�1 (2-6) on Hi .

Proof. The proof is analogous to that of [Illusie 1990, Theorem 2.2]. It suffices
to define, for any i < p, �i W�i

X 0=Y
.logD0=Ea/Œ�i �! FX=Y ��

�

X=Y
.logD=Ea/

inducing C�1 on Hi . Since �i can be deduced from �1 by an argument similar to
that of [Deligne and Illusie 1987, 2.1(a)], we only have to define �1. The definition
of �1 is given in three steps.

Step 1: local case. To define �1, we first suppose that there is a lifting zF W zX! zX1
of the relative Frobenius morphism F WX!X1 of X over S , which is compatible
with zD and compatible with zFY=S in the sense that the square is commutative:

(3-3)

zX

zF
//

zf
��

zX1

zf1

��

zY

zFY=S

// zY1:

The morphism �1
zF
W �1

X1=S
.logD1/Œ�1�! F��

�

X=S
.logD/ in (3-1), composed

with the projection of F���X=S .logD/ onto F���X=Y .logD=Ea/, vanishes on the
subsheaf f �1 �

1
Y1=S

.logEa1/Œ�1�; therefore, by passage to the quotient, it defines a
morphism �1

X1=Y1
.logD1=Ea1/Œ�1�! F��

�

X=Y
.logD=Ea/, and by adjunction,

it defines a morphism

(3-4) �1 W�1X 0=Y .logD0=Ea/Œ�1�! FX=Y ��
�

X=Y .logD=Ea/;

which induces the Cartier isomorphism C�1 on H1.
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Step 2: from local to global. Assume that zFj W zX ! zX1 are liftings of the relative
Frobenius of X over S for j D 1; 2, which are compatible with zD and compatible
with zFY=S . Then the derivation

. zF �2 �
zF �1 /=p W�

1
X1=S

.logD1/! F�OX

vanishes on the subsheaf f �1 �
1
Y1=S

.logEa1/ by the commutativity of the square
(3-3). Therefore, by passage to the quotient and by adjunction, it defines a homo-
morphism

h12 W�
1
X 0=Y .logD0=Ea/! FX=Y �OX :

A calculation analogous to that of [Deligne and Illusie 1987, 2.1(c)] shows that
�12 � �

1
1 D dh12 holds, where �1j are the morphisms (3-4) associated with zFj for

j D 1; 2. By an argument similar to that of [Deligne and Illusie 1987, 2.1(c)], we
have a relation of transitivity: h12 C h23 D h13 for three liftings zF1, zF2, zF3 of
the relative Frobenius of X over S . Working on the étale topology instead of the
Zariski topology on X , we can construct a global morphism �1 by the procedure
of the Čech globalization described as in [Deligne and Illusie 1987, 2.1(d)].

Step 3: local existence of compatible liftings. We shall prove that locally for the
étale topology on X , there exists a lifting zF W zX ! zX1 compatible with zD and
compatible with zFY=S . Keeping in mind the types (i), (ii), and (iii) as in the proof
of Lemma 2.5, we divide the argument into four cases.

(I) Assume div0.y/ � zA and zF �
Y=S

.y˝ 1/D .1Cpa/yp. Define zF �.x1˝ 1/D
.1Cpa/x

p
1 and zF �.xi ˝1/D x

p
i (i � 2), where x1 is the coordinate for the fiber

over div0.y/, and xi (i � 2) are the coordinates for the divisor zDh.

(II) Assume div0.y/� zE and zF �
Y=S

.y˝1/D .1Cpa/yp. Define zF �.x1˝1/D
.1Cpa/x

p
1 and zF �.xi ˝1/D x

p
i (i � 2), where x1 is a prechosen coordinate for

the fiber over div0.y/, and xi (i � 2) are the other coordinates for the fiber over
div0.y/ or the coordinates for zDh.

(III) Assume div0.y/ 6� zEa and zF �
Y=S

.y˝ 1/D yp Cpb. Define zF �.x1˝ 1/D
x
p
1 C pb and zF �.xi ˝ 1/ D x

p
i (i � 2), where x1 is the coordinate for the fiber

over div0.y/, and xi (i � 2) are the coordinates for zDh.

(IV) Assume that all xi are not the coordinates for the fiber over div0.y/. Define
zF �.xi ˝ 1/D x

p
i .

It is easy to check that zF W zX! zX1 constructed above is a lifting of the relative
Frobenius ofX over S , which is compatible with zD and compatible with zFY=S . �

Remarks 3.3. (1) If f is smooth, then the existence of a lifting of .X 0;D0
h
/

over zY such that zX 0 is smooth over zY and zD0
h

is RSNC over zY , gives rise to
the decomposition of �<pFX=Y ���X=Y .logDh/. Moreover, the gerbe of splittings



DECOMPOSITION OF DE RHAM COMPLEXES 475

of ��1FX=Y ���X=Y .logDh/ is canonically isomorphic to the gerbe of liftings of

.X 0;D0
h
/ over zY (see [Deligne and Illusie 1987, 4.2.3]).

(2) Under the hypotheses of Theorem 3.2, suppose that f is of relative dimension
� p and HpC1

�
X 0;

�
�
p

X 0=Y
.logD0=Ea/

�_�
D 0 (this is the case, for example, if

Y is affine and f is proper), then FX=Y ���X=Y .logD=Ea/ is decomposable, i.e.,
there is an isomorphism in D.X 0;OX 0/M

i

�iX 0=Y .logD0=Ea/Œ�i �
�
! FX=Y ��

�

X=Y .logD=Ea/;

which induces the Cartier isomorphism C�1 on Hi . The proof of the decomposi-
tion is analogous to that of [Deligne and Illusie 1987, 3.7(b) and 4.2.3].

We shall state some corollaries for ��
X=Y

.logD=Ea/ and omit their proofs,
which are analogous to those in [Illusie 1990, §2].

Corollary 3.4. Under the hypotheses of Theorem 3.2, suppose further that f is
proper. Then:

(i) For any i C j < p, the OY -modules Rjf��iX=Y .logD=Ea/ are locally free
of finite type, and of formation compatible with any base change Z! Y .

(ii) The Hodge spectral sequence

E
ij
1 DR

jf��
i
X=Y .logD=Ea/)RiCjf��

�

X=Y .logD=Ea/

satisfies Eij1 DE
ij
1 for any i C j < p.

(iii) If f is of relative dimension � p, then (i) and (ii) are valid for any i , j .

Corollary 3.5. Let K be a field of characteristic zero, S D SpecK, X , Y smooth
S -schemes, and f W X ! Y a proper E-semistable S -morphism with an adapted
divisor D as in Definition 2.2. Then:

(i) The OY -modules Rjf��iX=Y .logD=Ea/ are locally free of finite type, and of
formation compatible with any base change T ! Y .

(ii) The Hodge spectral sequence

E
ij
1 DR

jf��
i
X=Y .logD=Ea/)RiCjf��

�

X=Y .logD=Ea/

degenerates in E1.

Corollary 3.6. Under the hypotheses of Corollary 3.4, suppose further that f is
of purely relative dimension d � p and S is locally Noetherian and regular. Let L

be an f -ample invertible OX -module. Then

Rjf�
�
L�1˝�iX=Y .logD=Ea/

�
D 0 for all i C j < d;

Rjf�
�
L.�Dh/˝�

i
X=Y .logD=Ea/

�
D 0 for all i C j > d:
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Corollary 3.7. Under the hypotheses of Corollary 3.5, let L be an f -ample in-
vertible OX -module. Then

Rjf�
�
L�1˝�iX=Y .logD=Ea/

�
D 0 for all i C j < d;

Rjf�
�
L.�Dh/˝�

i
X=Y .logD=Ea/

�
D 0 for all i C j > d:

4. Variant with support

In this section, let S be a scheme of characteristic p > 0, and f W X ! Y an E-
semistable S -morphism with an adapted divisor D as in Definition 2.2. For sim-
plicity, denote EX CDa by Dv. Tensoring (2-1) with f �OY .�Ea/D OX .�Dv/,
we obtain an exact sequence of locally free OX -modules:

(4-1) 0! f ��1Y=S .Ea; 0/!�1X=S .Dv;Dh/!�1X=Y .Dv;Dh/! 0;

where
�1Y=S .Ea; 0/ WD�

1
Y=S .logEa/˝OY .�Ea/;

�1X=S .Dv;Dh/ WD�
1
X=S .logD/˝OX .�Dv/;

�1X=Y .Dv;Dh/ WD�
1
X=Y .logD=Ea/˝OX .�Dv/:

For any i � 0, define

�iX=Y .Dv;Dh/D�
i
X=Y .logD=Ea/˝OX .�Dv/:

Then it is easy to check that
�
��
X=Y

.Dv;Dh/; d
�

is a well-defined complex.
Let FY be the absolute Frobenius of Y , and F DFX=Y the relative Frobenius of

X over Y . We have the following commutative diagram with a cartesian square:

X

f   

F // X 0

f 0

��

// X

f

��
Y

FY // Y

The differential d of the complex F���X=Y .Dv;Dh/ is OX 0-linear, so we would
like to calculate its cohomology OX 0-modules by a Cartier-type isomorphism. Con-
sider the Cartier isomorphism (2-6) for ��

X=Y
.logD=Ea/:

C�1 W��X 0=Y .logD0=Ea/!H�
�
F��

�

X=Y .logD=Ea/
�
:

Since F���X=Y .Dv;Dh/ D F��
�

X=Y
.logD=Ea/˝ f 0�OY .�Ea/, tensoring this

isomorphism with f 0�OY .�Ea/ leads to this proposition:

Proposition 4.1. There is an isomorphism of graded OX 0-algebras:

(4-2) C�1 W��X 0=Y .D
0
v;D

0
h/!H�

�
F��

�

X=Y .Dv;Dh/
�
:
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We call (4-2) the Cartier isomorphism of ��
X=Y

.Dv;Dh/.
Tensoring 3.2 with f 0�OY .�Ea/, we have the following theorem.

Theorem 4.2. Let f W X ! Y be an E-semistable S -morphism with an adapted
divisor D, and zf W . zX; zD/ ! . zY ; zEa/ a lifting of f W .X;D/ ! .Y;Ea/ over
zS . Let zFY=S W zY ! zY1 be a lifting over zS of the relative Frobenius morphism
FY=S W Y ! Y1 of Y over S , which is compatible with the divisor zEa. Then there
is a canonical isomorphism in D.X 0;OX 0/:

(4-3) �
. zf ; zFY=S /

W

M
i<p

�iX 0=Y .D
0
v;D

0
h/Œ�i �

�
! �<pF��

�

X=Y .Dv;Dh/;

which induces the Cartier isomorphism C�1 (4-2) on Hi .

Remark 4.3. Under the hypotheses of Theorem 4.2, suppose that f is of relative
dimension � p and HpC1

�
X 0; .�

p

X 0=Y
.D0v;D

0
h
//_
�
D 0 (this is the case, for ex-

ample, if Y is affine and f is proper), then F���X=Y .Dv;Dh/ is decomposable,
i.e., there is an isomorphism in D.X 0;OX 0/:M

i

�iX 0=Y .D
0
v;D

0
h/Œ�i �

�
! F��

�

X=Y .Dv;Dh/;

which induces the Cartier isomorphism C�1 on Hi . The proof of the decomposi-
tion is analogous to that of [Deligne and Illusie 1987, 3.7(b) and 4.2.3].

We shall state some corollaries for��
X=Y

.Dv;Dh/ and omit their proofs, which
are analogous to those in [Illusie 1990, §2].

Corollary 4.4. Under the hypotheses of Theorem 4.2, suppose further that f is
proper. Then:

(i) For any i C j < p, the OY -modules Rjf��iX=Y .Dv;Dh/ are locally free of
finite type, and of formation compatible with any base change Z! Y .

(ii) The Hodge spectral sequence

E
ij
1 DR

jf��
i
X=Y .Dv;Dh/)RiCjf��

�

X=Y .Dv;Dh/

satisfies Eij1 DE
ij
1 for any i C j < p.

(iii) If f is of relative dimension � p, then (i) and (ii) are valid for any i , j .

Corollary 4.5. Let K be a field of characteristic zero, S D SpecK, X , Y smooth
S -schemes, and f W X ! Y a proper E-semistable S -morphism with an adapted
divisor D as in Definition 2.2. Then:

(i) The OY -modules Rjf��iX=Y .Dv;Dh/ are locally free of finite type, and of
formation compatible with any base change T ! Y .



478 QIHONG XIE

(ii) The Hodge spectral sequence

E
ij
1 DR

jf��
i
X=Y .Dv;Dh/)RiCjf��

�

X=Y .Dv;Dh/

degenerates in E1.

Corollary 4.6. Under the hypotheses of Corollary 4.4, suppose further that f is
of purely relative dimension d � p and S is locally Noetherian and regular. Let L

be an f -ample invertible OX -module. Then

Rjf�
�
L�1˝�iX=Y .Dv;Dh/

�
D 0 for all i C j < d;

Rjf�
�
L.2Dv �Dh/˝�

i
X=Y .Dv;Dh/

�
D 0 for all i C j > d:

Corollary 4.7. Under the hypotheses of Corollary 4.5, let L be an f -ample in-
vertible OX -module. Then

Rjf�
�
L�1˝�iX=Y .Dv;Dh/

�
D 0 for all i C j < d;

Rjf�
�
L.2Dv �Dh/˝�

i
X=Y .Dv;Dh/

�
D 0 for all i C j > d:

5. Decomposition of de Rham complex with smooth horizontal coefficients

This section is parallel to [Illusie 1990, §3], and all proofs follow Illusie’s proofs
very closely.

In this section, let S be a scheme of characteristic p > 0, and f W X ! Y an
E-semistable S -morphism with an adapted divisor D as in Definition 2.2. Then
we have the following exact sequence of locally free OX -modules:

(5-1) 0! f ��1Y=S .logEa/!�1X=S .logD/!�1X=Y .logD=Ea/! 0:

By definition, �i
X=Y

.logD=Ea/ D
Vi
�1
X=Y

.logD=Ea/ for any i � 0. Then
�d
X=Y

.logD=Ea/D!X=Y .Dh/, and the de Rham complex .��
X=Y

.logD=Ea/; d/,
where

d W�iX=Y .logD=Ea/!�iC1
X=Y

.logD=Ea/

is the ordinary differential map.

Definition 5.1. Define HD
L
i R

if��
�

X=Y
.logD=Ea/ to be a graded OY -module.

The Koszul filtration of ��
X=S

.logD/ associated with (5-1) is defined as follows:

Ki��X=S .logD/D Im
�
f ��iY=S .logEa/˝���iX=S .logD/!��X=S .logD/

�
:

ThenKi��
X=S

.logD/ are subcomplexes of��
X=S

.logD/ and induce a decreasing
filtration of ��

X=S
.logD/:

� � � �Ki��X=S .logD/�KiC1��X=S .logD/� � � � :
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It is easy to show that Ki�j
X=S

.logD/ is locally free for any i , j , and the associ-
ated graded complex

griK �
�

X=S .logD/DKi=KiC1 D f ��iY=S .logEa/˝���iX=Y .logD=Ea/:

The exact sequence

0!K1=K2!K0=K2!K0=K1! 0

is a short exact sequence of complexes:

0! f ��1Y=S .logEa/˝���1X=Y .logD=Ea/!��X=S .logD/=K2

!��X=Y .logD=Ea/! 0;

which induces a morphism in D.X/:

(5-2) ��X=Y .logD=Ea/! f ��1Y=S .logEa/˝��X=Y .logD=Ea/:

Applying
L
i R

if� to (5-2), we obtain the Gauss–Manin connection

(5-3) r W H!�1Y=S .logEa/˝H;

and we can show that r is an integrable connection with logarithmic poles along
Ea. The complex

(5-4) ��Y=S .logEa/.H/

D
�
H
r
!�1Y=S .logEa/˝H

r
! � � �

r
!�iY=S .logEa/˝H

r
! � � �

�
is called the de Rham complex of Y over S with logarithmic poles along Ea
and coefficients in the Gauss–Manin system H. In fact, the Koszul filtration of
��
X=S

.logD/ and the derived functor Rf� give rise to a spectral sequence

(5-5) E
ij
1 DRiCjf�

�
griK �

�

X=S .logD/
�

D�iY=S .logEa/˝Rjf��
�

X=Y .logD=Ea/)RiCjf��
�

X=S .logD/:

Then the de Rham complex ��
Y=S

.logEa/.H/ is just [-3pt]the direct sum of the
horizontal lines of Eij1 , and the Gauss–Manin connection r is just the direct sum
of the differential operators d1 WE

ij
1 !E

iC1;j
1 .

Variant. By definition, for any i � 0, we have

�iX=S .Dv;Dh/D�
i
X=S .logD/˝OX .�Dv/;

�iX=Y .Dv;Dh/D�
i
X=Y .logD=Ea/˝OX .�Dv/:

Define the graded OY -module

H� D
M
i

Rif��
�

X=Y .Dv;Dh/:
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The Koszul filtration of��
X=S

.Dv;Dh/ associated with (5-1) is defined as follows:

Ki��X=S .Dv;Dh/D Im
�
f ��iY=S .logEa/˝���iX=S .Dv;Dh/!��X=S .Dv;Dh/

�
:

Then Ki��
X=S

.Dv;Dh/ are subcomplexes of ��
X=S

.Dv;Dh/ and induce a de-
creasing filtration of ��

X=S
.Dv;Dh/:

� � � �Ki��X=S .Dv;Dh/�K
iC1��X=S .Dv;Dh/� � � � :

It is easy to show that Ki�j
X=S

.Dv;Dh/ is locally free for any i , j , and the as-
sociated graded complex griK �

�

X=S
.Dv;Dh/DK

i=KiC1 D f ��i
Y=S

.logEa/˝
���i
X=Y

.Dv;Dh/. The exact sequence

0!K1=K2!K0=K2!K0=K1! 0

is a short exact sequence of complexes:

0! f ��1Y=S .logEa/˝���1X=Y .Dv;Dh/!��X=S .Dv;Dh/=K
2

!��X=Y .Dv;Dh/! 0;

which induces a morphism in D.X/:

(5-6) ��X=Y .Dv;Dh/! f ��1Y=S .logEa/˝��X=Y .Dv;Dh/:

Applying
L
i R

if� to (5-6), we obtain the Gauss–Manin connection

(5-7) r W H�!�1Y=S .logEa/˝H�;

and we can show that r is an integrable connection with logarithmic poles along
Ea. The complex

(5-8) ��Y=S .logEa/.H�/

D
�
H�
r
!�1Y=S .logEa/˝H�

r
! � � �

r
!�iY=S .logEa/˝H�

r
! � � �

�
is called the de Rham complex of Y over S with logarithmic poles along Ea
and coefficients in the Gauss–Manin system H�. In fact, the Koszul filtration of
��
X=S

.Dv;Dh/ and the derived functor Rf� give rise to a spectral sequence

(5-9) E
ij
1 DRiCjf�

�
griK �

�

X=S .Dv;Dh/
�

D�iY=S .logEa/˝Rjf��
�

X=Y .Dv;Dh/)RiCjf��
�

X=S .Dv;Dh/:

[-4pt]The de Rham complex ��
Y=S

.logEa/.H�/ is just the direct sum of the hor-
izontal lines of Eij1 , and the Gauss–Manin connection r is just the direct sum of
the differential operators d1 WE

ij
1 !E

iC1;j
1 .
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Definition 5.2. The Hodge filtrations of H and H� are decreasing filtrations re-
spectively defined by

FiliHD Im
�L

j Rjf��
�i
X=Y

.logD=Ea/!
L
j Rjf��

�

X=Y
.logD=Ea/

�
;

FiliH� D Im
�L

j Rjf��
�i
X=Y

.Dv;Dh/!
L
j Rjf��

�

X=Y
.Dv;Dh/

�
;

which induce the Hodge spectral sequences

E
ij
1 DR

jf��
i
X=Y .logD=Ea/)RiCjf��

�

X=Y .logD=Ea/;(5-10)

E
ij
1 DR

jf��
i
X=Y .Dv;Dh/)RiCjf��

�

X=Y .Dv;Dh/:(5-11)

Note that the Gauss–Manin connection satisfies Griffiths transversality:

r.FiliHŠ/��1Y=S .logEa/˝Fili�1HŠ;

where Š stands for � or nothing. Hence, the Hodge filtration of HŠ induces a de-
creasing filtration of the de Rham complex ��

Y=S
.logEa/.HŠ/ by subcomplexes:

(5-12) Fili��Y=S .logEa/.HŠ/D
�
FiliHŠ

r
!�1Y=S .logEa/˝Fili�1HŠ

r
!

� � �
r
!�

j

Y=S
.logEa/˝Fili�jHŠ

r
! � � �

�
:

Assume the Hodge spectral sequences (5-10) and (5-11) degenerate in E1. ThenL
j R

j�if��
i
X=Y

.logD=Ea/
�
! gri H;(5-13) L

j R
j�if��

i
X=Y

.Dv;Dh/
�
! gri H�:(5-14)

An argument similar to that of [Katz 1970] shows that the Gauss–Manin connection
r Wgri HŠ!�1

Y=S
.logEa/˝gri�1 HŠ can be identified with the cup product by the

Kodaira–Spencer class c 2 Ext1OX

�
�1
X=Y

.logD=Ea/; f ��1Y=S .logEa/
�

defined

by (5-1). For this reason, the graded complex of ��
Y=S

.logEa/.HŠ/ associated
with the Hodge filtration (5-12) is called the Kodaira–Spencer complex:

(5-15) gri ��Y=S .logEa/.HŠ/D
�

gri HŠ
r
!�1Y=S .logEa/˝ gri�1 HŠ

r
!

� � �
r
!�

j

Y=S
.logEa/˝ gri�j HŠ

r
! � � �

�
;

where Š stands for � or nothing.

Definition 5.3. The conjugate filtrations of H and H� are increasing filtrations
respectively defined by

FiliHD Im
�L

j Rjf�.��i�
�

X=Y
.logD=Ea//!

L
j Rjf��

�

X=Y
.logD=Ea/

�
;

FiliH�D Im
�L

j Rjf�.��i�
�

X=Y
.Dv;Dh//!

L
j Rjf��

�

X=Y
.Dv;Dh/

�
;



482 QIHONG XIE

which induce the conjugate spectral sequences

cE
ij
2 DR

if�Hj
�
��X=Y .logD=Ea/

�
)RiCjf��

�

X=Y .logD=Ea/;(5-16)

cE
ij
2 DR

if�Hj
�
��X=Y .Dv;Dh/

�
)RiCjf��

�

X=Y .Dv;Dh/:(5-17)

The conjugate filtration is stable under the Gauss–Manin connection, i.e.,

r.FiliHŠ/��1Y=S .logEa/˝FiliHŠI

hence, the conjugate filtration of HŠ induces an increasing filtration of the de Rham
complex ��

Y=S
.logEa/.HŠ/ by subcomplexes:

(5-18) Fili��Y=S .logEa/.HŠ/D
�
FiliHŠ

r
!�1Y=S .logEa/˝FiliHŠ

r
!

� � �
r
!�

j

Y=S
.logEa/˝FiliHŠ

r
! � � �

�
:

[-4pt]From the increasing filtration Fili of��
Y=S

.logEa/.HŠ/, we obtain a decreas-
ing filtration Fil�i of ��

Y=S
.logEa/.HŠ/, which gives rise to a spectral sequence

(5-19) E
ij
1 DHiCj

�
gr�i �

�

Y=S .logEa/.HŠ/
�
)HiCj

�
��Y=S .logEa/.HŠ/

�
;

where Š stands for � or nothing.

From now on, let zS be a lifting of S over Z=p2Z, and F zS W zS ! zS a lifting
of the absolute Frobenius morphism FS W S ! S over zS . We need the following
assumptions:

Assumption 5.4. (i) f WX ! Y is proper and of relative dimension � p;

(ii) f W .X;D/! .Y;Ea/ has a lifting zf W . zX; zD/! . zY ; zEa/ over zS ; and

(iii) FY=S W Y ! Y1 has a lifting zFY=S W zY ! zY1 over zS , compatible with zEa.

Under Assumption 5.4, by Corollaries 3.4 and 4.4, we have that for any i , j ,
Rjf��

i
X=Y

.logD=Ea/ and Rjf��iX=Y .Dv;Dh/ are locally free of finite type,
and of formation compatible with any base change, and that the Hodge spectral
sequences (5-10) and (5-11) degenerate in E1. Furthermore:

Lemma 5.5. Under Assumption 5.4, the conjugate spectral sequences (5-16) and
(5-17) degenerate in E2.

Proof. It is a direct consequence of the Cartier isomorphism. For the degeneracy
of (5-16), we use Proposition 2.7 and the degeneracy of (5-10). For the degeneracy
of (5-17), we use Proposition 4.1 and the degeneracy of (5-11). �

For the reader’s convenience, we recall the following commutative diagram with
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cartesian squares:

(5-20)

X

f   

FDFX=Y// X 0

f 0

��

// X1

f1

��

// X

f

��
Y

FY=S //

!!

Y1 //

��

Y

��
S

FS // S

In the rest of this section, we assume that Š in HŠ stands for � or nothing, unless
otherwise stated. The degeneracy of the conjugate spectral sequences (5-16) and
(5-17) in E2 gives rise to the isomorphisms

gri H
�
!
L
j R

j�if�Hi
�
��
X=Y

.logD=Ea/
�

�
!
L
j R

j�if 0�Hi
�
F��

�

X=Y
.logD=Ea/

�
;

gri H�
�
!
L
j R

j�if�Hi
�
��
X=Y

.Dv;Dh/
�

�
!
L
j R

j�if 0�Hi
�
F��

�

X=Y
.Dv;Dh/

�
:

By the Cartier isomorphisms and the base changes in (5-20), we have

gri H
�
!
L
j R

j�if 0��
i
X 0=Y

.logD0=Ea/
�
!
L
j F
�
Y=S

Rj�if1��
i
X1=Y1

.logD1=Ea1/D F �Y=S gri H1 D gri H1˝OY ;

griH
� �!

L
j R

j�if 0��
i
X 0=Y

.D0v;D
0
h
/

�
!
L
j F
�
Y=S

Rj�if1��
i
X1=Y1

.Dv1;Dh1/D F
�
Y=S

gri H
�
1 D gri H

�
1˝OY :

By [Katz 1970, 2.3.1.3], the Gauss–Manin connection satisfies rgri
D 1˝d under

these isomorphisms; hence, we obtain the following isomorphism of complexes,
where the left one is the graded complex associated with (5-18), and the differential
of the right one is 1˝ d :

(5-21) FY=S� gri �
�

Y=S .logEa/.HŠ/
�
! gri HŠ1˝FY=S��

�

Y=S .logEa/:

Since gri HŠ1 is locally free, we have the isomorphism for E1 terms in (5-19):

E
�iCj;i
1

�
FY=S��

�

Y=S .logEa/.HŠ/;Fil�
�
DHj

�
FY=S� gri�j �

�

Y=S .logEa/.HŠ/
�

�
! gri�j HŠ1˝Hj

�
FY=S��

�

Y=S .logEa/
� C
�
! gri�j HŠ1˝�

j

Y1=S
.logEa1/;
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whose inverse is called the Cartier isomorphism for ��
Y=S

.logEa/.HŠ/:

(5-22) C�1 W gri�j HŠ1˝�
j

Y1=S
.logEa1/
�
!E

�iCj;i
1

�
FY=S��

�

Y=S .logEa/.HŠ/;Fil�
�
:

The left-hand side of (5-22) is the j -term in the Kodaira–Spencer complex (5-15)
of HŠ1 on Y1. It follows from [Katz 1970, 3.2] that the right-hand side of (5-22)
with the differential d1 up to sign corresponds to the Kodaira–Spencer complex.

By definition (see [Deligne 1971, 1.3.3]), the delayed filtration G� DDec.Fil�/
associated with the conjugate filtration Fil� is an increasing filtration of the complex
��
Y=S

.logEa/.HŠ/, which is defined by

Gi�
j

Y=S
.logEa/.HŠ/

D
˚
x 2�

j

Y=S
.logEa/˝Fili�jHŠ j r.x/ 2�

jC1

Y=S
.logEa/˝Fili�j�1HŠ

	
:

Similarly, we also have an increasing filtration of FY=S���Y=S .logEa/.HŠ/ by
subcomplexes of OY1

-modules. There is a natural surjective homomorphism

grGi �
j

Y=S
.logEa/.HŠ/!E

�iCj;i
1

�
��Y=S .logEa/.HŠ/;Fil�

�
;

which is indeed an isomorphism and induces isomorphisms for all r � 1:

Er
�
��Y=S .logEa/.HŠ/; G�

�
�
!ErC1

�
��Y=S .logEa/.HŠ/;Fil�

�
:

Objective. Under Assumption 5.4, we shall construct a decomposition in D.Y1/:

Gp�1FY=S��
�

Y=S .logEa/.HŠ/
�
!

M
i<p

gri ��Y1=S
.logEa1/.HŠ1/:

Fix i < p. For any j � 0, the decompositions in Theorems 3.2 and 4.2 give rise
to morphisms in D.X 0/:

�
i�j

. zf ; zFY=S /
W �

i�j

X 0=Y
.logD0=Ea/Œ�i C j �! ��i�jF��

�

X=Y .logD=Ea/;(5-23)

�
i�j

. zf ; zFY=S /
W �

i�j

X 0=Y
.D0v;D

0
h/Œ�i C j �! ��i�jF��

�

X=Y .Dv;Dh/:(5-24)

Applying
L
kRkf 0� to (5-23) and (5-24), we obtain these homomorphisms of OY -

modules:

(5-25) ui�j W gri�j H0 D
L
k R

k�iCjf 0��
i�j

X 0=Y
.logD0=Ea/

! Fili�j
�L

kRkf��
�

X=Y
.logD=Ea/

�
D Fili�jH;

(5-26) ui�j W gri�j H�0 D
L
k R

k�iCjf 0��
i�j

X 0=Y
.D0v;D

0
h
/

! Fili�j
�L

kRkf��
�

X=Y
.Dv;Dh/

�
D Fili�jH�:
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On the other hand, zFY=S gives rise to the homomorphism

v1 D zF �Y=S=p W�
1
Y1=S

.logEa1/! Z1
�
FY=S��

�

Y=S .logEa/
�
;

which, by exterior product, induces the homomorphism

(5-27) vj W�
j

Y1=S
.logEa1/!Zj

�
FY=S��

�

Y=S .logEa/
�
�FY=S��

j

Y=S
.logEa/:

By adjunction of .F �
Y=S

; FY=S�/ and abuse of notation, (5-25) and (5-26) yield the
homomorphism

(5-28) ui�j W gri�j HŠ1! FY=S�Fili�jHŠ:

Combining (5-27) and (5-28), we obtain the homomorphism of OY1
-modules:

(5-29) vj ˝ui�j W�
j

Y1=S
.logEa1/˝ gri�j HŠ1

! FY=S�
�
�
j

Y=S
.logEa/˝Fili�jHŠ

�
:

Proposition 5.6. Under Assumption 5.4, we have:

(i) The image of vj ˝ ui�j is contained in GiFY=S��
j

Y=S
.logEa/.HŠ/, where

G� is the delayed filtration.

(ii) For any i < p and any j � 0, the following square is commutative:

(5-30)

�
j

Y1=S
.logEa1/˝ gri�j HŠ1

vj˝ui�j

��

r // �
jC1

Y1=S
.logEa1/˝ gri�j�1 HŠ1

vjC1˝ui�j�1

��

FY=S�
�
�
j

Y=S
.logEa/.HŠ/

� FY=S�r// FY=S�
�
�
jC1

Y=S
.logEa/.HŠ/

�
;

where the upper horizontal morphism is the differential map of the Kodaira–
Spencer complex. Parts (i) and (ii) give rise to the morphism of complexes

(5-31) .v˝u/i W gri ��Y1=S
.logEa1/.HŠ1/!GiFY=S��

�

Y=S .logEa/.HŠ/:

(iii) The composition of morphisms of complexes

(5-32) gri ��Y1=S
.logEa1/.HŠ1/

.5-31/
! GiFY=S��

�

Y=S .logEa/.HŠ/

!grGi FY=S��
�

Y=S .logEa/.HŠ/!E
�iC�;i
1

�
FY=S��

�

Y=S .logEa/.HŠ/;Fil�
�

induces the Cartier isomorphism (5-22) for ��
Y=S

.logEa/.HŠ/; hence, it is a
quasi-isomorphism. Hence, the following morphism is a quasi-isomorphism:X
i<p

.v˝u/i W
M
i<p

gri ��Y1=S
.logEa1/.HŠ1/!Gp�1FY=S��

�

Y=S .logEa/.HŠ/:
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The essential point in the proof of Proposition 5.6 is the compatibility (ii), which
is deduced from a more general compatibility in the level of derived category be-
tween the morphism u and the Gauss–Manin connection r.

Lemma 5.7. The Koszul filtrations K� of the complexes

��X=S .logD/ and ��X=S .Dv;Dh/

give rise to short exact sequences of complexes:

0! griC1K ��X=S .logD/!Ki=KiC2
�
��X=S .logD/

�
! griK �

�

X=S .logD/! 0;

0!griC1K ��X=S .Dv;Dh/!K
i=KiC2

�
��X=S .Dv;Dh/

�
!griK�

�

X=S .Dv;Dh/!0;

which yield the connecting morphisms @ W �.i/! � 0.i/ in D.X/, where

�.i/D

(
f ��i

Y=S
.logEa/˝���iX=Y

.logD=Ea/ for ��
X=S

.logD/;

f ��i
Y=S

.logEa/˝���iX=Y
.Dv;Dh/ for ��

X=S
.Dv;Dh/;

� 0.i/D

(
f ��iC1

Y=S
.logEa/˝���iX=Y

.logD=Ea/ for ��
X=S

.logD/;

f ��iC1
Y=S

.logEa/˝���iX=Y
.Dv;Dh/ for ��

X=S
.Dv;Dh/:

Then for any i , j , the following square is commutative:

(5-33)

�.i/˝�.j / //

�

��

�
� 0.i/˝�.j /

�
˚
�
�.i/˝� 0.j /

�
�C�

��
�.i C j /

@ // � 0.i C j /;

where the upper horizontal morphism is @˝ 1C 1˝ @, and � is the product mor-
phism composed possibly with an isomorphism of commutativity.

Proof. It suffices to prove that the product morphism

� W��X=S .logD/˝��X=S .logD/!��X=S .logD/

is compatible with the Koszul filtration. Thus we can use the morphisms of the cor-
responding short exact sequences ofKn=KnC2

�
��
X=S

.logD/˝��
X=S

.logD/
�
!

Kn=KnC2
�
��
X=S

.logD/
�

to obtain the conclusion. The proof for ��
X=S

.Dv;Dh/

is similar. �

Applying
L
kRkf� to (5-33), we obtain the commutative square

(5-34)

‚.i/˝‚.j / //

�

��

�
‚.i C 1/˝‚.j /

�
˚
�
‚.i/˝‚.j C 1/

�
�C�

��
‚.i C j /

r // ‚.i C j C 1/;
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where‚.i/D�i
Y=S

.logEa/.HŠ/, the upper horizontal morphism is r˝1C1˝r,
and � is the product morphism composed possibly with an isomorphism of com-
mutativity. The diagram (5-34) implies that the complex ��

Y=S
.logEa/.HŠ/ is a

differential graded module over ��
Y=S

.logEa/.

Lemma 5.8. For any i <p and any j � 0, the following squares are commutative:

f �1 �
j

Y1=S
.logEa1/˝�

i�j

X1=Y1
.logD1=Ea1/Œ�iCj �

vj˝�i�j

��

@ // f �1 �
jC1

Y1=S
.logEa1/˝�

i�j�1

X1=Y1
.logD1=Ea1/Œ�iCjC1�

vjC1˝�i�j�1

��
FX=S�

�
f ��

j

Y=S
.logEa/˝��X=Y .logD=Ea/

�
FX=S�@ // FX=S�

�
f ��

jC1

Y=S
.logEa/˝��X=Y .logD=Ea/

�
;

f �1 �
j

Y1=S
.logEa1/˝�

i�j

X1=Y1
.Dv1;Dh1/Œ�iCj �

vj˝�i�j

��

@ // f �1 �
jC1

Y1=S
.logEa1/˝�

i�j�1

X1=Y1
.Dv1;Dh1/Œ�iCjC1�

vjC1˝�i�j�1

��
FX=S�

�
f ��

j

Y=S
.logEa/˝��X=Y .Dv;Dh/

�
FX=S�@ // FX=S�

�
f ��

jC1

Y=S
.logEa/˝��X=Y .Dv;Dh/

�
;

where �i�j are deduced from (5-23) and (5-24) by adjunction of .F �
Y=S

; FY=S�/,
and the upper and lower horizontal morphisms are deduced from the short exact
sequences of Kj =KjC2

�
��
X=S

.logD/
�

and Kj =KjC2
�
��
X=S

.Dv;Dh/
�
.

Proof. We only deal with the case for ��
X=S

.logD/. The proof divides into three
steps.

Step 1: i D 1, j D 0. Recall the definition of �1 W �1
X 0=Y

.logD0=Ea/Œ�1� !
F��

�

X=Y
.logD=Ea/ given in Theorem 3.2. We choose an étale covering U D

.Ui /i2I of X , and a lifting zFi W zUi ! zU 0i of F compatible with zD for each i 2 I .
On U 0i , we take

fi D zF
�
i =p W�

1
X 0=Y .logD0=Ea/jU 0

i
! F��

1
X=Y .logD=Ea/jU 0

i
:

On U 0ij D U
0
i \U

0
j , we take

hij D . zF
�
j �

zF �i /=p W�
1
X 0=Y .logD0=Ea/jU 0

ij
! F�OX jU 0

ij
:
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We have dfi D 0, fj � fi D dhij , hij C hjk D hik . The morphism �1 is the
composition of

uD .hij ; fi / W�
1
X 0=Y .logD0=Ea/Œ�1�! F� LC

�
U; ��X=Y .logD=Ea/

�
and the inverse of the quasi-isomorphism

F��
�

X=Y .logD=Ea/! F� LC
�
U; ��X=Y .logD=Ea/

�
:

By adjunction of .F �
Y=S

; FY=S�/ and abuse of notation, we have a morphism

u W�1X1=Y1
.logD1=Ea1/Œ�1�! FX=S� LC

�
U; ��X=Y .logD=Ea/

�
:

Similarly, the liftings zUi
zFi
! zU 0i ! . zUi /1 of FX=S provide a morphism

u1 W�
1
X1=S

.logD1/Œ�1�! FX=S� LC
�
U; ��X=S .logD/

�
:

Since LC.U; ��
X=S

.logD// coincides with LC.U; ��
X=S

.logD/=K2/ in degree at
most 1, we can consider u1 with values inFX=S� LC.U; ��X=S .logD/=K2/ to obtain
a morphism

u1 W�
1
X1=S

.logD1/Œ�1�! FX=S� LC
�
U; ��X=S .logD/=K2

�
:

Finally, we take v D zF �
Y=S

=p W �1
Y1=S

.logEa1/! FY=S��
1
Y=S

.logEa/. By
adjunction of .F �

Y=S
; FY=S�/ and abuse of notation, we have a homomorphism

v W F �Y=S�
1
Y1=S

.logEa1/!�1Y=S .logEa/:

Applying f � to the above homomorphism and using the commutativity of (5-20),
we have a homomorphism

v W F �X=Sf
�
1 �

1
Y1=S

.logEa1/! f ��1Y=S .logEa/:

By adjunction of .F �
X=S

; FX=S�/ and the composition with a natural morphism, we
have a morphism

v W f �1 �
1
Y1=S

.logEa1/Œ�1�

! FX=S�
�
f ��1Y=S .logEa/˝ LC.U; ���1X=Y .logD=Ea//

�
D FX=S� LC

�
U; f ��1Y=S .logEa/˝���1X=Y .logD=Ea/

�
:

We shall prove that v, u1, and u fit into the following commutative diagram
with exact rows:
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0
// f
� 1
�
1 Y

1
=
S
.l

og
E
a
1
/Œ
�
1
�

//

v ��

�
1 X

1
=
S
.l

og
D
1
/Œ
�
1
�

//

u
1

��

�
1 X

1
=
Y

1
.l

og
D
1
=
E
a
1
/Œ
�
1
�

//

u ��

0

0
// F
X
=
S
�
L C
� U
;f
�
�
1 Y
=
S
.l

og
E
a
/˝
�
�
�
1

X
=
Y
.l

og
D
=
E
a
/�

// F
X
=
S
�
L C
� U
;�
� X
=
S
.l

og
D
/=
K
2
�

// F
X
=
S
�
L C
� U
;�
� X
=
Y
.l

og
D
=E

a
/�

// 0

0
// F
X
=
S
�

� f� �
1 Y
=
S
.l

og
E
a
/˝
�
�
�
1

X
=
Y
.l

og
D
=
E
a
/� q

:i
:

//

OO

F
X
=
S
�

� �� X=
S
.l

og
D
/=
K
2
� q
:i
:

//

OO

F
X
=
S
�
�
� X
=
Y
.l

og
D
=
E
a
/ q
:i
:

//

OO

0
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Since v D .0; f Yi /, u1 D .hXij ; f
X
i /, and u D .hij ; fi /, the upper diagram is

commutative. The lower one is a quasi-isomorphism of short exact sequences of
complexes. The morphism of distinguished triangles defined by this diagram gives
the commutativity of the diagram in Lemma 5.8 for the case i D 1, j D 0.

Step 2: j D 0. Recall that �i (1� i < p) is deduced from �1 by the composition

�iX 0=Y .logD0=Ea/Œ�i �
a
!�1X 0=Y .logD0=Ea/˝i Œ�i �

.�1/˝i

�!
�
F��

�

X=Y .logD=Ea/
�˝i �
! F��

�

X=Y .logD=Ea/;

where � is the product map and a is the antisymmetrization map

a.x1 ^ � � � ^ xi /D
1

iŠ

X
�2Si

sgn.�/x�.1/ ^ � � � ^ x�.i/:

Consider the diagram

�i
X1=Y1

.logD1=Ea1/Œ�i �

a

��

@

// f �1 �
1
Y1=S

.logEa1/˝�i�1X1=Y1
.logD1=Ea1/Œ�i C 1�

1˝a

���1
X1=Y1

.logD1=Ea1/˝i Œ�i �

.�1/˝i

��

// f �1 �
1
Y1=S

.logEa1/˝
�
�1
X1=Y1

.logD1=Ea1/
�˝i�1

Œ�i C 1�

1˝.�1/˝i�1

��
�
FX=S��

�

X=Y
.logD=Ea/

�˝i
�

��

// FX=S�
�
f ��1

Y=S
.logEa/˝ .��X=Y .logD=Ea//˝i�1

�
�

��FX=S��
�

X=Y
.logD=Ea/

FX=S�@

// FX=S�
�
f ��1

Y=S
.logEa/˝��X=Y .logD=Ea/

�
;

where the unmarked horizontal morphisms are
P
.1˝� � �˝@˝� � �˝1/ on the second

row and
P
FX=S�.1˝� � �˝@˝� � �˝1/ on the third. Since the map a is compatible

with the Koszul filtration, we obtain the commutativity of the upper diagram. The
commutativity of the middle one follows from Step 1, and the commutativity of
the lower one follows from Lemma 5.7.

Step 3: general case. It follows from Step 2 since ��
Y=S

.logEa/.HŠ/ is a graded
differential module over ��

Y=S
.logEa/. �

Proof of Proposition 5.6. By applying
L
kRkf1� to the diagrams in Lemma 5.8,

we obtain the commutativity of the diagram (5-30). By definition, the image of
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vj˝ui�j is already contained in FY=S�
�
�
j

Y=S
.logEa/˝Fili�jHŠ

�
. Since (5-30)

is commutative, we have

r
�

Im.vj˝ui�j /
�
� Im

�
vjC1˝ui�j�1

�
�FY=S�

�
�
jC1

Y=S
.logEa/˝Fili�j�1HŠ

�
I

hence, Im.vj ˝ ui�j / � GiFY=S���Y=S .logEa/.HŠ/ by the definition of Gi . By

construction, gri ��
Y1=S

.logEa1/.HŠ1/! grGi FY=S��
�

Y=S
.logEa/.HŠ/ is a quasi-

isomorphism, which implies the last sentence of Equation (5-6). �

We can eliminate the hypothesis (iii) in Assumption 5.4 to obtain the main the-
orem in this paper:

Theorem 5.9. Let Š stand for � or nothing. Let f W X ! Y be an E-semistable
S -morphism with an adapted divisor D, and zf W . zX; zD/! . zY ; zEa/ a lifting of
f W .X;D/! .Y;Ea/ over zS . Assume that f is proper and dim.X=Y /� p. Then
for any i < p, we have a morphism in D.Y1/:

(5-35) �i D �i
zf
W gri ��Y1=S

.logEa1/.HŠ1/!GiFY=S��
�

Y=S .logEa/.HŠ/;

such that the composition of (5-35) with the projection onto grGi is a quasi-iso-
morphism, which is the Cartier isomorphism (5-22).

Furthermore, for any i < p, we have an isomorphism in D.Y1/:

� D
X
j�i

�j W
M
j�i

grj ��Y1=S
.logEa1/.HŠ1/

�
!GiFY=S��

�

Y=S .logEa/.HŠ/:

For any i > dim.X=S/, we have gri ��
Y=S

.logEa/.HŠ/ D 0. Consequently, if
dim.X=S/<p, the preceding isomorphism gives rise to a decomposition inD.Y1/:

(5-36) � W
M
i

gri ��Y1=S
.logEa1/.HŠ1/

�
! FY=S��

�

Y=S .logEa/.HŠ/:

Proof. Since a lifting of the relative Frobenius morphism FY=S W Y ! Y1 always
exists locally, Proposition 5.6 is indeed a local version of Theorem 5.9. The idea
of the proof is to use Proposition 5.6 to obtain a coherent system of local splittings
for Gp�1FY=S���Y=S .logEa/.HŠ/.

Take an étale covering U D .Ui /i2I of Y . By Proposition 5.6, on Ui for any
i 2 I , there is a splitting .vi ; ui / of Gp�1FY=S���Y=S .logEa/.HŠ/jUi

, where vi ,
ui are defined as in (5-27) and (5-28) (see [Illusie 1990, 4.19] for the notion of
splitting). By an argument similar to that of [Illusie 1990, Proposition 4.3], on
Uij D Ui \Uj for any pair .i; j /, there is a homomorphism

hij W�
1
Y1=S

.logEa1/jUij1
! FY=S�OY jUij

;
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such that the following conditions hold:

v1j � v
1
i D dhij on Uij ;

hij C hjk D hik on Uijk;

unj �u
n
i D .uihij / ı d on Uij for n < p;

where in the third equality,

d W grn HŠ1!
M

0<m�n

grn�m HŠ1˝�
m�1Y1=S

.logEa1/

is the differential map of the complex NC.gr�HŠ1/ defined as in [Illusie 1990,
(4.1.7)], uihij is given by .uihij /.x˝ a/D ui .x/hij .a/, and the map

hij W �
m�1Y1=S

.logEa1/! FY=S�OY

onUij is defined by the polynomial map xŒm� 7!hij .x/m=mŠ for x2�1
Y1=S

.logEa1/
(note that ��1

Y1=S
.logEa1/ is the divided power algebra of �1

Y1=S
.logEa1/).

Thus Gp�1FY=S���Y=S .logEa/.HŠ/ has a coherent system of local splittings
.U D .Ui /; .vi /; .ui /; .hij //. It follows from [Illusie 1990, Theorem 4.20] that
there exist morphisms �i (5-35) satisfying all of the required properties. �

Corollary 5.10. Let f WX! Y be an E-semistable S -morphism with an adapted
divisor D. Assume that f is proper and g W Y ! S is proper. Assume that f W
.X;D/! .Y;Ea/ has a lifting zf W . zX; zD/! . zY ; zEa/ over zS and dim.X=S/ < p.
Then the Hodge spectral sequence for ��

Y=S
.logEa/.HŠ/ and Rg� degenerates in

E1:

E
ij
1 DRiCjg� gri ��Y=S .logEa/.HŠ/)RiCjg��

�

Y=S .logEa/.HŠ/;

and each Eij1 is locally free of finite type, and of formation compatible with any
base change.

Proof. We can use the decomposition (5-36) and an argument analogous to that of
[Deligne and Illusie 1987, 4.1.2] to complete the proof. �

Corollary 5.11. Let K be a field of characteristic zero, S D SpecK, X , Y proper
and smooth S -schemes, and f W X ! Y an E-semistable S -morphism with an
adapted divisor D. Then the Hodge spectral sequence for ��

Y=S
.logEa/.HŠ/ de-

generates in E1:

E
ij
1 DH iCj

�
Y; gri ��Y=S .logEa/.HŠ/

�
)H iCj

�
Y;��Y=S .logEa/.HŠ/

�
:

Proof. It follows from Corollary 5.10 and the standard argument using the reduction
modulo p technique (see [Deligne and Illusie 1987, 2.7] and [Illusie 1996]). �
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6. Applications to vanishing theorems

In this section, let k be a perfect field of characteristic p>0, andW2.k/ the ring of
Witt vectors of length two of k. There are some applications of the main theorem
to vanishing theorems.

Theorem 6.1. Let S D Spec k, zS D SpecW2.k/, and X , Y be proper and smooth
S -schemes. Let f W X ! Y be an E-semistable S -morphism with an adapted
divisor D, and L an ample invertible sheaf on Y . Assume that f W .X;D/ !
.Y;Ea/ has a lifting zf W . zX; zD/! . zY ; zEa/ over zS and dim.X=S/ < p. Then

H iCj
�
Y;L˝ gri ��Y=S .logEa/.HŠ/

�
D 0 for any iCj > dim.Y=S/;(6-1)

H iCj
�
Y;L�1˝ gri��Y=S .logEa/.HŠ/

�
D 0 for any iCj < dim.Y=S/:(6-2)

Proof. We use an argument analogous to those of [Deligne and Illusie 1987, 2.8]
and [Illusie 1990, Corollary 4.16]. Let M be an invertible sheaf on Y . Define

hij .M/D dim H iCj
�
Y;M˝ gri ��Y=S .logEa/.HŠ/

�
:

Then for all n, we have

(6-3)
X

iCjDn

hij .M/�
X

iCjDn

hij .Mp/:

Indeed, denote by M1 the inverse image of M on Y1; then we have MpDF �
Y=S

M1.
The Hodge spectral sequence

E
ij
1 DH iCj

�
Y1;M1˝FY=S� gri ��Y=S .logEa/.HŠ/

�
)H iCj

�
Y1;M1˝FY=S��

�

Y=S .logEa/.HŠ/
�

gives rise to the inequality

dim H n
�
Y1;M1˝FY=S��

�

Y=S .logEa/.HŠ/
�
�

X
iCjDn

hij .Mp/:

On the other hand, by the decomposition (5-36), we have

dim H n
�
Y1;M1˝FY=S��

�

Y=S .logEa/.HŠ/
�

D

X
iCjDn

dim H iCj
�
Y1;M1˝ gri ��Y1=S

.logEa1/.HŠ1/
�
D

X
iCjDn

hij .M/;

which proves (6-3).
Next, we shall prove hij .Lp

N

/D 0 for N sufficiently large and for all i C j >
dim.Y=S/. The stupid filtration of the Kodaira–Spencer complex

gri ��Y=S .logEa/.HŠ/D
�

gri HŠ
r
!�1Y=S .logEa/˝ gri�1 HŠ

r
! � � �

�
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gives rise to the spectral sequence

Ers1 DH
s
�
Y;Lp

N

˝�rY=S .logEa/˝ gri�r HŠ
�

)H rCs
�
Y;Lp

N

˝ gri ��Y=S .logEa/.HŠ/
�
:

We focus on terms with rCsD iCj >dim.Y=S/. If sD0 then�r
Y=S

.logEa/D0.
If s > 0 then the choices of r and s are finite. By the Serre vanishing theorem, we
can choose N sufficiently large that Ers1 D 0 for all r and s; hence, hij .Lp

N

/D 0

holds for all i C j > dim.Y=S/. Thanks to (6-3), we obtain the vanishing (6-1).
By a similar argument, we can prove hij .L�p

N

/ D 0 for N sufficiently large
and for all i C j < dim.Y=S/. Thanks to (6-3), we obtain the vanishing (6-2). �

Corollary 6.2. Let K be a field of characteristic zero with S D SpecK, and let
X; Y be proper and smooth S -schemes. Let f W X ! Y be an E-semistable S -
morphism with an adapted divisorD, and L an ample invertible sheaf on Y . Then

H iCj
�
Y;L˝ gri ��Y=S .logEa/.HŠ/

�
D 0 for any i C j > dim.Y=S/;

H iCj
�
Y;L�1˝ gri ��Y=S .logEa/.HŠ/

�
D 0 for any i C j < dim.Y=S/:

Proof. It follows from Theorem 6.1 and the reduction modulo p technique. �

Theorem 6.3. Set S D Spec k and zS D SpecW2.k/, and let X , Y be proper
and smooth S -schemes. Let f W X ! Y be an E-semistable S -morphism with
an adapted divisor D, and L an ample invertible sheaf on Y . Assume that f W
.X;D/! .Y;Ea/ has a lifting zf W . zX; zD/! . zY ; zEa/ over zS and dim.X=S/ < p.
Then

H i
�
Y;L˝Rjf�!X=S .D/

�
D 0 and H i

�
Y;L˝Rjf�!X=S .Dh/

�
D 0

for any i > 0 and j � 0.

Proof. Suppose dim.X=S/D n, dim.X=Y /D d , and dim.Y=S/D e.

(1) Consider grn��
Y=S

.logEa/.H/, whose k-th component is

�kY=S .logEa/˝ grn�k HD�kY=S .logEa/˝
�L

lR
l�nCkf��

n�k
X=Y

.logD=Ea/
�
:

Since �k
Y=S

.logEa/D 0 for any k > e and �n�k
X=Y

.logD=Ea/D 0 for any k < e,
we have

grn��
Y=S

.logEa/.H/D !Y=S .Ea/˝
�L

l R
l�df�!X=Y .Dh/

�
Œ�e�

D
L
k�0R

kf�!X=S .D/Œ�e�:

In Theorem 6.1, taking i D n and r D i C j � e > 0, we haveM
k�0

H r
�
Y;L˝Rkf�!X=S .D/

�
D 0;
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that is, H r
�
Y;L˝Rkf�!X=S .D/

�
D 0 for any r > 0 and k � 0.

(2) Consider grn��
Y=S

.logEa/.H�/, whose k-th component is

�kY=S .logEa/˝ grn�k H� D�kY=S .logEa/˝
�L

lR
l�nCkf��

n�k
X=Y

.Dv;Dh/
�
:

Since �k
Y=S

.logEa/D 0 for any k > e and �n�k
X=Y

.Dv;Dh/D 0 for any k < e, we
have

grn��
Y=S

.logEa/.H�/D !Y=S .Ea/˝
�L

lR
l�df�!X=Y .Dh�Dv/

�
Œ�e�

D
L
k�0R

kf�!X=S .Dh/Œ�e�:

In Theorem 6.1, taking i D n and r D i C j � e > 0, we haveM
k�0

H r
�
Y;L˝Rkf�!X=S .Dh/

�
D 0;

that is, H r
�
Y;L˝Rkf�!X=S .Dh/

�
D 0 for any r > 0 and k � 0. �

In order to give further applications, we need the following:

Definition 6.4 [Xie 2010, Definition 2.3]. Let X be a smooth scheme over k. X
is said to be strongly liftable over W2.k/ if

(i) X is liftable over W2.k/, and

(ii) there is a lifting zX of X , such that for any prime divisor D on X , .X;D/ has
a lifting . zX; zD/ over W2.k/, where zX is fixed for all D.

It was proved in [Xie 2010; 2011] that An
k

, Pn
k

, smooth projective curves,
smooth projective rational surfaces, certain smooth complete intersections in Pn

k
,

and smooth toric varieties are strongly liftable over W2.k/. As a consequence of
Theorem 6.3, we can obtain some vanishing results for certain strongly liftable
varieties.

Corollary 6.5. Let X D X.�; k/ be a smooth projective toric variety associated
with a fan � with char k D p > dimX , Y a smooth projective variety over k,
f W X ! Y an E-semistable morphism with an adapted divisor D, and L an
ample invertible sheaf on Y . Then f W .X;D/! .Y;Ea/ has a lifting zf W . zX; zD/!
. zY ; zEa/ over W2.k/. Consequently, we have

H i
�
Y;L˝Rjf�!X .D/

�
D 0 and H i

�
Y;L˝Rjf�!X .Dh/

�
D 0

for any i > 0 and j � 0.

Proof. Let H be a general very ample effective divisor on Y and F D f �1.H/
the divisor on X . By [Xie 2011, Theorem 3.1], X is strongly liftable; hence, there
are a lifting zX D X

�
�;W2.k/

�
of X D X.�; k/ and a lifting zD C zF � zX of

DCF � X over W2.k/. More precisely, let G be a torus invariant divisor on X
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determined by the data fu.�/g 2 lim
 �

M=M.�/ such that G is linearly equivalent to
F . Then we can construct a torus invariant divisor zG on zX determined by the same
data fu.�/g and prove that the natural map H 0. zX; zG/!H 0.X;G/ is surjective.
Thus we can take a lifting zF of F such that zF is linearly equivalent to zG.

By definition, the linear system jF j is basepoint-free; hence, so is jGj. By
[Fulton 1993, p. 68, Proposition], the continuous piecewise linear function  G on
j�j defined in [Fulton 1993, p. 66] is upper convex. Since the functions zG and G
are the same, zG is also upper convex. Thus the linear system j zGj is basepoint-free;
hence, so is j zF j. Thus the linear system j zF j defines aW2.k/-morphism zf W zX! zY .

It is easy to verify that zY is a lifting of Y and zf is a lifting of f over W2.k/.
By [Esnault and Viehweg 1992, Lemmas 8.13, 8.14] or [Xie 2011, Lemma 2.2],
zD is relatively simple normal crossing over W2.k/. Hence, we can verify that
zf W zX ! zY is an zE-semistable morphism and zD is adapted to zf , which imply

that zf W . zX; zD/! . zY ; zEa/ is a lifting of f W .X;D/! .Y;Ea/ over W2.k/. By
Theorem 6.3, we obtain the required vanishings. �

Corollary 6.6. LetX be a smooth projective rational surface over k with char kD
p > 3, f W X ! P1

k
an E-semistable morphism with an adapted divisor D, and

L an ample invertible sheaf on P1
k

. Then f W .X;D/ ! .Y;Ea/ has a lifting
zf W . zX; zD/! . zY ; zEa/ over W2.k/. Consequently, we have

H i
�
P1k;L˝R

jf�!X .D/
�
D 0 and H i

�
P1k;L˝R

jf�!X .Dh/
�
D 0

for any i > 0 and j � 0.

Proof. Let P 2 P1
k

be a general point and F D f �1.P / the fiber of f . By [Xie
2010, Theorem 1.3], X is strongly liftable; hence, there are a lifting zX of X and a
lifting zDC zF � zX of DCF �X over W2.k/. Since both X and zX are birational
to certain smooth projective toric surfaces through a sequence of blow-ups along
some closed points, by an argument similar to the proof of Corollary 6.5, we can
show that the linear system j zF j is basepoint-free, which gives rise to a W2.k/-
morphism zf W zX ! P1

W2.k/
. By [Esnault and Viehweg 1992, Lemmas 8.13, 8.14]

or [Xie 2011, Lemma 2.2], it is easy to verify that zf W . zX; zD/! .P1
W2.k/

; zEa/ is
a lifting of f W .X;D/! .P1

k
; Ea/ over W2.k/. By Theorem 6.3, we obtain the

required vanishings. �
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