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A well known result of Deligne shows that an affine commutative group
scheme of rank r is annihilated by its rank. The purpose of this paper
is to extend this result to affine group schemes over symmetric monoidal
categories.

1. Introduction

One of the most important results in the study of group schemes is the following,
presented in [Tate and Oort 1970].

Theorem 1.1 (Deligne’s lemma). Let G=Spec(A) be an affine commutative group
scheme over a commutative, Noetherian ring k. Assume that A is a flat k-algebra
of rank r ≥ 1. Then, for any k-algebra B, all elements in the group G(B) have an
order dividing r.

The purpose of this paper is to obtain an analogous result for group schemes
in the relative algebraic geometry over a symmetric monoidal category. More pre-
cisely, we let (C,⊗, 1) denote an abelian closed symmetric monoidal category. For
instance, C could be the category of sheaves of abelian groups over a topological
space, the category of comodules over a flat Hopf algebroid, the derived category
of modules over a commutative ring k as well as chain complexes over all these
categories. When C = k-Mod, the category of modules over a commutative ring
k, the algebraic geometry over C reduces to the usual algebraic geometry over
Spec(k).

Given (C,⊗, 1) as above, we refer to commutative and unital monoids in C as
algebras in C. Then, we define an affine commutative group scheme G free of finite
rank over C to be a covariant functor from algebras in C to the category of abelian
groups that satisfies certain conditions (see Definition 3.2 and Definition 3.3). The
main result of this article is the following theorem:
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Theorem 1.2. Let (C,⊗, 1) be an abelian, closed, C-linear symmetric monoidal
category and let G be an affine commutative group scheme over C free and of finite
rank r ≥ 1. Then, for any algebra B in C and any element u in the group G(B), we
have ur

= 1B , where 1B denotes the identity element of G(B). (For the definition
of G(B), see (3-5).)

The relative algebraic geometry over a symmetric monoidal category has been
developed in various works, such as [Deligne 1990; Hakim 1972; Toën and Vaquié
2009]. It is therefore natural to ask whether arithmetic geometry can be similarly
developed in the general framework of symmetric monoidal categories. In particu-
lar, since the theory of finite flat group schemes is closely linked to arithmetic (see
[Tate 1997], for instance), they are a natural starting point for such a theory. For
more on group schemes, we refer the reader to [Demazure and Gabriel 1970].

2. Notations

In this section, we introduce notation that we will maintain throughout this paper.
We let (C,⊗, 1) denote an abelian symmetric monoidal category. Further, we
suppose that C is closed, i.e., for any two objects X , Y ∈C, there exists an internal
Hom object Hom(X, Y ) in C such that the functor

(2-1) Z 7→ Hom(Z ⊗ X, Y )

from C to the category of sets is represented by Hom(X, Y ). Here, we also note
that, for any objects X , Y , Z and W in C, we have

(2-2) Hom(W,Hom(Z ,Hom(X, Y )))∼= Hom(W ⊗ Z ,Hom(X, Y ))
∼= Hom(W ⊗ Z ⊗ X, Y )
∼= Hom(W,Hom(Z ⊗ X, Y )).

Hence, it follows from Yoneda’s lemma that we have a natural isomorphism

(2-3) Hom(Z ,Hom(X, Y ))∼= Hom(Z ⊗ X, Y )

for any X , Y , Z and W in C. Further, since C is an abelian category, C is additive
and hence finite direct sums coincide with finite direct products in C. For any
object X ∈ C and any integer r ∈ Z, r > 0, we let X r denote the direct sum (or
direct product) of r -copies of X in C.

By an algebra in C, we will always mean a commutative monoid object with
unit in C. The category of algebras in C will be denoted by Alg. More precisely,
an algebra in C is an object A in C with a multiplication map m A : A⊗ A→ A
and a unit map u A : 1→ A. satisfying the compatibility conditions for making A
a commutative monoid with unit (see [Mac Lane 1998], for instance).
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For any algebra A, we let A-Mod denote the category of A-modules in C. Then,
each (A-Mod,⊗A, A) is also a closed symmetric monoidal category. Given any
A-modules M and N , we will denote by HomA(M, N ) the set of morphisms from
M to N in A-Mod and the internal Hom object by HomA(M, N ). It is clear that
HomA(M, N ) is an abelian group. Further, the category of unitary commutative
monoids in A-Mod will be denoted by A-Alg. For any two A-algebras B and B ′,
we will denote by HomA-Alg(B, B ′) the set of A-algebra morphisms from B to B ′.
If f : A→ B is a morphism of algebras, for any A-module M and B-module N ,
we have natural isomorphisms

(2-4) T : HomA(M, N )∼= HomB(M ⊗A B, N )

described as follows: given g ∈ HomA(M, N ), we define

T (g) ∈ HomB(M ⊗A B, N )

as the composition

(2-5) T (g) : M ⊗A B
g⊗A1
−−−→ N ⊗A B −−−→ N ,

where the morphism N⊗A B→ N in (2-5) follows from the B-module structure of
N . Conversely, given h ∈ HomB(M ⊗A B, N ), it is clear that we have h = T (h′),
where h′ ∈ HomA(M, N ) is defined as the composition

(2-6) h′ : M ∼= M ⊗A A
1⊗A f
−−−→ M ⊗A B

h
−−−→ N .

Furthermore, for any object X in A-Mod, we note that

(2-7) HomA(X,HomA(M, N ))∼= HomA(X ⊗A M, N )
∼= HomB(X ⊗A M ⊗A B, N )
∼= HomB((X ⊗A B)⊗B (M ⊗A B), N )
∼= HomB(X ⊗A B,HomB(M ⊗A B, N ))
∼= HomA(X,HomB(M ⊗A B, N )).

Using (2-7), it follows from Yoneda’s lemma that we have natural isomorphisms
in A-Mod:

(2-8) HomA(M, N )∼= HomB(M ⊗A B, N ).

3. Affine group schemes

Let (C,⊗, 1) be an abelian, closed, symmetric monoidal category as described in
Section 2 and let A be an algebra in C. Then, it is well known (see, for instance,
[May 2001]) that the collection of endomorphisms HomA(A, A) is an ordinary
commutative ring with identity. We start with the following result.
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Proposition 3.1. Let A be an algebra in C. Then, there is a natural isomorphism

(3-1) Hom(1, A)
∼
−→ HomA(A, A).

Proof. Define a map S : Hom(1, A)→ HomA(A, A) thus: given f ∈ Hom(1, A),
let S( f ) ∈ HomA(A, A) be the composition

(3-2) A
∼
−→ A⊗ 1

1⊗ f
−→ A⊗ A

m A
−→ A,

where m A : A ⊗ A → A in (3-2) is the multiplication map on the algebra A.
Conversely, we define a map T : HomA(A, A)→ Hom(1, A) as follows: given
g ∈ HomA(A, A), we let T (g) ∈ Hom(1, A) denote the composition

(3-3) 1
u A
−→ A

g
−→ A,

where the map u A : 1→ A in (3-3) is the “unit map” for the algebra A. It is easy
to check that the associations S and T are inverse to each other and hence we have
an isomorphism Hom(1, A)

∼
−→ HomA(A, A). �

Following [Toën and Vaquié 2009], we define AffC :=Algop to be the category
of affine schemes over C. For any algebra A in C, we let Spec(A) denote the
corresponding object of AffC. Further, we denote by spec(A) the (contravariant)
functor on AffC represented by Spec(A).

Definition 3.2. Let (C,⊗, 1) be as above and let Set denote the category of sets.
An affine group scheme over C is a representable functor

(3-4) G = spec(A) : AffC→ Set,

equipped with a composition map mG : G×G→ G, an inverse map iG : G→ G
and a unit map eG : spec(1) → G of functors satisfying the group axioms (see
[Waterhouse 1979, § 1.4], for instance).

From Yoneda’s lemma it follows that if G = spec(A) is an affine group scheme
in the sense of Definition 3.2, then A is an algebra in C equipped with a comulti-
plication 1A : A→ A⊗ A, an antipode i A : A→ A and a counit εA : A→ 1 that
gives A the structure of a Hopf algebra in C. Further, if Grp denotes the category
of groups, we can also express G as a functor from algebras in C to groups:

(3-5) G :Alg→Grp, G(B) :=HomAffC(Spec(B),Spec(A))=HomAlg(A, B).

Further, since the comultiplication 1A : A → A ⊗ A in Alg corresponds to the
composition mG : G ×G→ G, it follows that A is cocommutative if and only if,
for all algebras B in C, the group G(B) is abelian. In this case, we will say that
G = spec(A) is an affine commutative group scheme over C.
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Definition 3.3. Let G = spec(A) be an affine commutative group scheme over C.
Then, we say that G is free of finite rank r ∈ Z, r > 0 if A ∼= 1r as objects of C,
where 1r denotes the direct sum of r -copies of the unit object 1 of C.

Further, suppose that B is an algebra in C and let B ′ be a B-algebra. Then, B ′

is said to be a locally free B-algebra of rank r if B ′ ∼= Br as B-modules. In case
B = 1, we will simply say that B ′ is a locally free algebra of rank r .

From now onwards we will always let G = spec(A) be an affine commutative
group scheme over C that is free of finite rank r . We also define A′ :=Hom(A, 1).
Then, it is clear that for any object X in C, we have natural isomorphisms

(3-6) Hom(A, X)∼=Hom(1r , X)∼=
⊕r Hom(1, X)∼=Hom(A, 1)⊗ X ∼= A′⊗ X.

Proposition 3.4. Let G = spec(A) be an affine commutative group scheme over
C that is free of finite rank r. Then, A′ := Hom(A, 1) is a commutative and
cocommutative Hopf algebra in C and is also a locally free algebra of rank r .

Proof. Since G = spec(A) is an affine commutative group scheme, we know that
A is a commutative and cocommutative Hopf algebra in C. From (2-3) and (3-6),
it follows that

(3-7) A′⊗ A′ ∼= Hom(A,Hom(A, 1))∼= Hom(A⊗ A, 1).

It is clear that the multiplication m A : A⊗ A→ A induces a map

A′ = Hom(A, 1)→ Hom(A⊗ A, 1),

while the comultiplication 1A : A→ A⊗ A induces

Hom(A⊗ A, 1)→ Hom(A, 1)= A′.

Combining this with (3-7), we obtain a natural multiplication m A′ : A′⊗ A′→ A′

and a natural comultiplication1A′ : A′→ A′⊗ A′ on A′. The unit u A′ : 1→ A′, the
counit εA′ : A′→ 1 and the antipode i A′ : A′→ A′ on A′ are obtained by dualizing
εA : A→ 1, u A : 1→ A and i A : A→ A respectively. It is clear that these maps
make A′ into a commutative and cocommutative Hopf algebra.

Finally, since A∼= 1r , it follows that A′ ∼=Hom(A, 1)∼= 1r and hence A′ is also
a locally free algebra of rank r . �

Proposition 3.5. Let G = spec(A) be an affine commutative group scheme over C
that is free of finite rank r. Let A′ = Hom(A, 1). Then:

(a) There are natural isomorphisms

(3-8) Hom(A, 1)∼= Hom(1, A′)∼= HomA′(A′, A′).

Further, each of the objects in (3-8) carries a comultiplication structure that
is compatible with the isomorphisms in (3-8).
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(b) There are natural isomorphisms

(3-9) Hom(A, A)∼= Hom(1, A′⊗ A)∼= HomA′⊗A(A′⊗ A, A′⊗ A).

Further, each of the objects in (3-9) carries a comultiplication structure that
is compatible with the isomorphisms in (3-9).

Proof. (a) Since A′ = Hom(A, 1), it is clear that Hom(A, 1)∼= Hom(1, A′). Since
Proposition 3.4 shows that A′ is also an algebra, the isomorphism Hom(1, A′) ∼=
HomA′(A′, A′) follows from Proposition 3.1.

We now describe the comultiplication structure on HomA′(A′, A′). Given f in
HomA′(A′, A′), we can define a morphism

δ1( f ) ∈ HomA′⊗A′(A′⊗ A′, A′⊗ A′)

as follows:

(3-10) δ1( f ) : A′⊗A′
∼
−→ 1⊗A′⊗A′ −→ A′⊗A′⊗A′

f⊗1⊗1
−−−−→ A′⊗A′⊗A′

1A′⊗1⊗1
−−−−−→ A′⊗ A′⊗ A′⊗ A′

m′13⊗m′24
−−−−−→ A′⊗ A′,

where m′i j : A
′
⊗A′→ A′ in (3-10) denotes the multiplication m A′ : A′⊗A′→ A′ on

A′ applied to the i-th and j-th copy of A′ appearing in the term A′⊗A′⊗A′⊗A′ in
(3-10). Since A′ is a locally free algebra of rank r , we have natural isomorphisms

(3-11) HomA′(A′, A′)⊗HomA′(A′, A′)∼= HomA′⊗A′(A′⊗ A′, A′⊗ A′).

Using (3-10) and (3-11), we have a comultiplication

(3-12) δ1 : HomA′(A′, A′)→ HomA′(A′, A′)⊗HomA′(A′, A′).

Considering the comultiplication 1A′ : A′→ A′⊗ A′ on A′, we have an induced
map

(3-13) δ2 : Hom(1,A′)
Hom(1,1A′ )
−−−−−−→ Hom(1,A′⊗A′)∼= Hom(1,A′)⊗Hom(1,A′),

where the last isomorphism follows from the fact that A′ is a locally free algebra.
From (3-10), (3-13), and the construction of the isomorphism

Hom(1, A′)∼= HomA′(A′, A′)

in Proposition 3.1 applied to A′, it follows that the comultiplications δ1 and δ2 are
compatible with the isomorphism Hom(1, A′)∼=HomA′(A′, A′). Finally, since the
comultiplication

(3-14) δ3 : Hom(A, 1)→ Hom(A⊗ A, 1)∼= Hom(A, 1)⊗Hom(A, 1)
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is induced by the multiplication m A : A⊗ A→ A on A and m A induces the comul-
tiplication 1A′ : A′→ A′⊗ A′ on A′, the maps δ2 and δ3 are compatible with the
isomorphism Hom(A, 1)∼= Hom(1, A′).

(b) From (2-4), it follows that

(3-15)
Hom(1, A′⊗ A)∼= HomA(A, A′⊗ A)∼= HomA′⊗A(A′⊗ A, A′⊗ A),

Hom(A, A)∼= HomA(A⊗ A, A).

We also note that, using (2-8) and (3-6), we have

(3-16) HomA(A⊗ A, A)∼= Hom(A, A)∼= A′⊗ A

From (3-16), it follows that the dual of A⊗ A in the category A-Mod is A′ ⊗ A.
Further, the comultiplication 1A : A→ A⊗ A induces a comultiplication

1A
A : A⊗ A→ (A⊗ A)⊗A (A⊗ A)

on the A-algebra A⊗ A as follows:

(3-17) 1A
A :=1A⊗ 1A : A⊗ A→ A⊗ A⊗ A ∼= (A⊗ A)⊗A (A⊗ A)

making A⊗ A into a Hopf algebra in A-Mod. Applying the result of part (a) to
the object A⊗ A in A-Mod, we have compatible comultiplications on each of the
following isomorphic objects

(3-18) HomA(A⊗ A, A)∼= HomA(A, A′⊗ A)∼= HomA′⊗A(A′⊗ A, A′⊗ A).

Using the isomorphisms in (3-15), we have compatible induced comultiplications
on each of the following isomorphic objects:

δA
1 : HomA′⊗A(A′⊗ A, A′⊗ A)

→ HomA′⊗A(A′⊗ A, A′⊗ A)⊗HomA′⊗A(A′⊗ A, A′⊗ A),

δA
2 : Hom(1, A′⊗ A)→ Hom(1, A′⊗ A)⊗Hom(1, A′⊗ A),

δA
3 : Hom(A, A)→ Hom(A, A)⊗Hom(A, A). �

4. Norm map and grouplike elements

From now onwards, we will assume that the closed abelian symmetric monoidal
category (C,⊗, 1) is C-linear. As before, we let G = spec(A) be an affine com-
mutative group scheme that is free of finite rank r . Let A′ = Hom(A, 1). Given
any algebra B in C, we will construct a map

(4-1) NB : HomB⊗A(B⊗ A, B⊗ A)→ HomB(B, B),

which corresponds to the norm map in the context of ordinary Z-algebras. We will
refer to the B-algebra B⊗ A as BA.
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Let M be a B-module. Since the category B-Mod is C-linear, the notion of
exterior product extends to it. For any integer n ≥ 1, we can consider the tensor
product M⊗B n

:=M⊗B M⊗B⊗B · · ·⊗B M (n-times). Then, the symmetric group
Sn acts on M⊗B n by permutations, i.e., for each σ ∈ Sn , we have an induced map
σ : M⊗B n

→ M⊗B n of B-modules. We then consider the morphism

(4-2) qn
M : M

⊗B n
→ M⊗B n qn

M := 1−
1
n!

∑
σ∈Sn

sgn(σ )σ.

It is clear that the morphism qn
M ∈ HomB(M⊗B n,M⊗B n) is an idempotent. Since

C is an abelian category, we can form the cokernel of qn
M , which we denote by∧n

B M . Further, since qn
M is an idempotent, the cokernel

∧n
B M is a direct summand

of M⊗B n . It follows that for any n ≥ 1, qn
M induces a morphism

(4-3) Hom(
∧n

B)(M) : HomB(M⊗B n,M⊗B n)→ HomB(
∧n

B M,
∧n

B M).

In particular, therefore, taking M = BA and n = r , we have a map

(4-4) Hom(
∧r

B)(BA) : HomB(B
⊗Br
A , B⊗Br

A )→ HomB(
∧r

B BA,
∧r

B BA).

Also, for any objects X , Y in B-Mod, the exterior product satisfies

(4-5)
∧n

B(X ⊕ Y )∼=
⊕

k+l=n

∧k
B X ⊗B

∧l
BY.

In the situation above, since A is a locally free algebra of rank r , i.e., A∼= 1r , it
follows that BA = B⊗ A ∼= Br . Hence, BA is a locally free B-algebra of rank r .

Lemma 4.1. Let G = spec(A) be an affine commutative group scheme free of
finite rank r. Let B be an algebra in C. Then, there exists a natural isomorphism∧r

B BA ∼= B of B-modules.

Proof. For any k ≥ 2, we consider the morphism

(4-6) qk
B : B

⊗B k
→ B⊗B k .

Since B is a commutative monoid, any morphism σ : B⊗B k ∼= B → B⊗B k ∼= B
induced by some σ ∈ Sk corresponds to the identity map 1B : B → B. Since∑

σ∈Sk
sgn(σ )= 0, it follows that qk

B is the identity. Hence

(4-7)
∧k

B B := Coker(qk
B)= 0.

It follows from (4-5) and (4-7) that

(4-8)
∧r

B BA ∼=
∧r

B Br

∼=

⊕
k1+k2+···+kr=r

∧k1
B B⊗B · · · ⊗B

∧kr
B B ∼= B⊗B · · · ⊗B B ∼= B. �
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Proposition 4.2. Let G = spec(A) be an affine commutative group scheme free of
finite rank r. Let B be an algebra in C. Then, there exists a norm map

(4-9) NB : HomB⊗A(B⊗ A, B⊗ A)→ HomB(B, B)

that is compatible with composition on HomB⊗A(B⊗A, B⊗A) and HomB(B, B).

Proof. We set BA = B⊗ A as above. First, we note that we have a forgetful map

(4-10) HomB⊗A(B⊗ A, B⊗ A)→ HomB(B⊗ A, B⊗ A)= HomB(BA, BA).

Following this, we consider the morphism

(4-11) HomB(BA, BA)→ HomB(B⊗r
A , B⊗r

A ), f 7→ f ⊗r .

From (4-4) and Lemma 4.1, we have

(4-12) Hom(
∧r

B)(BA) : HomB(B⊗r
A , B⊗r

A )→ HomB(
∧r

B BA,
∧r

B BA)

∼= HomB(B, B).

Composing the morphisms in (4-10), (4-11) and (4-12), we have the map

(4-13) NB : HomB⊗A(B⊗ A, B⊗ A)→ HomB(B, B).

Finally, it is clear from the construction that NB is compatible with composition
on HomB⊗A(B⊗ A, B⊗ A) and HomB(B, B). �

By composing the maps in (4-11) and (4-12) in the proof of Proposition 4.2, it
follows that we have a norm map HomB(B⊗ A, B⊗ A)→ HomB(B, B) for any
algebra B in C which we will continue to denote by NB .

Let f : B → C be a morphism of algebras in C. Then, it follows from base
change that f induces maps

(4-14)
Hom( f ) : HomB(B, B)→ HomC(C,C),

HomA( f ⊗ 1) : HomB⊗A(B⊗ A, B⊗ A)→ HomC⊗A(C ⊗ A,C ⊗ A).

Further, since the morphisms (4-10), (4-11) and (4-12) are all natural with respect
to base change, the following diagram is commutative:

(4-15)

HomB⊗A(B⊗ A, B⊗ A)
HomA( f⊗1)
−−−−−−→ HomC⊗A(C ⊗ A,C ⊗ A)

NB

y NC

y
HomB(B, B)

Hom( f )
−−−−→ HomC(C,C)

Lemma 4.3. Let G= spec(A) be an affine commutative group scheme free of finite
rank r. Then, for any algebra B in C, we have natural isomorphisms

(4-16) HomAlg(A, B)∼= HomB-Alg(A⊗ B, B).
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Proof. We know that we have an isomorphism

(4-17) T : Hom(A, B)
∼=
−→ HomB(A⊗ B, B).

Suppose that f : A→ B is a morphism of algebras. Then, f ⊗1 : A⊗ B→ B⊗ B
is a morphism of B-algebras. Further, the multiplication m B : B⊗ B→ B is also
a map of B-algebras. It follows that

T ( f )= m B ◦ ( f ⊗ 1) : A⊗ B
f⊗1
−→ B⊗ B

m B
−→ B

is a morphism of B-algebras. Hence, T restricts to a morphism

(4-18) T alg
: HomAlg(A, B)→ HomB-Alg(A⊗ B, B).

Next, we choose some g ∈ HomB-Alg(A⊗ B, B)⊆ HomB(A⊗ B, B). Then, it
follows that g = T ( f ), where f is given by the composition

(4-19) f : A ∼= A⊗ 1
1⊗eB
−→ A⊗ B

g
−→ B.

Here eB : 1→ B is the unit map of the algebra B. Since both maps in (4-19) are
morphisms of algebras, f ∈ Hom(A, B) is actually a morphism of algebras. It
follows that T alg is a surjection. Further, since T alg is obtained by restricting the
isomorphism T , T alg must be injective. Hence, we have an isomorphism

T alg
: HomAlg(A, B)

∼=
−→ HomB-Alg(A⊗ B, B). �

Proposition 4.4. Let G = spec(A) be an affine commutative group scheme free of
finite rank r. Let A′ = Hom(A, 1). Then:

(a) Let g ∈ Hom(A, 1) be a morphism that corresponds to h ∈ HomA′(A′, A′)
under the isomorphism HomA′(A′, A′)∼=Hom(A, 1) in (3-8). Then, g : A→ 1
is a morphism of algebras if and only if δ1(h) = h ⊗ h in the notation of
Proposition 3.5.

(b) Let g ∈ Hom(A, A) be a morphism that corresponds to

(4-20) h ∈ HomA′⊗A(A′⊗ A, A′⊗ A)

under the isomorphism HomA′⊗A(A′ ⊗ A, A′ ⊗ A) ∼= Hom(A, A) in (3-9).
Then, g : A→ A is a morphism of algebras if and only if δA

1 (h)= h⊗h in the
notation of Proposition 3.5.

Proof. We maintain the notation of the proof of Proposition 3.5.

(a) Using Proposition 3.5(a), it suffices to check that g ∈Hom(A, 1) is a morphism
of algebras if and only if δ3(g) = g⊗ g where δ3 denotes the comultiplication on
Hom(A, 1).
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By definition of δ3 in (3-14), we know that δ3(g) is equal to the composition

(4-21) A⊗ A
m A
−→ A

g
−→ 1

∼=
−→ 1⊗ 1.

It is immediate from (4-21) that δ3(g)= g⊗g if and only if g : A→1 is a morphism
of algebras.

(b) Using Proposition 3.5(b), we know that the comultiplication δA
3 on Hom(A, A)

corresponds to the comultiplication δA
1 on HomA′⊗A(A′⊗ A, A′⊗ A) via the iso-

morphism
Hom(A, A)∼= HomA′⊗A(A′⊗ A, A′⊗ A)

in (3-9). It therefore suffices to check that g : A→ A is a morphism of algebras if
and only if δA

3 (g)= g⊗ g.
From (2-4), we know that

(4-22) Hom(A, A)∼= HomA(A⊗ A, A).

Further, from Lemma 4.3, we know that the isomorphism in (4-22) restricts to an
isomorphism

(4-23) HomAlg(A, A)∼= HomA-Alg(A⊗ A, A)

From the proof of Proposition 3.5, we also know that the comultiplication δA
3 on

Hom(A, A) is induced by the comultiplication on HomA(A⊗ A, A), also denoted
δA

3 . Hence if g ∈Hom(A, A) corresponds to g′ ∈HomA(A⊗ A, A), δA
3 (g)= g⊗g

if and only if δA
3 (g
′)= g′⊗ g′.

Applying the result of part (a) to the A-algebra A⊗ A in A-Mod, it follows that
g′ : A⊗ A→ A is a morphism of A-algebras, i.e., g′ ∈HomA-Alg(A⊗ A, A) if and
only if δA

3 (g
′) = g′⊗ g′. Since HomAlg(A, A) ∼= HomA-Alg(A⊗ A, A), the result

follows. �

5. Analogue of Deligne’s lemma

We will now complete the proof of Theorem 1.2 stated in the introduction.

Proposition 5.1. Let G = spec(A) be an affine commutative group scheme free of
finite rank r. Let A′ = Hom(A, 1). Then, the morphism

NA′ : HomA′⊗A(A′⊗ A, A′⊗ A)→ HomA′(A′, A′)

restricts to a homomorphism of groups from G(A) to G(1).

Proof. Let f ∈ G(A) ⊆ Hom(A, A) ∼= HomA′⊗A(A′ ⊗ A, A′ ⊗ A), i.e., f is a
morphism of algebras. From Proposition 4.4, we know that δA

3 ( f )= f ⊗ f .
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We consider the morphism 1A′ : A′→ A′⊗ A′ of algebras in C. It follows from
(4-15) that we have a commutative diagram

(5-1)

HomA′⊗A(A′⊗A, A′⊗A)
HomA(1A′⊗1)
−−−−−−−−→HomA′⊗A′⊗A(A′⊗A′⊗A, A′⊗A′⊗A)

NA′

y NA′⊗A′

y
HomA′(A′, A′)

Hom(1A′ )
−−−−−→ HomA′⊗A′(A′⊗A′, A′⊗A′)

It follows that

(5-2) Hom(1A′)(NA′( f ))= NA′⊗A′(HomA(1A′ ⊗ 1)( f )).

We note that

(5-3) 1A′ ⊗ 1 : A′⊗ A→ A′⊗ A′⊗ A ∼= (A′⊗ A)⊗A (A′⊗ A)

is the coproduct 1′ : (A′⊗ A)→ (A′⊗ A)⊗A (A′⊗ A) on the A-algebra A′⊗ A
and hence determines the comultiplication on HomA′⊗A(A′ ⊗ A, A′ ⊗ A). Since
δA

3 ( f )= f ⊗ f , it follows from Proposition 4.4 that

(5-4) HomA(1A′ ⊗ 1)( f )= f ⊗A f : (A′⊗ A)⊗A (A′⊗ A)= A′⊗ A′⊗ A

−→ A′⊗ A′⊗ A = (A′⊗ A)⊗A (A′⊗ A).

The morphism f ⊗A f in (5-4) can be described by the composition

(5-5) (A′⊗A)⊗A (A′⊗A)
f⊗A1
−→ (A′⊗A)⊗A (A′⊗A)

1⊗A f
−→ (A′⊗A)⊗A (A′⊗A).

Consider the morphism e′A′ : A′→ A′⊗ A′ of algebras obtained by base changing
the unit morphism eA′ : 1→ A′ with A′. Then, we have a commutative diagram

(5-6)
HomA′⊗A(A′⊗A, A′⊗A)

HomA(e′A′⊗1)
−−−−−−−→HomA′⊗A′⊗A(A′⊗A′⊗A, A′⊗A′⊗A)

NA′

y NA′⊗A′

y
HomA′(A′, A′)

Hom(e′A′ )
−−−−−→ HomA′⊗A′(A′⊗A′, A′⊗A′)

From (5-6), it follows that

(5-7) 1⊗ NA′( f )= NA′⊗A′(1⊗ f )

Now, the comultiplication on HomA′(A′, A′) is induced by the morphism Hom(1A′)

in (5-1). We also note that 1⊗A f : (A′⊗ A)⊗A (A′⊗ A)→ (A′⊗ A)⊗A (A′⊗ A)
is identical to 1⊗ f : A′⊗ A′⊗ A→ A′⊗ A′⊗ A. Hence, we have

(5-8) δ1(NA′( f ))= Hom(1A′)(NA′( f ))= NA′⊗A′(HomA(1A′ ⊗ 1)( f ))

= NA′⊗A′( f ⊗A f )= NA′⊗A′( f ⊗A 1)NA′⊗A′(1⊗A f )

= NA′⊗A′( f ⊗ 1)NA′⊗A′(1⊗ f )= (NA′( f )⊗ 1)(1⊗ NA′( f ))

= NA′( f )⊗ NA′( f ),
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and it now follows from Proposition 4.4(a) that NA′( f ) : A′→ A′ corresponds to
a morphism of algebras from A to 1 under the isomorphism

Hom(A, 1)∼= HomA′(A′, A′).

Hence, given f ∈ G(A), it follows that NA′( f ) ∈ G(1). It is also clear that NA′ :

G(A)→ G(1) is a homomorphism. �

The result of Proposition 5.1 can be restated as follows: the morphism NA′ :

HomA′⊗A(A′ ⊗ A, A′ ⊗ A) → HomA′(A′, A′) restricts to a homomorphism N :
G(A)→ G(1) that fits into a commutative diagram

(5-9)

G(A) −−−→ HomA′⊗A(A′⊗ A, A′⊗ A)

N

y NA′

y
G(1) −−−→ HomA′(A′, A′)

We choose any u ∈G(1), i.e. a morphism u : A→ 1 of algebras. For any algebra
B, the unit map eB : 1→ B induces a morphism eB∗ : G(1)→ G(B) and hence
we can consider the translation map

(5-10) tu,B : G(B)→ G(B)

obtained by multiplication with the element eB∗(u). By Yoneda lemma, the trans-
lations tu,B determine an automorphism e∗(u) : A→ A of algebras. We denote the
A′-linear automorphism 1⊗ e∗(u) : A′⊗ A→ A′⊗ A by τ . Since

u ∈ HomAlg(A, 1)⊆ Hom(A, 1)∼= HomA′(A′, A′),

we will often write u as a morphism u : A′→ A′ of A′-modules.

Lemma 5.2. Let u : A→ 1 be a morphism of algebras and let

τ := 1⊗ e∗(u) : A′⊗ A→ A′⊗ A

be as described above. Then, NA′(τ )= ur where ur denotes the r-th power of u as
an element of the group G(1).

Proof. We know that τ : A′ ⊗ A→ A′ ⊗ A is induced by u ∈ HomAlg(A, 1) and
that A′ ⊗ A ∼= A′⊕r in A′-Mod. From the proof of Lemma 4.1, we know that
NA′(τ ) ∈ HomA′(A′, A′) corresponds to the morphism

(5-11) NA′(τ ) :
∧r

A′ A
′⊕r ∼= A′→

∧r
A′ A
′⊕r ∼= A′.

On each individual summand in A′⊕r , the action of the morphism τ : A′⊕r
→ A′⊕r

is induced by u : A′→ A′. Hence, it follows from (4-8) in the proof of Lemma 4.1
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that the induced action of τ on the exterior product
∧r

A′ A
′⊕r is given by

(5-12)

∧
A′ A′⊕r NA′ (τ )=

∧r
A′ τ

−−−−−−−−→
∧

A′ A′⊕r

∼=

y ∼=

y
A′⊗A′ · · · ⊗A′ A′

u⊗A′u⊗A′⊗A′ ···⊗A′u
−−−−−−−−−−−→ A′⊗A′ · · · ⊗A′ A′

∼=

y ∼=

y
A′

ur

−−−→ A′

The morphism ur
∈ HomA′(A′, A′) in (5-12) corresponds to the r -th power of

u ∈ HomAlg(A, 1)⊆ Hom(A, 1)∼= HomA′(A′, A′)

as an element of G(1)= HomAlg(A, 1). �

Proposition 5.3. Let G = spec(A) be an affine commutative group scheme free of
finite rank r. Then, every element of the group G(1) can be annihilated by raising
to the r-th power.

Proof. We choose any u ∈ G(1) and let τ : A′⊗ A→ A′⊗ A be as above.
Now, suppose that we have a morphism f ∈HomA′⊗A(A′⊗ A, A′⊗ A). We set

f ′ to be the composition

1
eA′⊗A
−−−→ A′⊗ A

f
−−−→ A′⊗ A.

Then, from the proof of Proposition 3.1, we know that f is equal to the composition

(5-13) A′⊗ A ∼= A′⊗ A⊗ 1
1⊗ f ′
−−−→ A′⊗ A⊗ A′⊗ A

m A⊗m A′
−−−−→ A′⊗ A.

We set fτ := τ ◦ f : A′⊗ A→ A′⊗ A and denote by f ′τ the composition

A′⊗ A⊗1
1⊗eA′⊗A
−−−−→ A′⊗ A⊗ A′⊗ A

1⊗ fτ
−−−→ A′⊗ A⊗ A′⊗ A

m A⊗m A′
−−−−→ A′⊗ A.

It follows that f ′τ ∈ HomA′⊗A(A′ ⊗ A, A′ ⊗ A). We now consider the following
commutative diagram in A′-Mod:

A′⊗ A⊗1
τ⊗eA′⊗A
−−−−→ A′⊗ A⊗ A′⊗ A

1⊗ fτ
−−−→ A′⊗ A⊗ A′⊗ A

m A⊗m A′
−−−−→ A′⊗ Ay= =

y
A′⊗ A⊗1

1⊗ f ′
−−−→ A′⊗ A⊗ A′⊗ A

τ⊗τ
−−−→ A′⊗ A⊗ A′⊗ A

m A⊗m A′
−−−−→ A′⊗ Ay= =

y
A′⊗ A⊗1

1⊗ f ′
−−−→ A′⊗ A⊗ A′⊗ A

m A⊗m A′
−−−−→ A′⊗ A

τ
−−−→ A′⊗ A
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The upper rectangle in the figure above is commutative because fτ = τ ◦ f , while
the lower rectangle commutes because τ is a morphism of algebras. Identifying
A′⊗ A with A′⊗ A⊗ 1, it now follows that

(5-14) f ′τ ◦ τ = τ ◦ f ∈ HomA′(A′⊗ A, A′⊗ A).

Since τ is an automorphism, we have f ′τ = τ f τ−1. Then, since HomA′(A′, A′) is
commutative,

NA′( f ′τ )= NA′(τ f τ−1)= NA′(τ f )NA′(τ
−1)= NA′(τ

−1)NA′(τ f )= NA′( f ).

We also note that if h1, h2∈G(A)=HomAlg(A, A) are two morphisms of algebras,
the product h1 ∗ h2 ∈ G(A) corresponds to the morphism

(5-15) h1 ∗ h2 : A
1A
−−−→ A⊗ A

h1⊗h2
−−−→ A⊗ A

m A
−−−→ A.

We have an isomorphism

(5-16) H : Hom(A, A)
∼=
−→ HomA′⊗A(A′⊗ A, A′⊗ A).

In particular, let f = H(1A). Then, we have f ′τ = H((1A⊗ u) ◦1A). Now, since
NA′( f )= NA′( f ′τ ), it follows that

(5-17) NA′( f )= NA′(H((1A⊗ u) ◦1A))

= NA′(H(m A ◦ (1A⊗ e∗(u)) ◦1A))

= N (1A ∗ e∗(u)) (using (5-9))

= N (1A) ∗ N (e∗(u))= NA′( f ) ∗ NA′(τ ),

where the products N (1A) ∗ N (e∗(u)) and NA′( f ) ∗ NA′(τ ) are taken in G(1).
Finally, from Lemma 5.2, we know that NA′(τ ) = ur

∈ G(1). Combining with
(5-17), it follows that ur is the identity element of the group G(1). �

Theorem 5.4. Let G = spec(A) be an affine commutative group scheme free of
finite rank r. Then, for any algebra B in C and any element u ∈ G(B), we have
ur
= 1B , where 1B denotes the identity element of G(B).

Proof. For any algebra B in C, we consider the symmetric monoidal category
(B-Mod,⊗B, B). Then, if we set BA := B ⊗ A, the functor HomB-Alg(BA, __)
defines an affine commutative group scheme G B on B-Mod free of finite rank r .

From Proposition 5.3, it now follows that all elements in the group G B(B) are
annihilated by raising to the r -th power. Further, from Lemma 4.3, it follows that
G B(B)= HomB-Alg(B⊗ A, B)∼= HomAlg(A, B)= G(B). This proves the result.

�
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