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Let g be an affine Lie algebra and g’ its Langlands dual. It was conjec-
tured by Kashiwara, Nakashima, and Okado that g has a positive geo-
metric crystal whose ultra-discretization is isomorphic to the limit of cer-
tain coherent family of perfect crystals for g“. We prove that the ultra-
discretization of the positive geometric crystal for g = Df’) given by Igarashi
and Nakashima is isomorphic to the limit of the coherent family of perfect
crystals for g- = G;l) constructed by Misra, Mohamad, and Okado.

1. Introduction

Let A = (a;j)i,jer>» where I = {0, 1,...,n}, be an affine Cartan matrix and let
(A, {ai}ier, {a; }ier) be a given Cartan datum. Let g = g(A) denote the associated
affine Lie algebra [Kac 1990] and U, (g) denote the corresponding quantum affine
algebra. Let P =ZAogBZA D --DZA, D ZS§ denote the affine weight lattice and
PV =Za) ®Za) ®---®Za, ®Zd the dual affine weight lattice. For a dominant
weight A € PT = {u € P | w(h;) > 0 for all i € I} of level I = A(c) (where
¢ is the canonical central element), Kashiwara [1990] defined the crystal base
(L(A), B(1)) for the integrable highest weight U, (g)-module V (1). The crystal
B(%) is the g = 0 limit of the canonical basis [Lusztig 1990] or the global crystal
basis [Kashiwara 1991]. It has many interesting combinatorial properties. To give
an explicit realization of B(A), the notions of affine crystal and perfect crystal were
introduced in [Kang et al. 1992a]. It is shown there that the affine crystal B(A) for
the level [ € Z- integrable highest weight U, (g)-module V (1) can be realized as
the semi-infinite tensor product ---® B; ® B; ® B;, where B; is a perfect crystal
of level /. This is known as the path realization.

Kang et al. [1994] remarked that one needs a coherent family of perfect crystals
{B;};>1 in order to give a path realization of the Verma module M (1) (or U, 7 (9)).
In particular, the crystal B(oco) of U, 7 (g) can be realized as the semi-infinite tensor
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product - -+ ® Bso ® Boo ® B Where By, is the limit of the coherent family of
perfect crystals {B;};>1.

At least one coherent family {B;};>1 of perfect crystals and its limit is known for
g=A", B, ", DV, AY | A, DR, DY, G (See [Kang et al. 1992b;
1994; Yamane 1998; Kashiwara et al. 2007; Misra et al. 2010].)

A perfect crystal is indeed a crystal for certain finite-dimensional modules of the
quantum affine algebra U, (g) named after Kirillov and Reshetikhin [1987], and
known as KR-modules for short. KR-modules are parametrized by two integers,
i € I'\{0} and [ > 0. Let {z;};es\j0y be the set of level 0 fundamental weights
[Kashiwara 2002]. Hatayama et al. [1999; 2002] conjectured that any KR-module
W (lw;) admits a crystal base B'! in the sense of Kashiwara and that B™ is perfect
if / is a multiple of civ :=max(1, 2/(¢;, ;)). This conjecture has been proved
for quantum affine algebras U, (g) of classical types [Okado and Schilling 2008;
Fourier et al. 2009; 2010]. When {B"'};~; is a coherent family of perfect crystals
we denote its limit by B (7;), or just B if there is no confusion.

The notion of geometric crystals is a geometric analog to Kashiwara’s crystal
[Kashiwara 1990]. It was defined in [Berenstein and Kazhdan 2000] for reduc-
tive algebraic groups and extended to general Kac—Moody groups in [Nakashima
2005a]. For a given Cartan datum (A, {«;}ics, {oziv},-€1), a geometric crystal is de-
fined as a quadruple V'(g) = (X, {ei}ier, {Vi}ier, {€i}icr), Where X is an algebraic
variety, ¢; : C* x X — X are rational C*-actions and y;,& : X — C (i € I)
are rational functions satisfying certain conditions (see Definition 2.1). Geometric
crystals have many properties similar to algebraic crystals. For instance, the prod-
uct of two geometric crystals admits the structure of a geometric crystal if they
are induced from unipotent crystals [Berenstein and Kazhdan 2000]. A geometric
crystal is said to be a positive geometric crystal if it admits a positive structure (see
Definition 2.5). A remarkable relation between positive geometric crystals and
algebraic crystals is the ultra-discretization functor U% between them (page 123).
Applying this functor, positive rational functions are transferred to piecewise linear
functions by the simple correspondence:

X
XXyr=>x+y, - Xx—Yy, X +y — max(x, y).
y

Let G denote the affine Kac-Moody group associated with the affine Lie algebra
g. Let B* be fixed Borel subgroups and 7 the maximal torus of G such that
BTN B~ =T. Set y;(c) :=exp(cf;), and let ) (c) € T be the image of ¢ € C*
under the group morphism C* — T induced by the simple coroot ;. We set
Yi(c):=yi(c™h) o) (c)=a; (c) yi(c). Let W and W be the Weyl group and extended
Weyl group associated with g. The Schubert cell

Xy :=BwB/B,
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where w = s;, - - - 5;, € W, is birationally isomorphic to the variety
B = {Y,-l(xl) Y () [ X1, e, X € CX} C B,
and X, has a natural geometric crystal structure, where ¢t =iy, ..., i; is a reduced

word for w. [Berenstein and Kazhdan 2000; Nakashima 2005a].

Let W(w;) be the KR-module (also called the fundamental representation) of
U, (g) with @; as an extremal weight (see [Kashiwara 2002]). Denote its special-
ization at ¢ = 1 by the same symbol, W (@;). It is a finite-dimensional g-module
(not necessarily irreducible). Let P(w;) be the projective space (W (z;) \ {0})/C*.
For any i € I the translation t(civwl-) belongs to w (see [Kashiwara et al. 2008]).
For a subset J of I, let us denote by g the subalgebra of g generated by {e;, fi}icy.
For an integral weight u, define I (un) := {j el (aJY, W) = O}.

Conjecture 1.1 [Kashiwara et al. 2008]. For any i € I \ {0} there exist a unique
variety X endowed with a positive g-geometric crystal structure and a rational
mapping 7 : X — P(w;) satisfying the following properties:

(i) For an arbitrary extremal vector u € W (w;),,, writing the translation t (¢, |v)

astw e W witha Dynkin diagram automorphism Tt and w = s;, - - - 8;,, there
— X such that & is a morphism of
81 (u)-geometric crystals and that the composition w o § : B, — P(w;)
coincides with Y; (x1) - - - Y;, (xx) — Y, (x1) - - - Y5, (xp)u, where u is the line

exists a birational mapping § : B;

including u.

(i1) The ultra-discretization (Section 2) of X is isomorphic to the crystal Bo, =
Boo(w;) of the Langlands dual g*.

In [Kashiwara et al. 2008], it was shown that this conjecture is true for i = 1
and g= A,(f), B,El), C,(,l), D,(,l), Agl)_l, Agl), Dfﬁil. In [Nakashima 2007], a positive
geometric crystal for g = Gg) and i = 1 was constructed and it was shown in
[Nakashima 2010] that the ultra-discretization of this positive geometric crystal is
isomorphic to the limit of the coherent family of perfect crystals for gt = Df)
given in [Kashiwara et al. 2007].

More recently, two of the authors have constructed a positive geometric crystal
for g = Df), i = 1 in [Igarashi and Nakashima 2010]. In this paper we describe
the structure of the crystal obtained by the ultra-discretization of the geometric
crystal V'(g) constructed in [Igarashi and Nakashima 2010] and then prove that
it is isomorphic to the limit By, of the coherent family of perfect crystals for its
Langlands dual g% = Gél)constructed in [Misra et al. 2010]. This proves Conjecture
4.5 in [Igarashi and Nakashima 2010].

This paper is organized as follows. In Section 2, we recall necessary definitions

and facts about geometric crystals. In Section 3, we review needed facts about
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affine crystals and perfect crystals. We recall from [Misra et al. 2010] the coherent
family of perfect crystals for g = Ggl) and its limit in Section 4. In Section 5, we
review the positive geometric crystal V' (g) for g= Df) constructed in [Igarashi and

Nakashima 2010]. In Section 6, we state and prove our main result, Theorem 6.1.

2. Geometric crystals

In this section, we review Kac—-Moody groups and geometric crystals following
[Peterson and Kac 1983; Kumar 2002; Berenstein and Kazhdan 2000].

Kac-Moody algebras and Kac—Moody groups. Fix a symmetrizable generalized
Cartan matrix A = (a;;);, jes With a finite index set 1. Let (¢, {e;}ies, {, }icr) be
the associated root data, where t is a vector space over C and {«;};c; C t* and
{a)"}ier C tare linearly independent satisfying o j () = a;;.

The Kac—-Moody Lie algebra g = g(A) associated with A is the Lie algebra over
C generated by t, the Chevalley generators ¢; and f; (i € I) with the usual defining
relations [Kac and Peterson 1983; Peterson and Kac 1983]. There is the root space
decomposition g = @, . g« Denote the set of roots by

A={aet |a#0, go # (0)}.

Set Q=) Zaj, Q1 =) ; Z>oj, Q¥ :=) ; Za; and Ay := ANQ. Anelement
of Ay is called a positive root. Let P C t* be a weight lattice such that C®Q P = t*,
whose element is called a weight.

Define simple reflections s; € Aut(t) (i € I) by s;(h) :=h — «; (h)aiv ; they
generate the Weyl group W, which acts on t* by

si(A) = A — M@ ).

Set A" :={w(;) | we W, i el}, whose elements are called real roots.

Let g’ be the derived Lie algebra of g and G the Kac—-Moody group associated
with g’ [Peterson and Kac 1983]. Let U, := exp g, (@ € A™) be a one-parameter
subgroup of G. The group G is generated by U, (a € A™). Let U* be the subgroup
generated by Uiy (@ € AT =A"NQ,), ie, U = (Uryla € AT).

For any i € I, there exists a unique homomorphism; ¢; : SL,(C) — G such that

oi((§.2)=c"" ai((5 1) =expien. ai((; ) =exptes),

where c € C* and ¢ € C. Set o)’ (c) := %, xi(t) :==exp(te;), yi(t) :=exp (tf),
G :=¢;(SLy(C)), T; := ¢; ({diag(c, c"1)|ce C"}) and N; := Ng,(T;). Let T (resp.
N) be the subgroup of G with the Lie algebra t (resp. generated by the N;’s), which
is called a maximal torus in G, and let B¥ = U*T be the Borel subgroup of G.
We have the isomorphism ¢ : W—>N /T defined by ¢ (s;) = N;T/T. An element
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s = x;i(—=Dy;(Dx;(—1) = d),-((q?l jf)l)) is in Ng(T), which is a representative of
s;i € W=Ng(T)/T.

Geometric crystals. Let X be an ind-variety, y; : X > Cand¢; : X > C (i € 1)
rational functions on X, and e; : C* x X — X ((c, x) > e{ (x)) arational C*-action.

Definition 2.1. A quadruple (X, {e;}ier, {Vi}ier, {€i}icr) is a G (or g)-geometric
crystal if it satisfies these conditions:

(1) {1} x X C dom(e;) forany i € I.
(i) y;(ei (x)) = cUiy;(x).
(iii) The e; satisfy

cl Cr _ C2 C] 1 S — J—
ej'e} =efe ifa;j=aj;; =0,
cl Cic2 C2 _ C2 C1C2 C] 1 J— vy —
ej'eCe? = eflel' e ifa;j=aj; =—1,

2 2
c1 C1€2 cico ¢ 2 cicy C1C2 . o o
e i =e€e ;e ifajj=-2,aj =—1,
1 G cier 6 cien e — %2512 g cie da e ifa:=—=3. a,;=—1
ity Joi VAR A Joi J i o > e ’

(iv) €i(ef(x)) = ¢ le;(x) and ¢; (e;f (x) =¢i(x)ifa; j =a;; =0.
Condition (iv) is slightly modified from the one in [Igarashi and Nakashima

2010; Nakashima 2007; 2010].
Let W be the Weyl group associated with g. Define R(w) for w € W by

R(w) = {(i1,i2,...,i) e I' |w=s;,5,-5;),

where [ is the length of w. Then R(w) is the set of reduced words of w. For a
wordi= (i, ..., i) € R(w) (w e W), set a)) := Sip e Sip (@) (1< j <1) and

1 2 )
éj . TxX— X, ([,x) — eil(x) = ea (1) o' 2 (1) . .e?ll (t)(x)

i i
Condition (iii) above amounts to saying that ¢; = ey for any w € W and i, i’ € R(w).

Geometric crystal on Schubert cell. Let w € W be a Weyl group element and take
areduced expression w =s;, - - - 5;,. Let X := G /B be the flag variety, which is an
ind-variety and X,, C X the Schubert cell associated with w, which has a natural
geometric crystal structure [Berenstein and Kazhdan 2000; Nakashima 2005a]. For
i:=(@q,...,10)), set

2-1) By :={Yi(c1,...,c0) =Yy (c) - Yilew ler--- ek €C} C BT,

where Y;(c) := yi(%)ai\/ (c). This has a geometric crystal structure [Nakashima
2005a] isomorphic to X,,. The explicit forms of the action ej, the rational function
g; and y; on B, are given by

ei (Yi(cr, ..., cr)) =Yi(€y, ..., €p)),



122 MANA IGARASHI, KAILASH C. MISRA AND TOSHIKI NAKASHIMA

where
c 1
Z aiy i [T + Z ajy i iy 1
@ l<m<jin=i €1 """ Cm—1 Sm  j<m<k,in=i €1 " Cm—1 Cm
(2—2) j=cCj- c 1 s
Z aiy i Aiyyy 15 + Z diy i i,y
l<m<jim=i €1 " Cm=1 Cm  j<m<k,in=i €1 """ Cm—1 Cm
1
(2-3) ei(Yiler, ..., ) = E . >
11 Im—1-t
I<m<k,i,=i “1 " “m—-1 m

Q-4) yiYi(er, ..., c0) =c;" et

Positive structure, ultra-discretizations and tropicalizations. The setting is the
same as in [Kashiwara et al. 2008]. Let 7 = (C*)’ be an algebraic torus over C,
with character lattice X*(T') :=Hom(7', C*) = 7' and cocharacter lattice X, (T) :=
Hom(C*, T) = 7. Set R := C(c) and define

v:R\{0} > Z, f(c)+> degf(c),

where deg is the degree of poles at ¢ = co. Note that for f1, f> € R\ {0}, we have

(2-5) v(fif =v(f)+v(f), v (%) =v(f1) —v(f2).

A nonzero rational function on an algebraic torus 7 is called positive if it can be
written as g/ h where g and & are a positive linear combination of characters of T'.

Definition 2.2. Let f : T — T’ be a rational morphism between two algebraic tori
T and T'. We say that f is positive if no f is positive for any character n: T’ — C.

Denote by Mor™ (T, T”) the set of positive rational morphisms from 7 to T".

Lemma 2.3 [Berenstein and Kazhdan 2000]. For any f € Mort (T}, T») and any
g € Mor™ (T, T3), the composition g o f is well-defined and lies in Mor™ (T}, T3).

By Lemma 2.3, we can define a category J 1 whose objects are algebraic tori
over C and arrows are positive rational morphisms.

Let f : T — T’ be a positive rational morphism of algebraic tori 7 and 7’. We
define a map f: X,(T) — X, (T') by

(n, F&)=v(no fo),
where n € X*(T’) and & € X,.(T).

Lemma 2.4 [Berenstein and Kazhdan 2000]. For any algebraic tori Ty, T, T3,
and positive rational morphisms f € Mor™ (T}, T»), g € Mort(T», T3), we have

—

gof=gof.
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Let Get denote the category of sets and set maps. By the lemma, we obtain a
functor
UD : Ty — Get
T — X.(T)
(f:T = T) = (F: Xu(T) = X(TH)).

Definition 2.5 [Berenstein and Kazhdan 2000]. Let

x = (X, {ei}ier, (Wti}ier, {ei}ier)

be a geometric crystal, 7’ an algebraic torus and 6 : T’ — X a birational isomor-
phism. The isomorphism 6 is called positive structure on y if

(i) for any i € I the rational functions y; 06 : T" — C and ¢; 06 : T' — C are
positive, and

(ii) for any i € I, the rational morphisme; g : C* x T’ — T' defined by ¢; g (c, t) :=
6~ oef 06(2) is positive.

Let 6 : T — X be a positive structure on a geometric crystal x = (X, {e;}ier,
{wti}ier, {&i}ier). Applying the functor UY to positive rational morphisms e; g :
C*xT — T'and y;, €06 : T' — C (the notations are as above), we obtain

e :=UD(ejp): Z x Xu(T) = Xu(T),
wt; == UD(y; 00) : Xo(T) — Z,
g :=UD(g;00) : X (T — Z.

Now, for given positive structure 6 : T’ — X on a geometric crystal x = (X, {e;}ics,
{Wti}ier, {&i}ier), we associate the quadruple (Xi(T"), {€i}ier, {(Wti}ier, {€i}icr)
with a free pre-crystal structure (see [Berenstein and Kazhdan 2000, 2.2]) and
denote it by Uy 7/ (x)-

Theorem 2.6 [Berenstein and Kazhdan 2000; Nakashima 2005a]. For any geomet-
ric crystal x = (X, {e;}ier, {Vi}iel, {€i}icr) and positive structure 0 : T' — X, the
associated pre-crystal WDy 7/ (x) = (X4 (T"), {€;}icr, {Wti}icr, {€i}ier) is a crystal
(see [Berenstein and Kazhdan 2000, 2.2]).

Now, let 4%¢™ be the category whose objects are triplets (x, T’, 6), where x =
(X, {ei}, {yi}, {&i}) is a geometric crystal and 6 : T" — X is a positive structure on
X, and whose morphisms f : (xi, Tl/ ,01) — (X2, T2’ , 8») are given by morphisms
¢: X1 — X2 (x; = (X;,...)) such that

f= ;10¢091:Tf—> T,,

is a positive rational morphism. Let €% be the category of crystals. Theorem 2.6
yields:
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Corollary 2.7. The map UD = UDy 7' defined above is a functor

UY : g6 — KR
(X’ Tlv 6) = - X*(T/)a
(f : (Xla Tl/a 91) g (XZa TQ/’ 92)) = (f : X*(Tll) g X*(Tz/))'

We call the functor U “ultra-discretization” as in [Nakashima 2005a; 2005b]
instead of “tropicalization” as in [Berenstein and Kazhdan 2000]. And for a crystal
B, if there exists a geometric crystal y and a positive structure 6 : 7" — X on x
such that UD(x, T',0) = B as crystals, we call an object (x, 7’,6) in ¥€* a
tropicalization of B, where it is not known that this correspondence is a functor.

3. Limit of perfect crystals

We review limit of perfect crystals following [Kang et al. 1994]. (See also [Kang
et al. 1992a; 1992b].)

Crystals. First we review the theory of crystals, which is the notion obtained by
abstracting the combinatorial properties of crystal bases. Let (A, {«;}ier, { }ier)
be a Cartan data.

Definition 3.1. A crystal B is a set endowed with maps
wt: B— P,
& B — ZU{—o00}, ¢; B — Z1u{—00} foriel,
& :BU{0}— BL{0}), fi:BuU{0}— Bu{0} foriel,
& (0) = fi(0) = 0.
satisfying the following axioms, for all b, by, b> € B:
i (b) = & (b) + (&, wt(b)),
wt(e;b) = wt(b) +«; if e;b € B,
wt(fib) = wt(b) —«; if fibe B,
eiby=by < fibi = b,
gi(b)=—00 = &b= fib=0.

The following tensor product structure is one of the most crucial properties of
crystals.

Theorem 3.2. Let By and B, be crystals, and set
Bi®By:=1{b1®by; bj € B; (j =1,2)}.

(i) B1 ® By is a crystal.
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(i1) For by € By and by € B, we have

~ :b b if i b i b )
fi(b1®b2):{f1®32 %90(1)>8(2)
b1 ® fiby if ¢;(b1) <¢&i(b2),
b e;by if @; (b i (D),
éi(bl®b2):{~l®e 2 %¢(1)<8(z)
eib1®by if ¢;(b1) > &;(b2).

Definition 3.3. Let B; and B, be crystals. A strict morphism of crystals
lﬁ :B 1> 32

isamap ¥ : By U{0} — B, U {0} such that ¥(0) =0, ¥ (B;) C By, ¥ commutes
with all ¢; and f;, and

wt(y (b)) = wt(b), & (Y (b)) =¢i(b), ¢i(Y (b)) =¢;(b) for any b € B;.
A bijective strict morphism is called an isomorphism of crystals.

Example 3.4. If (L, B) is a crystal base, then B is a crystal. Hence, for the crystal
base (L(0c0), B(c0)) of the nilpotent subalgebra U, 7 (g) of the quantum algebra
U,(g), B(00) is a crystal.

Example 3.5. For A € P, set T; := {t,}. We define a crystal structure on 7, by
&) = fil) =0, &) =gi1)=—00, wi(t)=A.

Definition 3.6. For a crystal B, a colored oriented graph structure is associated
with B by .
b1—1>b2 < fiby = bs.

We call this graph the crystal graph of B.

Affine weights. Let g be an affine Lie algebra. The sets t, {«;};<; and {ozl.v }icr be as
in Section 2. We take dimt=#1I + 1. Let § € O be the unique element satisfying
{LeQ| (a;/, A)y=0forany i € I} =76 and ¢ € g be the canonical central element
satisfying {h € Q" | (h, «;) = 0 for any i € I} = Zc. We write, as in [Kac 1990,

6.1],
c:Zaivaiv, (SZZaiai.
1 1

Let ( , ) be the nondegenerate W -invariant symmetric bilinear form on t* normal-
ized by (8, 1) = (¢, A) for A € t*. Let us set t}; := t*/C8 and let cl : t* — t7; be the
canonical projection. Here we have £} = @, (Ca;)*. Set £ := {1 € t*| (¢, A) =0},
(t5)o := cl(t;). Since (8, 8) = 0, we have a positive definite symmetric form on
t, induced by the one on t*. Let A; €t (i € I) be a classical weight such
that (ozl.v , Aj) =94; j, which is called a fundamental weight. We choose P so that

P, := cl(P) coincides with P, c1 ZA; and we call P a classical weight lattice.
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Perfect crystals and their limits. Let g be an affine Lie algebra, let P be a classical
weight lattice as above and set (Pcl);r ={rePal{c,A)=I, (o, 1) =0} (I €Z.p).

Definition 3.7. A crystal B is a perfect crystal of level [ if the following conditions
are satisfied:

(i) B ® B is connected as a crystal graph.
(i1) There exists Ay € P such that
wt(B) C Ao+ »_ Z<gel(ey), #B,, = 1.
i#0
(iii) There exists a finite-dimensional U é (g)-module V with a crystal pseudobase
By such that B = B,s/=*1.
(iv) For any b € B, we have (c, e(b)) > .
(v) The maps €, ¢ : B™n:={be B|(c,eb)) = l}—>(PCJ{)1 are bijective, where
e(b) =) ;ei(b)A; and p(b) ==, ¢; (D) A;.
Let {B;};>1 be a family of perfect crystals of level [ and set J := {({,b) | [ >
0, b € BMin}.
Definition 3.8. A crystal By, with an element b is called a limit of { B;};>1 if
(1) Wt(boo) = €(bo) = ¢(b) = 0;
(i1) for any (I, b) € J, there exists an embedding of crystals

fur) :Tey @B T_y) = Boo, L) DR 1_yp) H> boo;

(111) Boo = U(l,b)ej Imf(]’b).

As for the crystal T;, see Example 3.5. If a limit exists for a family {B;}, we
say that {B;} is a coherent family of perfect crystals.
Here is one of the most important properties of limit of perfect crystals.

Proposition 3.9. For the crystal B(co) as in Example 3.4, we have an isomorphism
of crystals
B(00) ® Bog—> B(00).

4. Perfect crystals of type G;l)

In this section, we review the family of perfect crystals of type G;l) and its limit
[Misra et al. 2010].

We fix the data for G\, Let {ao, a1, a2}, {oy, @, @y} and {Ag, Ay, Aa) be
the set of simple roots, simple coroots and fundamental weights, respectively. The
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Cartan matrix A = (a;;);, j=0,1,2 1S given by

2 -1 0
A= -1 2 -1,
0-3 2

and its Dynkin diagram is as follows:

Q

0

O=Q
The standard null root § and the canonical central element ¢ are given by
§=ap+20+3a2 and c=oy +2a) +a;,

where ag =2A0— A1+ 98, a1 = —Ag+2A1 —3Az, and ap = —A| +2A5.
For a positive integer / we introduce Gg) -crystals B; and By, as
3b3 = 3b3 (mod 2),
By = {b=(b1,bs, b3, b3, b2, by) € (Z>0/3)° 2iz12bi+bi) + %(123-1-173) <l ¢,
b1,b1,by = b3, b3 —by € Z

3b3 = 3b3 (mod 2), }

— — ha s b 6 N a _

Now we describe the explicit crystal structures of B; and Bs. Indeed, most of
them coincide with each other except for g9 and ¢g. In the rest of this section, we
use the following convention: (x)4+ = max(x, 0). For b = (b1, by, b3, b3, by, by)
we define

(4-1) s(b) = by +by+ 5(b3 +b3) + by + by,

and

4-2)  z=bi—b, n=by—by, z=bs—by, z=1%(b3—Db3).
Now we define conditions and (F;)—(Fg) as follows:

(F1)) zi+22+23+324 <0, 21+22+324 <0, 21+22 <0, z; <0,

(F2) z1+22+23+324 <0, 20+324 <0, 20 <0, z; > 0,

(F3) z21+23+324 <0, 23+324 <0, 24 <0, 20> 0, z1+22 > 0,

(Fy) z1+204+324>0, 204+324>0, 24 >0, 23 <0, 71 +23 <0,

(F5) z1+22+23+324>0, 23+324 >0, 23 >0, 21 <0,
(Fg) z1+z2204+23+324>0, z1+234+324 >0, z1+23 >0, z1 > 0.

4-3)

Conditions (E;), for 1 <i < 6, are defined from (F;) by replacing > with > and
< with <.
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We also define

4-4) A=(0,z1,z21+z22, 21 +22+ 324, 21 + 22+ 23 + 324, 221 + 22 + 23 + 324).

Then for b = (b, by, b3, b3, by, by) € B or Buo, the values of &;b, f:b, &;(b),
and ¢; (b), fori =0, 1, 2, are as follows:
(b1 —1,..) if (Ey),
(...bs—1,b3—1,...,bi+1) if (E»),
(.onby—3.b3—3,b3+%5.by+5,...) if (E3)andz4=—3,
i (...by—3.b3—3.b3+3,br+3,..) if(Es)andzy=—%,
1
( 3»
(

by =2, b+ 1) if (E3) and z4 # —§, —3,
cooby—1,. . b3 +2,..) if (E4),
(b1—1,....,b34+1,b3+1,...) if (Es),
(...bi+1 if (Es),
(b1+1,..) if (Fy),
(...bs+1,b3+1,...,b;—1) if (F»),
(...b3+2,....bp—1,..) if (F3),

b (...,b2+§,b3+§,1§3—%,122—%,...) if (Fy) and z4 = 1,
(oosbr+2,b3+2 b33 by~ 1, .. if(Fyandzy=2,
(ovbat1,...,b3—=2,..) if (Fy) and z4 # 1, 2,
(bi+1,....b5—1,b3—1,...) if (Fs),
(...bj—=1) if (Fe),

(...by+1,b;—1) if by — b3 > (by — b3) 4,
etb=13(...bs+1,b3—1,..)) ifby—bs<0<bs—by,
bi+1,bp—1,..) if (by — b3)4 < by — b3,
(b1 —1,b3+1,..) if (by —b3)1 < by — b3,
fib=3(...bs=1,b3+1,..) ifby—b3<0<b3—by,
(...bh—1,bi+1) if by —b3 > (by — b3)4,
ézbzi(...,éng%,Ez—%,...) if by = b,
(covba+3.b3—3,..) ifbs <bs,
J;zb:[(---,lzz—%,lz3+%,---) if by < b,
(.onb3—3,by+1,..) ifby>bs,
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e1(b) = bi+(b3—ba+(ba—b3) 1)1, @1(b) =b1+(b3—by+(ba—b3) 1)+,

e2(b) = 3by+3(b3—b3) 4, @2(b) =3by+3 (b3—b3) 4,
co() [—s(b)+max A—Q2z14+z220+23+324) be By,
0 =

—s(b) +max A — (2z1 + 22+ 23+ 3z4) b € By,

[—s(b)+max A be B,

b) =
w0 {—s(b)+maxA b€ B

For b € B; if ¢;b or fib does not belong to B;, namely, if b; or b ;j for some j
becomes negative or s(b) exceeds /, we understand it to be 0.

Theorem 4.1 [Misra et al. 2010]. (i) The G"-crystal B; is a perfect crystal of
level I.

(i1) The family of the perfect crystals {B;};>1 forms a coherent family and the
crystal B is its limit with the vector bso = (0, 0, 0, 0, 0, 0).

As was shown in [Misra et al. 2010], the minimal elements are given by
(BD)min ={(a, B, B, B, B, @) | € Z>0, B € (£>0)/3, 20 + 3B < 1}.

Set J ={(,b) |l € Z>1, b € (B/)min} and let the maps &, ¢ : (B))min — (P); be
as in Definition 3.7. Then we have wt by, = 0 and

€i(boo) = 9i(bso) =0 for i =0,1,2.
For (I, by) € J, since €(bg) = ¢(bg), one can set A = &(bgy) = ¢(by). For
b= (by, by, b3, b3, by, by) € By
we define a map
Jany: T ® B ® By — Boo
by
fuby B ®b®1ty) =b" = (v1, v2, v3, 13, V2, V1)
where by = («, B, 8, B, B, @), and
vi=b —a, D =b —a,
w=by—p, tr=br—B,
v3=by—pB, b3=hb3—p.
Finally, we obtain

Boo= U Imf(l,b).

(,byeJ
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5. Affine geometric crystal 'y (Df’) )

Fundamental representation W (w) for Df). Lete=), aivoziv be the canonical
central element in an affine Lie algebra g (see [Kac 1990, 6.1]), {A; | i € I} the
set of fundamental weights as in the previous section and @] := A — aIVAO the
fundamental weight (of level 0). Let W () be the fundamental representation of
U [’] (g) associated with @) [Kashiwara 2002].

By [Kashiwara 2002, Theorem 5.17], W (z}) is a finite-dimensional irreducible
integrable U, ; (g)-module and has a global basis with a simple crystal. Thus, we
can consider the specialization ¢ = 1 and obtain the finite-dimensional g-module
W (), which we call a fundamental representation of g and use the same notation
as above.

We shall present the explicit form of W (z) for g = Df).

W (wy) for Df). The Cartan matrix A = (a;, ;)i j=0,1,2 of type Df) is given by

2-1 0
A= -1 2 -3
0-1 2

Then the simple roots are
ag=2Ao— A1+, ar=—Ao+2A1—A2, oar=-3A1+2A,,
and the Dynkin diagram is this:

O 0=

The Df)—module W (@) is an 8-dimensional module with the basis
{v1, v2, v3, V9, D, V3, v3, V}.
The explicit form of W (@) is given in [Kashiwara et al. 2007].
wt(vy) = A1 —2A, Wt(v) = —Ag— A1+ Az, wt(v3) = —Ag+2A1 — Ay,
wt(v;) = —wt(v;) (i =1,2,3), wt(vg) =wt() =0.
The actions of e¢; and f; on these basis vectors are given as follows:
fo(vo, v3, v3, vy, D) = (vl, U2, V3, I+ %vo, %vl) ,
Sfi(v1, v3, v0, v3) = (v2, Vo, 2v3, v7),  f2(v2, v3) = (3, V3),
eo(vy, V2, V3, Vg, D) = (@—l— %vo, v3, V3, U7, %vj) ,
e1(v2, vo, v3, v7) = (v1, 203, Vo, V3),  €2(v3, v3) = (v2, v3),

where we give nontrivial actions only.
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Construction of the affine geometric crystal °V1(D‘(‘3)) in W(w1y). In this section,
we follow [Igarashi and Nakashima 2010]. For & € (t7))o, let 7 (§) be the translation
as in [Kashiwara 2002, Section 4] and @; as in [Kashiwara 2005]; indeed, @; :=
max(1, 2/(«;, o;))@;. Then we have

(@) = 5051528515281 =: W1,

1(Wt(v3)) = 5251525185051 =: W2.
Associated with these Weyl group elements w; and w,, we define algebraic vari-
eties V' = °V1(Df)) and V) = °V2(Df13)) C W (@) respectively:
V1= {Vi(x) := Yo(xo) Y1(x)Y2(x2) Y1 (x3) Y2 (x4) Y1 (x5)v1 | x; € C*, 0 <i <5},
Vo :={V2(y) :=2(»2)Y1(yDY2(y) Y1(33) Yo(yo) Y1 (y5)v; | yi € C*, 0 <i <5}.

Owing to the explicit forms of f;’s on W (@) as above, we have fo3 =0, f13 =0
and f22 = ( and then

fv2
2c2
We get explicit forms of V| (x) € V| and V,(y) € ¥, as in [Nakashima 2007]:

Yie)=(1+ % +25)af(© (=0,1), V)= (1+ %)azv(c).

Vilx) = Z (Xivi + X7v7) + Xovo + X o9,

1<i<3
Va(y) = Y (Yivi + Yivp) + Yovo + Yo@.
1<i<3
where the rational functions X;’s and Y;’s are all positive in (xg, ..., xs5) and
(yo, - - ., y5) respectively (as for their explicit forms, see [Igarashi and Nakashima

2010]) and for any x there exist a unique rational function a(x) and y such that
Va(y) = a(x)Vi(x). Using this result, we get the positive birational isomorphism
o : V11—V, (Vi(x) — V,(y)) and we know that its inverse o lisalso positive. The
actions of eg on V,(y) (respectively y((V2(y)) and g9(V2(y))) are induced from
the ones on Y2 (y2) Y1 (y1) Y2(y4) Y1(y3)Yo(y0) Y1(y5) as an element of the geometric
crystal 9. We define the action eg on Vi (x) by

(5-1) e5(Vi(x)) :==0 ' oeioa(Vi(x)).
We also define yo(V)(x)) and go(V1(x)) by
(5-2) Yo(Vi(x)) =y (@ (Vi(x))), go(V1(x)) :=2o(a (V1(x))).

Theorem 5.1 [Igarashi and Nakashima 2010]. Together with (5-1), (5-2) on 1y,
we obtain a positive affine geometric crystal x = (Vi,{ei}icr, {Vitier, {€i}ier)
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(I = {0, 1,2}), whose explicit form is as follows: first we have e, y;, and ¢;, for
i =1,2, from (2-2), (2-3), and (2-4):

e (Vi(x)) = Vi(xo, €1x1, X2, €3x3, x4, 65x5),

e5(Vi(x)) = Vi(xo, x1, €ax2, x3, €4x4, X5),

where
c X0 4 X0 X2 X0 X2 X4 cXxg n CcXgX2 X0 X2 X4
@ — M x12x3  x12x32x5 G — X1 x12x3  x12x3%xs
1 X0 X0 X2 XoX2Xx4 3 C X0 X0 X2 X0 X2 X4
xi o xi?2x3 o x12x3%xs X1 x12x3  x12x32 x5
X0  XoX2 = X0X2X4 CX13 x13x33 x13 x13x33
S L L o T o 5T
X1 X1°X3  X17X37X5 X2 X2°X4 X2 X2°X4
s = CXo  CXoX2  XoXaXs €= 3 35 4= 3 3.3
4 + X1 X17 X3 cX] X1 X3
2 2,2 — +t— —
X1 X1°X3 X1°X3°X5 X XQZX4 X X22x4
X3 3.,.3
X0  XoX2 X0 X2 X4 X1° X3
el(Vl(x))=—+ 5 5 SZ(VI(X))__+
X17X3  X17X37 X5 x22xy’
2 2.2 252
XTX5SX
173%s XoXy4
n(Vi(x) = 1355 (Vi) = 5254
X()XQX4 X x3x5
We also have e, e and yo on Vi(x):
Vi) = V D F G D-H D? D
eq(Vix)) =W X0 X1 X2 X3 X4 X5
0 c-EVcE B ETREFTASG e-H)
E 2
(Vi) = ———,  nVi)=—2—
X0~ X2 X3 X|X3X5
where

22 2 2
D = c*xg”x2X3 + x1 X2 X3 x5 + c.x0(X1 %3 4+ x2(x37 + X1 X4 + X1 X3x5)),
E = x0” X223 + X1 X237 X5 4+ X0 (X1 X3° + %2 (337 + X1 X2 + X1 x3.%5) ),

F = x2x3% (X0 + X1 X5) 4 € X0 (XOXZX3 +x1(x3° + x2x4 +X2X3X5)),

5 5 4.3

G= c3x06x23x33 +3c2x0 )C23)C34 +302x0 x1x22x35 +3cxp X x35

+ 6cx04x1 x22x36 + x03x23x36 + 3cx04x12x2x37 + 3x03x1 x22x37

3037 433 %0  x x0 x3% xa + 67 x0t xy x03 x50 x4
+ 36x04x12xz2)C34x4 +3¢° X04X12XQ2)C34X4 + 3cxo3x1xz3 x34x4

+ 3)603)612)622)635)64 + 302xo3x12x22x3SX4 + 2XO3X13)C2)C36X4

+ C3X03X]3XZX36X4 + 3C3XQ4X]2)C23)C3X42 + 302)603)(12)(23)632)642

+xo 2t w2 x3d xa? 23 x0P 1P 2% x3? xa? + A x0’ x17 10 x4

2
+3x0° x12x0x38 + x0° X3



ULTRA-DISCRETIZATION OF THE D{”-GEOMETRIC CRYSTAL 133

+3¢° x05x1 x23X33x5 + 902x04x1x23x34x5 + 662)6()4)612)622)635)65

3

+ 9cx03x1x2 x35x5 + 126x03x12x22x36x5 + 3x02x1x23x3(’X5

+3cx0’x1° x2x3” x5+ 6x07 %12 X2 %37 x5+ 3x0% X1° X2 X35 X5

+6¢° xo4x12x23x32X4x5 + 12c2x03x12x23x33X4x5 + 3cx03x13x22x34X4x5

+3¢3 XO3X13)C22)C34X4X5 + 6cx02x12x23X34X4x5 + 3x02x13xz2x35x4x5

+ 3CZXOZX13)C22)C35X4X5 + 3C3)C()3X13XQ3X3)C42X5 + 3c2x02x13xz3X32x42x5
+3c3 X()4)C12)C23X33XS2 + 962x03x12x23x34x52 + 362x03x13x22X3SX52
+ 9CX02)C12)C23)C35)C52 + 6CX02)C13)C22)C36X52 + 3x0x12x23x36

+3x0x1° %2537 x52 + 33 x> x 1P X0 3t xaxs? + 667 x0% X1 X020 X3 x4 X5°

+ 3cx0x13x23x34x4xs2 + c3x03x13x23x33xs3 + 302x02x13

3
+ 3cx0x13x23x3SX53 +x13x X36X53,

)C52
XQ3X34)C53

2 2 2
H = cxo” xax3 4+ x0 X2 X3 4 X0 X1 X3° 4 X0 X1 X2 X4 4 € X0 X1 X2 X3 X5 + X1 X2 X3% X5.

6. Ultra-discretization

We denote the positive structure on x as in the previous section by 6 : T’ :=
(C*)® =¥ (x = Vi(x)). Then by Corollary 2.7 we obtain the ultra-discretization
UD(x, T',0), which is a Kashiwara’s crystal. Now we show that the conjecture
in [Igarashi and Nakashima 2010] is correct.

Theorem 6.1. The crystal U (x, T', 0) as above is isomorphic to the crystal By,
of type Gg) as in Section 4.

To show this, we display the explicit crystal structure on & := U%(x, T’, 0).
Note that UG (x) = Z° as a set. Here as for variables in %, we use the same
notations c, xg, Xi, ..., X5 as for x.

For x = (xg, x1, ..., x5) € &, it follows from the results in the previous section
that the functions wt; and ¢; (i =0, 1, 2) are given as

Wi (x) = 2xg — x1 —x3 — x5, Wti(x) =2(x; +x3 +X5) — X0 — X2 — X4,
wip (x) = 2(x2 +x4) — 3(x1 — x3 — X5).
Set
o:=2x0+x2+x3, PBi=x1+x2+2x3+x5, y:=x0+x1+3x3,
S:=x0+xp+2x3, €:=x9+x1+x2+x4, ¢:=x0+x1+x2+x3+Xx5.

(6-1)

Then we have
go(x) =max(a, B, v, 8, €, ) —(Bxo+x2+x3),
(6-2)  e1(x) = max(xo—x1, Xo+x2—2x1 —Xx3, X0+X2+ X4 —2x1 —2x3—X5),

gr(x) = max(3x; —x2, 3x1+3x3—2x2—X4).
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Indeed, from the explicit form of G in the previous section we have UD(G)|c=—1
= max(—3+3«a, —2+4+20+65, —24+20+y, —14+a+25, —14+a+y+35, 36,
—1+a+2y, y+268, 2y +4, 3y, —34+2a+e€, —24+a+d5+e€, —1+a+y+e,
—1426+€, y+6+€, 2y +€, —3+a+2e, —24542¢, y+2€, —343¢, —=3+2a+9,
—24a+8+¢, —24+a+y+¢, —1+28+¢, —1+y+5+¢, f+28, —14+2y+9,
B+y+8, B+2y, —3+a+e+d, —2+5+e+¢, —1+y+e+p, —1+B+5+e,
B+y+e, —34+2e+¢, —24+F+2¢, 3+a+2¢, —2456+2¢, —24+y+29,
—14+a+28, —1+B+y+¢, 2846, 2B+y, —3+€+2¢, —2+B+e+¢, —1+28+€,
—34+3¢, —24+B+2¢, —14+28+¢, 3B).
We simplify this by using the following lemma:

Lemma 6.2. Formy,...,myeRandt,..., 1t € Rsg suchthatt|+ - -+t =1,
we have

k
max(ml,...,mk, E t,-ml) =max(mi, ..., mg).
i=1

Since we have

2(—3+3a) + 38 2(—3+3a) +3

2 t2ats= 2 +3“)+ , ety =2t +3°‘>+ Y
2.354+ (=343 —343a)+3y 438

—14+a+25= +(3 + a), —1+oe+)/+8=( + a);_ v+ ,
343a)+2-3 2.3543

Clgat2y= S0 y 425 = 201

3
and so on, we deduce using the lemma that

UD(G)|e=—1 = max(—3+3«, 36, 3y, 35, —3+4+3¢, —34+3¢, —1+a+y +e,
y+8+e€, y+2€, 2y +e, —1+y+e+d, Bty +e).
Next, we describe the actions of ﬁ (i=0,1,2). Set E; :=UD(6;)|c=—1, for
j=1,...,5. Then we have
E1 =max(—1+x9—x1, xo+x2—2x1 —x3, x0+X2+x4—2x] —2x3 —X5)
— max(xg—xq, Xo+x2—2x1 —X3, X0+X2+x4—2x1 —2X3—X5),
3=max(—1+xg—x1, —14+x0+x2—2x1—x3, X0+X2+x4—2X] —2X3—X5)
— max(—14x9—xq, xo+x2—2x1 —X3, X0+X2+x4—2x] —2X3—X5),
s=max(—14+xg—x1, —1+x0+x2—2x1—x3, —1+x0+x2+x4—2x1 —2x3—X5)
— max(—1+xo—x1, —14+x0+x2—2x1 —x3, X0+x2+Xx4 —2x] —2x3—X5),

o =max(—14+3x1—xp, 3x1+3x3—2x3—x4)

]

]

(]

— max(3x;—xp, 3x1+3x3—2x2—x4),
B4 =max(—143x;—x, —14+3x14+3x3—2x0—x4)

—max(—143x;—x2, 3x1+3x3—2x2 —Xx4).
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Therefore, for x € X we have

f1(x) = (x0, x1+E1, X2, X34 E3, x4, x5+ Es),
fo(x) = (x0, x1, X2+ B2, X3, x4+ E4, X5).
We obtain the action ¢; (i =1, 2) by s~etting c=11inUD(E;).
Finally, we describe the action of fj. Set
Yo:=max(—2+a, B, —14+y, =148, —1+€, —14+¢)—max(«, B, y, 6, €, ¢)+1,
Vi:=max(—1+4+«a, B, —1+y, 8, —14+€, —1+¢) —max(a, B, v, 8, €, ) +1,
Wy :=max(—3+3a, 38, 3y, 38, —343¢, —34+3¢, —1+a+y+e, y+35+e,
y+2€,2y+e€, —14+y+e+¢, B+y+e)—3max(e, 8, v, §, €, ¢)+3,
WUs:=max(—2+a, B, —1+y, =148, —14+¢€, —1+0¢)
+max(—1+«, B, y, 8, €, —1+¢) —max(«a, B, v, 8, €, ¢)
—max(—1+4+a, B, =14y, 68, —14+¢€, —1+¢)+2,
V=3 max(—2+a, B, —1+y, =148, —14+¢€, —1+0¢)
—max(—3+43«a, 38, 3y, 36, —3+3¢, —3+3¢, —1+a+y+e, y+5+e,
Y42, 2y+e, —1+y+e+¢, B+y+e)+3,
Vs:=max(—2+cw, B, —14+y, =146, —14+¢€, —1+¢)
—max(1+a, B, y,8, ¢, —1+¢)+1,

where «, B, ..., ¢ are as in (6-1). Therefore, by the explicit form of e as in the
previous section, we have

(6-3) fo(x) = (xo+ Wo, x1 + Wy, x2 + W, x5 + W3, x4 + W, x5+ Ws).
We have the explicit form of ¢y by setting ¢ = 1 in UD(6;).
Proof of Theorem 6. 1. Define the map

Q: & — By
(x0, ..., x5) > (b1,b2,b3,b3, by, by),

by
by =xs, b2=%x4—x5, b3=x3—§x4, 53=§x2—x3, 52=X1—%x2, by = xo—x1,
and Q7! is given by

xo=b1+by+ (b3 +b3) +by+b1,  x1=by+by+ (b3 +b3) +bo,

X2 =3b1 +3by + 3(b3 +b3), x3=2b) +2by+b3, x4 =3b1+3bs, xs=by,

which means that €2 is bijective. Note that %(b3 +b3)eZ by the definition of
B as on page 127. We shall show that €2 is commutative with actions of f; and



136 MANA IGARASHI, KAILASH C. MISRA AND TOSHIKI NAKASHIMA

preserves the functions wt; and g, that is,
fQ) =Q(fix), wu(Qx)=wt(x), &(Q@) =g (=0,1,2),

Indeed, the commutativity e; (€2(x)) = Q(¢;x) is shown by a similar way. First, let
us check wt;:

Set b = Q(x) and let (z1, 22, 23, 24) be as in (4-2). By the explicit forms of wt;
on ¥ and B, we have

wto(€2(x)) = @o(§2(x)) — e0(L2(x)) =2z1 + 22+ 23 + 324
=2(by — by) + (by — b3) + (b3 — by) + 3 (b3 — b3)
=2(b1 — b1) + by — by + 5 (b3 — b3) = 2x0 — x; — X3 — x5 = Wip(x),
wtp (2(x)) = @1(82(x)) — e1(£2(x))
=b1+ (b3 —ba+ (ba—b3)1)+ — (b1 + (b3 — b2+ (b2 — b3) 1) +)
=by—by—by+by+b3—b3 =2(x1 +x3+Xx5) — X0 — X2 — X4
= wity (x),
wtz (2(x)) = 2(82(x)) — £2(£2(x))
=3by+3(b3 —b3)y —3by — 3 (b3 —b3) ¢
=3by —3by + %(b3 —b3) = 2(x2 + x4) — 3(x1 +x3 +x5) = Wi (x).
Next, we check ¢;:
e1(Q(x)) = by + (b3 — by + (by —b3) 1)+
=max(by, by +b3 — by, by +b3 — by + by — b3)
= max(xog—Xx1, X0 —2X1 +Xx2 —Xx3, X0 —2X] +Xx2 —2x3+ x4 —X5) = £1(xX),
£2(2(x)) = 3by + 3 (b3 — b3)1 = max(3b2, 3b2 + 5 (b3 — b))

=max(3x; — x2, 3x1 — 2x2 + 3x3 — x4) = &2(x).

Now let us see &p:

e0(£2(x))
= —s(b)+max A—(2z1+z22+23+324)
= —xo+max(0, z1, z1+22, 21 +22+324,
z1+22+23+324, 221+ 22+ 23+324) — (@ — B)
= —xp+max(—2xg+x;+x3+x5, —x0+x3, —X0+x1 —x2+2x3,
—Xo+x1—x3+x4, —X0+x1 +x5, 0)
= —(Bxo+x2+x3)+max(x; +x2+2x3+x5, x0+x2+2x3, X0+x1 +3x3,
X0+x1+x2+x4, X0+ X1+ X2+ X3+ X5, 2X0+X2+X3)
= —(3xo+x2+x3)+max(B, 8, y, €, ¢, a).
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On the other hand, we have

g0(x) = —(3xp +x2 +x3) + max(a, B, ¥, 8, €, 9).

which shows €0(2(x)) = go(x).
Let us show f;(Q(x)) = Q(fi(x)) x €%, i =0, 1,2). As for f], set

A=x0—x1, B=xo+xy—2x1—x3, C=x04+x2+ x4 —2x1 —2x3 — Xx5.

Then we obtain

]

=max(A—1,B,C)—max(A, B, (),

]

s=max(A—1,B—1,C) —max(A —1, B, C),
max(A—1,B—1,C—-1)—max(A—1,B—1,C).

]

5

Therefore, we have

8 =—1, 8;=0, 85=0, ifA>B8,C,
8,=0, S3=-1, 85=0, ifA<B>C,
8,=0, 83=0, B&s=-1, ifA,B<C,

which implies
(XO,XI—I,XZ,...,Xj) if A > B,C,

fic)=1(x0,....x3—1,x4,x5) ifA<B>C,
(x0,...,Xx4,x5—1) if A,B<C.

Since A =by, B=b; +b3—by and C = by + b3 — by +br — b3, we get (b = Q(x))

(...bp—1,b1+1) if by —b3 > (by — b3)4,
QAN =3(...,b3—1,b3+1,...) ifby—b3<0<b;—by,
(bi—1,by+1,...) if (by — b3)4 < by — b3,

which is the same as the action of f; on b= $2(x) as on page 128. Hence, we have
Qi) = fi@w).
Let us see Q(f2(x)) = f2(2(x)). Set

L =3x1 —x3, M =3x1+3x3—2x)— x4.

Then 2, = max(—1+4+ L, M) —max(L, M) and E4 = max(—1+L,—-1+ M) —
max(—1+ L, M). Thus, one has

(1]

2=—1, E4=0 ifL>M,
2=0, Bs=-1 ifL<M,

o]
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which means

(x0, x1,x2 — 1, x3,x4,x5) if L>M,

flx) = {

(x0, X1, X2, X3, x4 — 1, x5) if L <M.
Since L — M =X —3x3 + x4 = %(53 — b3), one gets

(conbs—3%bp+1,..) if b3y > bs,

Q(fa(x)) = {(,_.,bz—%,b3+%"“) if b3 < b3,

where b = € (x). This action coincides with the one of f> on b € By, on page 128.
Therefore, we get Q(fz(x)) = f~2(52 (x)).

Finally, we shall check fO(Q (x)=Q( fo(x)). For the purpose, we shall estimate
the values Wy, ..., W5 explicitly.

First, the following cases are investigated:

() Bzvy.é.¢.9, p=za, §=0.
(f2) Bp<dza,y. €, a>¢, B=¢.
f3) B d<yza€d.

fy) B, d<e=a,¢p, e=y+1.
(f) B.d<e=a, ¢, e=y+2.
) B d<eza, ¢, e>y+2.
f5) B.y,e<¢p>a, a>35, B>3.
fs) a>y,8,6,¢, §,¢>P.

It is easy to see that each of these conditions are equivalent to the conditions (F7)—
(Fe) in (4-3); more precisely, we have (f;) <= (F;) (i=1, 2, 3, 5, 6), (f4) < (F4)
and z4 = 1, (f}) <> (F4) and z4 = 3 and (f}) <> (F4) and z4 # 1, 3, and that
(f1)—(fe) cover all cases and they have no intersection.

Let us show (f;) <= (F}): the condition (f;) means 8 —y = —(z;1 +z2) >0,
B—86=—721>0,8—€e=—(21+22+324)>0and B—¢p =—(z1+22+23+324) >0,
which is equivalent to the condition z; +z> <0, z; <0, z1 +z2 + 324 <0 and
71 +20+23+324 <0. Note that p —a = — 6,8 —a = B — ¢.) This is just the
condition (F7). Other cases i =2, 3,5, 6 are shown similarly. Next, let us see the
cases (f4), (f}) and (f}). Indeed,

€—y =x—3x3 +X4=%(E3—b3)=3Z4.

Thus, we can easily get that (f4) <= (F4) and z4 = %, (fg{) < (Fy) and z4 = %
and (f}) <= (F4) and z4 # %, %
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Under the condition (f}) <= (F}), we have

Yo=U 1 =Ws=1, ¥, =Py =3, Y3=2,
which means fo(x) =(xo+1,x14+1, x04+3, x3+2, x4+ 3, x5+ 1). Thus, we have

Q(fo(x)) = (b1 +1,ba, ..., by),

which coincides with the action of f under (F}) given on page 128. Similarly, we
have

(f2) = (Wo, V1, V2, W3, Wy, Ws) = (0, 1,3, 1,0,0)
= fo(x) = (xo, x1 + 1, x24+3, x3 + 1, x4, x5)
= Q(fo0) = (b1, b2, b3+ 1. b3 +1, b2, by — 1),
which coincides with the action of f; under (F») on the same page;
(f3) = (W, ¥q, Vo, W3, Wy, Ws) = (0,0, 3,2, 0,0)
= fo(x) = (x0, x1, %243, x3 +2, x4, X5)
= Q(fo(x) = (b1, by, b3 +2,b3, by — 1, by),

which coincides with the action of fo under (F3);

(f4) = (Yo, V1, ¥y, W3, Wy, Us) =(0,0,2,2,1,0)
= fo(x) = (xo, x1, %2 +2, x3+2, x4 + 1, x5)
= Q(fo(x) = (b1, ba+1, b3+ 3, b3 — 3, by — 3, b),
which coincides with the action of ﬁ) under (Fy) and z4 = %;
(f}) = (Yo, W1, Wy, W3, Wy, ¥s5) = (0,0,1,2,2,0)
= fo(x) = (x0, x1, X2+ 1, x3 +2, x4 +2, x5)
= Q(fo(x)) = (b1, ba+ 3. b3+ 3, b3 — 3, ba— 3. by),
which coincides with the action of fo under (Fy) and z4 = %;
(£)) = (Wo, ¥y, ¥y, W3, Wy, ¥s5) =(0,0,0,2,3,0)
= fo(x) = (x0, x1, %2, X3 +2, x4+ 3, x5)
= Q(fo(x)) = (b1, by + 1, b3, b3 — 2, by, by),
which coincides with the action of fo under (Fy) and z4 # %, %;
(fs) = (Yo, ¥q, ¥y, W3, Wy, ¥5) =(0,0,0,1,3, 1)

= fo(x) = (x0, x1, %2, x3+ 1, x4+ 3, x5+ 1)
= Q(fo(x)) = (b1 +1,ba, b3 —1,b3— 1, by, by),
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which coincides with the action of fo under (F5s). Finally,

(fﬁ) = (:va lpl’ leZa "1137 \1147 \IJS) = (_17 07 05 07 Ov 0)
= fo(x) = (xo — 1, x1, x2, X3, X4, X5)
= Q(fo(x)):(b19b29b39b39b29b1_1)v

which coincides with the action of fy under (Fg), still on page 128. Now, we have
Q(fo(x)) = fo(2(x)). The proof of Theorem 6.1 has been completed. O
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