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Let d ≥ 3, n1 > 0 and n2 > 0 be integers. Let e = (e1, . . . , er) and q =
(q1, . . . , qs) be two partitions of d. Let X, X ′ and Y be smooth, connected,
projective complex curves. In this paper we study coverings that decompose
into a sequence

X
π
→ X ′

f
→ Y,

where π is a degree-two coverings with n1 branch points and branch locus
Dπ and f is a degree-d coverings with n2 points of simple branching and
two special points whose local monodromy is given by e and q, respectively.
Furthermore the covering f has monodromy group Sd and f (Dπ )∩D f =∅
where D f denotes the branch locus of f . We prove that the corresponding
Hurwitz spaces are irreducible under the hypothesis n2− s− r ≥ d+ 1.

Introduction

In this paper we study Hurwitz spaces that parametrize branched coverings with
two special fibers whose monodromy group is a Weyl group of type Bd .

We notice that the irreducibility of Hurwitz spaces, parametrizing branched cov-
erings of a smooth, connected, projective complex curve Y with monodromy group
Sd and with at most two special fibers, has been well studied both when Y 'P1 and
when Y has positive genus. The case of simple coverings was studied in [Berstein
and Edmonds 1984; Hurwitz 1891], the case of coverings with one special fiber
in addition to points of simple branching was studied in [Kanev 2004; Kluitmann
1988; Natanzon 1991; Vetro 2006] and the case of two special fibers in addition to
points of simple branching was studied in [Vetro 2010; Wajnryb 1996].

Sd is the Weyl group of a root system of type Ad−1 and so it is interesting to
study coverings with monodromy group a Weyl group different by Sd . Furthermore
coverings of this type are interesting, for example, because they appear in the study
of spectral curves and of Prym–Tyurin varieties.

MSC2010: primary 14H30; secondary 14H10.
Keywords: Hurwitz spaces, special fibers, branched coverings, Weyl group of type Bd ,

monodromy, braid moves.
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Hurwitz spaces parametrizing coverings of this type were studied in [Biggers
and Fried 1986; Kanev 2006; Vetro 2007; 2008a; 2008b; 2009]. Biggers and Fried
proved the irreducibility of Hurwitz spaces parametrizing coverings of P1 whose
monodromy group is a Weyl group of type Dd and whose local monodromies are
all reflections. Kanev extended the result to Hurwitz spaces of Galois coverings of
P1 whose Galois group is an arbitrary Weyl group.

Let X and X ′ be smooth, connected, projective complex curves. We studied
Hurwitz spaces of coverings that decompose into a sequence of coverings of type
X π
→ X ′ f

→ Y , where π is a degree-two covering and f is a degree d ≥ 3 covering
with one special fiber and with monodromy group Sd . We analyzed in [Vetro 2007;
2008a] the case that π is branched, and in [Vetro 2008b; 2009] the unramified case.

In this paper we continue the study of coverings of type X π
→ X ′ f

→ Y , with
π a degree-two covering and f a degree-d covering. Let e = (e1, . . . , er ) and
q = (q1, . . . , qs) be two partitions of d and let b0 be a point of Y . In particular
we study equivalence classes of pairs [X π

→ X ′ f
→ Y, φ] satisfying the following

conditions:

• π is branched in n1 points and has branch locus Dπ , f is simply branched in
n2 points and has two special points with local monodromy given by e and q,
respectively;

• f has monodromy group Sd and f (Dπ ) ∩ D f = ∅, where D f denotes the
branch locus of f ;

• f ◦π is unramified in b0 and φ : ( f ◦π)−1(b0)→{−d, . . . ,−1, 1, . . . , d} is
a bijection.

We study the irreducibility of the corresponding Hurwitz spaces both when
Y ' P1 and when Y has genus > 0. We prove that, in both the cases, these
spaces are irreducible under the hypothesis n2− s − r ≥ d + 1. This condition is
necessary in [Vetro 2010] in order to prove the irreducibility of the Hurwitz spaces
H o

d,n2,e,q(Y, b0) that parametrize equivalence classes of pairs [ f, ϕ] where f is a

coverings as above and ϕ : f −1(b0)→{1, . . . , d} is a bijection. Here, we also use
the results of [Vetro 2010].

Notation. Two degree-d branched coverings of Y , f1 : X1→ Y and f2 : X2→ Y ,
are equivalent if there exists a biholomorphic map p : X1→ X2 such that f2◦p= f1.
Two sequences of coverings,

X1
π1
→ X ′1

f1
→ Y and X2

π2
→ X ′2

f2
→ Y,

are equivalent if there exist two biholomorphic maps p : X1→ X2 and p′ : X ′1→ X ′2
such that p′ ◦π1 = π2 ◦ p and f2 ◦ p′ = f1. The equivalence class containing f ◦π
is denoted by [ f ◦π ]. The natural action of Sd on {1, . . . , d} is on the right.
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1. Preliminaries

Throughout this section, d and n denote positive integers.

1.1. Weyl groups of type Bd . (Refer to [Bourbaki 1968; Carter 1972] for details.)
Let {ε1, . . . , εd} be the standard base of Rd and let R be the root system

{±εi , ±εi ± ε j : 1≤ i, j ≤ d}.

Let us denote by W (Bd) the group generated by the reflections sεi , with 1≤ i ≤ d ,
and by the reflections sεi−ε j , with 1≤ i < j ≤ d . We call W (Bd) a Weyl group of
type Bd .

We notice that the reflection sεi−ε j exchanges εi with ε j and −εi with −ε j ,
leaving fixed each εh with h 6= i, j . The reflection sεi exchanges εi with −εi and
fixes all the εh with h 6= i . Thus if we identify {±εi : 1≤ i ≤ d} with {±1, . . . ,±d}
by the map ±εi → ±i , we can easily define an injective homomorphism from
W (Bd) into S2d such that

sεi−ε j → (i j)(−i − j), sεi → (i −i), sεi+ε j = sεi sε j sεi−ε j → (i − j)(−i j).

Let Zd
2 be the set of the functions from {1, . . . , d} into Z2 equipped with the

sum operation. We will use 1̄ j to denote the function in Zd
2 defined by

1̄ j ( j)= 1̄ and 1̄ j (h)= 0̄ for each h 6= j

and we will write zi j to denote the function in Zd
2 defined by

zi j (i)= zi j ( j)= z and zi j (h)= 0̄ for each h 6= i, j and z ∈ Z2.

Let 9 be the homomorphism from Sd into Aut(Zd
2) that assigns to t ∈ Sd the

element 9(t) ∈ Aut(Zd
2), where [9(t) a] ( j) := a( j t) for each a ∈ Zd

2 .
Let Zd

2×
s Sd be the semidirect product of Zd

2 and Sd through the homomorphism
9. Given (a′; t1), (a′′; t2) ∈ Zd

2 ×
s Sd , we put

(a′; t1) · (a′′; t2) := (a′+9(t1)a′′; t1t2).

It is easy to check that the homomorphism from W (Bd)→ Zd
2×

s Sd defined by

sεi−ε j → (0; (i j)), sεi → (1̄i ; id), sεi+ε j → (1̄i j ; (i j))

is an isomorphism. We will identify W (Bd) with Zd
2 ×

s Sd via this isomorphism.

Definition 1. Let k be a positive integer. Let (c; ξ) be an element of W (Bd) such
that ξ is a k-cycle of Sd and c is a function that sends to 0̄ all the indexes fixed
by ξ . We call an such element a positive k-cycle if c is either zero or a function
which sends to 1̄ an even number of indexes. We call it negative k-cycle if it is not
positive.
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We notice that two cycles (c; ξ) and (c′; ξ ′) in W (Bd) are disjoint if ξ and ξ ′ are
disjoint. Furthermore, all the elements in W (Bd) can be expressed as a product of
disjoint positive and negative cycles. The lengths of such disjoint cycles together
with their signs determine the signed cycle type of the elements of W (Bd). Two
elements of W (Bd) are conjugate if and only if they have the same signed cycle
type [Carter 1972].

Braid group actions on Hurwitz systems. (Refer to [Birman 1969; Fadell and
Neuwirth 1962; Graber et al. 2002; Hurwitz 1891; Kanev 2004; Scott 1970].)
Let Y be a smooth, connected, projective complex curve of genus g and let b0 ∈ Y .
Let (Y −b0)

(n) be the n-fold symmetric product of (Y −b0) and let 1 be the codi-
mension 1 locus of (Y−b0)

(n) consisting of non simple divisors. The generators of
the braid group π1((Y − b0)

(n)
−1, D) were studied in [Birman 1969; Fadell and

Neuwirth 1962; Scott 1970]. They are the elementary braids σi , with 1≤ i ≤ n−1,
and the braids ρ jk, τ jk , with 1≤ j ≤ n and 1≤ k ≤ g.

Definition 2. Let G be a subgroup of Sh . An ordered sequence of elements of G

(t; λ,µ) := (t1, . . . , tn; λ1, µ1, . . . , λg, µg)

such that ti 6= id for each i and t1 · · · tn = [λ1, µ1] · · · [λg, µg] is called a Hurwitz
system with values in G. The subgroup of G generated by t1, . . . , tn , λ1, µ1, . . . ,
λg, µg is called the monodromy group of the Hurwitz system.

Remark 3. An ordered sequence t := (t1, . . . , tn) of elements of G, with ti 6= id
for each i , is a Hurwitz system if t1 · · · tn = id.

To each generator of π1((Y−b0)
(n)
−1, D) one associates a pair of braid moves.

We denote by σ ′i and σ ′′i = (σ
′

i )
−1 the moves associated with σi , and we call them

elementary moves. Similarly, ρ ′jk and ρ ′′jk = (ρ
′

jk)
−1 denote the moves associated

to ρ jk , and likewise for τ jk .
The moves σ ′i and σ ′′i fix all the λk , all the µk and all the th with h 6= i, i+1.

The elementary move σ ′i transforms (ti , ti+1) into (ti ti+1t−1
i , ti ), while the move

σ ′′i transforms (ti , ti+1) into (ti+1, t−1
i+1ti ti+1); see [Hurwitz 1891].

The braid moves ρ ′jk and ρ ′′jk fix all the λl , all the th with h 6= j and all the
µl with l 6= k. They modify t j and µk . Analogously the braid moves τ ′jk and τ ′′jk
modify t j and λk , leaving unchanged µl for all l, λl with l 6= k and th with h 6= j .

The braid moves ρ ′jk, ρ
′′

jk, τ
′

jk and τ ′′jk transform t j to an element belonging to
the same conjugate class (see Theorem 1.8, [Kanev 2004]).

By [Kanev 2004, Corollary 1.9], when λ1 = · · · = λk = µ1 = · · · = µk−1 = id,
the braid move ρ ′1k transforms µk into t−1

1 µk .
Analogously when λ1 = · · · = λk−1 =µ1 = · · · =µk−1 = id, the braid move τ ′′1k

transforms λk into t−1
1 λk .
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Definition 4. Two Hurwitz systems with values in G are braid-equivalent if one
is obtained from the other by a finite sequence of braid moves σ ′i , ρ ′jk , τ ′jk , σ ′′i ,
ρ ′′jk , τ ′′jk , where 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n and 1 ≤ k ≤ g. Two ordered sequences
of elements of G, (t1, . . . , tl) and (t ′1, . . . , t ′l ), are braid-equivalent if (t ′1, . . . , t ′l ) is
obtained from (t1, . . . , tl) by a finite sequence of braid moves of type σ ′i , σ ′′i . We
denote braid equivalence by ∼ .

2. The Hurwitz spaces HW(Bd),n1,n2,e,q(Y, b0) and HW(Bd),n1,n2,e,q(Y)

Let X, X ′ and Y be smooth, connected, projective complex curves. Let d ≥ 3,
n1 > 0 and n2 > 0 be integers. Let e = (e1, . . . , er ) and q = (q1, . . . , qs) be two
partitions of d with e1 ≥ e2 ≥ · · · ≥ er ≥ 1 and q1 ≥ q2 ≥ · · · ≥ qs ≥ 1. Let b0 be a
point of Y and let g be the genus of Y . In this paper we study equivalence classes
of pairs [X π

→ X ′ f
→ Y, φ] satisfying the following conditions:

(a) π is a degree-two coverings with n1 branch points and branch locus Dπ ;

(b) f is a degree-d coverings with n2 points of simple branching and two special
points whose local monodromy has cycle type given by e and q, respectively;

(c) the covering f has monodromy group Sd and f (Dπ ) ∩ D f = ∅ where D f

denotes the branch locus of f ;

(d) f ◦π is unramified in b0 and φ : ( f ◦π)−1(b0)→{−d, . . . ,−1,1, . . . ,d} is a
bijection such that if f −1(b0)={y1,. . .,yd} then π−1(yi )={φ

−1(i),φ−1(−i)}
for each i = 1, . . . , d.

HW (Bd ),n1,n2,e,q(Y, b0) will denote the Hurwitz space that parametrizes equiva-
lence classes of pairs [ f ◦π, φ] satisfying conditions (a)–(d).

HW (Bd ),n1,n2,e,q(Y ) will denote the Hurwitz space that parametrizes equivalence
classes of coverings f ◦π satisfying conditions (a)–(c).

Definition 5. A (n1, n2, e, q)-Hurwitz system is a Hurwitz system with values in
Zd

2 ×
s Sd , (t1, . . . , tn1+n2+2; λ,µ), such that n1 of t1, . . . , tn1+n2+2 are of the form

(1̄∗; id), n2 are of the form (zhk; (hk)), one is a product of r disjoint positive cycles
whose lengths are given by the elements of the partition e, and one is a product of s
disjoint positive cycles whose lengths are given by the elements of the partition q.

Let D = f (Dπ ) ∪ D f and let m : π1(Y−D, b0) → S2d be the monodromy
homomorphism associated to [ f ◦π, φ]. Let (γ1, . . . , γn1+n2+2, α1, β1, . . . , αg, βg)

be a standard generating system for π1(Y − D, b0). The images under m of γ1,
. . . , γn1+n2+2, α1, β1, . . . , αg, βg determine an (n1, n2, e, q)-Hurwitz system with
monodromy group W (Bd).

In the sequel we will denote by Ao
n1,n2,e,q,g the set of all (n1, n2, e, q)-Hurwitz

systems with monodromy group W (Bd). When g = 0 we will write Ao
n1,n2,e,q

instead of Ao
n1,n2,e,q,g.
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Let δ : HW (Bd ),n1,n2,e,q(Y, b0)→ (Y − b0)
(n1+n2+2)

−1 be the map that assigns
to each pair [ f ◦π, φ] the branch locus of f ◦π . By Riemann’s existence theorem
we can identify the fiber of δ over D with Ao

n1,n2,e,q,g. There is a unique topology
on HW (Bd ),n1,n2,e,q(Y, b0) such that δ is a topological covering map; see [Fulton
1969]. Therefore the braid group π1((Y−b0)

(n1+n2+2)
−1, D) acts on Ao

n1,n2,e,q,g.
If this action is transitive, HW (Bd ),n1,n2,e,q(Y, b0) is connected and hence, since
HW (Bd ),n1,n2,e,q(Y, b0) is smooth, it is also irreducible.

Remark 6. The forgetful map HW (Bd ),n1,n2,e,q(Y, b0) → HW (Bd ),n1,n2,e,q(Y ) de-
fined by [ f ◦ π, φ] → [ f ◦ π ] is a morphism, whose image is a dense subset of
HW (Bd ),n1,n2,e,q(Y ). This ensures that if HW (Bd ),n1,n2,e,q(Y, b0) is irreducible also
HW (Bd ),n1,n2,e,q(Y ) is irreducible.

3. The results

We denote by ε the following element in Sd having cycle type e:

(1) (1 2 . . . e1)(e1+1 . . . e1+e2) · · · ((e1+· · ·+er−1)+1 . . . d) .

We denote by ν the following element in Sd having cycle type q:

(2) (1 d d−1 . . . d−q1+2)(d−q1+1 . . . d−(q1+q2)+2)

· · · (d−(q1+· · ·+qs−1)+1 . . . 2).

Lemma 7. Let (t1, . . . , ti , ti+1, . . . , tl) be a sequence of permutations in Sd where
ti and ti+1 are two equal transpositions of Sd . Then we can move to the right
and to the left the pair (ti , ti+1) leaving unchanged the other permutations of the
sequence.

Proof. Applying the elementary moves σ ′′i−1, σ
′′

i we obtain

(ti−1, ti , ti+1)∼ (ti , t−1
i ti−1ti , ti+1)∼ (ti , ti+1, ti−1);

applying the moves σ ′i+1, σ
′

i we have

(ti , ti+1, ti+2)∼ (ti , ti+1ti+2t−1
i+1, ti+1)∼ (ti+2, ti , ti+1).

Hence using sequences of elementary moves of type either σ ′′j−1, σ
′′

j or σ ′j+1, σ
′

j
we can move respectively on the left and on the right the pair (ti , ti+1), leaving
unchanged the other permutations of the sequence. �

Lemma 8. Let (t1, . . . , tl, τ, τ ) be a sequence of permutations of Sd , with τ a
transposition. Let H be the subgroup of Sd generated by t1, . . . , tl . Then, for each
h ∈ H , one has

(t1, . . . , tl, τ, τ )∼ (t1, . . . , tl, h−1τh, h−1τh).
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Proof. Let h ∈ H , then h = h1h2 · · · hk where hi or h−1
i , with i = 1, . . . , k,

belonging to {t1, . . . , tl}. If h1 is equal to t j for some j ∈ {1, . . . , l}, we use
Lemma 7 to bring the pair (τ, τ ) to the left of t j and then we act by the moves
σ ′′j+1, σ

′′

j in order to replace (τ, τ, t j ) with (t j , t−1
j τ t j , t−1

j τ t j ).
On the contrary, if h1 is equal to t−1

j for some j ∈ {1, . . . , l}, we use Lemma 7
to shift the pair (τ, τ ) on the right of t j and then we apply σ ′j , σ

′

j+1. In this way
we replace (t j , τ, τ ) with (t jτ t−1

j , t jτ t−1
j , t j ).

For h2 we reason as above but we bring the pair (h−1
1 τh1, h−1

1 τh1) to the left
or to the right of tn depending on whether h2 is equal to tn or to t−1

n .
Following this line for each hi , with i = 3, . . . , k, we obtain the claim. �

Proposition 9 [Vetro 2010, Proposition 2]. Let t= (t1, . . . , tn2+2) be a Hurwitz sys-
tem of permutations of Sd with monodromy group Sd such that one of t1, . . . , tn2+2

has cycle type e, one has cycle type q and the other n2 permutations in t1, . . . , tn2+2

are transpositions. If n2−s−r ≥ d+1, t is braid-equivalent to the Hurwitz system

(ε, t̃2, . . . , t̃n2+2−s, ν) if s = 1,

(ε, t̃2, . . . , t̃n2+2−s, ν, (1 d−q1+1), . . . , (1 d−(q1+· · ·+qs−1)+1)) if s > 1,

where ε and ν are the permutations defined in (1) and (2), and where the sequence
(t̃2, . . . , t̃n2+2−s) is equal to

((1 2), . . . , (1 2)) if r = 1,

((1 e1+1), . . . , (1 (e1+· · ·+er−1)+1), (1 2), . . . , (1 2)) if r > 1

with the transposition (1 2) appearing an even number of times.

Remark 10. Seeing that d ≥ 3, the hypothesis n2− s − r ≥ d + 1 ensures that in
the sequence (t̃2, . . . , t̃n2+2−s) there are more than 3 transpositions (12).

3.1. Irreducibility of HW(Bd),n1,n2,e,q(P
1, b0) and HW(Bd),n1,n2,e,q(P

1). We next
show that, if n2−s−r ≥ d+1, the braid group π1((P

1
−b0)

(n1+n2+2)
−1, D) acts

transitively on Ao
n1,n2,e,q . To prove this we show that each (n1, n2, e, q)-Hurwitz

system in Ao
n1,n2,e,q is braid-equivalent to a given normal form.

Proposition 11. If n2− s − r ≥ d + 1, each Hurwitz system in Ao
n1,n2,e,q is braid-

equivalent to a Hurwitz system of the form(
t̃1, . . . , t̃n2+2−s, (0; ν), (1̄1; id), . . . , (1̄1; id)

)
if s = 1,(

t̃1, . . . , t̃n2+2−s, (0; ν), (0; (1 d − q1+ 1)), . . . ,
(
0;
(
1 d −

s−1∑
h=1

qh + 1
))
,

(1̄1; id), . . . , (1̄1; id)
)

if s > 1,

where (1̄1; id) appears n1 times and where (t̃1, . . . , t̃n2+2−s) is the sequence(
(0; ε), (0; (1 2)), . . . , (0; (1 2))

)
if r = 1,
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(
(0; ε), (0; (1e1+1)), . . . ,

(
0;
(
1

r−1∑
i=1

ei+1
))
, (0; (12)), . . . , (0; (12))

)
if r > 1,

with (0; (1 2)) appearing an even number of times.

Proof. Step 1. Let t ∈ Ao
n1,n2,e,q . We prove first that t is braid-equivalent to a

Hurwitz system of either the form(
. . . , (0; ν), (1̄1; id), . . . , (1̄1; id)

)
or the form(
. . . , (0; ν), (0; (1 d−q1+1)), . . . ,

(
0;
(
1 d−

s−1∑
h=1

qh+1
))
, (1̄1; id), . . . , (1̄1; id)

)
,

depending on whether s = 1 or s > 1, where (1̄1; id) appears n1 times.
Acting by elementary moves σ ′j we shift on the right the elements of the form

(1̄∗; id) obtaining that t is braid-equivalent to(
t̂1, . . . , t̂n2+2, (1̄h; id), . . . , (1̄k; id)

)
,

where t̂i = (∗; t ′i ). We notice that (t ′1, . . . , t ′n2+2) is a Hurwitz system of permu-
tations of Sd with monodromy group Sd such that one of t ′1, . . . , t ′n2+2 has cycle
type given by e, one has cycle type given by q and the other n2 permutations are
transpositions. Since n2−s−r ≥d+1, by Proposition 9, the system (t ′1, . . . , t ′n2+2)

is braid-equivalent to either(
ε, . . . , (1 2), . . . , (1 2), (1 2), (1 2), ν

)
or(
ε, . . . , (1 2), . . . , (1 2), (1 2), (1 2), ν, (1 d − q1+ 1), . . . ,

(
1 d −

s−1∑
h=1

qh + 1
))

depending on whether s = 1 or s > 1.
We notice that from

ε · · · (1 2) · · · (1 2)(1 2)(1 2)= (12 . . . d)

it follows that the group generated by the permutations ε, . . . , (1 2) is all of Sd .
Hence, by Lemma 8, the sequence (ε, . . . , (1 2), . . . , (1 2), (1 2), (1 2)) is braid-
equivalent to a sequence of the form (ε, . . . , (1 2), . . . , (1 2), τ, τ ), where τ is an
arbitrary transposition of Sd .

This ensures that t is braid-equivalent to a system of type either(
t̄1, . . . , t̄n2+2−s, (b; ν), (1̄h; id), . . .

)
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or(
t̄1, . . . , t̄n2+2−s, (b; ν), (z1

1 d−q1+1; (1 d − q1+ 1)), . . . ,(
zs−1

1 d−
∑s−1

h=1 qh+1
;
(
1 d −

s−1∑
h=1

qh + 1
))
, (1̄h; id), . . .

)
,

depending on whether s = 1 or s > 1, where t̄i = (∗; t ′′i ) and

(t ′′1 , . . . , t ′′n2+2−s)= (ε, . . . , (12), . . . , (1 2), τ, τ ).

Furthermore we can affirm that our system is braid-equivalent to either(
t̄1, . . . , ťn2+2−s, (1̄u; id), (b; ν), (1̄∗; id), . . .

)
or(
t̄1, . . . , ťn2+2−s, (1̄u; id), (b; ν), . . . ,(

zs−1
1 d−

∑s−1
h=1 qh+1

;
(
1 d −

s−1∑
h=1

qh + 1
))
, (1̄∗; id), . . .

)
,

depending on whether s = 1 or s > 1, where u is an arbitrary index in {1, . . . , d}
and ťn2+2−s = (?

′
; τ).

In fact, acting by elementary moves of the form σ ′j we can bring to the left
of (b; ν) one element of type (1̄∗; id). We choose τ = (u ∗) and then we act by
σ ′n2+2−s two times to replace ((?; τ), (1̄∗; id)) by ((?′; τ), (1̄u; id)).

Now we analyze separately the cases s = 1 and s > 1.

Case s = 1. Let i1, i2, . . . , il be the indexes that b sends to 1̄. We suppose that
i1 > i2 > · · ·> il−1 > il . Since our system is braid-equivalent to(

t̄1, . . . , t̄n2, ťn2+1, (1̄il ; id), (b; ν), (1̄∗; id), . . .
)
,

acting two times by the move σ ′n2+2 we can replace the pair ((1̄il ; id), (b; ν)), with
((1̄il+1; id), (b̂; ν)) where b̂ is a function that sends to 1̄ the indexes i1, i2, . . . , il−1,
il + 1, where il + 1 is the index that precedes il in ν. Observe that if there are h
indexes among il−1 and il , it is sufficient to use the move σ ′n2+2 another 2h times,
to replace the pair ((1̄il+1; id), (b̂; ν)) with ((1̄il−1; id), (b̌; ν)) where b̌ is a function
that sends to 1̄ the indexes i1, i2, . . . , il−2.

Since b is a function that sends to 1̄ an even number of indexes (see Definition 1),
following this line we can replace the pair ((1̄∗; id), (b̌; ν)) with ((1̄?; id), (0; ν)).
Now, we use σ ′′n2+2 to shift (0; ν) to the place n2+ 2.

We notice that if all the elements of the form (1̄∗; id) in our system are equal
to (1̄1; id) we have the claim. Otherwise we place the elements (1̄1; id) to the last
places and then we act by σ ′n2+2 to bring one element of type (1̄∗; id) to the left of
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(0; ν). By Lemma 8 and by using σ ′n2+1 two times, we can replace our system by
a system of type(

(∗; ε), . . . , (∗; (1 2)), (∗; τ ′), (∗; τ ′), (1̄2; id), (0; ν), (1̄∗; id), . . .
)
.

Thus, acting by the elementary move σ ′′n2+2, we can replace the pair ((1̄2; id), (0;ν))
with ((0; ν), (1̄1; id)). Now, acting with elementary moves of type σ ′j , we bring
(1̄1; id) next to the other elements (1̄1; id).

Reasoning in this way for each (1̄∗; id) such that ∗ 6= 1 we obtain the claim.

Case s > 1. Our system is braid-equivalent to a system of the form(
. . . , t̄n2+1−s, ťn2+2−s, (1̄1; id), (b; ν), (z1

1 d−q1+1; (1 d − q1+ 1)), . . . ,(
zs−1

1 d−
∑s−1

h=1 qh+1
;
(
1 d −

s−1∑
h=1

qh + 1
))
, (1̄∗; id), . . .

)
,

so if zs−1
= 1̄ we can use the moves σ ′n2+3−s, σ

′

n2+4−s, . . . , σ
′

n2+1, σ
′

n2+2 in order
to replace it by(
. . . , ťn2+2−s, (b′; ν), (ẑ1

1 d−q1+1; (1 d − q1+ 1)), . . . ,(
0;
(
1 d −

s−1∑
h=1

qh + 1
))
, (1̄1; id), . . .

)
.

Since this system is braid-equivalent to a system of type(
(∗; ε), . . . , (∗; (1 2)), (∗; τ ′), (∗; τ ′), (1̄1; id), (b′; ν),

(ẑ1
1 d−q1+1; (1 d − q1+ 1)), . . . ,

(
0;
(
1 d −

s−1∑
h=1

qh + 1
))
, . . .

)
,

we can reason as above for all the elements

(∗; (1 d − q1+ 1)), . . . ,
(
∗; (1 d −

s−2∑
h=1

qh + 1)
)

such that ∗ is a function different from 0. In this way, after at most s−2 steps, we
transform our system into(

. . . , (1̄1; id), (b̂; ν), (0; (1 d − q1+ 1)), . . . ,
(
0;
(
1 d −

s−1∑
h=1

qh + 1
))
, . . .

)
.

Now if b̂ 6= 0, it is sufficient to proceed as in the case s = 1 in order to obtain the
system(
(∗; ε), . . . , (∗; (1 2)), (∗; τ), (∗; τ), (1̄∗; id), (0; ν),

(0; (1 d − q1+ 1)), . . . ,
(
0;
(
1 d −

s−1∑
h=1

qh + 1
))
, . . .

)
.
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Using elementary moves σ ′j , we move to the left of (0; ν) all the elements of
type (1̄∗; id), so we replace our system with(
. . . , (∗; τ), (∗; τ), (1̄h1; id), . . . , (1̄hn1

; id), (0; ν),

(0; (1 d − q1+ 1)), . . . ,
(
0;
(
1 d −

s−1∑
h=1

qh + 1
)))
.

By Lemma 8 we can choose τ = (1 h1). We apply σ ′n2+2−s two times in order to
replace (1̄h1; id) with (1̄1; id). Now we use elementary moves σ ′j to bring (1̄1; id)
next to (0; ν). We repeat this reasoning for all (1̄hi ; id) such that hi 6= 1. Since by
the Hurwitz formula n1 is even, we obtain the claim using the sequence of moves
σ ′n2+n1+2−s , σ ′n2+n1+1−s , . . . , σ ′n2+3−s , σ ′n2+n1+3−s , σ ′n2+n1+2−s , . . . , σ ′n2+4−s , . . . ,
σ ′n2+n1+1, . . . , σ ′n2+2.

Step 2. By Step 1 and by Lemma 8, t is braid-equivalent to either(
(a; ε), (z1

12; (1 2)), . . . , (zl
12; (1 2)), (0; ν), . . . , (1̄1; id)

)
or(
(a; ε), (v1

1e1+1; (1e1+ 1)), . . . ,
(
vr−1

1
∑r−1

i=1 ei+1
;
(
1

r−1∑
i=1

ei + 1
))
,

(z1
12; (1 2)), . . . , (zl

12; (1 2)), (0; ν), . . . , (1̄1; id)
)
,

depending on whether r = 1 or r > 1. We analyze separately the two cases.

Case r = 1. From

(a; ε)(z1
12; (1 2)) · · · (zl

12; (1 2))(0; ν) · · · (1̄1; id)= (0; id)

it follows that
a+ z1

1 d + · · ·+ zl
1 d + 1̄1+ · · ·+ 1̄1 = 0.

Since in our system there are n1 elements of type (1̄1; id) and n1 is even, by the
Hurwitz formula we can affirm that a is either 0 or 1̄1 d depending on whether the
number of zi equal to 1̄ is even or odd. Acting by moves of type σ ′j we move
the elements of the form (0; (1 2)) to the left of (0; ν). Successively, acting by
sequences of moves of type σ ′′j , σ

′′

j+1, we shift a pair of type ((1̄1; id), (1̄1; id)) to
the right of the elements (1̄12; (1 2)).

If the function a is equal to 0 and the elements of type (1̄12; (1 2)) are in the
places r + 1, . . . , h, it is sufficient to use the sequence of moves σ ′′h , σ ′′h−1, . . . ,
σ ′′r+1, σ ′′r+1, . . . , σ ′′h to obtain the system(
(0; ε), (0; (1 2)), . . . , (0; (1 2)),

(1̄1; id), (1̄1; id), (0; (1 2)), . . . , (0; (1 2)), (0; ν), . . .
)
.

The claim follows by using the sequence of moves σ ′h+2, σ
′

h+1, . . . , σ
′

n2+3, σ
′

n2+2.
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On the contrary, if a= 1̄1 d and the elements of type (1̄12; (1 2)) are in the places
r +1, . . . , h, we use the sequence of moves σ ′′h , σ

′′

h−1, . . . , σ
′′

r+2, σ
′

r+1 to bring our
system to the form(
(1̄1 d; ε), (1̄2; id), (1̄12; (1 2)), (0; (1 2)), . . . , (0; (1 2)),

(1̄1; id), (0; (1 2)), . . . , (0; ν), . . .
)
.

We use σ ′1 to replace the pair ((1̄1 d; ε), (1̄2; id)) with ((1̄1; id), (1̄1 d; ε)) and
then we apply the moves σ ′1, σ

′

2 to replace ((1̄1; id), (1̄1 d; ε), (1̄12; (1 2))) by(
(0; ε), (0; (1 2)), (1̄1; id)

)
.

Now we obtain the claim acting by the sequence of elementary moves σ ′′r+2, σ ′′r+3,
. . . , σ ′′h , σ ′h+2, σ ′h+1, . . . , σ ′n2+3, σ ′n2+2.

Case r > 1. Seeing that

(a; ε)(v1
1e1+1; (1e1+ 1)) · · · (z1

12; (1 2)) · · · (0; ν) · · · (1̄1; id)= (0; id),

one has

a+v1
e1(e1+e2)

+v2
(e1+e2)(e1+e2+e3)

+· · ·+vr−1
(e1+···+er−1)d+z1

1 d+· · ·+ 1̄1+· · ·+ 1̄1= 0.

Since a is a function that sends to 1̄ at most an even number of indexes moved
by every disjoint cycle of which is product ε, the equality above ensures that a is
either 0 or 1̄1e1 .

If a = 0, we have v1
= v2

= · · · = vr−1
= 0. Furthermore there is an even

number of zi equal to 1̄. So in order to obtain the claim, it is sufficient to act as in
the case r = 1 and a = 0.

On the contrary, if a = 1̄1e1 we have v1
= v2

= · · · = vr−1
= 1̄; furthermore,

there is an odd number of zi equal to 1̄. Then we act as in the case r = 1 and
a = 1̄1 d to replace our system with the braid-equivalent system(
(1̄1e1; ε), . . . ,

(
1̄1
∑r−1

i=1 ei+1;
(
1

r−1∑
i=1

ei + 1
))
, (1̄2; id), (1̄12; (1 2)),

(0; (1 2)), . . . , (0; (1 2)), (1̄1; id), (0; (1 2)), . . . , (0; ν), . . .
)
.

Using the moves σ ′r , σ
′

r−1, . . . , σ
′

2, σ
′

1 we transform the sequence(
(1̄1e1; ε), . . . ,

(
1̄1
∑r−1

i=1 ei+1; (1
r−1∑
i=1

ei + 1)
)
, (1̄2; id), (1̄12; (1 2))

)
into (

(1̄1; id), (1̄1e1; ε), . . . ,
(
1̄1
∑r−1

i=1 ei+1;
(
1

r−1∑
i=1

ei + 1
))
, (1̄12; (1 2))

)
.

Now in order to obtain the claim it is sufficient to act by the sequence of moves
σ ′1, . . . , σ

′
r , σ
′

r+1, σ
′′

r+2, . . . , σ
′′

h , σ
′

h+2, σ
′

h+1, . . . , σ
′

n2+3, σ
′

n2+2. �

The following result is a direct consequence of Proposition 11.
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Theorem 12. If n2 − s − r ≥ d + 1, the Hurwitz space HW (Bd ),n1,n2,e,q(P
1, b0) is

irreducible.

Combining Theorem 12 and Remark 6, we derive the following result.

Corollary 13. If n2 − s − r ≥ d + 1, the Hurwitz space HW (Bd ),n1,n2,e,q(P
1) is

irreducible.

3.2. Irreducibility of HW(Bd),n1,n2,e,q(Y, b0) and HW(Bd),n1,n2,e,q(Y). Let Y be
a smooth, connected, projective complex curve of genus g ≥ 1.

Theorem 14. If n2 − s − r ≥ d + 1, the Hurwitz space HW (Bd ),n1,n2,e,q(Y, b0) is
irreducible.

Proof. To prove the irreducibility of HW (Bd ),n1,n2,e,q(Y, b0) it is sufficient to show
that each (n1, n2, e, q)-Hurwitz system in Ao

n1,n2,e,q,g is braid-equivalent to a sys-
tem of the form

(t̂; (0; id), . . . , (0; id)).

In fact, t̂ ∈ Ao
n1,n2,e,q and so the theorem follows by Proposition 11.

Let (t; λ,µ) ∈ Ao
n1,n2,e,q,g. Acting by elementary moves of type σ ′j we shift to

the right the elements of the form (1̄∗; id) transforming our system into(
t̃1, . . . , t̃n2+2, (1̄∗; id), . . . , (1̄∗; id); λ1, µ1, . . . , λg, µg

)
,

where t̃i = (∗; t ′i ), λk = (∗; λ
′

k) and µk = (∗;µ
′

k).
We notice that (t ′1, . . . , t ′n2+2; λ

′

1, µ
′

1, . . . , λ
′
g, µ

′
g) is the Hurwitz system of a

covering of Y of degree d ≥ 3, with monodromy group Sd and with n2+2 branch
points, n2 of which are points of simple branching, one is a special point whose
local monodromy is given by e and one is a special point whose local monodromy
is given by q .

Since n2− s− r ≥ d + 1, the Hurwitz space H o
d,n2,e,q(Y, b0) is irreducible (see

[Vetro 2010], Theorem 2) and then the Hurwitz system

(t ′1, . . . , t ′n2+2; λ
′

1, µ
′

1, . . . , λ
′

g, µ
′

g)

is braid-equivalent to one of the form

(t ′′1 , . . . , t ′′n2+2; id, id, . . . , id, id).

Hence it follows that (t; λ,µ) is braid-equivalent to a system of type

(t̄1, . . . , t̄n2+2, (1̄∗; id), . . . ; (a1; id), (b1; id), . . . , (ag; id), (bg; id)).

We notice that if ah = 0 and bk = 0 for each 1 ≤ h, k ≤ g the theorem follows by
Proposition 11. So let a1 6= 0 and i be one of the indexes that a1 sends to 1̄.
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Since it is not restrictive to suppose that among the element of type (1̄∗; id)
in our system there is (1̄i ; id) (see Step 1, Proposition 11), acting by elementary
moves of type σ ′′j we can transform our system into(

(1̄i ; id), . . . ; (a1; id), (b1; id), . . . , (ag; id), (bg; id)
)
.

Now we use the move τ ′′11 to replace (a1; id) with (1̄i ; id)(a1; id), where 1̄i +a1 is
a function that sends i to 0̄.

So reasoning for all the indexes that a1 sends to 1̄, after a finite number of steps,
we obtain a new Hurwitz system with (0; id) at the place (n2+ n1+ 3).

On the contrary, if a1 = 0, b1 6= 0 and b1 sends i to 1̄, we at first use elementary
moves of type σ ′′j to bring to the first place (1̄i ; id) and then we act by the braid
move ρ ′11 in order to transform (b1; id) into (1̄i ; id)(b1; id) where the function
1̄i+b1 sends i to 0̄. Following this line for all the indexes that b1 sent to 1̄, we can
replace (1̄i + b1; id) by (0; id).

We notice that if ak 6= 0 and al = bl = 0, for each l ≤ k − 1, in order to obtain
the claim one can reason in the same way but this time applying the braid move
τ ′1k . Analogously if bk 6= 0, al = bl = 0, for each l ≤ k − 1, and ak = 0 one can
apply the braid move ρ ′1k to transform (bk; id) into (0; id). �

From Theorem 14 and Remark 6 we deduce the following result.

Corollary 15. If n2 − s − r ≥ d + 1, the Hurwitz space HW (Bd ),n1,n2,e,q(Y ) is
irreducible.
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