Pacific

Journal of

 MathematicsHURWITZ SPACES OF COVERINGS WITH TWO SPECIAL FIBERS AND MONODROMY GROUP A WEYL GROUP OF TYPE $\boldsymbol{B}_{\boldsymbol{d}}$

Francesca Vetro

HURWITZ SPACES OF COVERINGS WITH TWO SPECIAL FIBERS AND MONODROMY GROUP A WEYL GROUP OF TYPE $\boldsymbol{B}_{\boldsymbol{d}}$

Francesca Vetro

Let $d \geq 3, n_{1}>0$ and $n_{2}>0$ be integers. Let $\underline{e}=\left(e_{1}, \ldots, e_{r}\right)$ and $\underline{q}=$ $\left(q_{1}, \ldots, q_{s}\right)$ be two partitions of d. Let X, X^{\prime} and Y be smooth, connected, projective complex curves. In this paper we study coverings that decompose into a sequence

$$
X \xrightarrow{\pi} X^{\prime} \xrightarrow{f} Y,
$$

where π is a degree-two coverings with n_{1} branch points and branch locus D_{π} and f is a degree- d coverings with n_{2} points of simple branching and two special points whose local monodromy is given by \underline{e} and q, respectively. Furthermore the covering f has monodromy group S_{d} and $\left.\overline{f(} D_{\pi}\right) \cap D_{f}=\varnothing$ where D_{f} denotes the branch locus of f. We prove that the corresponding Hurwitz spaces are irreducible under the hypothesis $n_{2}-s-r \geq d+1$.

Introduction

In this paper we study Hurwitz spaces that parametrize branched coverings with two special fibers whose monodromy group is a Weyl group of type B_{d}.

We notice that the irreducibility of Hurwitz spaces, parametrizing branched coverings of a smooth, connected, projective complex curve Y with monodromy group S_{d} and with at most two special fibers, has been well studied both when $Y \simeq \mathbb{P}^{1}$ and when Y has positive genus. The case of simple coverings was studied in [Berstein and Edmonds 1984; Hurwitz 1891], the case of coverings with one special fiber in addition to points of simple branching was studied in [Kanev 2004; Kluitmann 1988; Natanzon 1991; Vetro 2006] and the case of two special fibers in addition to points of simple branching was studied in [Vetro 2010; Wajnryb 1996].
S_{d} is the Weyl group of a root system of type A_{d-1} and so it is interesting to study coverings with monodromy group a Weyl group different by S_{d}. Furthermore coverings of this type are interesting, for example, because they appear in the study of spectral curves and of Prym-Tyurin varieties.

[^0]Hurwitz spaces parametrizing coverings of this type were studied in [Biggers and Fried 1986; Kanev 2006; Vetro 2007; 2008a; 2008b; 2009]. Biggers and Fried proved the irreducibility of Hurwitz spaces parametrizing coverings of \mathbb{P}^{1} whose monodromy group is a Weyl group of type D_{d} and whose local monodromies are all reflections. Kanev extended the result to Hurwitz spaces of Galois coverings of \mathbb{P}^{1} whose Galois group is an arbitrary Weyl group.

Let X and X^{\prime} be smooth, connected, projective complex curves. We studied Hurwitz spaces of coverings that decompose into a sequence of coverings of type $X \xrightarrow{\pi} X^{\prime} \xrightarrow{f} Y$, where π is a degree-two covering and f is a degree $d \geq 3$ covering with one special fiber and with monodromy group S_{d}. We analyzed in [Vetro 2007; 2008a] the case that π is branched, and in [Vetro 2008b; 2009] the unramified case.

In this paper we continue the study of coverings of type $X \xrightarrow{\pi} X^{\prime} \xrightarrow{f} Y$, with π a degree-two covering and f a degree- d covering. Let $\underline{e}=\left(e_{1}, \ldots, e_{r}\right)$ and $\underline{q}=\left(q_{1}, \ldots, q_{s}\right)$ be two partitions of d and let b_{0} be a point of Y. In particular we study equivalence classes of pairs $\left[X \xrightarrow{\pi} X^{\prime} \xrightarrow{f} Y, \phi\right]$ satisfying the following conditions:

- π is branched in n_{1} points and has branch locus D_{π}, f is simply branched in n_{2} points and has two special points with local monodromy given by \underline{e} and q, respectively;
- f has monodromy group S_{d} and $f\left(D_{\pi}\right) \cap D_{f}=\varnothing$, where D_{f} denotes the branch locus of f;
- $f \circ \pi$ is unramified in b_{0} and $\phi:(f \circ \pi)^{-1}\left(b_{0}\right) \rightarrow\{-d, \ldots,-1,1, \ldots, d\}$ is a bijection.

We study the irreducibility of the corresponding Hurwitz spaces both when $Y \simeq \mathbb{P}^{1}$ and when Y has genus >0. We prove that, in both the cases, these spaces are irreducible under the hypothesis $n_{2}-s-r \geq d+1$. This condition is necessary in [Vetro 2010] in order to prove the irreducibility of the Hurwitz spaces $H_{d, n_{2}, e, \underline{q}}^{o}\left(Y, b_{0}\right)$ that parametrize equivalence classes of pairs $[f, \varphi]$ where f is a coverings as above and $\varphi: f^{-1}\left(b_{0}\right) \rightarrow\{1, \ldots, d\}$ is a bijection. Here, we also use the results of [Vetro 2010].

Notation. Two degree- d branched coverings of $Y, f_{1}: X_{1} \rightarrow Y$ and $f_{2}: X_{2} \rightarrow Y$, are equivalent if there exists a biholomorphic map $p: X_{1} \rightarrow X_{2}$ such that $f_{2} \circ p=f_{1}$. Two sequences of coverings,

$$
X_{1} \xrightarrow{\pi_{1}} X_{1}^{\prime} \xrightarrow{f_{1}} Y \quad \text { and } \quad X_{2} \xrightarrow{\pi_{2}} X_{2}^{\prime} \xrightarrow{f_{2}} Y,
$$

are equivalent if there exist two biholomorphic maps $p: X_{1} \rightarrow X_{2}$ and $p^{\prime}: X_{1}^{\prime} \rightarrow X_{2}^{\prime}$ such that $p^{\prime} \circ \pi_{1}=\pi_{2} \circ p$ and $f_{2} \circ p^{\prime}=f_{1}$. The equivalence class containing $f \circ \pi$ is denoted by $[f \circ \pi]$. The natural action of S_{d} on $\{1, \ldots, d\}$ is on the right.

1. Preliminaries

Throughout this section, d and n denote positive integers.
1.1. Weyl groups of type $\boldsymbol{B}_{\boldsymbol{d}}$. (Refer to [Bourbaki 1968; Carter 1972] for details.) Let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{d}\right\}$ be the standard base of \mathbb{R}^{d} and let R be the root system

$$
\left\{ \pm \varepsilon_{i}, \pm \varepsilon_{i} \pm \varepsilon_{j}: 1 \leq i, j \leq d\right\}
$$

Let us denote by $W\left(B_{d}\right)$ the group generated by the reflections $s_{\varepsilon_{i}}$, with $1 \leq i \leq d$, and by the reflections $s_{\varepsilon_{i}-\varepsilon_{j}}$, with $1 \leq i<j \leq d$. We call $W\left(B_{d}\right)$ a Weyl group of type B_{d}.

We notice that the reflection $s_{\varepsilon_{i}-\varepsilon_{j}}$ exchanges ε_{i} with ε_{j} and $-\varepsilon_{i}$ with $-\varepsilon_{j}$, leaving fixed each ε_{h} with $h \neq i, j$. The reflection $s_{\varepsilon_{i}}$ exchanges ε_{i} with $-\varepsilon_{i}$ and fixes all the ε_{h} with $h \neq i$. Thus if we identify $\left\{ \pm \varepsilon_{i}: 1 \leq i \leq d\right\}$ with $\{ \pm 1, \ldots, \pm d\}$ by the map $\pm \varepsilon_{i} \rightarrow \pm i$, we can easily define an injective homomorphism from $W\left(B_{d}\right)$ into $S_{2 d}$ such that
$s_{\varepsilon_{i}-\varepsilon_{j}} \rightarrow(i j)(-i-j), \quad s_{\varepsilon_{i}} \rightarrow(i-i), \quad s_{\varepsilon_{i}+\varepsilon_{j}}=s_{\varepsilon_{i}} s_{\varepsilon_{j}} s_{\varepsilon_{i}-\varepsilon_{j}} \rightarrow(i-j)(-i j)$.
Let \mathbb{Z}_{2}^{d} be the set of the functions from $\{1, \ldots, d\}$ into \mathbb{Z}_{2} equipped with the sum operation. We will use $\overline{1}_{j}$ to denote the function in \mathbb{Z}_{2}^{d} defined by

$$
\overline{1}_{j}(j)=\overline{1} \quad \text { and } \quad \overline{1}_{j}(h)=\overline{0} \quad \text { for each } h \neq j
$$

and we will write $z_{i j}$ to denote the function in \mathbb{Z}_{2}^{d} defined by

$$
z_{i j}(i)=z_{i j}(j)=z \quad \text { and } \quad z_{i j}(h)=\overline{0} \quad \text { for each } h \neq i, j \text { and } z \in \mathbb{Z}_{2} .
$$

Let Ψ be the homomorphism from S_{d} into $\operatorname{Aut}\left(\mathbb{Z}_{2}^{d}\right)$ that assigns to $t \in S_{d}$ the element $\Psi(t) \in \operatorname{Aut}\left(\mathbb{Z}_{2}^{d}\right)$, where $[\Psi(t) a](j):=a\left(j^{t}\right)$ for each $a \in \mathbb{Z}_{2}^{d}$.

Let $\mathbb{Z}_{2}^{d} \times{ }^{s} S_{d}$ be the semidirect product of \mathbb{Z}_{2}^{d} and S_{d} through the homomorphism Ψ. Given $\left(a^{\prime} ; t_{1}\right),\left(a^{\prime \prime} ; t_{2}\right) \in \mathbb{Z}_{2}^{d} \times^{s} S_{d}$, we put

$$
\left(a^{\prime} ; t_{1}\right) \cdot\left(a^{\prime \prime} ; t_{2}\right):=\left(a^{\prime}+\Psi\left(t_{1}\right) a^{\prime \prime} ; t_{1} t_{2}\right) .
$$

It is easy to check that the homomorphism from $W\left(B_{d}\right) \rightarrow \mathbb{Z}_{2}^{d} \times{ }^{s} S_{d}$ defined by

$$
s_{\varepsilon_{i}-\varepsilon_{j}} \rightarrow(0 ;(i j)), \quad s_{\varepsilon_{i}} \rightarrow\left(\overline{1}_{i} ; \mathrm{id}\right), \quad s_{\varepsilon_{i}+\varepsilon_{j}} \rightarrow\left(\overline{1}_{i j} ;(i j j)\right)
$$

is an isomorphism. We will identify $W\left(B_{d}\right)$ with $\mathbb{Z}_{2}^{d} \times{ }^{s} S_{d}$ via this isomorphism.
Definition 1. Let k be a positive integer. Let $(c ; \xi)$ be an element of $W\left(B_{d}\right)$ such that ξ is a k-cycle of S_{d} and c is a function that sends to $\overline{0}$ all the indexes fixed by ξ. We call an such element a positive k-cycle if c is either zero or a function which sends to $\overline{1}$ an even number of indexes. We call it negative k-cycle if it is not positive.

We notice that two cycles $(c ; \xi)$ and $\left(c^{\prime} ; \xi^{\prime}\right)$ in $W\left(B_{d}\right)$ are disjoint if ξ and ξ^{\prime} are disjoint. Furthermore, all the elements in $W\left(B_{d}\right)$ can be expressed as a product of disjoint positive and negative cycles. The lengths of such disjoint cycles together with their signs determine the signed cycle type of the elements of $W\left(B_{d}\right)$. Two elements of $W\left(B_{d}\right)$ are conjugate if and only if they have the same signed cycle type [Carter 1972].

Braid group actions on Hurwitz systems. (Refer to [Birman 1969; Fadell and Neuwirth 1962; Graber et al. 2002; Hurwitz 1891; Kanev 2004; Scott 1970].) Let Y be a smooth, connected, projective complex curve of genus g and let $b_{0} \in Y$. Let $\left(Y-b_{0}\right)^{(n)}$ be the n-fold symmetric product of $\left(Y-b_{0}\right)$ and let Δ be the codimension 1 locus of $\left(Y-b_{0}\right)^{(n)}$ consisting of non simple divisors. The generators of the braid group $\pi_{1}\left(\left(Y-b_{0}\right)^{(n)}-\Delta, D\right)$ were studied in [Birman 1969; Fadell and Neuwirth 1962; Scott 1970]. They are the elementary braids σ_{i}, with $1 \leq i \leq n-1$, and the braids $\rho_{j k}, \tau_{j k}$, with $1 \leq j \leq n$ and $1 \leq k \leq g$.
Definition 2. Let G be a subgroup of S_{h}. An ordered sequence of elements of G

$$
(\underline{t} ; \underline{\lambda}, \underline{\mu}):=\left(t_{1}, \ldots, t_{n} ; \lambda_{1}, \mu_{1}, \ldots, \lambda_{g}, \mu_{g}\right)
$$

such that $t_{i} \neq \mathrm{id}$ for each i and $t_{1} \cdots t_{n}=\left[\lambda_{1}, \mu_{1}\right] \cdots\left[\lambda_{g}, \mu_{g}\right]$ is called a Hurwitz system with values in G. The subgroup of G generated by $t_{1}, \ldots, t_{n}, \lambda_{1}, \mu_{1}, \ldots$, λ_{g}, μ_{g} is called the monodromy group of the Hurwitz system.
Remark 3. An ordered sequence $\underline{t}:=\left(t_{1}, \ldots, t_{n}\right)$ of elements of G, with $t_{i} \neq \mathrm{id}$ for each i, is a Hurwitz system if $t_{1} \cdots t_{n}=\mathrm{id}$.

To each generator of $\pi_{1}\left(\left(Y-b_{0}\right)^{(n)}-\Delta, D\right)$ one associates a pair of braid moves. We denote by σ_{i}^{\prime} and $\sigma_{i}^{\prime \prime}=\left(\sigma_{i}^{\prime}\right)^{-1}$ the moves associated with σ_{i}, and we call them elementary moves. Similarly, $\rho_{j k}^{\prime}$ and $\rho_{j k}^{\prime \prime}=\left(\rho_{j k}^{\prime}\right)^{-1}$ denote the moves associated to $\rho_{j k}$, and likewise for $\tau_{j k}$.

The moves σ_{i}^{\prime} and $\sigma_{i}^{\prime \prime}$ fix all the λ_{k}, all the μ_{k} and all the t_{h} with $h \neq i, i+1$. The elementary move σ_{i}^{\prime} transforms $\left(t_{i}, t_{i+1}\right)$ into $\left(t_{i} t_{i+1} t_{i}^{-1}, t_{i}\right)$, while the move $\sigma_{i}^{\prime \prime}$ transforms $\left(t_{i}, t_{i+1}\right)$ into ($\left.t_{i+1}, t_{i+1}^{-1} t_{i} t_{i+1}\right)$; see [Hurwitz 1891].

The braid moves $\rho_{j k}^{\prime}$ and $\rho_{j k}^{\prime \prime}$ fix all the λ_{l}, all the t_{h} with $h \neq j$ and all the μ_{l} with $l \neq k$. They modify t_{j} and μ_{k}. Analogously the braid moves $\tau_{j k}^{\prime}$ and $\tau_{j k}^{\prime \prime}$ modify t_{j} and λ_{k}, leaving unchanged μ_{l} for all l, λ_{l} with $l \neq k$ and t_{h} with $h \neq j$.

The braid moves $\rho_{j k}^{\prime}, \rho_{j k}^{\prime \prime}, \tau_{j k}^{\prime}$ and $\tau_{j k}^{\prime \prime}$ transform t_{j} to an element belonging to the same conjugate class (see Theorem 1.8, [Kanev 2004]).

By [Kanev 2004, Corollary 1.9], when $\lambda_{1}=\cdots=\lambda_{k}=\mu_{1}=\cdots=\mu_{k-1}=\mathrm{id}$, the braid move $\rho_{1 k}^{\prime}$ transforms μ_{k} into $t_{1}^{-1} \mu_{k}$.

Analogously when $\lambda_{1}=\cdots=\lambda_{k-1}=\mu_{1}=\cdots=\mu_{k-1}=\mathrm{id}$, the braid move $\tau_{1 k}^{\prime \prime}$ transforms λ_{k} into $t_{1}^{-1} \lambda_{k}$.

Definition 4. Two Hurwitz systems with values in G are braid-equivalent if one is obtained from the other by a finite sequence of braid moves $\sigma_{i}^{\prime}, \rho_{j k}^{\prime}, \tau_{j k}^{\prime}, \sigma_{i}^{\prime \prime}$, $\rho_{j k}^{\prime \prime}, \tau_{j k}^{\prime \prime}$, where $1 \leq i \leq n-1,1 \leq j \leq n$ and $1 \leq k \leq g$. Two ordered sequences of elements of $G,\left(t_{1}, \ldots, t_{l}\right)$ and $\left(t_{1}^{\prime}, \ldots, t_{l}^{\prime}\right)$, are braid-equivalent if $\left(t_{1}^{\prime}, \ldots, t_{l}^{\prime}\right)$ is obtained from $\left(t_{1}, \ldots, t_{l}\right)$ by a finite sequence of braid moves of type $\sigma_{i}^{\prime}, \sigma_{i}^{\prime \prime}$. We denote braid equivalence by \sim.

2. The Hurwitz spaces $\boldsymbol{H}_{W\left(B_{d}\right), \boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \boldsymbol{e}, \underline{q}}\left(\boldsymbol{Y}, \boldsymbol{b}_{\mathbf{0}}\right)$ and $\boldsymbol{H}_{W\left(\boldsymbol{B}_{d}\right), \boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \boldsymbol{e}, \underline{q}}(\boldsymbol{Y})$

Let X, X^{\prime} and Y be smooth, connected, projective complex curves. Let $d \geq 3$, $n_{1}>0$ and $n_{2}>0$ be integers. Let $\underline{e}=\left(e_{1}, \ldots, e_{r}\right)$ and $\underline{q}=\left(q_{1}, \ldots, q_{s}\right)$ be two partitions of d with $e_{1} \geq e_{2} \geq \cdots \geq e_{r} \geq 1$ and $q_{1} \geq q_{2} \geq \cdots \geq q_{s} \geq 1$. Let b_{0} be a point of Y and let g be the genus of Y. In this paper we study equivalence classes of pairs $\left[X \xrightarrow{\pi} X^{\prime} \xrightarrow{f} Y, \phi\right]$ satisfying the following conditions:
(a) π is a degree-two coverings with n_{1} branch points and branch locus D_{π};
(b) f is a degree- d coverings with n_{2} points of simple branching and two special points whose local monodromy has cycle type given by \underline{e} and \underline{q}, respectively;
(c) the covering f has monodromy group S_{d} and $f\left(D_{\pi}\right) \cap D_{f}=\varnothing$ where D_{f} denotes the branch locus of f;
(d) $f \circ \pi$ is unramified in b_{0} and $\phi:(f \circ \pi)^{-1}\left(b_{0}\right) \rightarrow\{-d, \ldots,-1,1, \ldots, d\}$ is a bijection such that if $f^{-1}\left(b_{0}\right)=\left\{y_{1}, \ldots, y_{d}\right\}$ then $\pi^{-1}\left(y_{i}\right)=\left\{\phi^{-1}(i), \phi^{-1}(-i)\right\}$ for each $i=1, \ldots, d$.
$H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(Y, b_{0}\right)$ will denote the Hurwitz space that parametrizes equivalence classes of pairs $[f \circ \pi, \phi$] satisfying conditions (a)-(d).
$H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}(Y)$ will denote the Hurwitz space that parametrizes equivalence classes of coverings $f \circ \pi$ satisfying conditions (a)-(c).
Definition 5. A $\left(n_{1}, n_{2}, \underline{e}, \underline{q}\right)$-Hurwitz system is a Hurwitz system with values in $\mathbb{Z}_{2}^{d} \times^{s} S_{d},\left(t_{1}, \ldots, t_{n_{1}+n_{2}+2} ; \underline{\lambda}, \underline{\mu}\right)$, such that n_{1} of $t_{1}, \ldots, t_{n_{1}+n_{2}+2}$ are of the form ($\overline{1}_{*} ;$ id), n_{2} are of the form $\left(z_{h k} ;(h k)\right)$, one is a product of r disjoint positive cycles whose lengths are given by the elements of the partition \underline{e}, and one is a product of s disjoint positive cycles whose lengths are given by the elements of the partition \underline{q}.

Let $D=f\left(D_{\pi}\right) \cup D_{f}$ and let $m: \pi_{1}\left(Y-D, b_{0}\right) \rightarrow S_{2 d}$ be the monodromy homomorphism associated to $[f \circ \pi, \phi]$. Let $\left(\gamma_{1}, \ldots, \gamma_{n_{1}+n_{2}+2}, \alpha_{1}, \beta_{1}, \ldots, \alpha_{g}, \beta_{g}\right)$ be a standard generating system for $\pi_{1}\left(Y-D, b_{0}\right)$. The images under m of γ_{1}, $\ldots, \gamma_{n_{1}+n_{2}+2}, \alpha_{1}, \beta_{1}, \ldots, \alpha_{g}, \beta_{g}$ determine an ($n_{1}, n_{2}, \underline{e}, \underline{q}$)-Hurwitz system with monodromy group $W\left(B_{d}\right)$.

In the sequel we will denote by $A_{n_{1}, n_{2}, \underline{e}, \underline{q}, g}^{o}$ the set of all $\left(n_{1}, n_{2}, \underline{e}, \underline{q}\right)$-Hurwitz systems with monodromy group $W\left(B_{d}\right)$. When $g=0$ we will write $A_{n_{1}, n_{2}, \underline{e}, \underline{q}}^{o}$ instead of $A_{n_{1}, n_{2}, e, q, g}^{o}$.

Let $\delta: H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(Y, b_{0}\right) \rightarrow\left(Y-b_{0}\right)^{\left(n_{1}+n_{2}+2\right)}-\Delta$ be the map that assigns to each pair $[f \circ \pi, \phi]$ the branch locus of $f \circ \pi$. By Riemann's existence theorem we can identify the fiber of δ over D with $A_{n_{1}, n_{2}, e, q, g}^{o}$. There is a unique topology on $H_{W\left(B_{d}\right), n_{1}, n_{2}, e, \underline{q}}\left(Y, b_{0}\right)$ such that δ is a topological covering map; see [Fulton 1969]. Therefore the braid group $\pi_{1}\left(\left(Y-b_{0}\right)^{\left(n_{1}+n_{2}+2\right)}-\Delta, D\right)$ acts on $A_{n_{1}, n_{2}, e, \underline{q}, g}^{o}$. If this action is transitive, $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(Y, b_{0}\right)$ is connected and hence, since $H_{W\left(B_{d}\right), n_{1}, n_{2}, e, q}\left(Y, b_{0}\right)$ is smooth, it is also irreducible.
Remark 6. The forgetful map $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(Y, b_{0}\right) \rightarrow H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{,} \underline{ }}(Y)$ defined by $[f \circ \pi, \phi] \rightarrow[f \circ \pi]$ is a morphism, whose image is a dense subset of $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}(Y)$. This ensures that if $H_{W\left(B_{d}\right), n_{1}, n_{2}, e, \underline{q}}\left(Y, b_{0}\right)$ is irreducible also $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}(Y)$ is irreducible.

3. The results

We denote by ϵ the following element in S_{d} having cycle type \underline{e} :

$$
\begin{equation*}
\left(12 \ldots e_{1}\right)\left(e_{1}+1 \ldots e_{1}+e_{2}\right) \cdots\left(\left(e_{1}+\cdots+e_{r-1}\right)+1 \ldots d\right) \tag{1}
\end{equation*}
$$

We denote by v the following element in S_{d} having cycle type \underline{q} :

$$
\begin{align*}
\left(1 d d-1 \ldots d-q_{1}+2\right)\left(d-q_{1}+1\right. & \left.\ldots d-\left(q_{1}+q_{2}\right)+2\right) \tag{2}\\
& \ldots\left(d-\left(q_{1}+\cdots+q_{s-1}\right)+1 \ldots 2\right) .
\end{align*}
$$

Lemma 7. Let $\left(t_{1}, \ldots, t_{i}, t_{i+1}, \ldots, t_{l}\right)$ be a sequence of permutations in S_{d} where t_{i} and t_{i+1} are two equal transpositions of S_{d}. Then we can move to the right and to the left the pair $\left(t_{i}, t_{i+1}\right)$ leaving unchanged the other permutations of the sequence.

Proof. Applying the elementary moves $\sigma_{i-1}^{\prime \prime}, \sigma_{i}^{\prime \prime}$ we obtain

$$
\left(t_{i-1}, t_{i}, t_{i+1}\right) \sim\left(t_{i}, t_{i}^{-1} t_{i-1} t_{i}, t_{i+1}\right) \sim\left(t_{i}, t_{i+1}, t_{i-1}\right) ;
$$

applying the moves $\sigma_{i+1}^{\prime}, \sigma_{i}^{\prime}$ we have

$$
\left(t_{i}, t_{i+1}, t_{i+2}\right) \sim\left(t_{i}, t_{i+1} t_{i+2} t_{i+1}^{-1}, t_{i+1}\right) \sim\left(t_{i+2}, t_{i}, t_{i+1}\right)
$$

Hence using sequences of elementary moves of type either $\sigma_{j-1}^{\prime \prime}, \sigma_{j}^{\prime \prime}$ or $\sigma_{j+1}^{\prime}, \sigma_{j}^{\prime}$ we can move respectively on the left and on the right the pair (t_{i}, t_{i+1}), leaving unchanged the other permutations of the sequence.

Lemma 8. Let $\left(t_{1}, \ldots, t_{l}, \tau, \tau\right)$ be a sequence of permutations of S_{d}, with τ a transposition. Let H be the subgroup of S_{d} generated by t_{1}, \ldots, t_{l}. Then, for each $h \in H$, one has

$$
\left(t_{1}, \ldots, t_{l}, \tau, \tau\right) \sim\left(t_{1}, \ldots, t_{l}, h^{-1} \tau h, h^{-1} \tau h\right) .
$$

Proof. Let $h \in H$, then $h=h_{1} h_{2} \cdots h_{k}$ where h_{i} or h_{i}^{-1}, with $i=1, \ldots, k$, belonging to $\left\{t_{1}, \ldots, t_{l}\right\}$. If h_{1} is equal to t_{j} for some $j \in\{1, \ldots, l\}$, we use Lemma 7 to bring the pair (τ, τ) to the left of t_{j} and then we act by the moves $\sigma_{j+1}^{\prime \prime}, \sigma_{j}^{\prime \prime}$ in order to replace $\left(\tau, \tau, t_{j}\right)$ with $\left(t_{j}, t_{j}^{-1} \tau t_{j}, t_{j}^{-1} \tau t_{j}\right)$.

On the contrary, if h_{1} is equal to t_{j}^{-1} for some $j \in\{1, \ldots, l\}$, we use Lemma 7 to shift the pair (τ, τ) on the right of t_{j} and then we apply $\sigma_{j}^{\prime}, \sigma_{j+1}^{\prime}$. In this way we replace $\left(t_{j}, \tau, \tau\right)$ with $\left(t_{j} \tau t_{j}^{-1}, t_{j} \tau t_{j}^{-1}, t_{j}\right)$.

For h_{2} we reason as above but we bring the pair $\left(h_{1}^{-1} \tau h_{1}, h_{1}^{-1} \tau h_{1}\right)$ to the left or to the right of t_{n} depending on whether h_{2} is equal to t_{n} or to t_{n}^{-1}.

Following this line for each h_{i}, with $i=3, \ldots, k$, we obtain the claim.
Proposition 9 [Vetro 2010, Proposition 2]. Let $\underline{t}=\left(t_{1}, \ldots, t_{n_{2}+2}\right)$ be a Hurwitz system of permutations of S_{d} with monodromy group S_{d} such that one of $t_{1}, \ldots, t_{n_{2}+2}$ has cycle type \underline{e}, one has cycle type \underline{q} and the other n_{2} permutations in $t_{1}, \ldots, t_{n_{2}+2}$ are transpositions. If $n_{2}-s-r \geq d+1, \underline{t}$ is braid-equivalent to the Hurwitz system

$$
\begin{aligned}
& \left(\epsilon, \tilde{t}_{2}, \ldots, \tilde{t}_{n_{2}+2-s}, v\right) \text { if } s=1 \\
& \left(\epsilon, \tilde{t}_{2}, \ldots, \tilde{t}_{n_{2}+2-s}, v,\left(1 d-q_{1}+1\right), \ldots,\left(1 d-\left(q_{1}+\cdots+q_{s-1}\right)+1\right)\right) \text { if } s>1
\end{aligned}
$$

where ϵ and v are the permutations defined in (1) and (2), and where the sequence $\left(\tilde{t}_{2}, \ldots, \tilde{t}_{n_{2}+2-s}\right)$ is equal to

$$
\begin{aligned}
& ((12), \ldots,(12)) \text { if } r=1 \\
& \left(\left(1 e_{1}+1\right), \ldots,\left(1\left(e_{1}+\cdots+e_{r-1}\right)+1\right),(12), \ldots,(12)\right) \text { if } r>1
\end{aligned}
$$

with the transposition (12) appearing an even number of times.
Remark 10. Seeing that $d \geq 3$, the hypothesis $n_{2}-s-r \geq d+1$ ensures that in the sequence $\left(\tilde{t}_{2}, \ldots, \tilde{t}_{n_{2}+2-s}\right)$ there are more than 3 transpositions (12).
3.1. Irreducibility of $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(\mathbb{P}^{\mathbf{1}}, \boldsymbol{b}_{0}\right)$ and $\boldsymbol{H}_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(\mathbb{P}^{\mathbf{1}}\right)$. We next show that, if $n_{2}-s-r \geq d+1$, the braid group $\pi_{1}\left(\left(\mathbb{P}^{1}-b_{0}\right)^{\left(n_{1}+n_{2}+2\right)}-\Delta, D\right)$ acts transitively on $A_{n_{1}, n_{2}, \underline{e}, \underline{q}}^{o}$. To prove this we show that each $\left(n_{1}, n_{2}, \underline{e}, \underline{q}\right)$-Hurwitz system in $A_{n_{1}, n_{2}, \underline{e}, \underline{q}}^{o}$ is braid-equivalent to a given normal form.
Proposition 11. If $n_{2}-s-r \geq d+1$, each Hurwitz system in $A_{n_{1}, n_{2}, \underline{e}, \underline{q}}^{o}$ is braidequivalent to a Hurwitz system of the form

$$
\begin{aligned}
& \left(\tilde{t}_{1}, \ldots, \tilde{t}_{n_{2}+2-s},(0 ; v),\left(\overline{1}_{1} ; \text { id }\right), \ldots,\left(\overline{1}_{1} ; \text { id }\right)\right) \text { if } s=1 \\
& \begin{aligned}
\left(\tilde{t}_{1}, \ldots, \tilde{t}_{n_{2}+2-s}\right.
\end{aligned},(0 ; v),\left(0 ;\left(1 d-q_{1}+1\right)\right), \ldots,\left(0 ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right) \\
& \\
& \left.\quad\left(\overline{1}_{1} ; \text { id }\right), \ldots,\left(\overline{1}_{1} ; \text { id }\right)\right) \text { if } s>1
\end{aligned}
$$

where $\left(\overline{1}_{1} ; \mathrm{id}\right)$ appears n_{1} times and where $\left(\tilde{t}_{1}, \ldots, \tilde{t}_{n_{2}+2-s}\right)$ is the sequence

$$
((0 ; \epsilon),(0 ;(12)), \ldots,(0 ;(12))) \text { if } r=1
$$

$$
\left((0 ; \epsilon),\left(0 ;\left(1 e_{1}+1\right)\right), \ldots,\left(0 ;\left(1 \sum_{i=1}^{r-1} e_{i}+1\right)\right),(0 ;(12)), \ldots,(0 ;(12))\right) \text { if } r>1
$$

with (0; (12)) appearing an even number of times.
Proof. Step 1. Let $\underline{t} \in A_{n_{1}, n_{2}, \underline{e}, q}^{o}$. We prove first that \underline{t} is braid-equivalent to a Hurwitz system of either the form

$$
\left(\ldots,(0 ; v),\left(\overline{1}_{1} ; \mathrm{id}\right), \ldots,\left(\overline{1}_{1} ; \mathrm{id}\right)\right)
$$

or the form
$\left(\ldots,(0 ; v),\left(0 ;\left(1 d-q_{1}+1\right)\right), \ldots,\left(0 ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right),\left(\overline{1}_{1} ; \mathrm{id}\right), \ldots,\left(\overline{1}_{1} ; \mathrm{id}\right)\right)$,
depending on whether $s=1$ or $s>1$, where $\left(\overline{1}_{1} ; \mathrm{id}\right)$ appears n_{1} times.
Acting by elementary moves σ_{j}^{\prime} we shift on the right the elements of the form $\left(\overline{1}_{*} ;\right.$ id) obtaining that \underline{t} is braid-equivalent to

$$
\left(\hat{t}_{1}, \ldots, \hat{t}_{n_{2}+2},\left(\overline{1}_{h} ; \text { id }\right), \ldots,\left(\overline{1}_{k} ; \mathrm{id}\right)\right)
$$

where $\hat{t}_{i}=\left(* ; t_{i}^{\prime}\right)$. We notice that $\left(t_{1}^{\prime}, \ldots, t_{n_{2}+2}^{\prime}\right)$ is a Hurwitz system of permutations of S_{d} with monodromy group S_{d} such that one of $t_{1}^{\prime}, \ldots, t_{n_{2}+2}^{\prime}$ has cycle type given by \underline{e}, one has cycle type given by \underline{q} and the other n_{2} permutations are transpositions. Since $n_{2}-s-r \geq d+1$, by Proposition 9 , the system $\left(t_{1}^{\prime}, \ldots, t_{n_{2}+2}^{\prime}\right)$ is braid-equivalent to either

$$
(\epsilon, \ldots,(12), \ldots,(12),(12),(12), v)
$$

or

$$
\left(\epsilon, \ldots,(12), \ldots,(12),(12),(12), v,\left(1 d-q_{1}+1\right), \ldots,\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right)
$$

depending on whether $s=1$ or $s>1$.
We notice that from

$$
\epsilon \cdots(12) \cdots(12)(12)(12)=(12 \ldots d)
$$

it follows that the group generated by the permutations $\epsilon, \ldots,(12)$ is all of S_{d}. Hence, by Lemma 8, the sequence $(\epsilon, \ldots,(12), \ldots,(12),(12),(12))$ is braidequivalent to a sequence of the form $(\epsilon, \ldots,(12), \ldots,(12), \tau, \tau)$, where τ is an arbitrary transposition of S_{d}.

This ensures that \underline{t} is braid-equivalent to a system of type either

$$
\left(\bar{t}_{1}, \ldots, \bar{t}_{n_{2}+2-s},(b ; v),\left(\overline{1}_{h} ; \mathrm{id}\right), \ldots\right)
$$

or

$$
\begin{aligned}
& \left(\bar{t}_{1}, \ldots, \bar{t}_{n_{2}+2-s},(b ; v),\left(z_{1 d-q_{1}+1}^{1} ;\left(1 d-q_{1}+1\right)\right), \ldots,\right. \\
& \left.\left(z_{1 d-\sum_{h=1}^{s-1} q_{h}+1}^{s-1} ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right),\left(\overline{1}_{h} ; \mathrm{id}\right), \ldots\right),
\end{aligned}
$$

depending on whether $s=1$ or $s>1$, where $\bar{t}_{i}=\left(* ; t_{i}^{\prime \prime}\right)$ and

$$
\left(t_{1}^{\prime \prime}, \ldots, t_{n_{2}+2-s}^{\prime \prime}\right)=(\epsilon, \ldots,(12), \ldots,(12), \tau, \tau)
$$

Furthermore we can affirm that our system is braid-equivalent to either

$$
\left(\bar{t}_{1}, \ldots, \check{t}_{n_{2}+2-s},\left(\overline{1}_{u} ; \text { id }\right),(b ; v),\left(\overline{1}_{*} ; \text { id }\right), \ldots\right)
$$

or
$\left(\bar{t}_{1}, \ldots, \check{t}_{n_{2}+2-s},\left(\overline{1}_{u} ; \mathrm{id}\right),(b ; v), \ldots\right.$,

$$
\left.\left(z_{1 d-\sum_{h=1}^{s-1} q_{h}+1} ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right),\left(\overline{1}_{*} ; \text { id }\right), \ldots\right),
$$

depending on whether $s=1$ or $s>1$, where u is an arbitrary index in $\{1, \ldots, d\}$ and $\check{t}_{n_{2}+2-s}=\left(\star^{\prime} ; \tau\right)$.

In fact, acting by elementary moves of the form σ_{j}^{\prime} we can bring to the left of $(b ; v)$ one element of type $\left(\overline{1}_{*} ;\right.$ id). We choose $\tau=(u *)$ and then we act by $\sigma_{n_{2}+2-s}^{\prime}$ two times to replace $\left((\star ; \tau),\left(\overline{1}_{*} ; \mathrm{id}\right)\right)$ by $\left(\left(\star^{\prime} ; \tau\right),\left(\overline{1}_{u} ; \mathrm{id}\right)\right)$.

Now we analyze separately the cases $s=1$ and $s>1$.
Case $s=1$. Let $i_{1}, i_{2}, \ldots, i_{l}$ be the indexes that b sends to $\overline{1}$. We suppose that $i_{1}>i_{2}>\cdots>i_{l-1}>i_{l}$. Since our system is braid-equivalent to

$$
\left(\bar{t}_{1}, \ldots, \bar{t}_{n_{2}}, \check{t}_{n_{2}+1},\left(\overline{1}_{i l} ; \text { id }\right),(b ; v),\left(\overline{1}_{*} ; \text { id }\right), \ldots\right),
$$

acting two times by the move $\sigma_{n_{2}+2}^{\prime}$ we can replace the pair $\left(\left(\overline{1}_{i l} ; \mathrm{id}\right),(b ; v)\right)$, with $\left(\left(\overline{1}_{i_{l+1}} ;\right.\right.$ id $\left.),(\hat{b} ; v)\right)$ where \hat{b} is a function that sends to $\overline{1}$ the indexes $i_{1}, i_{2}, \ldots, i_{l-1}$, $i_{l}+1$, where $i_{l}+1$ is the index that precedes i_{l} in v. Observe that if there are h indexes among i_{l-1} and i_{l}, it is sufficient to use the move $\sigma_{n_{2}+2}^{\prime}$ another $2 h$ times, to replace the pair $\left(\left(\overline{1}_{i_{l+1}} ; \mathrm{id}\right),(\hat{b} ; v)\right)$ with $\left(\left(\overline{1}_{i_{l-1}} ; \mathrm{id}\right),(\check{b} ; v)\right)$ where \check{b} is a function that sends to $\overline{1}$ the indexes $i_{1}, i_{2}, \ldots, i_{l-2}$.

Since b is a function that sends to $\overline{1}$ an even number of indexes (see Definition 1), following this line we can replace the pair $\left(\left(\overline{1}_{*} ;\right.\right.$ id $\left.),(\check{b} ; v)\right)$ with $\left(\left(\overline{1}_{*} ;\right.\right.$ id $\left.),(0 ; v)\right)$. Now, we use $\sigma_{n_{2}+2}^{\prime \prime}$ to shift $(0 ; v)$ to the place $n_{2}+2$.

We notice that if all the elements of the form ($\overline{1}_{*} ;$ id) in our system are equal to ($\left.\overline{1}_{1} ; \mathrm{id}\right)$ we have the claim. Otherwise we place the elements $\left(\overline{1}_{1} ; \mathrm{id}\right)$ to the last places and then we act by $\sigma_{n_{2}+2}^{\prime}$ to bring one element of type $\left(\overline{1}_{*} ;\right.$ id) to the left of
$(0 ; v)$. By Lemma 8 and by using $\sigma_{n_{2}+1}^{\prime}$ two times, we can replace our system by a system of type

$$
\left((* ; \epsilon), \ldots,(* ;(12)),\left(* ; \tau^{\prime}\right),\left(* ; \tau^{\prime}\right),\left(\overline{1}_{2} ; \text { id }\right),(0 ; v),\left(\overline{1}_{*} ; \text { id }\right), \ldots\right)
$$

Thus, acting by the elementary move $\sigma_{n_{2}+2}^{\prime \prime}$, we can replace the pair $\left(\left(\overline{1}_{2} ; \mathrm{id}\right),(0 ; v)\right)$ with $\left((0 ; \nu),\left(\overline{1}_{1} ; \mathrm{id}\right)\right)$. Now, acting with elementary moves of type σ_{j}^{\prime}, we bring $\left(\overline{1}_{1} ; \mathrm{id}\right)$ next to the other elements $\left(\overline{1}_{1} ; \mathrm{id}\right)$.

Reasoning in this way for each $\left(\overline{1}_{*} ;\right.$ id) such that $* \neq 1$ we obtain the claim.

Case $s>1$. Our system is braid-equivalent to a system of the form

$$
\begin{aligned}
\left(\ldots, \bar{t}_{n_{2}+1-s}, \check{t}_{n_{2}+2-s},\left(\overline{1}_{1} ; \mathrm{id}\right),\right. & (b ; v),\left(z_{1 d-q_{1}+1}^{1} ;\left(1 d-q_{1}+1\right)\right), \ldots, \\
& \left.\left(z_{1 d-\sum_{h=1}^{s-1} q_{h}+1}^{s-1} ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right),\left(\overline{1}_{*} ; \mathrm{id}\right), \ldots\right),
\end{aligned}
$$

so if $z^{s-1}=\overline{1}$ we can use the moves $\sigma_{n_{2}+3-s}^{\prime}, \sigma_{n_{2}+4-s}^{\prime}, \ldots, \sigma_{n_{2}+1}^{\prime}, \sigma_{n_{2}+2}^{\prime}$ in order to replace it by

$$
\begin{aligned}
& \left(\ldots, \check{t}_{n_{2}+2-s},\left(b^{\prime} ; v\right),\left(\hat{z}_{1 d-q_{1}+1}^{1} ;\left(1 d-q_{1}+1\right)\right), \ldots,\right. \\
& \left.\quad\left(0 ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right),\left(\overline{1}_{1} ; \mathrm{id}\right), \ldots\right) .
\end{aligned}
$$

Since this system is braid-equivalent to a system of type

$$
\begin{aligned}
& \left((* ; \epsilon), \ldots,(* ;(12)),\left(* ; \tau^{\prime}\right),\left(* ; \tau^{\prime}\right),\left(\overline{1}_{1} ; \text { id }\right),\left(b^{\prime} ; v\right),\right. \\
& \left.\quad\left(\hat{z}_{1 d-q_{1}+1}^{1} ;\left(1 d-q_{1}+1\right)\right), \ldots,\left(0 ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right), \ldots\right),
\end{aligned}
$$

we can reason as above for all the elements

$$
\left(* ;\left(1 d-q_{1}+1\right)\right), \quad \ldots, \quad\left(* ;\left(1 d-\sum_{h=1}^{s-2} q_{h}+1\right)\right)
$$

such that $*$ is a function different from 0 . In this way, after at most $s-2$ steps, we transform our system into

$$
\left(\ldots,\left(\overline{1}_{1} ; \mathrm{id}\right),(\hat{b} ; v),\left(0 ;\left(1 d-q_{1}+1\right)\right), \ldots,\left(0 ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right), \ldots\right) .
$$

Now if $\hat{b} \neq 0$, it is sufficient to proceed as in the case $s=1$ in order to obtain the system

$$
\begin{aligned}
& \left((* ; \epsilon), \ldots,(* ;(12)),(* ; \tau),(* ; \tau),\left(\overline{1}_{*} ; \text { id }\right),(0 ; \nu)\right. \\
& \left.\quad\left(0 ;\left(1 d-q_{1}+1\right)\right), \ldots,\left(0 ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right), \ldots\right) .
\end{aligned}
$$

Using elementary moves σ_{j}^{\prime}, we move to the left of $(0 ; v)$ all the elements of type ($\overline{1}_{*} ;$ id $)$, so we replace our system with

$$
\begin{aligned}
& \left(\ldots,(* ; \tau),(* ; \tau),\left(\overline{1}_{h_{1}} ; \mathrm{id}\right), \ldots,\left(\overline{1}_{h_{n_{1}}} ; \mathrm{id}\right),(0 ; v),\right. \\
& \left.\quad\left(0 ;\left(1 d-q_{1}+1\right)\right), \ldots,\left(0 ;\left(1 d-\sum_{h=1}^{s-1} q_{h}+1\right)\right)\right) .
\end{aligned}
$$

By Lemma 8 we can choose $\tau=\left(1 h_{1}\right)$. We apply $\sigma_{n_{2}+2-s}^{\prime}$ two times in order to replace $\left(\overline{1}_{h_{1}} ; \mathrm{id}\right)$ with $\left(\overline{1}_{1} ; \mathrm{id}\right)$. Now we use elementary moves σ_{j}^{\prime} to bring $\left(\overline{1}_{1} ; \mathrm{id}\right)$ next to $(0 ; v)$. We repeat this reasoning for all $\left(\overline{1}_{h_{i}} ; i d\right)$ such that $h_{i} \neq 1$. Since by the Hurwitz formula n_{1} is even, we obtain the claim using the sequence of moves $\sigma_{n_{2}+n_{1}+2-s}^{\prime}, \sigma_{n_{2}+n_{1}+1-s}^{\prime}, \ldots, \sigma_{n_{2}+3-s}^{\prime}, \sigma_{n_{2}+n_{1}+3-s}^{\prime}, \sigma_{n_{2}+n_{1}+2-s}^{\prime}, \ldots, \sigma_{n_{2}+4-s}^{\prime}, \ldots$, $\sigma_{n_{2}+n_{1}+1}^{\prime}, \ldots, \sigma_{n_{2}+2}^{\prime}$.

Step 2. By Step 1 and by Lemma 8, \underline{t} is braid-equivalent to either

$$
\left((a ; \epsilon),\left(z_{12}^{1} ;(12)\right), \ldots,\left(z_{12}^{l} ;(12)\right),(0 ; v), \ldots,\left(\overline{1}_{1} ; \mathrm{id}\right)\right)
$$

or

$$
\begin{aligned}
\left((a ; \epsilon),\left(v_{1 e_{1}+1}^{1} ;\left(1 e_{1}+1\right)\right), \ldots,\right. & \left(v_{1 \sum_{i=1}^{r-1} e_{i}+1}^{r-1} ;\left(1 \sum_{i=1}^{r-1} e_{i}+1\right)\right) \\
& \left.\left(z_{12}^{1} ;(12)\right), \ldots,\left(z_{12}^{l} ;(12)\right),(0 ; v), \ldots,\left(\overline{1}_{1} ; \mathrm{id}\right)\right)
\end{aligned}
$$

depending on whether $r=1$ or $r>1$. We analyze separately the two cases.
Case $r=1$. From

$$
(a ; \epsilon)\left(z_{12}^{1} ;(12)\right) \cdots\left(z_{12}^{l} ;(12)\right)(0 ; v) \cdots\left(\overline{1}_{1} ; \text { id }\right)=(0 ; \text { id })
$$

it follows that

$$
a+z_{1 d}^{1}+\cdots+z_{1 d}^{l}+\overline{1}_{1}+\cdots+\overline{1}_{1}=0
$$

Since in our system there are n_{1} elements of type $\left(\overline{1}_{1} ; \mathrm{id}\right)$ and n_{1} is even, by the Hurwitz formula we can affirm that a is either 0 or $\overline{1}_{1 d}$ depending on whether the number of z^{i} equal to $\overline{1}$ is even or odd. Acting by moves of type σ_{j}^{\prime} we move the elements of the form $(0 ;(12))$ to the left of $(0 ; v)$. Successively, acting by sequences of moves of type $\sigma_{j}^{\prime \prime}, \sigma_{j+1}^{\prime \prime}$, we shift a pair of type $\left(\left(\overline{1}_{1} ; \mathrm{id}\right),\left(\overline{1}_{1} ; \mathrm{id}\right)\right)$ to the right of the elements $\left(\overline{1}_{12} ;(12)\right)$.

If the function a is equal to 0 and the elements of type $\left(\overline{1}_{12} ;(12)\right)$ are in the places $r+1, \ldots, h$, it is sufficient to use the sequence of moves $\sigma_{h}^{\prime \prime}, \sigma_{h-1}^{\prime \prime}, \ldots$, $\sigma_{r+1}^{\prime \prime}, \sigma_{r+1}^{\prime \prime}, \ldots, \sigma_{h}^{\prime \prime}$ to obtain the system $((0 ; \epsilon),(0 ;(12)), \ldots,(0 ;(12))$,

$$
\left.\left(\overline{1}_{1} ; \mathrm{id}\right),\left(\overline{1}_{1} ; \mathrm{id}\right),(0 ;(12)), \ldots,(0 ;(12)),(0 ; v), \ldots\right)
$$

The claim follows by using the sequence of moves $\sigma_{h+2}^{\prime}, \sigma_{h+1}^{\prime}, \ldots, \sigma_{n_{2}+3}^{\prime}, \sigma_{n_{2}+2}^{\prime}$.

On the contrary, if $a=\overline{1}_{1 d}$ and the elements of type ($\overline{1}_{12} ;(12)$) are in the places $r+1, \ldots, h$, we use the sequence of moves $\sigma_{h}^{\prime \prime}, \sigma_{h-1}^{\prime \prime}, \ldots, \sigma_{r+2}^{\prime \prime}, \sigma_{r+1}^{\prime}$ to bring our system to the form

$$
\begin{aligned}
\left(\left(\overline{1}_{1 d} ; \epsilon\right),\left(\overline{1}_{2} ; \mathrm{id}\right),\left(\overline{1}_{12} ;(12)\right),(0 ;(12)), \ldots,\right. & (0 ;(12)) \\
& \left.\left(\overline{1}_{1} ; \text { id }\right),(0 ;(12)), \ldots,(0 ; v), \ldots\right) .
\end{aligned}
$$

We use σ_{1}^{\prime} to replace the pair $\left(\left(\overline{1}_{1 d} ; \epsilon\right),\left(\overline{1}_{2} ;\right.\right.$ id $\left.)\right)$ with $\left(\left(\overline{1}_{1} ;\right.\right.$ id $\left.),\left(\overline{1}_{1 d} ; \epsilon\right)\right)$ and then we apply the moves σ_{1}^{\prime}, σ_{2}^{\prime} to replace $\left(\left(\overline{1}_{1} ;\right.\right.$ id $\left.),\left(\overline{1}_{1 d} ; \epsilon\right),\left(\overline{1}_{12} ;(12)\right)\right)$ by

$$
\left((0 ; \epsilon),(0 ;(12)),\left(\overline{1}_{1} ; \mathrm{id}\right)\right) .
$$

Now we obtain the claim acting by the sequence of elementary moves $\sigma_{r+2}^{\prime \prime}, \sigma_{r+3}^{\prime \prime}$, $\ldots, \sigma_{h}^{\prime \prime}, \sigma_{h+2}^{\prime}, \sigma_{h+1}^{\prime}, \ldots, \sigma_{n_{2}+3}^{\prime}, \sigma_{n_{2}+2}^{\prime}$.
Case $r>1$. Seeing that

$$
(a ; \epsilon)\left(v_{1 e_{1}+1}^{1} ;\left(1 e_{1}+1\right)\right) \cdots\left(z_{12}^{1} ;(12)\right) \cdots(0 ; v) \cdots\left(\overline{1}_{1} ; \mathrm{id}\right)=(0 ; \mathrm{id}),
$$

one has
$a+v_{e_{1}\left(e_{1}+e_{2}\right)}^{1}+v_{\left(e_{1}+e_{2}\right)\left(e_{1}+e_{2}+e_{3}\right)}^{2}+\cdots+v_{\left(e_{1}+\cdots+e_{r-1}\right) d}^{r-1}+z_{1 d}^{1}+\cdots+\overline{1}_{1}+\cdots+\overline{1}_{1}=0$.
Since a is a function that sends to $\overline{1}$ at most an even number of indexes moved by every disjoint cycle of which is product ϵ, the equality above ensures that a is either 0 or $\overline{1}_{1 e_{1}}$.

If $a=0$, we have $v^{1}=v^{2}=\cdots=v^{r-1}=0$. Furthermore there is an even number of z^{i} equal to $\overline{1}$. So in order to obtain the claim, it is sufficient to act as in the case $r=1$ and $a=0$.

On the contrary, if $a=\overline{1}_{1 e_{1}}$ we have $v^{1}=v^{2}=\cdots=v^{r-1}=\overline{1}$; furthermore, there is an odd number of z^{i} equal to $\overline{1}$. Then we act as in the case $r=1$ and $a=\overline{1}_{1 d}$ to replace our system with the braid-equivalent system

$$
\begin{aligned}
& \left(\left(\overline{1}_{1 e_{1}} ; \epsilon\right), \ldots,\left(\overline{1}_{1 \sum_{i=1}^{r-1} e_{i}+1} ;\left(1 \sum_{i=1}^{r-1} e_{i}+1\right)\right),\left(\overline{1}_{2} ; \text { id }\right),\left(\overline{1}_{12} ;(12)\right)\right. \\
& \left.(0 ;(12)), \ldots,(0 ;(12)),\left(\overline{1}_{1} ; \text { id }\right),(0 ;(12)), \ldots,(0 ; v), \ldots\right) .
\end{aligned}
$$

Using the moves $\sigma_{r}^{\prime}, \sigma_{r-1}^{\prime}, \ldots, \sigma_{2}^{\prime}, \sigma_{1}^{\prime}$ we transform the sequence

$$
\left(\left(\overline{1}_{1 e_{1}} ; \epsilon\right), \ldots,\left(\overline{1}_{1 \sum_{i=1}^{r-1} e_{i}+1} ;\left(1 \sum_{i=1}^{r-1} e_{i}+1\right)\right),\left(\overline{1}_{2} ; \text { id }\right),\left(\overline{1}_{12} ;(12)\right)\right)
$$

into

$$
\left(\left(\overline{1}_{1} ; \text { id }\right),\left(\overline{1}_{1 e_{1}} ; \epsilon\right), \ldots,\left(\overline{1}_{1 \sum_{i=1}^{r-1} e_{i}+1} ;\left(1 \sum_{i=1}^{r-1} e_{i}+1\right)\right),\left(\overline{1}_{12} ;(12)\right)\right) .
$$

Now in order to obtain the claim it is sufficient to act by the sequence of moves $\sigma_{1}^{\prime}, \ldots, \sigma_{r}^{\prime}, \sigma_{r+1}^{\prime}, \sigma_{r+2}^{\prime \prime}, \ldots, \sigma_{h}^{\prime \prime}, \sigma_{h+2}^{\prime}, \sigma_{h+1}^{\prime}, \ldots, \sigma_{n_{2}+3}^{\prime}, \sigma_{n_{2}+2}^{\prime}$.

The following result is a direct consequence of Proposition 11.

Theorem 12. If $n_{2}-s-r \geq d+1$, the Hurwitz space $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(\mathbb{P}^{1}, b_{0}\right)$ is irreducible.

Combining Theorem 12 and Remark 6, we derive the following result.
Corollary 13. If $n_{2}-s-r \geq d+1$, the Hurwitz space $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, q}\left(\mathbb{P}^{1}\right)$ is irreducible.
3.2. Irreducibility of $\boldsymbol{H}_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(\boldsymbol{Y}, \boldsymbol{b}_{\mathbf{0}}\right)$ and $\boldsymbol{H}_{W\left(\boldsymbol{B}_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}(\boldsymbol{Y})$. Let Y be a smooth, connected, projective complex curve of genus $g \geq 1$.

Theorem 14. If $n_{2}-s-r \geq d+1$, the Hurwitz space $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(Y, b_{0}\right)$ is irreducible.

Proof. To prove the irreducibility of $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}\left(Y, b_{0}\right)$ it is sufficient to show that each $\left(n_{1}, n_{2}, \underline{e}, \underline{q}\right)$-Hurwitz system in $A_{n_{1}, n_{2}, \underline{e}, \underline{q}, g}^{o}$ is braid-equivalent to a system of the form

$$
(\underline{\hat{t}} ;(0 ; \mathrm{id}), \ldots,(0 ; \mathrm{id}))
$$

In fact, $\hat{\underline{t}} \in A_{n_{1}, n_{2}, \underline{e}, \underline{q}}^{o}$ and so the theorem follows by Proposition 11.
Let $(\underline{t} ; \underline{\lambda}, \underline{\mu}) \in A_{n_{1}, n_{2}, \underline{e}, q, g}^{o}$. Acting by elementary moves of type σ_{j}^{\prime} we shift to the right the elements of the form $\left(\overline{1}_{*} ;\right.$ id) transforming our system into

$$
\left(\tilde{t}_{1}, \ldots, \tilde{t}_{n_{2}+2},\left(\overline{1}_{*} ; \text { id }\right), \ldots,\left(\overline{1}_{*} ; \mathrm{id}\right) ; \lambda_{1}, \mu_{1}, \ldots, \lambda_{g}, \mu_{g}\right)
$$

where $\tilde{t}_{i}=\left(* ; t_{i}^{\prime}\right), \lambda_{k}=\left(* ; \lambda_{k}^{\prime}\right)$ and $\mu_{k}=\left(* ; \mu_{k}^{\prime}\right)$.
We notice that $\left(t_{1}^{\prime}, \ldots, t_{n_{2}+2}^{\prime} ; \lambda_{1}^{\prime}, \mu_{1}^{\prime}, \ldots, \lambda_{g}^{\prime}, \mu_{g}^{\prime}\right)$ is the Hurwitz system of a covering of Y of degree $d \geq 3$, with monodromy group S_{d} and with $n_{2}+2$ branch points, n_{2} of which are points of simple branching, one is a special point whose local monodromy is given by \underline{e} and one is a special point whose local monodromy is given by \underline{q}.

Since $n_{2}-s-r \geq d+1$, the Hurwitz space $H_{d, n_{2}, \underline{e}, \underline{q}}^{o}\left(Y, b_{0}\right)$ is irreducible (see [Vetro 2010], Theorem 2) and then the Hurwitz system

$$
\left(t_{1}^{\prime}, \ldots, t_{n_{2}+2}^{\prime} ; \lambda_{1}^{\prime}, \mu_{1}^{\prime}, \ldots, \lambda_{g}^{\prime}, \mu_{g}^{\prime}\right)
$$

is braid-equivalent to one of the form

$$
\left(t_{1}^{\prime \prime}, \ldots, t_{n_{2}+2}^{\prime \prime} ; \text { id, id, } \ldots, \text { id, id }\right)
$$

Hence it follows that $(\underline{t} ; \underline{\lambda}, \underline{\mu})$ is braid-equivalent to a system of type

$$
\left(\bar{t}_{1}, \ldots, \bar{t}_{n_{2}+2},\left(\overline{1}_{*} ; \text { id }\right), \ldots ;\left(a_{1} ; \text { id }\right),\left(b_{1} ; \mathrm{id}\right), \ldots,\left(a_{g} ; \mathrm{id}\right),\left(b_{g} ; \mathrm{id}\right)\right)
$$

We notice that if $a_{h}=0$ and $b_{k}=0$ for each $1 \leq h, k \leq g$ the theorem follows by Proposition 11. So let $a_{1} \neq 0$ and i be one of the indexes that a_{1} sends to $\overline{1}$.

Since it is not restrictive to suppose that among the element of type ($\overline{1}_{*} ;$ id) in our system there is ($\overline{1}_{i} ;$ id) (see Step 1, Proposition 11), acting by elementary moves of type $\sigma_{j}^{\prime \prime}$ we can transform our system into

$$
\left(\left(\overline{1}_{i} ; \mathrm{id}\right), \ldots ;\left(a_{1} ; \mathrm{id}\right),\left(b_{1} ; \mathrm{id}\right), \ldots,\left(a_{g} ; \mathrm{id}\right),\left(b_{g} ; \mathrm{id}\right)\right) .
$$

Now we use the move $\tau_{11}^{\prime \prime}$ to replace $\left(a_{1} ;\right.$ id $)$ with $\left(\overline{1}_{i} ;\right.$ id $)\left(a_{1} ;\right.$ id $)$, where $\overline{1}_{i}+a_{1}$ is a function that sends i to $\overline{0}$.

So reasoning for all the indexes that a_{1} sends to $\overline{1}$, after a finite number of steps, we obtain a new Hurwitz system with (0 ; id) at the place $\left(n_{2}+n_{1}+3\right.$).

On the contrary, if $a_{1}=0, b_{1} \neq 0$ and b_{1} sends i to $\overline{1}$, we at first use elementary moves of type $\sigma_{j}^{\prime \prime}$ to bring to the first place ($\overline{1}_{i} ;$ id) and then we act by the braid move ρ_{11}^{\prime} in order to transform $\left(b_{1} ; \mathrm{id}\right)$ into $\left(\overline{1}_{i} ; \mathrm{id}\right)\left(b_{1} ; \mathrm{id}\right)$ where the function $\overline{1}_{i}+b_{1}$ sends i to $\overline{0}$. Following this line for all the indexes that b_{1} sent to $\overline{1}$, we can replace ($\overline{1}_{i}+b_{1} ; \mathrm{id}$) by (0 ; id).

We notice that if $a_{k} \neq 0$ and $a_{l}=b_{l}=0$, for each $l \leq k-1$, in order to obtain the claim one can reason in the same way but this time applying the braid move $\tau_{1 k}^{\prime}$. Analogously if $b_{k} \neq 0, a_{l}=b_{l}=0$, for each $l \leq k-1$, and $a_{k}=0$ one can apply the braid move $\rho_{1 k}^{\prime}$ to transform ($b_{k} ;$ id) into (0 ; id).

From Theorem 14 and Remark 6 we deduce the following result.
Corollary 15. If $n_{2}-s-r \geq d+1$, the Hurwitz space $H_{W\left(B_{d}\right), n_{1}, n_{2}, \underline{e}, \underline{q}}(Y)$ is irreducible.

References

[Berstein and Edmonds 1984] I. Berstein and A. L. Edmonds, "On the classification of generic branched coverings of surfaces", Illinois J. Math. 28:1 (1984), 64-82. MR 85k:57004 Zbl 0551. 57001
[Biggers and Fried 1986] R. Biggers and M. Fried, "Irreducibility of moduli spaces of cyclic unramified covers of genus g curves", Trans. Amer. Math. Soc. 295:1 (1986), 59-70. MR 87f:14011 Zbl 0601.14022
[Birman 1969] J. S. Birman, "On braid groups", Comm. Pure Appl. Math. 22:1 (1969), 41-72. MR 38 \#2764 Zbl 0157.30904
[Bourbaki 1968] N. Bourbaki, Groupes et algèbres de Lie, IV-VI, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968. MR 39 \#1590 Zbl 0186.33001
[Carter 1972] R. W. Carter, "Conjugacy classes in the Weyl group", Compositio Math. 25:1 (1972), 1-59. MR 47 \#6884 Zbl 0254.17005
[Fadell and Neuwirth 1962] E. Fadell and L. Neuwirth, "Configuration spaces", Math. Scand. 10 (1962), 111-118. MR 25 \#4537 Zbl 0136.44104
[Fulton 1969] W. Fulton, "Hurwitz schemes and irreducibility of moduli of algebraic curves", Ann. of Math. (2) 90:3 (1969), 542-575. MR 41 \#5375 Zbl 0194.21901
[Graber et al. 2002] T. Graber, J. Harris, and J. Starr, "A note on Hurwitz schemes of covers of a positive genus curve", preprint, 2002. arXiv math.AG/0205056
[Hurwitz 1891] A. Hurwitz, "Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten", Math. Ann. 39:1 (1891), 1-60. MR 1510692 Zbl 23.0429.01
[Kanev 2004] V. Kanev, "Irreducibility of Hurwitz spaces", preprint 241, Dipartimento di Matematica ed Applicazioni, Università degli Studi di Palermo, 2004. arXiv AG/0509154
[Kanev 2006] V. Kanev, "Hurwitz spaces of Galois coverings of \mathbb{P}^{1}, whose Galois groups are Weyl groups", J. Algebra 305:1 (2006), 442-456. MR 2007g:14032 Zbl 1118.14034
[Kluitmann 1988] P. Kluitmann, "Hurwitz action and finite quotients of braid groups", pp. 299-325 in Braids (Santa Cruz, CA, 1986), edited by J. S. Birman and A. Libgober, Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 1988. MR 90d:20071 Zbl 0701.20019
[Natanzon 1991] S. M. Natanzon, "Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves", Tr. Semin. Vektorn. Tenzorn. Anal. 23-24 (1991), 79-132. In Russian; translated in Selecta Math. Soviet. 12:3 (1993), 251-291. MR 95f:57005 Zbl 0801.30034
[Scott 1970] G. P. Scott, "Braid groups and the group of homeomorphisms of a surface", Proc. Cambridge Philos. Soc. 68:3 (1970), 605-617. MR 42 \#3786 Zbl 0203.56302
[Vetro 2006] F. Vetro, "Irreducibility of Hurwitz spaces of coverings with one special fiber", Indag. Math. (N.S.) 17:1 (2006), 115-127. MR 2008j:14054 Zbl 1101.14040
[Vetro 2007] F. Vetro, "Irreducibility of Hurwitz spaces of coverings with monodromy groups Weyl groups of type $W\left(B_{d}\right) "$, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10:2 (2007), 405-431. MR 2008f:14043 Zbl 1178.14029
[Vetro 2008a] F. Vetro, "Connected components of Hurwitz spaces of coverings with one special fiber and monodromy groups contained in a Weyl group of type B_{d} ", Boll. Unione Mat. Ital. (9) 1:1 (2008), 87-103. MR 2009b:57004 Zbl 1200.14053
[Vetro 2008b] F. Vetro, "Irreducibility of Hurwitz spaces of coverings with one special fiber and monodromy group a Weyl group of type D_{d} ", Manuscripta Math. 125:3 (2008), 353-368. MR 2008j:14055 Zbl 1139.14023
[Vetro 2009] F. Vetro, "On Hurwitz spaces of coverings with one special fiber", Pacific J. Math. 240:2 (2009), 383-398. MR 2010k:14045 Zbl 1198.14026
[Vetro 2010] F. Vetro, "On irreducibility of Hurwitz spaces of coverings with two special fibers", 2010. To appear in Georgian Math. J.
[Wajnryb 1996] B. Wajnryb, "Orbits of Hurwitz action for coverings of a sphere with two special fibers", Indag. Math. (N.S.) 7:4 (1996), 549-558. MR 99c:14040 Zbl 0881.57001

Received February 1, 2011.

Francesca Vetro

Dipartimento di Matematica e Informatica
Università degli Studi di Palermo
Via Archirafi, 34
90123 Palermo
Italy
fvetro@math.unipa.it

PACIFIC JOURNAL OF MATHEMATICS

http://pacificmath.org
Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS

V. S. Varadarajan (Managing Editor)

Department of Mathematics University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari	Darren Long	Sorin Popa
Department of Mathematics	Department of Mathematics	Department of Mathematics
University of California	University of California	University of California
Riverside, CA 92521-0135	Santa Barbara, CA 93106-3080	Los Angeles, CA 90095-1555
chari@math.ucr.edu	long@ math.ucsb.edu	popa@ math.ucla.edu
Robert Finn	Jiang-Hua Lu	Jie Qing
Department of Mathematics Stanford University	Department of Mathematics	Department of Mathematics
Stanford, CA 94305-2125	The University of Hong Kong	University of California
finn@math.stanford.edu	Pokfulam Rd., Hong Kong	Santa Cruz, CA 95064
Kefeng Liu	jhlu@ maths.hku.hk	qing @cats.ucsc.edu
Department of Mathematics	Alexander Merkurjev	Jonathan Rogawski
University of California	Department of Mathematics	Department of Mathematics
Los Angeles, CA 90095-1555	University of California	University of California
liu@math.ucla.edu	Los Angeles, CA 90095-1555	Los Angeles, CA 90095-1555
	merkurev@ math.ucla.edu	jonr@ math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.
The subscription price for 2012 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

[^1]
PACIFIC JOURNAL OF MATHEMATICS

Volume 255 No. 1 January 2012
Averaging sequences 1Fernando Alcalde Cuesta and Ana Rechtman
Affine group schemes over symmetric monoidal categories 25
AbHishek Banerjee
Eigenvalue estimates on domains in complete noncompact Riemannian 41 manifoldsDaguang Chen, Tao Zheng and Min Lu
Realizing the local Weil representation over a number field 55
Gerald Cliff and David McNeilly
Lagrangian submanifolds in complex projective space with parallel second 79 fundamental form
Franki Dillen, Haizhong Li, Luc Vrancken and Xianfeng WANG
Ultra-discretization of the $D_{4}^{(3)}$-geometric crystal to the $G_{2}^{(1)}$-perfect 117 crystalsMana Igarashi, Kailash C. Misra and Toshiki NaKashima
Connectivity properties for actions on locally finite trees 143 Keith Jones
Remarks on the curvature behavior at the first singular time of the Ricci 155 flow
Nam Q. Le and Natasa Sesum
Stability of capillary surfaces with planar boundary in the absence of 177 gravity
Petko I. Marinov
Small hyperbolic polyhedra 191Shawn Rafalski
Hurwitz spaces of coverings with two special fibers and monodromy group 241a Weyl group of type B_{d}Francesca Vetro

[^0]: MSC2010: primary 14H30; secondary 14H10.
 Keywords: Hurwitz spaces, special fibers, branched coverings, Weyl group of type B_{d}, monodromy, braid moves.

[^1]: PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
 at the University of California, Berkeley 94720-3840
 A NON-PROFIT CORPORATION
 Typeset in LATEX
 Copyright ©2012 by Pacific Journal of Mathematics

