
Pacific
Journal of
Mathematics

CHARACTER ANALOGUES OF RAMANUJAN-TYPE
INTEGRALS INVOLVING THE RIEMANN 4-FUNCTION

ATUL DIXIT

Volume 255 No. 2 February 2012



PACIFIC JOURNAL OF MATHEMATICS
Vol. 255, No. 2, 2012

CHARACTER ANALOGUES OF RAMANUJAN-TYPE
INTEGRALS INVOLVING THE RIEMANN 4-FUNCTION
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A new class of integrals involving the product of4-functions associated with
primitive Dirichlet characters is considered. These integrals give rise to
transformation formulas of the type

F(z, α, χ)= F(−z, β, χ̄)= F(−z, α, χ̄)= F(z, β, χ),

where αβ = 1. New character analogues of the Ramanujan–Guinand for-
mula, the Koshliakov’s formula, and a transformation formula of Ramanu-
jan, as well as its recent generalization, are shown as particular examples.
Finally, character analogues of a conjecture of Ramanujan, and Hardy and
Littlewood involving infinite series of Möbius functions are derived.

1. Introduction

Modular transformations are ubiquitous in Ramanujan’s notebooks [1957] and in
his “Lost Notebook” [1988]. Ramanujan usually expressed them in a symmetric
way, and they were valid under the conditions αβ=π , or αβ=π2, . . . . In the same
spirit, on page 220 in one of the manuscripts of Ramanujan in the handwriting of
Watson [Ramanujan 1988], one finds the following beautiful claim.

Theorem 1.1. Define

λ(x) := ψ(x)+ 1
2x
− log x,

where

ψ(x) := 0
′(x)
0(x)

=−γ −

∞∑
m=0

( 1
m+x

−
1

m+1

)
is the logarithmic derivative of the Gamma function. Let the Riemann ξ -function
be defined by

ξ(s) := (s− 1)π−s/20(1+ 1
2 s)ζ(s),
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and let
4(t) := ξ( 1

2 + i t)

be the Riemann4-function. If α and β are positive numbers such that αβ = 1, then

(1-1)
√
α

(
γ − log(2πα)

2α
+

∞∑
k=1

λ(kα)
)
=
√
β

(
γ − log(2πβ)

2β
+

∞∑
k=1

λ(kβ)
)

=−
1
π3/2

∫
∞

0

∣∣∣4(1
2 t)0

(
−1+i t

4

)∣∣∣2 cos((t/2) logα)
1+t2 dt,

where γ denotes Euler’s constant.

This identity is of a special kind since it contains not only a modular transfor-
mation, but also a beautiful integral involving the Riemann 4-function. In fact, the
invariance of the integral in (1-1) under the map α → β establishes the equality
of the first and the second expressions in (1-1). This is used in [Berndt and Dixit
2010] to prove the claim above and in [Dixit 2010; 2011a; 2011b] to obtain many
transformation formulas of the type F(α) = F(β) or F(z, α) = F(z, β), where
αβ= 1 and an integral involving the Riemann4-function is always linked to them.
This gives new identities involving infinite series of the Hurwitz zeta function as
well as extensions of some well-known formulas like the Ramanujan–Guinand
formula, discovered first by Ramanujan [1988, p. 253] and later in a different but
equivalent form by Guinand [1955], and a formula of Koshliakov [1928], also in
the lost notebook [Ramanujan 1988, p. 254]; see [Berndt et al. 2008; Dixit 2011b].
For example, we mention the following generalization of Theorem 1.1:

Theorem 1.2 [Dixit 2011a; 2011b]. Let −1< Re z < 1. Define ϕ(z, x) by

ϕ(z, x)= ζ(z+ 1, x)− x−z

z
−

1
2 x−z−1,

where ζ(z, x) denotes the Hurwitz zeta function. If α and β are any positive num-
bers such that αβ = 1, then

(1-2) α
z+1

2

( ∞∑
n=1

ϕ(z, nα)−
ζ(z+ 1)
2αz+1 −

ζ(z)
αz

)
= β(z+1)/2

( ∞∑
n=1

ϕ(z, nβ)−
ζ(z+ 1)
2βz+1 −

ζ(z)
βz

)
=

8(4π)(z−3)/2

0(z+1)

∫
∞

0
0
( z−1+i t

4

)
0
( z−1−i t

4

)
×4

( t+i z
2

)
4
( t−i z

2

)cos((t/2) logα)
(z+1)2+t2 dt,

where 4(t) is the Riemann 4-function.
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Another example of a transformation formula of the type F(z, α) = F(z, β)
along with an integral involving Riemann’s 4-functions is the following extended
version of the Ramanujan–Guinand formula just mentioned:

Theorem 1.3 [Dixit 2011b, Theorem 1.4]. Let Kν(s) denote the modified Bessel
function of order ν, let γ denote Euler’s constant and let σk(n) =

∑
d|n dk . Let

−1< Re z < 1. Then if α and β are positive numbers such that αβ = 1, we have

(1-3)
√
α

(
αz/2−1π−z/20

( z
2

)
ζ(z)

+α−z/2−1π z/20
(
−z
2

)
ζ(−z)− 4

∞∑
n=1

σ−z(n)nz/2Kz/2(2nπα)
)

=
√
β

(
βz/2−1π−z/20

( z
2

)
ζ(z)

+β−z/2−1π z/20
(
−z
2

)
ζ(−z)− 4

∞∑
n=1

σ−z(n)nz/2Kz/2(2nπβ)
)

=−
32
π

∫
∞

0
4
( t+i z

2

)
4
( t−i z

2

) cos((t/2) logα)
(t2+(z+1)2)(t2+(z−1)2)

dt.

Letting z→ 0 in (1-3) then gives an extended version of Koshliakov’s formula:

Theorem 1.4 [Dixit 2010]. Let d(n) denote the number of positive divisors of n,
and let K0(n) denote the modified Bessel function of order 0. If α and β are positive
numbers such that αβ = 1, then

√
α

(
γ − log(4πα)

α
− 4

∞∑
n=1

d(n)K0(2πnα)
)

=
√
β

(
γ − log(4πβ)

β
− 4

∞∑
n=1

d(n)K0(2πnβ)
)

=−
32
π

∫
∞

0

(4(t/2))2 cos( 1
2 t logα) dt

(1+ t2)2
.

By an “extended version”, we mean that the original identity known before is
linked to an integral involving the Riemann 4-function.

N. S. Koshliakov [1934a; 1934b; 1936; 1949; 1954]1 was another mathemati-
cian who did significant research in this area after Ramanujan. Besides using
contour integration, Mellin transforms, and several summation formulas that he
developed, he frequently used a method similar to that developed by Ramanujan
[1915; 1927, pp. 72–77] to obtain old and new transformation formulas of the form

1For the genesis of the monograph [Koshlyakov 1949], written under the patronymic “N. S.
Sergeev”, see [Bogolyubov et al. 1990, pp. 198–199].
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F(α)= F(β), where αβ= k for some constant k. He obtained deep generalizations
of well-known formulas of Ramanujan and of Hardy (such as [Hardy 1915, (2)]),
some of them being analogues in rational and number fields. Koshliakov [1934c;
1937] also used Fourier’s integral theorem to obtain expressions for the Riemann
4-function, a method also enunciated in [Ramanujan 1915]. Around the same
time, Ferrar [1936] also worked on transformation formulas of this kind.

As can be seen from (1-1), the general form of the integrals giving rise to for-
mulas of the type F(α)= F(β), where αβ = 1, is∫

∞

0
f
( t

2

)
4
( t

2

)
cosµt dt,

for µ real and f (t) = φ(i t)φ(−i t), where φ is analytic in t as a function of a
real variable. This integral is mentioned in [Titchmarsh 1986, p. 35]. Similarly,
from (1-2) and (1-3), it is clear that the general form of the integrals giving rise to
identities of the type F(z, α)= F(z, β), where αβ = 1, is

(1-4)
∫
∞

0
f
(

z,
t
2

)
4
( t+i z

2

)
4
( t−i z

2

)
cosµt dt,

forµ real and f (z, t)=φ(z, i t)φ(z,−i t), where φ is both analytic in t as a function
of a real variable and analytic in z in some complex domain. An integral of this
kind was first introduced by Ramanujan [1915].

In this article, we find character analogues of all of the above-mentioned theo-
rems. The character analogue of the Ramanujan–Guinand formula, and hence of
Koshliakov’s formula, given here differs from the ones established in [Berndt et al.
2011]. Throughout this article, we will be concerned with the principal branch of
the logarithm. Since we frequently use the functional equation for L-functions (see
(1-10) below), we work only with a primitive, nonprincipal Dirichlet character χ
modulo q, where q is the period of the character; see [Apostol 1972, Theorem 1].
It is easy to see that its conjugate character χ is also a primitive, nonprincipal
character modulo q and χ is even (odd) if and only if χ is even (respectively odd).
Let L(s, χ) denote the Dirichlet L-function defined by L(s, χ) =

∑
∞

n=1 χ(n)/ns

for Re s > 1. This series converges conditionally for 0 < Re s < 1. Also, it can
be analytically continued to an entire function of s. Let G(χ) := G(1, χ), where
G(n, χ) is the Gauss sum defined by

G(n, χ) :=
q∑

m=1

χ(m)e2π imn/q .

We know that [Apostol 1976, p. 168]

(1-5) |G(χ)|2 = q,
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and it is easy to see that

(1-6) G(χ)=
{

G(χ) for χ even,
−G(χ) for χ odd.

Define b as follows:

(1-7) b =
{

0 for χ(−1)= 1,
1 for χ(−1)=−1.

Then the function ξ(s, χ) is defined by

(1-8) ξ(s, χ) :=
(
π

q

)−(s+b)/2
0
(s+b

2

)
L(s, χ),

and the analogue of the Riemann 4-function for Dirichlet characters is defined as

(1-9) 4(t, χ) := ξ
(1

2 + i t, χ
)
.

L-functions satisfy the functional equation [Apostol 1976, p. 263]

(1-10) L(1− s, χ)=
qs−10(s)
(2π)s

(e−π is/2
+χ(−1)eπ is/2)G(χ)L(s, χ),

which can be rephrased in terms of ξ(s, χ) as [Davenport 2000]

(1-11) ξ(1− s, χ)= ε(χ)ξ(s, χ),

where ε(χ)= ibq1/2/G(χ). By (1-5), |ε(χ)| = 1. Next, we note Stirling’s formula
in a vertical strip α ≤ σ ≤ β, s = σ + i t , namely,

(1-12) |0(s)| = (2π)
1
2 |t |σ−

1
2 e−

1
2π |t |

(
1+ O

( 1
|t |

))
uniformly as |t |→∞. Now, using (1-10) and the fact that |L(s, χ)| = O(q|t |) for
Re s ≥ 1

2 [Davenport 2000, p. 82], we easily see that for Re s ≥−δ, δ > 0, we have

(1-13) L(s, χ)= O(q
3
2+δ|t |

3
2+δ).

We will subsequently use this result.
Transformation formulas involving Dirichlet characters of the form

∞∑
n=1

χ(n) f (n)=
∞∑

n=1

χ(n)g(n),

where

g(x)=


2G(χ)

q

∫
→∞

0
cos
(

2πxt
q

)
f (t) dt for χ(−1)= 1,

−2iG(χ)
q

∫
→∞

0
sin
(

2πxt
q

)
f (t) dt for χ(−1)=−1,
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were considered by Guinand [1941, Theorems 4 and 5], though he did not give
particular examples. Here, we derive a character analogue of the integral in (1-4).
Its general form is

(1-14)
∫
∞

0
f
(

z, t
2

)
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt,

where f is an even function of both the variables z and t . These integrals give rise
to transformation formulas of the type F(z, α, χ)= F(−z, β, χ)= F(−z, α, χ)=
F(z, β, χ). Then, via Fourier’s integral theorem, one may be able to obtain integral
representations for 4((t + i z)/2, χ)4 ((t − i z)/2, χ), which are of independent
interest. The character analogue of Theorem 1.3 is as follows.

Theorem 1.5. Let −1< Re z < 1 and let χ denote a primitive, nonprincipal char-
acter modulo q. Let the number b be defined as in (1-7). Let Kν(z), d(n), and γ
be defined as before, and let α and β be positive numbers such that αβ = 1. If

F(z, α, χ) := αb+ 1
2

∞∑
n=1

χ(n)n−z/2+b
(∑

d|n

χ2(d)d z
)

K−z/2

(2πnα
q

)
,

then

(1-15) F(z, α, χ)= F(−z, β, χ)= F(−z, α, χ)= F(z, β, χ)

=
1

8π

∫
∞

0
4
( t+i z

2
, χ
)
4

(
t−i z

2
, χ

)
cos
(

1
2 t logα

)
dt.

Define ψ(a, χ) by

(1-16) ψ(a, χ)=−
∞∑

n=1

χ(n)
n+ a

,

where a ∈ C \Z<0. For a real character χ , this agrees with the character analogue
of the psi function obtained by the logarithmic differentiation of the following
Weierstrass product form of the character analogue of the gamma function for real
characters derived by Berndt [1975]:

0(a, χ)= e−aL(1,χ)
∞∏

n=1

(
1+ a

n

)−χ(n)
eaχ(n)/n.

The character analogue of the Hurwitz zeta function ζ(z, a) is given by [Berndt
1970, Example 3.2]

(1-17) L(z, a, χ)=
∞∑

n=1

χ(n)
(n+ a)z

,
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valid for Re z > 0, and provided a ∈C\Z<0. The above character analogue of the
Hurwitz zeta function can also be obtained as the special case when x = 0 of the
function L(z, x, a, χ) defined by [Berndt 1975]

L(z, x, a, χ) :=
∞∑′

n=0

e2π inx/qχ(n)(n+ a)−z,

where the prime indicates that the term corresponding to n = −a is omitted if
a is a negative integer and χ(a) 6= 0. As shown in [Berndt 1975], L(z, x, a, χ)
converges for Re z> 0 if x is not an integer, or if x is an integer and gcd(x, q) > 1.
If x is an integer and gcd(x, q) = 1, the series converges for Re z > 1. For mean
value properties of L(z, a, χ) and asymptotic formulas, see [Ma et al. 2010]. The
character analogues of Theorem 1.2 are given below.

Theorem 1.6. Let χ denote an even, primitive, nonprincipal character modulo q.
Let −1<Re z < 1, and let L(z, a, χ) be defined as in (1-17). Define T (z, α, χ) by

(1-18) T (z, α, χ) :=
αz/2q z/20(z+ 1)

2zπ z/2G(χ)
,

and �(z, t) by

(1-19) �(z, t) := ((z+ 1)2+ t2)0
(
−z−1+i t

4

)
0
(
−z−1−i t

4

)
+((z− 1)2+ t2)0

( z−1+i t
4

)
0
( z−1−i t

4

)
.

If α and β are positive numbers such that αβ = 1, then

(1-20)
√
α

(
T (z, α, χ)

∞∑
n=1

χ(n)L(z+ 1, nα, χ)

+ T (−z, α, χ)
∞∑

n=1

χ(n)L(−z+ 1, nα, χ)
)

=
√
β

(
T (−z, β, χ)

∞∑
n=1

χ(n)L(−z+ 1, nβ, χ)

+ T (z, β, χ)
∞∑

n=1

χ(n)L(z+ 1, nβ, χ)
)

=
1

64π3/2q

∫
∞

0
�(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cos
(1

2 t logα
)

dt.

Theorem 1.7. Let χ denote an odd, primitive, nonprincipal character modulo q.
Let −1 < Re z < 1, let L(z, a, χ) be defined as in (1-17), and let T (z, α, χ) be
defined as in (1-18). Define 3(z, t) by

(1-21) 3(z, t) := 0
( z+1+i t

4

)
0
( z+1−i t

4

)
+0

(
−z+1+i t

4

)
0
(
−z+1−i t

4

)
.
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If α and β are positive numbers such that αβ = 1, then

(1-22)
√
α

(
T (z, α, χ)

∞∑
n=1

χ(n)L(z+ 1, nα, χ)

+ T (−z, α, χ)
∞∑

n=1

χ(n)L(−z+ 1, nα, χ)
)

=
√
β

(
T (−z, β, χ)

∞∑
n=1

χ(n)L(−z+ 1, nβ, χ)

+ T (z, β, χ)
∞∑

n=1

χ(n)L(z+ 1, nβ, χ)
)

=
1

4π1/2iq2

∫
∞

0
3(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cos
(1

2 t logα
)

dt.

The following interesting identity was suggested by the work of Ramanujan:

Theorem 1.8 ([Hardy and Littlewood 1916, p. 156, Section 2.5]). Let µ(n) denote
the Möbius function. Let α and β be two positive numbers such that αβ = 1.
Assume that the series ∑

ρ

0 ((1− ρ)/2)
ζ
′

(ρ)
aρ

converges, where ρ runs through the nontrivial zeros of ζ(s) and a denotes a posi-
tive real number, and that the nontrivial zeros of ζ(s) are simple. Then

(1-23)
√
α

∞∑
n=1

µ(n)
n

e−πα
2/n2
−

1
4
√
π
√
α

∑
ρ

0((1− ρ)/2)
ζ
′

(ρ)
πρ/2αρ

=
√
β

∞∑
n=1

µ(n)
n

e−πβ
2/n2
−

1
4
√
π
√
β

∑
ρ

0((1− ρ)/2)
ζ
′

(ρ)
πρ/2βρ .

Hardy and Littlewood’s original formulation was slightly different from (1-23)
but is readily seen to be equivalent to it. See also [Berndt 1998, p. 470; Paris
and Kaminski 2001, p. 143; Titchmarsh 1986, p. 219, Section 9.8] for discussions
on this identity. Based on certain assumptions, the character analogues of (1-23)
for even and odd primitive Dirichlet characters, which furnish two examples of
transformation formulas of the form F(α, χ)= F(β, χ), are derived here and are
as follows.

Theorem 1.9. Let χ be an odd, primitive character modulo q, and let α and β be
two positive numbers such that αβ = 1. Assume that the series∑

ρ

πρ/2αρ0((2− ρ)/2)
qρ/2L ′(ρ, χ)

and
∑
ρ

πρ/2βρ0((2− ρ)/2)
qρ/2L ′(ρ, χ)
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converge, where ρ runs through the nontrivial zeros of L(s, χ) and L(s, χ) re-
spectively, and that the nontrivial zeros of the associated Dirichlet L-functions are
simple. Then

(1-24) α
√
α
√

G(χ)
( ∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(qn2)
−

q
4πα2

∑
ρ

0
( 2−ρ

2

)
L ′(ρ,χ)

(
π

q

)ρ/2
αρ
)

= β
√
β
√

G(χ)
( ∞∑

n=1

χ(n)µ(n)
n2 e−πβ

2/(qn2)
−

q
4πβ2

∑
ρ

0
( 2−ρ

2

)
L ′(ρ,χ)

(
π

q

)ρ/2
βρ
)
.

Theorem 1.10. Let χ be an even, primitive character modulo q , and let α and β
be two positive numbers such that αβ = 1. Assume that the series

∑
ρ

πρ/2αρ0((2− ρ)/2)
qρ/2L ′(ρ, χ)

and
∑
ρ

πρ/2βρ0((2− ρ)/2)
qρ/2L ′(ρ, χ)

converge, where ρ runs through the nontrivial zeros of L(s, χ) and L(s, χ) re-
spectively, and that the nontrivial zeros of the associated Dirichlet L-functions are
simple. Then

(1-25)
√
α
√

G(χ)
( ∞∑

n=1

χ(n)µ(n)
n

e−πα
2/(qn2)

−

√
q

4
√
πα

∑
ρ

0
( 1−ρ

2

)
L ′(ρ,χ)

(π
q

)ρ/2
αρ
)

=
√
β
√

G(χ)
( ∞∑

n=1

χ(n)µ(n)
n

e−πβ
2/(qn2)

−

√
q

4
√
πβ

∑
ρ

0
( 1−ρ

2

)
L ′(ρ,χ)

(
π

q

)ρ/2
βρ
)
.

This paper is organized as follows. In Section 2, we give a complex integral
representation of (1-14) that is used in subsequent sections. In Section 3, we prove
Theorem 1.5. Then in Section 4, we compute the inverse Mellin transforms and as-
ymptotic expansions of certain functions which are subsequently used in Section 5.
Section 5 is devoted to proofs of Theorems 1.6 and 1.7. Character analogues of
Ramanujan’s transformation formula (Theorem 1.1) are derived as special cases of
these theorems. We conclude this section with a curious result on a certain double
series involving characters. In Section 6, we present proofs of Theorems 1.9 and
1.10. Finally we conclude with some open problems in Section 7.

2. A complex integral representation of (1-14)

In this section, we give a formal way of transforming an integral involving a char-
acter analogue of Riemann’s4-function into an equivalent complex integral which
allows us to use residue calculus and Mellin transform techniques for its evaluation.
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Theorem 2.1. Let

(2-1) f (z, t)=
φ(z, i t)φ(z,−i t)+φ(−z, i t)φ(−z,−i t)

2
,

where φ is analytic in t as a function of a real variable and analytic in z in some
complex domain. Let y = eµ with µ real. Then, under the assumption that the
integral on the left side below converges,

(2-2)
∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

cosµt dt

=
1

4i
√

y

∫ 1
2+i∞

1
2−i∞

(
φ
(
z, s− 1

2

)
φ
(
z, 1

2 − s
)
+φ

(
−z, s− 1

2

)
φ
(
−z, 1

2 − s
))

× ξ
(

s− z
2
, χ
)
ξ
(

s+ z
2
, χ
)

ys ds.

Proof. Let

I (z, µ, χ) :=
∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

cosµt dt.

Then

(2-3) I (z, µ, χ)= 1
2

(∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

yi t dt

+

∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

y−i t dt
)

=
1
2

(∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

yi t dt

+

∫ 0

−∞

f (z,−t)4
(
−t + i z

2
, χ
)
4
(
−t − i z

2
, χ
)

yi t dt
)
.

However, using (1-11), we readily see that

4
(
−t + i z

2
, χ
)
= ξ

(
1
2 − i t − z

2
, χ
)

= ε(χ)ξ
(

1
2 + i t + z

2
, χ
)
= ε(χ)4

(
t − i z

2
, χ
)
,

4
(
−t − i z

2
, χ
)
= ξ

(
1
2 − i t + z

2 , χ
)

= (ε(χ))−1ξ
(

1
2 + i t − z

2
, χ
)
= (ε(χ))−14

(
t + i z

2
, χ
)

so that

(2-4) 4
(
−t + i z

2
, χ
)
4
(
−t − i z

2
, χ
)
=4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)
.
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Thus from (2-3), (2-4), and the fact that f is an even function of t , we obtain

I (z, µ, χ)

=
1
2

∫
∞

−∞

f (z, t)4
(

t + i z
2
, χ
)
4
(

t − i z
2
, χ
)

yi t dt

=
1

4i
√

y

∫ 1
2+i∞

1
2−i∞

(
φ
(
z, s− 1

2

)
φ
(
z, 1

2 − s
)
+φ

(
−z, s− 1

2

)
φ
(
−z, 1

2 − s
))

×ξ
(

s− z
2
, χ
)
ξ
(

s+ z
2
, χ
)

ys ds,

where in the penultimate line, we made the change of variable s = 1
2 + i t . �

For our purpose here, we replace µ by 2µ in (2-2) and then t by t/2 on the
left-hand side of (2-2). Thus, with y = e2µ, we find that

(2-5)
∫
∞

0
f
(

z, t
2

)
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cosµt dt

=
1

2i
√

y

∫ 1
2+i∞

1
2−i∞

(
φ
(
z, s− 1

2

)
φ
(
z, 1

2 − s
)
+φ

(
−z, s− 1

2

)
φ
(
−z, 1

2 − s
))

×ξ
(

s− z
2
, χ
)
ξ
(

s+ z
2
, χ
)

ys ds.

It is with this equation that we will be working throughout this paper.

3. Character analogues of the extended version of the
Ramanujan–Guinand formula

Lemma 3.1. For Re s > 1 and Re(s− η) > 1,

(3-1) L(s, χ)L(s− η, χ)=
∞∑

n=1

χ(n)
ns

∑
d|n

χ2(d)dη.

Proof. Since the Dirichlet series for both the L-functions converge absolutely under
the given hypotheses, using [Apostol 1976, Theorem 11.5], we see that

L(s, χ)L(s− η, χ)=
∞∑

n=1
(n,q)=1

χ(n)
ns

∞∑
k=1

(k,q)=1

χ(k)
ks−η =

∞∑
j=1

( j,q)=1

1
j s

∑
nk= j
(k,q)=1

χ(n)χ(k)kη

=

∞∑
j=1

( j,q)=1

χ( j)
j s

∑
nk= j
(k,q)=1

χ2(k)
χ(k)χ(k)

kη =
∞∑
j=1

χ( j)
j s

∑
nk= j

χ2(k)kη,

where in the last step, we make use of the fact that χ(k)χ(k)= 1 for (k, q)= 1. �
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Proof of Theorem 1.5. Assume that χ is even. Let φ(z, s)≡ 1. From (2-1) we see
that f (z, t)≡ 1. Using (1-9), (1-8), (1-12), and (1-13), we find that the integral

M(z, µ, χ) :=
∫
∞

0
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cosµt dt

does converge. Using (2-5), we observe that

(3-2) M(z, µ, χ)

=
1

i
√

y

∫ 1
2+i∞

1
2−i∞

ξ
(

s− z
2
,χ
)
ξ
(

s+ z
2
,χ
)

ys ds

=
1

i
√

y

∫ 1
2+i∞

1
2−i∞

0
( s

2
−

z
4

)
0
( s

2
+

z
4

)
L
(

s− z
2
,χ
)

L
(

s+
z
2
,χ
)( π

qy

)−s
ds.

Since Re s = 1
2 and −1 < Re z < 1, we have 0 < Re(s − z/2) < 1 and 0 <

Re(s + z/2) < 1. Now replace s by s − z/2 and let η = −z in Lemma 3.1. Then,
for Re(s− z/2) > 1 and Re(s+ z/2) > 1,

(3-3) L
(

s− z
2
, χ
)

L
(

s+ z
2
, χ
)
=

∞∑
n=1

χ(n)
ns−z/2

∑
d|n

χ2(d)d−z.

We wish to shift the line of integration from Re s= 1
2 to Re s= 3

2 in order to be able
to use (3-3) in (3-2). Consider a positively oriented rectangular contour formed by
[

1
2+iT, 1

2−iT ], [ 12−iT, 3
2−iT ], [32−iT, 3

2+iT ] and [32+iT, 1
2+iT ], where T is

any positive real number. The integrand on the extreme right side of (3-2) does not
have any pole inside the contour. Also as T→∞, the integrals along the horizontal
segments [12− iT, 3

2− iT ] and [32+ iT, 1
2+ iT ] tend to zero, which can be seen by

using (1-12). Hence, employing Cauchy’s residue theorem, letting T →∞, using
(3-3) in (3-2), and interchanging the order of summation and integration, which is
valid because of absolute convergence, we observe that

(3-4) M(z,µ,χ)

=
1

i
√

y

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)∫ 3

2+i∞

3
2−i∞

0
( s

2
−

z
4

)
0
( s

2
+

z
4

)(nπ
qy

)−s
ds.

But from [Oberhettinger 1974, Formula 11.1, p. 115], for c = Re s >± Re ν,

(3-5) 1
2π i

∫ c+i∞

c−i∞
2s−2w−s0

( s
2
−
ν

2

)
0
( s

2
+
ν

2

)
x−s ds = Kν(wx).
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Hence, using (3-5) with c= 3/2, ν = z/2, w= 2, and x = nπ/qy in (3-4), we find
that

(3-6) M(z, µ, χ)= 8π
√

y

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)

Kz/2

(2πn
qy

)
.

Now let µ = 1
2 logα in (3-6) so that y = e2µ implies that y = α. Then using the

fact that αβ = 1, we deduce that

(3-7) 1
8π

∫
∞

0
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt

=
√
β

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)

K z
2

(2πnβ
q

)
.

Next, observing that replacing α by β and/or simultaneously replacing χ by χ and
z by −z in (3-7) leaves the integral on the left side invariant, we obtain (1-15).

Now consider the case when χ is odd. Again the convergence of the integral
M(z, µ, χ) can be seen from (1-12) and (1-13). Following similar steps as in the
case of even χ and using the definition of ξ(s, χ) from (1-8) for χ odd, we get

(3-8) M(z,µ,χ)

=
q

iπ
√

y

∞∑
n=1

χ(n)nz/2
∑
d|n

χ2(d)d−z
∫ 3

2+i∞

3
2−i∞

0
( s

2
−

z
4
+

1
2

)
0
( s

2
+

z
4
+

1
2

)(nπ
qy

)−s
ds.

Now replacing s by s+ 1 in (3-5), we find that for c = Re s >±Re ν− 1,

(3-9) 1
2π i

∫ c+i∞

c−i∞
2s−1w−s−10

(s+1
2
−
ν

2

)
0
(s+1

2
+
ν

2

)
x−s ds = x Kν(wx).

Then using (3-9) with c = 3
2 , ν = 0, w = 2 and x = nπ/qy in (3-8), we see that

(3-10) M(z, µ, χ)= 8π
y3/2

∞∑
n=1

χ(n)nz/2+1
(∑

d|n

χ2(d)d−z
)

Kz/2

(2πn
qy

)
.

Now let µ = 1
2 logα in (3-10) so that y = e2µ implies that y = α. Then using the

fact that αβ = 1, we deduce that

(3-11) 1
8π

∫
∞

0
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt

= β3/2
∞∑

n=1

χ(n)nz/2+1
(∑

d|n

χ2(d)d−z
)

Kz/2

(
2πnβ

q

)
.

Next, observing that replacing α by β and/or simultaneously replacing χ by χ and
z by −z in (3-11) leaves the integral on the left side invariant, we obtain (1-15). �
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Remark. Letting z → 0 in Theorem 1.5 gives a new character analogue of the
extended version of Koshliakov’s formula, that is, Theorem 1.4.

When χ is real, Theorem 1.5 reduces to the following corollary.

Corollary 3.2. Let −1< Re z < 1 and let χ denote a real, primitive, nonprincipal
character modulo q. Let the number b be defined as in (1-7). If

F(z, α, χ)= αb+ 1
2

∞∑
n=1

χ(n)n−
z
2+bσz(n)K−z/2

(2πnα
q

)
,

then

F(z, α, χ)= F(−z, β, χ)= F(−z, α, χ)= F(z, β, χ)

=
1

8π

∫
∞

0
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt.

The above corollary (without the integral) is equivalent to the special cases,
when χ is real, of the character analogues of the Ramanujan–Guinand formula
established in [Berndt et al. 2011, Theorems 3.1 and 4.1].

4. Inverse Mellin transforms and asymptotic expansions

We will now evaluate inverse Mellin transforms of some functions and asymptotic
expansions of certain other functions used in the later sections.

Lemma 4.1. Let z ∈C be fixed such that −1<Re z < 1. For a primitive, nonprin-
cipal character χ mod q , let L(z, a, χ) be defined as in (1-17). Then, for

−Re z
2
< c = Re s < 1+Re z

2
and x ∈ R \Z<0,

(4-1) 1
2π i

∫ c+i∞

c−i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds

= x z/20(z+ 1)L(z+ 1, x, χ).

Proof. We prove the result only for even characters. The case for odd characters
can be proved similarly. We first assume |x | < 1 and later extend it to any real
x ∈ R \Z<0 by analytic continuation. Let

−Re(z/2) < c = Re s < 1+Re(z/2).

Consider a positively oriented rectangular contour formed by [c − iT, c + iT ],
[c+iT,−M+iT ], [−M+iT,−M−iT ], and [−M−iT, c−iT ], where T is some
positive real number and M = n− 1

2 , where n is a positive integer. Let s = σ + i t .
Among the poles of the function 0(s+z/2)0(1−s+z/2)L(1−s+z/2, χ)x−s , the
only ones that contribute are the poles at s =−z/2−m,m ≥ 0. Let R f (a) denote
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the residue of the function f (s) := 0(s+ z/2)0(1− s+ z/2)L(1− s+ z/2, χ)x−s

at a. Then for m ≥ 0,

(4-2) R f

(
−

z
2
−m

)
= lim

s→−z/2−m

(
s+ z

2
+m

)
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s

=
(−1)m

m!
0
(

1+ z+m
)

L
(

1+ z+m, χ
)

xm+z/2.

From (4-2) and the residue theorem, we have

(4-3)
[∫ c+iT

c−iT
+

∫
−M+iT

c+iT
+

∫
−M−iT

−M+iT
+

∫ c−iT

−M−iT

]
0
(

s+
z
2

)
0
(

1− s+
z
2

)
L
(

1− s+
z
2
, χ
)

x−s ds

= 2π i x z/2
∑

0≤m<M

(−1)m

m!
0 (1+ z+m) L (1+ z+m, χ) xm .

We now estimate the integral along the upper horizontal segment. Using (1-13),
we find that for −M ≤ σ ≤ c,

(4-4) L(1− σ ± iT, χ)= O(qc+1/2T c+1/2).

Hence, for −M ≤ σ ≤ c, i.e., −M −Re z/2≤ σ −Re z/2≤ c−Re z/2, we have

(4-5) L
(

1−
(
σ −Re z

2

)
− i
(

T − Im z
2

)
, χ
)

= O
(

qc−Re z/2+1/2
(

T − Im z
2

)c−Re z/2+1/2
)
.

By (1-12), we observe that

(4-6)
∣∣∣0(s+ z

2

)∣∣∣∼√2πe−π/2|T+Im z/2|
·

∣∣∣T + Im z
2

∣∣∣σ+Re z/2−1/2

and

(4-7)
∣∣∣0(1− s+

z
2

)∣∣∣∼√2πe−
π
2 |T−Im z/2|

·

∣∣∣T − Im z
2

∣∣∣−σ+Re z/2+1/2
.

Since |x |< 1, from (4-5), (4-6), and (4-7), we deduce that∣∣∣∣∫ −M+iT

c+iT
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds
∣∣∣∣

≤ 2πK1(c+M)|x |−cqc−Re z/2+1/2e−π/2(|T+Im z/2|+|T−Im z/2|)

×

∣∣∣T + Im z
2

∣∣∣σ+Re z/2−1/2∣∣∣T − Im z
2

∣∣∣c−σ+1
,
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where K1 is some absolute constant. Hence

(4-8)
∫
−M+i∞

c+i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds = 0.

Similarly for the integral along the lower horizontal segment, using (4-6), (4-7),
and the fact that

L
(

1−
(
σ−Re z

2

)
+i
(

T+Im z
2

)
, χ
)
=O

(
qc−Re z/2+1/2

(
T+Im z

2

)c−Re z/2+1/2
)
,

we observe that

(4-9)
∫ c−i∞

−M−i∞
0(s+ z/2)0(1− s+ z/2)L(1− s+ z/2, χ)x−s ds = 0.

Hence, from (4-3), (4-8), and (4-9), it is clear that

(4-10)
[∫ c+i∞

c−i∞
+

∫
−M−i∞

−M+i∞

]
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−sds

= 2π i x z/2
∑

0≤m<M

(−1)m

m!
0 (1+ z+m) L (1+ z+m, χ) xm .

It remains to evaluate∫
−M−i∞

−M+i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds.

Using (1-12) and the reflection formula for the gamma function [Temme 1996,
Equation (3.5), p. 46], we find that as |t | →∞,

0(−M + i t)= O(|t |−M− 1
2 e−π |t |/2).

Hence, as |t | →∞,

(4-11) 0
(
−M + i t + z

2

)
= O

(∣∣∣t + Im z
2

∣∣∣−M+Re z/2−1/2
e−(π/2)|t+Im z/2|

)
.

Again by (1-12), as |t | →∞,

(4-12)
∣∣∣0(1+M − i t + z

2

)∣∣∣
=
√

2πe−(π/2)|t−Im z/2|
·

∣∣∣t − Im z
2

∣∣∣M+Re z/2+1/2(
1+ O

( 1
|t−Im z/2|

))
.
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Also, L(1+M − i t + z/2, χ) is bounded as Re(1+M − i t + z/2) > 1. Hence,∣∣∣∣∫ −M−i∞

−M+i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds
∣∣∣∣

=

∣∣∣∣i∫ ∞
−∞

0
(
−M + i t + z

2

)
0
(

1+M − i t + z
2

)
L
(

1+M − i t + z
2
,χ
)

x M−i t dt
∣∣∣∣

= |x |M
∫ 1

−1
O(1)dt + |x |M

∫
±∞

1
O
(∣∣∣t + Im z

2

∣∣∣−M+Rez/2−1/2∣∣∣t − Im z
2

∣∣∣M+Rez/2+1/2

× e−(π/2)(|t+Imz/2|+|t−Imz/2|)
)

dt

= O(|x |M).

Since |x |< 1,

(4-13) lim
M→∞

∫
−M−i∞

−M+i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds = 0.

From (4-10) and (4-13), we finally deduce that

1
2π i

∫ c+i∞

c−i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds

= x z/2
∞∑

m=0

(−1)m

m!
0(1+ z+m)L(1+ z+m, χ)xm+z/2

= x z/20(z+ 1)
∞∑

m=0

(−1)m

m!
0(1+z+m)
0(1+z)

∞∑
k=1

χ(k)
kz+m+1 xm

= x z/20(z+ 1)
∞∑

k=1

χ(k)
kz+1

∞∑
m=0

0(1+z+m)
m!0(1+z)

(
−x
k

)m

= x z/20(z+ 1)
∞∑

k=1

χ(k)
kz+1

(
1+ x

k

)−z−1

= x z/20(z+ 1)
∞∑

k=1

χ(k)
(k+ x)z+1 = x z/20(z+ 1)L(z+ 1, x, χ),

where, in the fourth step, we have utilized the binomial theorem, since |x | < 1.
Since both sides of (4-1) are analytic for any x ∈ R \ Z<0, the result follows by
analytic continuation. �

When z = 0, we get the following corollary.



334 ATUL DIXIT

Corollary 4.2. For a primitive, nonprincipal character χ mod q , let ψ(a, χ) be
defined as in (1-16). Then, for 0< c = Re s < 1 and x ∈ R \Z<0,

(4-14) 1
2π i

∫ c+i∞

c−i∞

L(1− s, χ)
sinπs

x−s ds =− 1
π
ψ(x, χ).

For j ≥ 1, the generalized Bernoulli numbers B j (χ) are given by

B2 j (χ)=
2(−1) j−1G(χ)(2 j)!

q(2π/q)2 j L(2 j, χ)

for χ even and by

(4-15) B2 j−1(χ)=
2(−1) j−1iG(χ)(2 j − 1)!

q(2π/q)2 j−1 L(2 j − 1, χ)

for χ odd; see [Berndt 1975, p. 426]. It is also known [Berndt 1975, Corollary 3.4,
p. 423] that B2 j−1(χ) = 0 when χ is even and B2 j (χ) = 0 when χ is odd. The
asymptotic expansion of L(z, a, χ) as |a| →∞ is given below.

Lemma 4.3. For Re z > 0 and −π < arg a < π , as |a| →∞,

L(z, a, χ)∼ χ(−1)
∞∑
j=1

B j (χ)
∏ j−2

m=0(z+m)
j ! az+ j−1 .

Proof. One takes (4.3) and (4.4) in [Berndt 1975, p. 424], valid for χ even and odd
respectively, substitutes A= 0, B = N , r = 1, and f (u)= (u+a)−z , lets N→∞,
and performs repeated integration by parts on the prevalent integral. �

This gives, as a special case, the following asymptotic expansion of ψ(a, χ) as
|a| →∞.

Corollary 4.4. For −π < arg a < π , as |a| →∞,

(4-16) ψ(a, χ)∼−
L(0, χ)

a
−χ(−1)

∞∑
j=2

B j (χ)

ja j .

Proof. Specialize z = 1 in Lemma 4.3. Observe that L(1, a, χ) = −ψ(a, χ). For
χ even, we have B1(χ) = 0. But from [Apostol 1976, p. 268], L(0, χ) = 0. This
yields (4-16) for χ even. For χ odd, we observe from (4-15) that

(4-17) B1(χ)=
i
π

G(χ)L(1, χ),

and from (1-10), it is easy to see that

(4-18) L(1, χ)= iπ
G(χ)

L(0, χ).

Now (4-16) follows from (4-17) and (4-18). �
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5. Character analogues of Theorem 1.2

In this section, we prove analogues of Theorem 1.2 for even and odd primitive char-
acters. Then we give character analogues of Ramanujan’s transformation formula
(Theorem 1.1) as special cases.

Proof of Theorem 1.6. Using Lemma 4.3, one sees that the series involving the
functions L(z, a, χ) in the theorem are convergent. Let

φ(z, s)= (z+ 1+ 2s)0
(
−z−1

4
+

s
2

)
.

From (2-1) and (1-19), we find that f (z, t/2)= 1
2�(z, t). From (2-5), we have

(5-1)
∫
∞

0
�(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cosµt dt

=
1

i
√

y
(J (z, y, χ)+ J (−z, y, χ)),

where

(5-2) J (z, y, χ) :=
∫ 1

2+i∞

1
2−i∞

U (z, s, y, χ) ds

with

U (z, s, y, χ)

:= (−z+ 2s)(−z+ 2− 2s)0
( z

4
+

s
2
−

1
2

)
0
( z

4
−

s
2

)
ξ
(

s− z
2
, χ
)
ξ
(

s+ z
2
, χ
)

ys .

Using (1-12) and (1-13), one sees that indeed the integral on the left side of (5-1)
converges. We first simplify the integrand in (5-2). Using (1-8) with b = 0, and
then the duplication formula [Temme 1996, Equation (3.4), p. 46] and the reflection
formula for the Gamma function in the second equality below, we have

(5-3) U (z, s, y, χ)

= 16
(
π

qy

)−s{
0
( z

4
+

s+1
2

)
0
( z

4
+

s
2

)}{
0
( z

4
−

s
2
+ 1

)
0
( s

2
−

z
4

)}
× L

(
s− z

2
, χ
)

L
(

s+ z
2
, χ
)

= 16
(
π

qy

)−s
·

√
π

2s+z/2−10
(

s+ z
2

)
·

π

sin(π(s/2−z/4))

× L
(

s− z
2
, χ
)

L
(

s+ z
2
, χ
)
.

Substituting (1-10) in the form

L
(

s− z
2
, χ
)
=

(2π)s−z/2L(1− s+ z/2, χ)
2qs−z/2−1G(χ)0(s− z/2) cos((π/2)(s− z/2))
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in (5-3) and then simplifying, we find that

(5-4) U (z, s, y, χ)

=
32ys2−zπ (1−z)/2

q−z/2−1G(χ)
0
(

1− s+ z
2

)
0
(

s+ z
2

)
L
(

1− s+ z
2
, χ
)

L
(

s+
z
2
, χ
)
.

We wish to shift the line of integration from Re s = 1
2 to Re s = 3

2 in order to
evaluate (5-2), since then −1< Re z < 1 implies that

Re(s+ z/2) > 1,

which allows us to use the series representation of L (s+ z/2, χ). Consider a
positively oriented rectangular contour formed by [12+iT, 1

2−iT ], [12−iT, 3
2−iT ],

[
3
2 − iT, 3

2 + iT ], and [32 + iT, 1
2 + iT ], where T is any positive real number. The

integrand in (5-2) does not have any pole inside the contour since the pole of
0(1− s+ z/2) at s = 1+ z/2 is canceled by the zero of L (1− s+ z/2, χ) there.
Also as T →∞, the integrals along the horizontal segments [12 − iT, 3

2 − iT ] and
[

3
2 + iT, 1

2 + iT ] tend to zero, which can be seen using (1-12). Employing the
residue theorem, letting T →∞ and using (5-4), we find that

(5-5) J (z, y, χ)

=
32·2−zπ (1−z)/2

q−z/2−1G(χ)

∫ 3
2+i∞

3
2−i∞

0
(

s+ z
2

)
0
(

1− s+ z
2

)
× L

(
1− s+ z

2
, χ
)

L
(

s+ z
2
, χ
)

ys ds

=
32·2−zπ (1−z)/2

q−z/2−1G(χ)

∞∑
n=1

χ(n)
nz/2

∫ 3
2+i∞

3
2−i∞

0
(

s+ z
2

)
0
(

1− s+ z
2

)
× L

(
1− s+ z

2
, χ
)(n

y

)−s
ds.

Now, in order to use Lemma 4.1 to evaluate the integral in (5-5), we again have to
shift the line of integration from Re s > 3

2 to Re s = d, where

−Re z/2< d < 1+Re z/2.

Again, we do not encounter any pole in this process. Hence

(5-6) J (z, y, χ)=
64i2−z y−z/2π (3−z)/20(z+ 1)

q−z/2−1G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
(k+ n/y)z+1 .

Since −1 < Re(z) < 1, the other integral, namely J (−z, y, χ), can be evaluated
by simply replacing z by −z and χ by χ in (5-6). Now (5-1), (5-6), (1-18), and
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the discussion in the previous line give

(5-7)
∫
∞

0
�(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cosµt dt

=
64π3/2q
√

y

(
T (z, y−1, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
(k+ n/y)z+1

+ T (−z, y−1, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
(k+ n/y)−z+1

)
,

where it is easy to see from the fact that −1 < Re z < 1, from the discussion just
preceding the statement of Theorem 1.6, and from Lemma 4.3, that both the double
series on the right side of (5-7) converge.

Now let µ= 1
2 logα in (5-7) so that y = e2µ implies that y = α. Then using the

fact that αβ = 1 and using (1-17) in the second equality below, we deduce that∫
∞

0
�(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cos
(

1
2 t logα

)
dt

= 64π3/2q
√
β

(
T (z, β, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
(k+ nβ)z+1

+ T (−z, β, χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
(k+ nβ)−z+1

)

= 64π3/2q
√
β

(
T (z, β, χ)

∞∑
n=1

χ(n)L(z+ 1, nβ, χ)

+ T (−z, β, χ)
∞∑

n=1

χ(n)L(−z+ 1, nβ, χ)
)
.

The integral on the extreme left side above is invariant under the transformation
α→ β or under the simultaneous application of the transformations

α→ β, χ→ χ, z→−z.

Thus we obtain (1-20). �

Next we give an analogue of Ramanujan’s transformation formula (Theorem 1.1)
for even characters.

Corollary 5.1. For an even, primitive, and nonprincipal character χ modulo q ,
define P(α, χ) by

P(α,χ):=
√
αRe

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)
=−
√
αRe

(
G(χ)

∞∑
n=1

χ(n)ψ(nα,χ)
)
,
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where ψ(a, χ) is defined in (1-16). Then we have

(5-8) P(α, χ)= P(β, χ)= P(α, χ)= P(β, χ)

=
1

64π3/2

∫
∞

0
(1+ t2)0

(
−1+i t

4

)
0
(
−1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
(1

2
t logα

)
dt.

Proof. Using Corollary 4.4, we readily see that the double series in the definition
of P(α, χ) converges. Let z→ 0 in (1-20). Then, multiplying both sides by q and
using (1-6), we have

(5-9)
√
α

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

+G(χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

=
√
β

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

+G(χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)
=

1
32π3/2

∫
∞

0
(1+ t2)0

(
−1+i t

4

)
0
(
−1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
(1

2 t logα
)

dt.

Each of the first two expressions in (5-9) can be written in two different ways as
real parts of a double series. Thus,

√
α Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)
=
√
α Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

=
√
β Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)

=
√
β Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)
=

1
64π3/2

∫
∞

0
(1+ t2)0

(
−1+ i t

4

)
0
(
−1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
( 1

2 t logα
)

dt.

This implies (5-8). �

Moreover, if we start with the integral in Corollary 5.1, evaluate it using (2-5)
with z=0, and make use of Corollary 4.2 when χ is even, we obtain the same result
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as in Corollary 5.1, except that the function P(α, χ) is replaced by the function
F(α, χ) defined by

(5-10) F(α, χ) :=
√
αG(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

=−
√
αG(χ)

∞∑
n=1

χ(n)ψ (nα, χ) .

It is then trivial to see that F(α, χ)= P(α, χ).
Theorem 1.7 can be analogously proved using Lemma 4.1 for χ odd. We just

note that there we have to take care of the pole of

0
(

1− s+ 1
2

z
)

in the integrands of two separate integrals. However, in the calculations that follow
later, the two residues turn out to be additive inverses of each other and hence do
not contribute anything.

The following is an analogue of Theorem 1.1 (Ramanujan’s transformation for-
mula) for odd characters.

Corollary 5.2. For an odd, primitive and, nonprincipal character χ modulo q ,
define Q(α, χ) by

Q(α,χ):=
√
αIm

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)
=−
√
αIm

(
G(χ)

∞∑
n=1

χ(n)ψ (nα,χ)
)
,

where ψ (a, χ) is defined as in (1-16). Then we have

(5-11) Q(α, χ)= Q(β, χ)= Q(α, χ)= Q(β, χ)

=
1

4π1/2q

∫
∞

0
0
(1+i t

4

)
0
(1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
(1

2 t logα
)

dt.

Proof. Using Corollary 4.4, we find that the double series in the definition of
Q(α, χ) converges. Let z→ 0 in Theorem 1.7. Multiplying both sides by −q and
using (1-5) and (1-6), we observe that

(5-12)
√
α

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

+G(χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

=
√
β

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

+G(χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)
=

i
2π1/2q

∫
∞

0
0
(1+i t

4

)
0
(1−i t

4

)
4
( t

2
, χ
)
4
( t

2
, χ
)

cos
(1

2 t logα
)

dt.
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Now, using (1-6) for odd characters to simplify (5-12), we see that

2i
√
α Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

= 2i
√
α Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

= 2i
√
β Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)

= 2i
√
β Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)
=

i
2π1/2q

∫
∞

0
0
(1+i t

4

)
0
(1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
( 1

2 t logα
)

dt. �

If we now start with the integral in Corollary 5.2, evaluate it using (2-5) with
z= 0, and make use of Corollary 4.2 when χ is odd, we obtain the same result as in
Corollary 5.2, except that the function Q(α, χ) is replaced by −i F(α, χ), where
F(α, χ) is defined in (5-10). It is then trivial to see that F(α, χ)= i Q(α, χ).

We separately record the following corollary resulting from the discussion on
the previous line and the one succeeding Corollary 5.1.

Corollary 5.3. The sum F(α, χ) defined in (5-10) is real if χ is even and purely
imaginary if χ is odd.

6. Character analogues of the Ramanujan–Hardy–Littlewood conjecture

In this section, we prove Theorems 1.9 and 1.10. We require [Ahlgren et al. 2002,
Lemma 3.1] which states that if χ is a primitive character of conductor N and k≥2
is an integer such that χ(−1)= (−1)k ,

(6-1)
(k− 2)! N k−2G(χ)

2k−1π k−2ik−2 L(k− 1, χ)= L ′(2− k, χ).

Proof of Theorem 1.9. From [Landau 1905], we have for Re s > 1,

(6-2)
∞∑

n=1

χ(n)µ(n)
ns =

1
L(s, χ)

.

Also, since for −1< c = Re s < 0,

(6-3) (1− e−x)=−
1

2π i

∫ c+i∞

c−i∞
0(s)x−s ds,
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replacing s by s+ 1, we find that for −2< c <−1,

(6-4) (1− e−x)=−
1

2π i

∫ c+i∞

c−i∞
0(s+ 1)x−s−1 ds.

Using (6-2) and (6-4), we observe that

(6-5)
∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(n2q)

=
1

L(2, χ)
−

∞∑
n=1

χ(n)µ(n)
n2 (1− e−πα

2/(n2q))

=
1

L(2, χ)
+

q
2π2iα2

∫ c+i∞

c−i∞

∞∑
n=1

χ(n)µ(n)
n−2s 0(s+ 1)

(
πα2

q

)−s
ds

=
1

L(2, χ)
+

q
2π2iα2

∫ c+i∞

c−i∞

0(s+1)
L(−2s, χ)

(
πα2

q

)−s
ds,

where in the second step above, we interchanged the order of summation and in-
tegration, which is valid because of absolute convergence. For χ odd, (1-10) can
be put in the form

(
π

q

)−(2−s)/2
0
(2−s

2

)
L(1− s, χ)=

iq1/2

G(χ)

(
π

q

)−(s+1)/2
0
(s+1

2

)
L(s, χ).

Hence

(6-6) 0(s+1)
L(−2s, χ)

=
G(χ)
iq1/2

(
π

q

)2s+ 1
2 0

( 1
2 − s

)
L(2s+ 1, χ)

.

Substituting (6-6) in (6-5), we observe that

(6-7)
∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(n2q)

=
1

L(2, χ)
−

G(χ)
2π3/2α2

∫ c+i∞

c−i∞

0
( 1

2 − s
)

L(2s+ 1, χ)

(qα2

π

)−s
ds.

We wish to shift the line of integration from Re s = c, −2< c <−1, to Re s = λ,
where 1

2 < λ < 3
2 . Consider a positively oriented rectangular contour formed by

[c− iT, λ− iT ], [λ− iT, λ+ iT ], [λ+ iT, c+ iT ], and [c+ iT, c− iT ], where T
is any positive real number. Let ρ= δ+ iγ denote a nontrivial zero of L(s, χ). Let
T→∞ through values such that |T−γ |> exp(−A1γ / log γ ) for every ordinate γ
of a zero of L(s, χ). It is known [Davenport 2000, p. 102] that for t not coinciding
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with the ordinate γ of a zero, and −1≤ σ ≤ 2,

L
′

(s, χ)
L(s, χ)

=

∑
|t−γ |≤1

1
s−ρ

+ O
(
log(q(|t | + 2))

)
,

from which we can conclude that

(6-8) log L(s, χ)=
∑
|t−γ |≤1

log(s− ρ)+ O
(
log(q(|t | + 2))

)
.

Taking real parts in (6-8) gives

(6-9) log |L(s, χ)| =
∑
|t−γ |≤1

log |s− ρ| + O
(
log(q(|t | + 2))

)
≥

∑
|t−γ |≤1

log |t − γ | + O
(
log(q(|t | + 2))

)
.

Hence, from (6-9), we have

(6-10) log |L(σ + iT, χ)| ≥ −
∑
|T−γ |≤1

A1γ / log γ + O
(
log(q(|T | + 2))

)
>−A2T,

where A2<π/4 if A1 is small enough and T > T0 for some fixed T0. From (6-10),
we see that

(6-11)
∣∣∣ 1
L(2s+1, χ)

∣∣∣< eA3T ,

where A3 < π/2. Using (1-12) and (6-11), we observe that as T →∞ through
the above values, the integrals along the horizontal segments tend to zero. Now let
(ρ − 1)/2 := δ + iγ denote a nontrivial zero of L(2s + 1, χ). Let R f (a) denote
the residue at a of the function

f (s) :=
0
( 1

2 − s
)

L(2s+ 1, χ)

(
qα2

π

)−s

.

The nontrivial zeros of L(2s+1, χ) lie in the critical strip−1
2 <Re s< 0, whereas

the trivial zeros are at −1, −2, −3, . . . . Also, 0
( 1

2 − s
)

has poles at 1
2 , 3

2 , 5
2 , . . . .

Then the residue theorem yields

(6-12)
∫ c+i∞

c−i∞

0
( 1

2 − s
)

L(2s+ 1, χ)

(qα2

π

)−s
ds

=

∫ λ+i∞

λ−i∞

0
( 1

2 − s
)

L(2s+ 1, χ)

(qα2

π

)−s
ds−2π i

(
R f (−1)+

∑
ρ

R f

(
ρ−1

2

)
+ R f

( 1
2

))
,
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where

R f (−1)= lim
s→−1

(s+ 1)
0
(1

2 − s
)

L(2s+ 1, χ)

(
qα2

π

)−s

=
α2q

4
√
πL ′(−1, χ)

,(6-13)

R f

(
ρ−1

2

)
= lim

s→(ρ−1)/2

(
s− ρ−1

2

) 0
( 1

2 − s
)

L(2s+ 1, χ)

(
qα2

π

)−s

(6-14)

=
0((2− ρ)/2)

2L ′(ρ, χ)

(
π

qα2

)(ρ−1)/2
,

R f (1/2)=−
√
π

α
√

q L(2, χ)
.(6-15)

Of course, here we have assumed that the nontrivial zeros of L(2s + 1, χ) are all
simple and that

∑
ρ R f ((ρ−1)/2) converges, since the aforementioned discussion

regarding the integrals along the horizontal segments tending to zero as T →∞
through the chosen sequence does not imply the convergence of

∑
ρ R f ((ρ−1)/2)

in the ordinary sense. It only means that the series converges only when we bracket
the terms in such a way that the two terms for which

|γ − γ ′|< exp
(
−A1|γ |

log(|γ | + 2)

)
+ exp

(
−A1|γ

′
|

log(|γ ′| + 2)

)
are included in the same bracket. Using (6-2) and interchanging the order of sum-
mation and integration, which is valid because of absolute convergence, we obtain

(6-16)
∫ λ+i∞

λ−i∞

0
( 1

2 − s
)

L(2s+ 1, χ)

(
qα2

π

)−s

ds

=

∞∑
n=1

χ(n)µ(n)
n

∫ λ+i∞

λ−i∞
0
( 1

2 − s
)(qα2n2

π

)−s

ds

=

√
π

α
√

q

∞∑
n=1

χ(n)µ(n)
n2

∫ d+i∞

d−i∞
0(s)

(
π

α2n2q

)−s
ds,

where in the penultimate line, we have made the change of variable s→ 1
2 − s so

that −1< d < 0. Thus, Equations (6-3) and (6-12)–(6-16) imply

(6-17)
∫ c+i∞

c−i∞

0
( 1

2 − s
)

L(2s+ 1,χ)

(
qα2

π

)−s

ds=−2π3/2i
α
√

q

∞∑
n=1

χ(n)µ(n)
n2 (1−e−π/(α

2n2q))

− 2π i
(

α2q
4
√
πL ′(−1, χ)

+

∑
ρ

0 ((2− ρ)/2)
2L ′(ρ, χ)

(
π

qα2

)(ρ−1)/2
−

√
π

α
√

q L(2, χ)

)
.
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From (6-7), (6-17), and the fact that αβ = 1 and
√

G(χ)G(χ)= i
√

q , we find that

(6-18) α
√
α
√

G(χ)
∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(n2q)

=
α
√
α
√

G(χ)
L(2, χ)

−
β
√
β
√

G(χ)
L(2, χ)

+β
√
β
√

G(χ)
∞∑

n=1

χ(n)µ(n)
n2 e−πβ

2/(n2q)

−
α
√
αq3/2√G(χ)

4πL ′(−1,χ)
−

q
√

G(χ)
2π
√
β

∑
ρ

0((2− ρ)/2)
L ′(ρ,χ)

(
π

q

)ρ/2
βρ+

β
√
β
√

G(χ)
L(2,χ)

.

Applying (6-1) with N = q and k = 3, and replacing χ by χ gives

(6-19) 1
L ′(−1, χ)

=
4π i

qG(χ)L(2, χ)
.

Thus (6-18) and (6-19) yield

(6-20) α
√
α
√

G(χ)
∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(n2q)

−β
√
β
√

G(χ)
∞∑

n=1

χ(n)µ(n)
n2 e−πβ

2/(n2q)

=−
q
√

G(χ)
2π
√
β

∑
ρ

0((2− ρ)/2)
L ′(ρ, χ)

(
π

q

)ρ/2
βρ .

Switching the roles of α and β and those of χ and χ gives

(6-21)
q
√

G(χ)
2π
√
α

∑
ρ

0((2− ρ)/2)
L ′(ρ, χ)

(
π

q

)ρ/2
αρ

+
q
√

G(χ)
2π
√
β

∑
ρ

0((2− ρ)/2)
L ′(ρ, χ)

(
π

q

)ρ/2
βρ = 0.

Finally (6-20) and (6-21) give (1-24) upon simplification. �

Remark. The approach used above for proving that the integrals along the hori-
zontal segments tend to zero as T →∞ through the chosen sequence is adapted
from [Titchmarsh 1986, p. 219].

To prove Theorem 1.10, we require the following lemma.

Lemma 6.1.
∞∑

n=1

χ(n)µ(n)
n

=
1

L(1, χ)
.
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Proof. Dividing n into its residue classes mod q by letting n = qr+b, 0≤ r <∞,
0≤ b ≤ q − 1, we find that since χ has period q,

(6-22)
∞∑

n=1

χ(n)µ(n)
n

=

∞∑
r=0

q−1∑
b=0

χ(b)µ(qr + b)
qr + b

=

q−1∑
b=0

χ(b)
∞∑

r=0

µ(qr + b)
qr + b

.

The series
∑
∞

r=0 µ(qr + b)/(qr + b) was first studied by Kluyver [1904] and
its convergence was proved by Landau [1905]. In fact, Landau gave an explicit
representation for this series in terms of a finite sum consisting of L-functions.
Thus (6-22) implies convergence of

∑
∞

n=1 χ(n)µ(n)/n. Then using (6-2) and an
analogue of Abel’s theorem for power series, we see that

∞∑
n=1

χ(n)µ(n)
n

= lim
s→1

∞∑
n=1

χ(n)µ(n)
ns = lim

s→1

1
L(s, χ)

=
1

L(1, χ)
. �

Proof of Theorem 1.10. The proof is very similar to that of Theorem 1.9 and
hence we omit the details. However we note that Lemma 6.1, (1-10) in the form
[Davenport 2000, p. 69]

π−(1−s)/2q(1−s)/20
(1−s

2

)
L(1− s, χ)=

q1/2

G(χ)
π−s/2qs/20

( s
2

)
L(s, χ),

and (6-1) with N = q and k = 2 are used in the proof. �

7. Open problems

Following are some open problems with which we will conclude.

(1) We have indirectly given the proof of the fact that function F(α, χ) defined
in (5-10) is real (respectively purely imaginary) when χ is even (respectively
odd). Prove this directly; that is, without using Corollaries 5.1 and 5.2 and
the integrals in those corollaries.

(2) Since (1-23) is of the form F(α) = F(β), where αβ = 1, it is natural to ask
if there exists an integral representation involving the Riemann 4-function
equal to the two expressions in (1-23). Finding an integral representation for
either side of (1-23) may shed light on the convergence of∑

ρ

0 ((1− ρ)/2) aρ

ζ
′

(ρ)
,

provided, of course, that the integral converges in the first place. It should be
remarked here that Hardy and Littlewood [1916, p. 161] have shown that the
relation

(7-1) P(y)= O(y−
1
4+δ),
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where P(y) =
∑
∞

n=1(−y)n/(n!ζ(2n + 1)) can be derived from (1-23) if we
assume the Riemann hypothesis and the absolute convergence of∑

ρ

0((1− ρ)/2)
ζ
′

(ρ)
.

They have further shown that (7-1) is a necessary and sufficient condition for
the Riemann hypothesis to be true.

Similarly, it is natural to ask if the expressions in (1-24) and (1-25) have
integral representations involving 4(t/2, χ).
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