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We obtain a refined Kato inequality for closed and coclosed differential
( p, q)-forms on a Kähler manifold.

1. Introduction

Kato inequalities have been shown to be important technical tools which are used to
prove analytic-geometric results. Branson [2000] and Calderbank, Gauduchon and
Herzlich [2000] studied injectively elliptic Stein–Weiss operators and they showed
that the sections in the kernel of such an operator satisfy improved Kato inequalities
with constants that can be determined from representation theoretic data.

Calderbank et al. [2000, Theorem 6.3 (ii), case k = 1] proved such an inequality
for differential forms in the kernel of the Hodge–de Rham operator, d + d∗, on a
Riemannian manifold. This result was also stated by Wang [2002] as Lemma 4.2
which, unfortunately, contains an omission, namely the condition that the degree
has to be at most half the dimension of the manifold (which is what the author
actually needs).

The purpose of this article is to further refine this Kato inequality for forms of
type (p, q) on a Kähler manifold. We obtain this refinement in Theorem 4.1 for
all values of p and q except for p = q. When p = q there is no improvement
to the Riemannian case. The most important consequence of Theorem 4.1 is, in
our view, a Kato inequality for holomorphic forms on all Kähler manifolds (see
Corollary 4.3).

Our presentation follows closely the methods of Branson, Calderbank, Gaudu-
chon and Herzlich. In fact, in the first part of this article, we will present a proof of
the mentioned result from [Calderbank et al. 2000] avoiding as much as possible
representation theoretic technicalities. It is this proof that our result in the Kähler
case relies on.
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In the case of complete Kähler manifolds, Kong, Li and Zhou [2008] and Lam
[2010] showed that an L2 harmonic 1-form ω has to satisfy∣∣d|ω|∣∣≤ 1

√
2
|∇ω|.

In Corollary 4.9 we reprove this, making use of Theorem 4.1. Wang [2007] proved
an inequality about real, closed and coclosed (1, 1)-forms with a constant sharper
than in the Riemannian case.

2. Stein–Weiss operators

Let M be a Riemannian manifold of dimension n, not necessarily compact. We
will call harmonic fields the forms ω∈C∞(M;3k T ∗M) that satisfy (d+d∗)ω=0.
If M is compact then the harmonic fields coincide with the harmonic forms, that
is, solutions of 1ω= 0. This is still true if M is complete in the presence of an L2

integrability condition for ω.
We introduce now the class of operators we will be interested in. Let E be a

vector space endowed with an inner product. We suppose that E is a real rep-
resentation of SO(n) given by ρ : SO(n)→ GL(E) and let F ↪→ Rn

⊗ E be a
subrepresentation of the canonical representation tensored with E . Let 5 be the
orthogonal projection

5 : Rn
⊗ E→ F.

We will use the same letters to denote the projection of vector bundles over M ,

5 : T ∗M ⊗ E→ F.

The Levi-Civita connection on the frame bundle PSO M of M induces a connection
∇

LC on E .

Definition 2.1. A Stein–Weiss (gradient) operator is a first order differential oper-
ator L : 0(E)→ 0(F) obtained as the composition

0(E)→ 0(T ∗M ⊗ E)→ 0(F), L :=5 ◦∇LC .

Remark 2.2. Branson [1997] made a beautiful study of Stein–Weiss operators and
classified those operators that are injectively elliptic (see Definition 3.3).

Since a Stein–Weiss operator is essentially built from two objects, an orthogonal
projection morphism of SO(n) representations and a connection on the manifold,
by a slight abuse of terminology and notation we will talk about the composition
of these two objects instead of the more lengthy expression “the composition of
the connection with the associated projection of vector bundles”.
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Definition 2.3. The rescaled Hodge–de Rham operator is the operator that acts on
k-forms as

1
√

k+1
d + 1
√

n+1−k
d∗.

Notice that the harmonic fields can be seen as the solutions of the rescaled
Hodge–de Rham equation.

Proposition 2.4. The rescaled Hodge–de Rham operator is Stein–Weiss.

Proof. We will show that

5 :Rn
⊗3kRn

→3k+1Rn
⊕3k−1Rn, η⊗ω 7→

(
1

√
k+1

η∧ω,
−1

√
n−k+1

ιη∗ω

)
is a morphism of SO(n) representations, where ιη∗ represents contraction with the
metric dual to η. In fact, 5 is the orthogonal projection of the tensor product
representation Rn

⊗3kRn onto a direct sum of two subrepresentations.
Let {ei , i =1 . . . n} be an orthogonal basis of Rn . Let θ1 :3

k+1Rn
→Rn

⊗3kRn

be given by

(2-1) θ1(v1 ∧ . . .∧ vk+1)=
1

√
k+1

k+1∑
i=1

(−1)i−1vi ⊗ v1 ∧ . . .∧ v̂i ∧ . . .∧ vk+1

and θ2 :3
k−1Rn

→ Rn
⊗3kRn by

(2-2) θ2(ω)=−
1

√
n−k+1

n∑
i=1

ei ⊗ (ei ∧ω),

be two linear maps. It is easy to check that they are morphisms of SO(n)-represen-
tations. The first one is obviously so, while the second can be described as the
composition of

Rn
⊗Rn

⊗3k−1Rn
→ Rn

⊗3kRn, ξ ⊗ η⊗ω 7→ ξ ⊗ η∧ω

with

(2-3) 3k−1Rn
→ Rn

⊗Rn
⊗3k−1Rn, ω 7→ −

1
√

n−k+1

( n∑
i=1

ei ⊗ ei

)
⊗ω.

Note that if A = (ai j )1≤i, j,≤n ∈ SO(n) then

n∑
i=1

Aei ⊗ Aei =

n∑
i=1

n∑
j,k=1

a ji aki e j ⊗ ek =

n∑
j,k=1

(AAT ) jk e j ⊗ ek =

n∑
i=1

ei ⊗ ei ,

which describes (2-3) (up to a constant) as the tensor product of the inclusion of the
trivial representation into Rn

⊗Rn
(
via 1 7→

∑
ei⊗ei

)
with the identity on3k−1Rn .
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The following relations are straightforward

(2-4) 51 ◦ θ1 = id3k+1Rn and 52 ◦ θ2 = id3k−1Rn ,

where 51 and 52 are the components of 5. Hence θ1 and θ2 are injective and 51

and 52 are surjective.
The presence of the constants 1/

√
k+ 1 and 1/

√
n− k+ 1 in the definition of

θ1 and θ2, which a posteriori determines the constants for 5, is a reminder of the
fact that we are looking for isometric monomorphisms of representations.

The next relations are essential:

Ker51 = θ1(3
k+1Rn)⊥ and Ker52 = θ2(3

k−1Rn)⊥.

Indeed, using the identities from Lemma 2.5 (below) one can prove the ⊂ inclu-
sions which is enough because 51 and 52 are surjective.

Another easy application of Lemma 2.5 shows that the images of θ1 and θ2 are
orthogonal and we deduce that 5 is the orthogonal projection onto the SO(n)-
invariant subspace 3k+1Rn

⊕ 3k−1Rn−1 ↪→ Rn
⊗ 3kRn . Hence, 5 ◦ ∇LC is a

Stein–Weiss operator.
Berline et al. [1992] show in Proposition 1.22 that

d =
√

k+ 1 51 ◦∇
LC ,

while their Proposition 2.8 shows that

d∗ =
√

n− k+ 1 52 ◦∇
LC .

This finishes the proof. �

Lemma 2.5. (a) If ξ, ηi ∈ Rn and ω ∈3kRn , then

〈ξ ∧ω, η1 ∧ . . .∧ ηk+1〉 =

k+1∑
i=1

(−1)i−1
〈ξ, ηi 〉 · 〈ω, η1 ∧ . . . η̂i . . .∧ ηk+1〉.

(b) If ξ ∈ Rn , θ ∈3k−1Rn and ω ∈3kRn , then

〈ιξ (ω), θ〉 =

n∑
i=1

〈ξ, ei 〉 · 〈ω, ei ∧ θ〉.

Proof. Let I ⊂ {1, . . . , n} be a subset with either k + 1 or k − 1 elements and let
eI :=

∧
i∈I ei . By linearity, it is enough to prove the identities for η1∧. . .∧ηk+1=eI

and θ = eI , respectively. Also it is enough to consider ω = α1 ∧ . . .∧αk .
In this situation, the number on the left hand side of the first identity is the

(k+ 1)× (k+ 1) minor formed by taking the I -columns in the n× (k+ 1) matrix
having the entries of ξ on the first row and α1, . . . , αk on the next ones. The identity
itself states the well known fact that this minor can be computed as an alternating



REFINED KATO INEQUALITIES FOR HARMONIC FIELDS ON KÄHLER MANIFOLDS 55

sum of the relevant entries of ξ multiplied with the corresponding k × k minors
with entries from the matrix made of α1, . . . , αk .

For the second identity, we further simplify by letting ξ := ep. Then we have to
prove that

k∑
i=1

(−1)i−1
〈ep, αi 〉 · 〈α1 ∧ . . . α̂i . . .∧αk, eI 〉 = 〈α1 ∧ . . .∧αk, ep ∧ eI 〉,

which is nothing but the first identity for ξ = ep and ω = eI . �

A natural question is whether the above rescaling of the Hodge–de Rham op-
erator is the only one that turns it into a Stein–Weiss operator. This is true up to
some signs.

Lemma 2.6. Let σ :V→W be a linear map between inner product spaces (real or
complex). Let α :W ↪→ V be an isometry such that aσ ◦α= idW for some constant
a and σ(v) = 0 for all v ∈ α(W )⊥. Suppose there exists another constant b and
an isometry β : W ↪→ V such that bσ ◦ β = idW and σ(v)= 0 for all v ∈ β(W )⊥.
Then b = µa where |µ| = 1.

Proof. The conditions in the lemma express the fact that aσ and bσ are orthogonal
projections onto α(W ) and β(W ), respectively. Let A, B :V→V be the orthogonal
projections seen as endomorphisms of V ,

A := aα ◦ σ and B := bβ ◦ σ.

Now, there exists an orthogonal transformation T : V → V such that β = T ◦ α;
hence

B = (b/a)T ◦ A.

The relation B = B∗ implies that (b/a)A ◦ T = (b̄/ā)T ∗ ◦ A, which fed into

B2
=

(b
a

)2
T ◦ (A ◦ T ) ◦ A = B

gives
|b|2

|a|2
A2
=
|b|2

|a|2
A = B.

Hence the image of B is the same as the image of A and since they are orthogonal
projections we must have A = B and so |b|2 = |a|2. �

Corollary 2.7. The operators

±
1

√
k+ 1

d and ±
1

√
n− k+ 1

d∗

are the only multiples of d and d∗ which are Stein–Weiss.
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3. Kato constants

The classical Kato inequality states that if φ is a section of the vector bundle E
then the following inequality holds away from the set φ−1(0):∣∣d|φ|∣∣≤ |∇φ|.
The equality above takes place when ∇φ = ξ ⊗φ for some 1-form ξ .

Definition 3.1. A refined Kato inequality is an inequality of the type∣∣d|φ|∣∣≤ α|∇φ|
with α < 1, which will be called a refined Kato constant.

The main insight of Branson [2000] and Calderbank et al. [2000] is that if φ
is a section in the kernel of an injectively elliptic Stein–Weiss operator L then φ
satisfies a Kato inequality which is stronger than the classical one. Moreover the
refined Kato constant α depends only on the symbol of L .

We give now the relevant definitions. We will work in a slightly more general
context than in the previous section, that is, the bundle E will be complex and L
will be a complex differential operator. The Stein–Weiss operators we considered
above are real operators. However by complexifying the representations one can
obtain complex operators. They should really be called SO(n) (real or complex)
Stein–Weiss operators since they are associated to the SO(n)-frame bundle on the
manifold. In the next section we will consider U(n) Stein–Weiss operators when
the manifold M is Kähler.

Definition 3.2. The symbol of a complex differential operator L : 0(E)→ 0(F)
of order k is the map

σ(L) : T ∗M→ Hom(E, F), σ (L)(ξ ⊗ . . .⊗ ξ) := ik 1
k!
[. . . [L , f ], . . . , f ],

where ξ := d f . The symbol of a real differential operator is the symbol of its
complexification.

The symbol of the Stein–Weiss operator L : 0(E)→ 0(F) is the morphism of
bundles

i5F : T ∗M→ Hom(E, F).

The symbol of the formal adjoint L∗ : 0(F)→ 0(E) is

σ(L∗) : T ∗M→ Hom(F, E), σ (L∗)= σ(L)∗ =−i5∗F

and the symbol of L∗L is 5∗F5F .
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Definition 3.3. An operator L is called injectively elliptic if L∗L is elliptic. Let L
be an operator of order 1. A number ε is called a constant of ellipticity for L∗L if
the following relation holds:

〈σξ (L∗L)(v), v〉 ≥ ε|ξ |2|v|2, for all ξ ∈ T ∗M, v ∈ E .

If L∗L is elliptic then the positivity of σ(L∗L) implies that an ellipticity constant
exists, at least locally. In the case of an injectively elliptic Stein–Weiss operator
this constant is smaller than 1 because of the next straightforward lemma and the
fact that the Bochner Laplacian ∇∗∇ has constant of ellipticity equal to 1.

Lemma 3.4. Let F⊥ be the orthogonal complement of F in Rn
⊗ E and let L⊥ be

the corresponding Stein–Weiss operator. Then

L∗L + L∗
⊥

L⊥ =∇∗∇.

Proof. One uses the equality ∇ = L ⊕ L⊥. �

Here is the connection between constants of ellipticity and refined Kato constants:

Lemma 3.5. Let Cn
⊗ E = F ⊕ F⊥ and let 5 and 5⊥ be the corresponding

orthogonal projections onto F and F⊥ respectively. If φ ∈ Ker(5 ◦∇) then∣∣d|φ|∣∣ · |φ| ≤ |∇φ| · |5⊥(ξ0⊗φ)|

for some 1-form ξ0 which is real and of norm 1.

Proof. We have
d|φ|2 = 2 Re〈∇φ, φ〉.

Let ξ0 := d|φ|2/
∣∣d|φ|2∣∣. Then

2
∣∣d|φ|∣∣ · |φ| = ∣∣d|φ|2∣∣= 〈d|φ|2, ξ0〉 = 2〈Re〈∇φ, φ〉, ξ0〉

∗
= 2 Re〈〈∇φ, φ〉, ξ0〉 = 2 Re〈∇φ, ξ0⊗φ〉 = 2 Re〈5⊥ ◦∇(φ), ξ0⊗φ〉

= 2 Re〈∇φ,5⊥(ξ0⊗φ)〉 ≤ 2|∇φ| · |5⊥(ξ0⊗φ)|,

where the equality ∗ holds because ξ0 is real. �

Notice that

|φ|2 = |ξ0⊗φ|
2
= |5(ξ0⊗φ)|

2
+ |5⊥(ξ0⊗φ)|

2

= 〈5∗5(ξ0⊗φ), ξ0⊗φ〉+ |5
⊥(ξ0⊗φ)|

2,

where 5∗5 is the symbol of L∗L . So if L∗L is injectively elliptic with a constant
of ellipticity ε then

|5⊥(ξ0⊗φ)|
2
≤ (1− ε)|φ|2.
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In combination with Lemma 3.5 we have:

Proposition 3.6. Let L be an injectively elliptic Stein–Weiss operator. If ε is a
constant of ellipticity for L∗L , then α =

√
1− ε is a refined Kato constant for

φ ∈ Ker L.

Lemma 3.7. A constant of ellipticity for the rescaled Hodge–de Rham operator
acting on k-forms is

ε =

{
1 if k = 0, n,

min
{ 1

k+1 ,
1

n−k+1

}
if 1≤ k ≤ n− 1.

Proof. Let 1≤ k ≤ n− 1. If L = 1
√

k+1
d + 1

√
n+1−k

d∗ then

L∗L = 1
k+1

d∗d + 1
n+1−k

dd∗ ≥min
{ 1

k+1
,

1
n−k+1

}
1

and the Laplacian has constant of ellipticity 1. For k = 0 and k = n the operator
L∗L is just the Laplacian on functions and on top degree forms, respectively.

A second simple proof can be provided using the symbol of L∗L and the Cartan
formula

euιu + ιueu = |u|2 id,

where eu and iu are exterior multiplication and contraction by u, respectively. �

Putting together Proposition 3.6 and Lemma 3.7 we have [Calderbank et al.
2000, Theorem 6.3 (ii), case k = 1].

Theorem 3.8 (Calderbank–Gauduchon–Herzlich). Let ω be a k-form in the kernel
of d + d∗. Then ω satisfies the refined Kato inequality∣∣d|ω|∣∣≤√ n−k

n−k+1
|∇ω| if 1≤ k ≤ n/2,∣∣d|ω|∣∣≤√ k

k+1
|∇ω| if n/2≤ k ≤ n− 1,

while for k = 0, n the form ω is parallel.

Remark 3.9. The question of sharpness in the previous inequalities depends in
general on the manifold under consideration. For example, if the manifold M
is compact and symmetric then every harmonic field is parallel, hence the best
constant in this case is 0.

In general, to have equality above one first needs equality in Lemma 3.5 which
after a quick inspection implies that the form ω has to satisfy the relation

∇ω = ξ ⊗ω− θ1

(
1

√
k+1

ξ ∧ω

)
− θ2

(
−

1
√

n−k+1
ιξ (ω)

)
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for some 1-form ξ , where θ1 and θ2 were defined in (2-1) and (2-2). More impor-
tantly, ω has to be a harmonic field. On the other hand, Branson [2000, Theorem
7] shows that such a form exists on flat Rn . In his proof, it is essential that E is an
irreducible representation of SO(n). Branson’s example is not L2 integrable, hence
it is conceivable that the inequalities above can be further refined if one imposes
such a global condition.

Remark 3.10. Notice that the inequalities in the previous theorem respect Poincaré
duality in the sense that the same refined Kato constant works both for k and for
(n− k)-forms. One has to expect this because of the next basic result.

Lemma 3.11. The star Hodge operator is an isometry and a parallel endomor-
phism of 3∗T ∗M.

Proof. The fact that it is an isometry is standard. To prove that it is parallel one first
easily shows that the volume form dvol is parallel. This follows by differentiating

| dvol |2 = 1.

which implies that 〈∇X dvol, dvol〉 = 0 for all vector fields X . Then we apply ∇X

to the following pointwise equality which defines the Hodge star operator

η∧∗ω = 〈η, ω〉 dvol for all η, ω ∈ 0(3k T ∗M)

to get
∇Xη∧∗ω+ η∧∇X (∗ω)= (X〈η, ω〉) dvol+〈η, ω〉∇X dvol.

Hence η∧ (∇X ∗ω)= 〈η,∇Xω〉 dvol= η∧∗∇Xω, for all η, ω ∈ 0(3k T ∗M). �

Remark 3.12. The theory does not provide an inequality for harmonic forms, only
for forms ω in the kernel of d+d∗, the so called harmonic fields. However in con-
junction with an L2 bound on ω one knows (see Proposition 4.6) that the harmonic
fields are the same as the harmonic forms which is the case, for example, when M
is complete.

4. The Kähler case

On a Kähler manifold, using essentially the same theory, we get a better Kato
constant for harmonic fields that respects Hodge duality. In what follows, M is a
Kähler manifold of complex dimension n. Notice that we can talk about the unitary
frame bundle of M and about U(n) Stein–Weiss operators which are defined ex-
actly as in Section 2 by replacing SO(n)-representations with U(n)-representations
and morphisms thereof.

Our result is as follows.
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Theorem 4.1. Let 0≤ p, q ≤ n and let ω ∈0(3p,q T ∗M) such that (d+d∗)ω= 0.
Let α ≥ 0 be such that α2

:=
1
2 if p ∈ {0, n} or q ∈ {0, n}, and

α2
:=min

{
max

{
2p+1
2p+2

,
2n−2p+1
2n−2p+2

}
,max

{
2q+1
2q+2

,
2n−2q+1
2n−2q+2

}}
otherwise. Then ∣∣d|ω|∣∣≤ α|∇ω|.
Proof. We write the decompositions

d = ∂ + ∂̄ and d∗ = ∂∗+ ∂̄∗.

Notice that since ω ∈ 0(3p,q T ∗M), the condition (d + d∗)ω = 0 is equivalent to

∂ω = ∂∗ω = ∂̄ω = ∂̄∗ω = 0.

We will see that

(4-1) L1 :=
1

√
p+1

∂ +
1

√
n− p+1

∂∗ and L2 :=
1

√
q+1

∂̄ +
1

√
n−q+1

∂̄∗

are U(n) Stein–Weiss operators. Since the manifold is Kähler, each of the vector
bundles 3p,q T ∗M comes endowed with a Levi-Civita connection. One can write
down the symbols of each of the operators ∂, ∂̄, ∂∗, ∂̄∗ (compare with Proposition
3.67 in [Berline et al. 1992]):

σ(∂) : T ∗M→ End(3p,q T ∗M,3p+1,q T ∗M), σ (∂)ξ (ω)= iξ 1,0
∧ω,

σ(∂̄) : T ∗M→ End(3p,q T ∗M,3p,q+1T ∗M), σ (∂̄)ξ (ω)= iξ 0,1
∧ω,

σ(∂∗) : T ∗M→ End(3p,q T ∗M,3p−1,q T ∗M), σ (∂∗)ξ (ω)= (−i)ι(ξ0,1)∗(ω),

σ (∂̄∗) : T ∗M→ End(3p,q T ∗M,3p,q−1T ∗M), σ (∂̄∗)ξ (ω)= (−i)ι(ξ1,0)∗(ω),

where ι represents contraction and
((
ξ 0,1

)∗
,
(
ξ 1,0

)∗)
∈ T 1,0 M ⊕ T 0,1 M is the met-

ric dual of ξ =
(
ξ 1,0, ξ 0,1

)
∈ T ∗

C
M . Notice that for ξ ∈ T ∗M we have ξ 0,1

= ξ 1,0.
We want to show that (−i)1/

√
p+ 1 σ(∂) when seen as a linear map defined

on T ∗
C

M is an associated bundle morphism to an orthogonal projection of U(n)
representations. Analogous statements hold for the other three maps.

Let Cn
= (R2n,−i) be the conjugate of the standard complex space. The stan-

dard action of U(n) is complex linear on Cn and the standard Hermitian metric
on Cn builds an isomorphism of U(n) representations between Cn and (Cn)∗. The
bundles3p,q T ∗M :=3pT 1,0 M∗⊗3q T 0,1 M∗ are associated bundles to the unitary
frame bundle of M (induced by the Riemannian metric and the complex structure)
and the canonical representations of U(n) on 3pCn

⊗3qCn .
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Let ei ∈ Cn , i = 1, . . . , n be an orthonormal basis with respect to the standard
Hermitian metric and denote by ēi ∈Cn , i = 1, . . . , n the dual, or conjugate, basis.
We define

θ∂ :3p+1Cn
⊗3qCn ↪→ (Cn

⊕Cn)⊗3pCn
⊗3qCn,

θ ∂̄ :3pCn
⊗3q+1Cn ↪→ (Cn

⊕Cn)⊗3pCn
⊗3qCn,

θ∂
∗

:3p−1Cn
⊗3qCn ↪→ (Cn

⊕Cn)⊗3pCn
⊗3qCn,

θ ∂̄
∗

:3pCn
⊗3q−1Cn ↪→ (Cn

⊕Cn)⊗3pCn
⊗3qCn,

by

θ∂(ω1∧ . . .∧ωp+1⊗η)=
1

√
p+1

p+1∑
i=1

(−1)i−1(ωi ,0)⊗ω1∧ . . . ω̂i . . .∧ωp+1⊗η,

θ ∂̄(ω⊗ η1∧ . . .∧ ηq+1)=
1

√
q+1

q+1∑
i=1

(−1)i−1(0, ηi )⊗ω⊗ η1∧ . . . η̂i . . .∧ ηq+1,

θ∂
∗

(ω⊗ η)=−
1

√
n− p+1

n∑
i=1

(0, ei )⊗ ēi ∧ω⊗ η,

θ ∂̄
∗

(ω⊗ η)=−
1

√
n−q+1

n∑
i=1

(ēi , 0)⊗ω⊗ ei ∧ η.

These intertwiners, just as in the Riemannian case, are isometric monomorphisms
of U(n) representations. One easily checks the relations

−i
√

p+ 1
σ(∂) ◦ θ∂ = id3p+1Cn⊗3q Cn ,

−i
√

n− p+ 1
σ(∂∗) ◦ θ∂

∗

= id3p−1Cn⊗3q Cn ,

−i
√

q + 1
σ(∂̄) ◦ θ ∂̄ = id3pCn⊗3q+1Cn ,

−i
√

n− q + 1
σ(∂̄∗) ◦ θ ∂̄

∗

= id3pCn⊗3q−1Cn .

Here the symbol maps σ(∂), σ (∂∗), σ (∂̄), σ (∂̄∗) are the obvious maps between
vector spaces corresponding to the morphisms of vector bundles above.

Using Lemma 2.5 (which works in the Hermitian case as well) one can check
that

Ker σ(∂)= Im(θ∂)⊥, Ker σ(∂∗)= Im(θ∂
∗

)⊥

Ker σ(∂̄)= Im(θ ∂̄)⊥, Ker σ(∂̄∗)= Im(θ ∂̄
∗

)⊥.

Combining this with the fact that the images of θ∂ and θ∂
∗

are orthogonal and an
analogous statement about θ ∂̄ and θ ∂̄

∗

, one gets the claim about L1 and L2.
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The constants of ellipticity for L∗1 L1 and L∗2 L2 are easy to compute from the
relations

∂∗∂ + ∂∂∗ = ∂̄∗∂̄ + ∂̄ ∂̄∗ = 1
21.

Hence for p /∈ {0, n} the constant for L∗1 L1 is 1
2 min {1/(p+ 1), 1/(n− p+ 1)} and

similarly for q /∈ {0, n} the constant for L∗2 L2 is 1
2 min {1/(q + 1), 1/(n− q + 1)}.

When p ∈ {0, n} then L∗1 L1=
1
21 and the constant is 1

2 . Similarly for q ∈ {0, n},
L∗2 L2 =

1
21. One now chooses the smaller Kato constant from the ones provided

by the inequalities induced by L1 and by L2. �

Remark 4.2. The Kato constants in the Kähler case provided by Theorem 4.1 for
a harmonic field ω of bidegree (p, q) are smaller or equal than the Kato constants
provided by Theorem 3.8 except in the case p = q.

A special case of the theorem is:

Corollary 4.3. If ω ∈ 0(3p,0 M) is a holomorphic p-form on a Kähler manifold
then it satisfies the Kato inequality∣∣d|ω|∣∣≤ 1

√
2
|∇ω|.

Proof. The operator L2 = ∂̄ is injectively elliptic Stein–Weiss on 0(3p,0 M) and
the constant of ellipticity for L∗2 L2 is 1/2. �

The following result characterizes the equality case in Theorem 4.1 in the sim-
plest of the situations.

Proposition 4.4. Let ω ∈ 0(30,q) and η ∈ 0(3p,0) be harmonic fields on a Käh-
ler manifold of dimension n. A necessary condition for equality for ω and η in
Theorem 4.1 is the existence of real one-forms ξ, γ ∈ 0(T ∗M) such that

∇ω = ξ 0,1
⊗ω and ∇η = γ 1,0

⊗ η.

If ω ∈ 0(3n,q) and η ∈ 0(3p,n) then a necessary condition for equality is

∇ω = ξ 1,0
⊗ω and ∇η = γ 0,1

⊗ η.

Proof. The equality in Lemma 3.5 happens when there exists a real valued function
f : M→ R such that

∇ω = f5⊥(ξ0⊗ω)= f ξ0⊗ω−5( f ξ0⊗ω).

Let ξ := f ξ0. This is a real 1-form. In the case ω ∈ 0(30,q), the operator 5
is nothing else but ξ ⊗ ω 7→ ξ 1,0

∧ ω where the element ξ 1,0
∧ ω is a section of

T ∗
C

M ⊗30,q via the map

θ∂
(
ξ 1,0
∧ω

)
= ξ 1,0

⊗ω.
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We have therefore the first claim and the second is entirely analogous. The third
claim follows from the observation that

n∑
i=1

(0, ei )⊗ ēi ∧ ι(ξ0,1)∗ω = ξ
0,1
⊗ω,

and the last claim is similar to the third one. �

One might ask whether this is the best we can do in the Kähler case with this
technique. The following lemma is a possible answer.

Lemma 4.5. If a linear combination a∂ + b∂∗ + c∂̄ + d ∂̄∗ is a U(n) Stein–Weiss
operator acting on (p, q) forms then either c= d = 0 or a = b= 0 or b= d = 0 or
a = c = 0. If the operator is also injectively elliptic then, up to some constants of
absolute value 1, the operators L1 and L2 in Theorem 4.1 are the only possibilities.

Proof. The first thing to note is that the images of θ∂
∗

and θ ∂̄ are not orthogo-
nal. On the other hand, by the complex version of Lemma 2.6, the morphisms of
representations θ∂

∗

and θ ∂̄ are determined up to a constant of modulus 1 by the
symbols of the operators ∂∗ and ∂̄ . Hence if a linear combination of the operators
a∂ + b∂∗ + c∂̄ + d ∂̄∗ is Stein–Weiss then either b or c has to be 0. The same
dichotomy goes for ∂ and ∂̄∗ and hence either a or d has to be zero.

One can check that an operator a∂ + c∂̄ is not injectively elliptic and the same
for b∂∗ + d ∂̄∗ for any values of a, b, c and d . Another use of Lemma 2.6 shows
that L1 and L2 (up to some constants of absolute value 1, which do not influence
the constants of ellipticity) are the only injectively elliptic U(n) Stein Weiss linear
combinations of ∂ , ∂∗, ∂̄ and ∂̄∗. �

Notice that the inequalities in Theorem 4.1 hold without any global condition on
ω or M . We would like now to reprove the result about 1-forms mentioned in the
introduction which appears in [Kong et al. 2008; Lam 2010] using Theorem 4.1.
We have almost everything except for the fact that a harmonic 1-field splits into
harmonic (1, 0) and (0, 1) components. The following proposition, which is well
known in the case of compact Kähler manifolds takes care of that (compare with
Proposition 1 in [Yau 1976]).

Proposition 4.6. Let M be a complete Kähler manifold and let ω ∈0(3k T ∗M) be
L2 integrable. The following equations are equivalent:

(1) (d + d∗)ω = 0.

(2) (∂ + ∂∗)ω = 0.

(3) (∂̄ + ∂̄∗)ω = 0.

Proof. The following identities hold on any Kähler manifold:

1= 21∂ = 21∂̄ ,
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where 1= (d + d∗)2, 1∂ = (∂ + ∂∗)2 and 1∂̄ = (∂̄ + ∂̄
∗)2.

If M is compact then it is standard that the solutions of the Laplace equation
1ω = 0 satisfy (d + d∗)ω = 0 and similarly for the other two. If M is complete,
we will show that 1∂ω = 0 and ω ∈ L2 imply that (∂ + ∂∗)ω is L2 integrable.

This is enough to allow us to plug in η = (∂ + ∂∗)ω in the following relation

(4-2)
∫

M
〈(∂ + ∂∗)η, ω〉 =

∫
M
〈η, (∂ + ∂∗)ω〉

(and deduce that, in fact, (∂ + ∂∗)ω = 0) because (4-2) holds whenever the forms
η, ω, (∂+∂∗)η, (∂+∂∗)ω are all in L2. This is due to the fact that ∂+∂∗ is formally
self-adjoint.

We will be using a special collection of cut-off functions ψν with the following
properties: there exists an exhaustion of compact subsets Kν ⊂ K ◦ν+1 ⊂ M such
that

(4-3) ψν ≡ 1 on Kν, |dψν | ≤ 1 on M and suppψν ⊂ Kν+1.

Such a collection exists on a complete manifold by the Hopf–Rinow theorem, see
Proposition 8.1 in [Demailly 1996]. We have

(4-4)
0=

∫
M
〈ψ2

νω,1∂ω〉 =

∫
M
〈∂(ψ2

νω), ∂ω〉+

∫
M
ψ2
ν |∂
∗ω|2

= 2
∫

M
〈∂ψν ∧ω,ψν∂ω〉+

∫
M
ψ2
ν |∂ω|

2
+

∫
M
ψ2
ν |∂
∗ω|2.

It follows from here that∫
M
ψ2
ν |∂ω|

2
≤ 2

∣∣∣∣∫
M
〈∂ψν ∧ω,ψν∂ω〉

∣∣∣∣≤ 2
(∫

M
|∂ψν ∧ω|

2
)1/2(∫

M
|ψν |

2
|∂ω|2

)1/2

We get ∫
M
ψ2
ν |∂ω|

2
≤ 4

∫
M
|∂ψν ∧ω|

2
≤ C

∫
M
|∂ψν |

2
|ω|2 ≤ C

∫
M
|ω|2,

where in the last inequality we used (4-3). Therefore, by the monotone convergence
theorem, ∂ω is L2 integrable and by (4-4), ∂∗ω is also L2 integrable. �

Remark 4.7. After the article was accepted for publication we became aware of
Wolf’s theorem [Lawson and Michelsohn 1989, Chapter II, Theorem 5.7], which
says that on any complete Riemannian manifold, any Dirac operator D has a unique
self-adjoint extension and Ker D = Ker D2 in the space L2 sections on which D
acts. The equality of kernels follows essentially the same steps as the proof of
Proposition 4.6 and we decided to keep this proof for completeness.

We need the following property:
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Lemma 4.8. Let φ1 ∈ 0(E1) and φ2 ∈ 0(E2) be sections of two vector bundles,
E1 and E2, that satisfy the Kato inequalities∣∣d|φ1|

∣∣≤ α1
∣∣∇E1φ1

∣∣ and
∣∣d|φ2|

∣∣≤ α2
∣∣∇E2φ2

∣∣,
for some constants α1 and α2 ≤ 1. Then (φ1, φ2) ∈ 0(E1 ⊕ E2) satisfies the in-
equality ∣∣d|(φ1, φ2)|

∣∣≤max {α1, α2}
∣∣∇E1⊕E2(φ1, φ2)

∣∣.
Proof. We calculate

2 |(φ1, φ2)| ·
∣∣d|(φ1, φ2)|

∣∣= ∣∣d|(φ1, φ2)|
2∣∣= ∣∣d|φ1|

2
+ d|φ2|

2∣∣
≤ 2|φ1| ·

∣∣d|φ1|
∣∣+2|φ2| ·

∣∣d|φ2|
∣∣

≤ 2 max {α1, α2}
(
|φ1| ·

∣∣∇E1φ1
∣∣+ |φ2| ·

∣∣∇E2φ2
∣∣)

≤ 2 max {α1, α2}|(φ1, φ2)| ·
∣∣∇E1⊕E2(φ1, φ2)

∣∣. �

Combining Theorem 4.1, Proposition 4.6 and Lemma 4.8 we get the following
result that appears in [Kong et al. 2008; Lam 2010].

Corollary 4.9. Let ω be a harmonic form of degree 1 or 2n−1 that is L2 integrable
on a complete Kähler manifold M of complex dimension n. Then∣∣d|ω|∣∣≤ 1

√
2
|∇ω|.
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