
Pacific
Journal of
Mathematics

DEFORMATION RETRACTS TO THE FAT DIAGONAL AND
APPLICATIONS TO THE EXISTENCE OF PEAK SOLUTIONS

OF NONLINEAR ELLIPTIC EQUATIONS

E. NORMAN DANCER, JONATHAN HILLMAN AND ANGELA PISTOIA

Volume 256 No. 1 March 2012



PACIFIC JOURNAL OF MATHEMATICS
Vol. 256, No. 1, 2012

DEFORMATION RETRACTS TO THE FAT DIAGONAL AND
APPLICATIONS TO THE EXISTENCE OF PEAK SOLUTIONS
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We consider the equation −ε21u = u p − uq in a bounded, smooth domain
�⊂ RN with homogeneous Dirichlet boundary conditions when either

q = 1 < p <
N + 2
N − 2

or
N

N − 2
< q < p <

N + 2
N − 2

and N ≥ 3.

We prove the existence of multiple positive solutions in the case of small
diffusion provided the domain � is not contractible.

1. Introduction

We consider the equation

(1) −ε21u = f (u) in �, where u > 0 in � and u = 0 on ∂�,

where � is a smooth bounded domain in RN , the nonlinearity f is either

f (y)= y p
− y with 1< p <

N + 2
N − 2

, or(2)

f (y)= y p
− yq with

N
N − 2

< q < p <
N + 2
N − 2

and N ≥ 3.(3)

Problem (1) with (2) arises in various mathematical models in biological popu-
lation theory, chemical reactor theory, and so on. Many results show that solutions
of (1) may exhibit sharp peaks near a certain number of points. In particular, many
papers have sought to prove the existence of single and multiple peak solutions
and to find the peaks as well as the profile of the spikes as ε→ 0+. Ni and Wei
[1995] showed that for ε > 0 sufficiently small, problem (1) has a positive least
energy solution that concentrates at the most centered part of the domain, that is,
the maximum point of the distance function from the boundary ∂�. Since then,
many authors have looked for higher energy solutions. For papers that study the
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effect of the geometry of the domain on the existence of positive solutions with
single and multiple peaks, see [Benci and Cerami 1987; Cao et al. 1996; Dancer
1988; 1990; Dancer and Yan 1999a; 1999b; Dancer and Wei 1998; del Pino et al.
2000a; 2000b; Grossi and Pistoia 2000; Li and Nirenberg 1998; Wei 1998] and
references therein.

Problem (1) with (3) was first studied in [Dancer and Santra 2010] where the
authors showed that for ε >0 small the problem has a positive least energy solution
that concentrates at an harmonic center of �, that is, a critical point of the Robin’s
function H(x, x), where H(x, y) is the regular part of the Green function G(x, y)
of −1 on � with Dirichlet boundary conditions. Namely

(4) G(x, y) :=
γN

|x − y|N−2 − H(x, y) and γN =
1

(N − 2)|∂B|
,

where |∂B| denotes the surface area of the unit sphere in RN .
The following result concerns the existence of single and multiple peak solutions

and is quite standard; see Section 5.

Theorem 1.1. Assume (2) and k is a positive integer. Let

(5) Z(x) :=
k∑

i=1

H(xi , xi )−

k∑
i, j=1
i 6= j

G(xi , x j ) where x := (x1, . . . , xk) ∈�
k .

Assume ξ0 is a C1-stable critical point of the function Z.
Then, for ε small enough, there is a solution of (1) with exactly k sharp peaks

x1ε, . . . , xkε such that xε := (x1ε, . . . , xkε)→ x0 as ε→ 0.

The function Z plays the same role in constructing single and multiple peak solu-
tions for problems defined on two-dimensional domains; see [Esposito et al. 2005;
del Pino et al. 2005; Esposito et al. 2006].

In this paper, we prove the existence of multiple positive solutions in the case of
small diffusion provided the domain � is not contractible for problem (1) with (2)
or (3). Our main contribution is a new topological result on fat diagonals, which
seems to be of independent interest. We then use it to obtain results under weaker
topological assumptions than before. In fact, our topological assumption on the
domain is the natural one.

Theorem 1.2. Assume (2), k is a positive integer and � is not contractible. Then,
for ε small enough, there is a solution of (1) with exactly k sharp peaks.

Theorem 1.3. Assume (3), k is a positive integer and � is not contractible. Then,
for ε small enough, there is a solution of (1) with exactly k sharp peaks.
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The proof of the two theorems are similar but there are noticeable differences
because the corresponding reduced energies are quite different. Even the location
of the peak solutions is different.

If � is a ball, or more generally a GNN domain in the sense of Gidas, Ni and
Nirenberg [Gidas et al. 1979], then their theorem implies that a positive solution has
only one sharp peak and is unique. Thus the behavior quite different. In addition
if p ≥ (N + 2)/(N − 2) and 1 < q < (N + 2)/(N − 2) and � is star shaped, the
Pohozaev identity implies that there is no positive solution at all, while if p = 1
and 1 < q < (N + 2)/(N − 2) the positive solution is unique but does not have a
sharp peak.

Theorem 1.2 was proved in [Dancer and Yan 1999a] under the stronger assump-
tion that � has nontrivial reduced homology. We feel our techniques have other
uses. In particular, we suspect Theorem 1.3 holds for 1<q< p<(N+2)/(N−2).
The main difficulty is probably to prove an analogue of Lemma 4.1. We would
expect the multipeak locations to be different.

The homology version of Theorem 1.3 could also be proved by using the tech-
niques in [Clapp et al. 2008], but they did not seem sufficient to prove the full
Theorem 1.3.

Finally, if one is willing to assume the topological result in Section 1, one can
read the rest of the paper without needing much topology.

2. A topological result

The result proved here may be known, but we could not find a reference. It does
seem likely to have other uses.

If � is a bounded open domain in RN with smooth boundary and k is an integer
with k ≥ 2, define the fat diagonal Fk to be

Fk := {(x1, . . . , xk) ∈�
k
: xi = x j for some i 6= j}.

Theorem 2.1. If � is not contractible, then Fk is not a strong deformation retract
of �k .

Lemma 2.2 (Van Kampen’s theorem [Whitehead 1978, p. 94]). Assume that X1

and X2 are topological spaces and let X0 := X1 ∩ X2. Suppose that

(i) (X i , X0) for i = 1, 2 are neighborhood deformation retract (NDR) pairs in
the sense of [Spanier 1966] and

(ii) X1, X2 and X0 are connected and the natural induced inclusions of 51(X0)

into 51(X i ) for i = 1, 2 are one-to-one and not onto.

Then
51(X1 ∪ X2)=51(X1) ∗51(X0)51(X2),
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where the group on the right hand side is the amalgamated free product defined in
[Cohen 1989, Section 1.4].

Remark 2.3. In particular, it follows that 51(X1 ∪ X2) is infinite if 51(X1) and
51(X2) are both nontrivial. For example, see [Cohen 1989, p. 28].

Remark 2.4. Elements in 51(X1 ∪ X2) almost never commute except for trivial
reasons. Thus follows from the unique representation in [Cohen 1989, p. 28].
For example, if a1 is in 51(X1) but not in 51(X0) and a2 is 51(X2) but not in
51(X0), then the induced elements of 51(X1 ∪ X2) do not commute. Moreover,
for similar reasons if a1, b1 ∈ 51(X1) do not commute, they will not commute
in 51(X1 ∪ X2), since the natural inclusion of 51(X1) into the amalgamated free
product is one-to-one; see [Cohen 1989, p. 27].

Proof of Theorem 2.1. If H̃ i (�,Z) is nontrivial for some i , this is proved in the
appendix of [Dancer and Yan 1999a]. Here H̃ i

∗
is the reduced cohomology. Note

that this covers the case N ≤ 3, because it is well known that in these dimensions
� is contractible if it is acyclic.

Thus we may assume � is acyclic. Hence if � is not contractible, its funda-
mental group 51(�) is nontrivial. This follows from [Spanier 1966, Corollary
7.6.24], since it is well known that such an � has the homotopy type of a CW
complex. Now if Fk is a strong deformation retract of �k , the natural inclusion i
of 51(Fk) into 51(�

k) = 51(�)
k must be an isomorphism of groups. We prove

this is impossible essentially by showing that 51(Fk) is much less commutative
than 51(�)

k .
First assume k = 2. Then Fk is simply {(x, x) : x ∈ �} ∼ � and the inclusion

map induces the natural diagonal map if51(�) onto the diagonal of51(�)
2. This

is clearly not onto if 51(�) is nontrivial. This proves the case k = 2.
Now assume k ≥ 3. First note that 51(Fk) must be infinite (and thus that

there is an isomorphism between 51(Fk) and 51(�)
k implies that 51(�) is also

infinite). This is an exercise in successively applying Van Kampen’s theorem
to Fk =

⋃
1≤i< j≤k Fk i j where Fk i j := {(x1, . . . , xk) ∈ �

k
: xi = x j }, which is

homeomorphic to �k−1 and hence has nontrivial fundamental group isomorphic
to 51(�)

k−1.
Choose distinct elements g1, . . . , gk−1 of 51(�), where g1 is the identity e.

(This is where we use that 51(�) is infinite.) We consider the element a1 :=

(g2, g2, g1, . . . , gk−1) of 51(Fk12). (Remember 51(Fk12) = 51(�)
k−1.) This is

not in 51(Fk i j ) for i > 1 or j > 2. Similarly, a2 := (g2, g1, g2, . . . , gk−1) is in
51(Fk13), but not in the other 51(Fk i j ). Hence, by our comments above, a1 and
a2 will not commute in 51(Fk12∪Fk13), which is the amalgamated group Fk12 ∗T

Fk13 (Van Kampen’s theorem) where T is 51(Fk12 ∩ Fk13), which is isomorphic
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to 51(�)
k−2 since

Fk12 ∩Fk13 = {(x1, . . . , xk) ∈�
k
: x1 = x2 = x3}.

Continuing with many amalgamations, we eventually find that a1 and a2 do not
commute in 51(Fk). On the other hand they obviously commute in 51(�

k) =

51(�)
k since each component commutes in51(�). Hence the natural inclusion of

Fk into �k cannot induce an isomorphism of fundamental groups (since otherwise
commutativity would be preserved by the isomorphism). �

Remark 2.5. The proof could be simplified a little by using the idea of a graph of
groups as in [Dicks and Dunwoody 1989]. We choose the vertices to correspond
to group Gk−1 and the edges to groups Gk−2, where G =51(�).

3. Proof of the main results

Proof of Theorem 1.2. This follows immediately by combining Theorem 2.1 with
the proof of [Dancer and Yan 1999a, Theorem 1.1], a reference we’ll abbreviate as
[DY] here. We explain this in a little more detail especially since the ideas occur
in the proof of Theorem 1.3.

First by the mountain pass theorem, there is always a solution with one sharp
peak. If k> 1 and there is no positive solution with k sharp peaks for some small ε,
the proof of [DY, Theorem 1.1] produces a strong deformation retract of�k minus
a neighborhood of (∂�∪Fk) into a small neighborhood of the fat diagonal Fk in�k .
We explain this key part a little further below. Since, as in [DY], we can easily
deform �k into a suitable compact subset and since we deform a neighborhood of
the fat diagonal Fk into Fk , we obtain the required deformation. This contradicts
Theorem 2.1. We explain one step above more carefully. First note, as in [DY],
that we can strongly deformation retract �k into Ck , where C is a compact subset
of �, so that the fat diagonal is mapped into itself. Moreover, as in [DY], we also
find that we can strongly deformation retract a neighborhood of the fat diagonal in
�k into the fat diagonal. Thus it suffices to strongly deformation retract Ck into a
neighborhood of the fat diagonal Fk in �k and in fact we do not need to define the
map very near the fat diagonal (since we can make it the identity there).

We choose R large but fixed and µ > 0 small and fixed. Then as in [DY], let

W = {x := (x1, . . . , xk) ∈�
k
: d(xi , ∂�)≥ µ, |xi − x j | ≥ Rε when i 6= j}.

We can easily use the implicit function theorem on this set to reduce (1) to a
problem ∇Kε(x) = 0, where Kε is a smooth function on W × [0, ε] and the
gradient is with respect to x. We do this by looking for solutions of (1) of the
form

∑k
i=1 φ(ε

−1(x− xi ))+ ζ(x, ε), where ζ is small, x ∈W and φ is the unique
positive decaying solution of −1u = f (u) on RN . Here we have very slightly
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simplified the argument in [DY]. Kε is called the reduced energy. We then use
the differential equation ẋ = −∇Kε(x) on �k to deform {x ∈ W : Kε(x) ≤ c1}

into {x ∈ �k
: Kε(x) ≤ c2}. Note that there are no k peak solutions implies that

Kε has no critical points in �k . Here we choose c2 = ε
N (k A − τφ(ε−1d)) and

c1 = ε
N (k A+σ) for suitable chosen small positive d, σ, τ , where d depends on ε.

We proved two technical results in [DY] that use the asymptotics of Kε . Finally, if
x ∈W and |xi−x j | = rε for some i, j , then Kε(x)≥ c2. Here rε is a fixed constant.
Secondly the flow moves point away from ∂�k if Kε(x) and x ∈W . This ensures
that the flow does not leave�k and the points do not get close together. This ensures
we can deform Kc1 into Kc2 . As there, we can also arrange so that Kε(x) ≤ c1

on W and thus K k
⊂ Kc1 ≡ {x ∈�

k
: Kε(x)≤ c1} and Kc2 is contained in a small

neighborhood of the fat diagonal. This completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. We use exactly the same strategy except the energy levels
have to be chosen a little differently and the asymptotics are a little different. If
δ1 > 0 is large, let c1 = kεN (a+ εN−2δ1) and c2 = kεN (a− εN−2δ1), where a is
defined in (13). We prove that there is a k peak solution whose energy is between
c1 and c2 by showing that the reduced energy Kε defined in (12) has a critical point
in Kε,c1 \ Kε,c2 . By [Dancer 1995], it suffices to assume that k > 1. Let

(6) W̃ = {x := (x1, . . . , xk) ∈�
k
: d(xi , ∂�)≥ µ, |xi − x j | ≥ τ when i 6= j}.

Here µ and τ are small and positive.
Once again, we use the semiflow of ẋ = −∇Kε(x) on Kε,c1 \ Kε,c2 . We prove

that if start the flow on W̃ with Kε(x) ≤ c1 then the flow does not leave �k until
Kε(x) ≤ c2. We in fact prove that if two of the xi get close together and are not
close to the boundary, then ε2−2N (Kε(x)− kcεN ) is large negative. This means
that we only have to worry about some of the xi getting close to the boundary.
With a time rescale, our flow is

ẋ =−∇Z(x)+ o(1),

unless x gets close to ∂(�k) or the fat diagonal. Hence if we prove in Lemma 4.1
below that a solution of ẋ = −∇Z(x) starting from a point x0 ∈ �

k away from
the boundary does not leave �k through the “outer” boundary unless Z(ξ) is large
negative, it follows by continuous dependance that the perturbed flow cannot leave
�k through the outer boundary and thus can only leave by getting close to the inner
boundary where Z(x) is large negative and hence Kε(x) < c2. It is easy to make
this uniform on compact subsets of �k .

Hence, provided we prove Lemmas 2.2 and 5.1 we complete the proof in exactly
the same way as in the proof of Theorem 1.2. Note that Z is uniformly bounded
above on W̃ and it follows that ε−N Kε is uniformly bounded above on W̃ . �
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4. A technical lemma

Lemma 4.1. If x0 ∈ �
k and x(t) is a solution of ẋ = −∇Z(x) (see (5)) for

0 ≤ t < T+(x) such that x(t) ∈ �k
\ Fk for 0 ≤ t < T+(x), x(0) = x0 and

sup0≤t<T+(x) Z(x(t)) ≤ c, then x(t) stays bounded away from the “outer” bound-
ary of �k

\Fk until Z is large negative. Moreover, if x(t) gets close to the “inner”
boundary, Z(x(t)) is large negative.

The second part of Lemma 4.1 follows immediately from the first part and
Remark 5.2. We in fact prove that if x(t) gets close to the boundary and Z(x(t))
is not large negative, then x(t) moves inside in the normal direction.

We now sketch the proof of Lemma 4.1. This is a higher-dimensional analogue
of results in [Bartsch et al. 2010] for special values of parameters. We follow the
proof there, mainly pointing out the differences, though we do modify it a little to
simplify it in our particular case.

First of all, we need an accurate estimate of H(x, y) when the points x and y are
close to the boundary. Let us introduce some notation. If τ > 0 is small enough,
we define �τ := {x ∈ � : dist(x, ∂�) ≤ τ }. Let p : �τ → ∂� be the projection
onto the boundary, that is, dist(x, ∂�) = |p(x)− x | and let νx denote the inward
normal at the point p(x) ∈ ∂�. We define x̄ := p(x)− d(x)νx . With (4) in mind,
set

ψ(x, y) := H(x, y)−
γN

|x̄ − y|N−2 .

Lemma 4.2. For any τ > 0 there exists c1 > 0 such that

|ψ(x, y)| + |∇ψ(x, y)| ≤ c1 dist(x, ∂�)2−N for x, y ∈�τ .

Proof. This is an easy modification of the proof of [Bartsch et al. 2010, Lemma 2.2],
which is the corresponding result for N = 2. �

Remark 4.3. This gives a good first term asymptotic expansion for ∂H(x, x)/νx

near ∂�. This seems likely to have other uses. The motivation for this result is
ψ ≡ 0 in the half space case and we expect that locally this is the main approxima-
tion term. Note that we can integrate the gradient estimate to obtain an improved
estimate for ψ(x, x). This is implicit in the work [Bandle and Flucher 1996].

Proof of Lemma 4.1. As we commented earlier, it suffices to prove the first part. It
obvious suffices to prove that if x = (x1, . . . , xk) is near the outer boundary of �k

and j gives the minimal value in i of dist(xi , ∂�), then ∂Z(x)/∂ν j , where ν j is
the inward normal derivative in the j-th variable or Z(x) is large negative.

We first note if x j is near ∂�, Lemma 4.2 implies that

−µ1 dist(x j , ∂�)
1−N
≤
∂H(x, x)
∂ν j ≤−µ2 dist(x j , ∂�)

1−N
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near ∂�, where µ1, µ2 > 0. This is large negative, so we only have to prove
that this dominates terms ∂G(xi , xh)/∂ν

j . This can only be nonzero if i or k is
j and then is bounded unless xi and xh are close. Thus we only need consider
the case when xh is close to xi . Since xi is the point closest to ∂�, we have
〈xh − xi , ν〉 ≤ −δ and hence we see that −〈∇(|xh − xi |

2−N ), ν〉 is negative or of
smaller order than ∂H(x, x)/∂ν at least if |xh− xi | ≥µ dist(xi , ∂�). We still have
to estimate ∂H(xi , xh)/∂ν, which to highest order is the inward normal derivative
of |xh − xi |

2−N , which is easily seen to be negative. Thus we have the required
result unless |xh − xi | = o(dist(xi , ∂�)). We prove in this case that Z(x) is large
negative. This follows because since G(x, y)≥ 0, we have

Z(x)≤ k H(xi , xi )− |xh − xi |
2−N
+ H(xi , xh),

which is large negative since it will be dominated by the middle term. �

5. The reduced energy

We can use a well-known procedure to reduce problem (1) to a finite-dimensional
one. It is very similar to arguments in [Bahri et al. 1995; Bartsch et al. 2006; del
Pino et al. 2003] for the critical exponent. The solution to the limit problem (7) has
the same decay rate as in the critical exponent and hence the arguments are almost
identical. In particular, we can follow the argument in [Bartsch et al. 2006]. We
sketch the ideas of the proof to obtain the reduced energy estimate.

Assume

f (s)= (s+)p
− (s+)q where

N + 2
N − 2

> p > q >
N

N − 2
.

We consider the unique radial solution to the limit problem

(7)


−1U = f (U ) in RN ,

U > 0 in RN ,

U → 0 as |x | →∞,

U ∈ C2(RN ).

For any x ∈ RN and for any ε > 0, set

Uε,x(y) :=U
( y− x

ε

)
for y ∈ RN .

It is clear that Uε,x solves−ε21Uε,x = f (Uε,x) in RN . We introduce the projection
PUε,x of Uε in H1

0(�) as the solution to the problem{
1PUε,x =1Uε,x in �,
1PUε,x = 0 on ∂�.
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It is easy to prove that (see (4))

(8) PUε,x(y)=Uε,x(y)− (ωq/γN )ε
N−2 H(y, x)+ O(εN )

C1-uniformly with respect to x in compact sets of �. Here

(9) ωq := lim
|y|→∞

U (y)|y|N−2.

We look for a solution to (1) as

(10) uε(y) :=
k∑

i=1

PUε,xi (y)+φε(y),

where x := (x1, . . . , xk) ∈�
k
\Fk and the remainder term φε belongs to a suitable

space. We perform a well-known Liapunov–Schmidt reduction and we reduce the
problem to a finite-dimensional one. In particular, we find that uε as in (10) is a
solution to (1), namely a critical point of the functional Jε : H1

0(�)→ R defined
by

(11) Jε(u) :=
∫
�

( 1
2ε

2
|∇u|2+ F(u)

)
dx,

with F(s) :=
∫ s

0 f (σ )dσ , if and only if x is a critical point of the reduced energy

(12) Kε(x) := Jε
( k∑

i=1

PUε,xi +φε

)
for x ∈�k

\Fk .

A standard argument allows to compute the expansion of the reduced energy. For
one peak this is proved in [Dancer and Santra 2010, Lemmas 5.1 and 5.3].

Lemma 5.1. We have

Kε(x)= kcεN
+ bε2N−2 Z(x)+ o(ε2N−2),

C1-uniformly with respect to x in compact subsets of �k
\ Fk . Here Z is defined

in (5),

(13) c :=
∫

RN

( 1
2 f (U )U − F(U )

)
dy > 0

and (see (4) and (9))

(14) b :=
ωq

2γN

∫
RN

f (U )dy > 0.

are positive constants.
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Remark 5.2. By Lemma 5.1 it follows immediately from the formula for Z(x)
that ε−N Kε(x) is large negative if no xi is close to ∂�, |xi − x j | ≥ τ whenever
i 6= j , and |xi − x j | = τ for some i 6= j (provided τ is fixed and small).

Similarly Z(x) can only be large negative on W̃ (see (6)) close to the fat diagonal
and hence Kε(x)≤ c2 implies x ∈ W̃ is close to the fat diagonal.
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