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We classify Willmore hypersurfaces of dimension n≥3 in Rn+1 with two dis-
tinct principal curvatures under Möbius transformation group of Rn+1. We
also characterize conformally flat Willmore hypersurfaces in Rn+1 for n≥ 4
in terms of the hyperelastic curves in two-dimensional real space forms.

1. Introduction

Let f : Mn
→ Rn+1 be an immersed hypersurface without umbilical point. The

Willmore functional W ( f ) is defined by

W ( f )=
( n

n− 1

)n/2
∫

Mn
(|II|2− nH 2)n/2d A,

where II and H denote, respectively, the second fundamental form and the mean
curvature of f , and d A is the volume element of the induced metric (via f )
on Mn . It was shown in [Chen 1974; Wang 1998] that the Willmore functional
is invariant under the Möbius transformation group of Rn+1. The critical points
of the functional W ( f ) are called Willmore hypersurfaces. Recently, the study of
Willmore hypersurfaces has been a topic of increasing interest [Bryant 1984; Guo
et al. 2001; Hertrich-Jeromin 2003; Li 2001; Li 2002; Palmer 1991]. The Euler–
Lagrange equation for Willmore hypersurfaces has been computed in [Wang 1998]
(or it can be found also in [Li 2001]). If n= 2, then we have the classical Willmore
surfaces, and the functional W ( f ) is equivalent to the classical Willmore functional
Wc( f ) =

∫
M2 H 2d A. Willmore himself [1982] conjectured that the minimum of

the functional Wc( f ) for a topological torus is reached in the conformal class of
the Clifford torus and is 2π2.

Let M2(c) denote a two-dimensional real space form of curvature c, and let
γ : I → M2(c) be an immersed curve. The one-dimensional version of Wc( f ) is
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defined by

F(γ )=
∫
γ

(κ2
+ λ)ds,

where s and κ denote, respectively, the arclength parameter and the oriented cur-
vature of γ (s). The critical point of F(γ ) is called elastic curve. If the constant λ
vanishes, the critical point of F(γ ) is called a free elastic curve.

Bernoulli introduced critical curves as a mathematical model for plane elastic
curves, which were later classified by Euler. There have been extensive studies
of elastic curves [Arroyo et al. 1999; 2003; Barros and Garay 1998; Bryant and
Griffiths 1986; Langer and Singer 1984b; Langer and Singer 1984a]. Hertich-
Jeromin [2003] has given the relationship between elastic curves and Willmore
surfaces (or see [Bryant and Griffiths 1986; Langer and Singer 1984a]).

Theorem 1.1 [Hertrich-Jeromin 2003]. A Willmore channel surface is Möbius
equivalent to either

(1) a cylinder over a free elastic curve in a Euclidean 2-plane,

(2) a cone over a free elastic curve in a 2-sphere, or

(3) a surface of revolution over a free elastic curve in a hyperbolic 2-plane.

A channel hypersurface is the envelope f : I × Sn−1
→ Rn+1 of a 1-parameter

family of hypersphere in Rn+1. If it envelopes a sphere congruence S :Mn
→ Sn+2

1
with rank(d S) ≤ 1, then f is called a branched channel hypersurface [Hertrich-
Jeromin 2003].

In [Arroyo et al. 2003], the authors have defined free hyperelastic curves (also
called free r -elastic curves), which are a generalization of the classical elastic
curves. The hyperelastic curves are defined as the critical points of the functional

Fr (γ )=

∫
γ

κr ds.

They also computed the Euler–Lagrange equation for hyperelastic curves, and have
studied the problem of the existence of closed hyperelastic curves.

In this paper, our purpose is to classify the Willmore hypersurfaces with two
distinct principal curvatures. The main theorem of this paper is as follows.

Theorem 1.2. Let f : Mn
→ Rn+1 for n ≥ 3 be a Willmore hypersurface with two

distinct principal curvatures. Then f is locally Möbius equivalent to one of the
following hypersurfaces in Rn+1:

(1) a cylinder over a free n-elastic curve in a Euclidean 2-plane,

(2) a cone over a free n-elastic curve in a 2-sphere,

(3) a rotational hypersurface over a free n-elastic curve in a hyperbolic 2-plane,
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(4) the image of σ of the standard torus Sk(
√
(n− k)/n)× Sn−k(

√
k/n) in Sn+1

for 1< k<n−1. Here σ is the stereographic projection σ : Sn+1
\{(−1, E0)}→

Rn+1.

It is a classical result that a hypersurface of dimension n ≥ 3 in space forms has
a principle curvature of multiplicity at least n − 1 everywhere if and only if it is
conformally flat. Cartan [1917] has given a local classification for conformally flat
hypersurfaces in Rn+1, and proved for n ≥ 4 that f : Mn

→Rn+1 is a conformally
flat immersion if and only if f is a branched channel hypersurface. Thus the
following corollary is a higher-dimensional version of Theorem 1.2.

Corollary 1.3. For n ≥ 4, let f : Mn
→ Rn+1 be a conformally flat Willmore

hypersurface without umbilical point. Then f is locally Möbius equivalent to one
of the following hypersurfaces in Rn+1:

(1) a cylinder over a free n-elastic curve in a Euclidean 2-plane,

(2) a cone over a free n-elastic curve in a 2-sphere,

(3) a rotational hypersurface over a free n-elastic curve in a hyperbolic 2-plane.

Remark 1.3.1. In fact, Theorem 1.2 gives a classification of Willmore hypersur-
faces with two distinct principal curvatures in space forms. Since the Willmore
functional is conformal invariant, the Willmore hypersurfaces in space forms are
equivalent to each other by conformal diffeomorphisms σ−1 and τ ; see [Liu et al.
2001]. Let H n+1 be the (n+1)-dimensional hyperbolic space defined by

H n+1
= {(y0, y1, . . . , yn+1) | −y2

0 + y2
1 + · · ·+ y2

n+1 =−1, y0 > 0}.

The conformal diffeomorphisms σ−1 and τ are defined by

σ−1
: Rn+1

→ Sn+1
\ {(−1, E0)}, σ−1(u)=

(1− |u|2

1+ |u|2
,

2u
1+ |u|2

)
,

τ : H n+1
→ Sn+1

+
⊂ Sn+1, τ (y)=

( 1
y0
,
Ey
y0

)
, y = (y0, Ey) ∈ H n+1,

where Sn+1
+ is the hemisphere in Sn+1 whose the first coordinate is positive.

The paper is organized as follows. In Section 2, we review the elementary facts
about Möbius geometry for hypersurfaces in Rn+1. In Section 3, we present some
examples of Willmore hypersurfaces in terms of the hyperelastic curves in two-
dimensional space forms. In Section 4, we give the proof of Theorem 1.2 and
Corollary 1.3.
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2. Möbius invariants of hypersurfaces in Rn+1

Wang [1998] defined Möbius invariants of submanifolds in Sn+1 and gave a con-
gruence theorem of hypersurfaces in Sn+1. Through the inverse stereographic
projection σ−1, we can regard hypersurfaces in Rn+1 as hypersurfaces in Sn+1.
In this section we define Möbius invariants and give a congruence theorem of
hypersurfaces in Rn+1 in a way similar to [Wang 1998]. See also [Liu et al. 2001].

Let Rn+3
1 be the Lorentz space, that is, Rn+3 with the inner product 〈 · , · 〉 defined

by
〈x, y〉 = −x0 y0+ x1 y1+ · · ·+ xn+2 yn+2

for x = (x0, x1, . . . , xn+2) and y = (y0, y1, . . . , yn+2) ∈ Rn+3.
Let f : Mn

→ Rn+1 be a hypersurface without umbilical point, and let II and
H denote the second fundamental form and the mean curvature of f , respectively.
The Möbius position vector Y : Mn

→ Rn+3
1 of f is

Y = ρ
(1+ | f |2

2
,

1− | f |2

2
, f
)
, where ρ2

=
n

n− 1
(|II|2− nH 2).

Theorem 2.1 [Wang 1998]. Two hypersurfaces f, f̃ : Mn
→ Rn+1 are Möbius

equivalent if and only if there exists T ∈ O(n+ 2, 1) such that Ỹ = Y T .

It follows immediately from Theorem 2.1 that

g = 〈dY, dY 〉 = ρ2d f · d f

is a Möbius invariant, called the Möbius metric of f ; see [Wang 1998].
Let 1 be the Laplacian with respect to g, we define

N =−1
n
1Y − 1

2n2 〈1Y,1Y 〉Y.

Then we have
〈Y, Y 〉 = 0, 〈N , Y 〉 = 1, 〈N , N 〉 = 0.

Let {E1, . . . , En} be a local orthonormal basis for g with dual basis {ω1, . . . , ωn},
If we write Yi = Ei (Y ), then we have

〈Yi , Y 〉 = 〈Yi , N 〉 = 0 and 〈Yi , Y j 〉 = δi j for 1≤ i, j ≤ n.

Let ξ be the mean curvature sphere of f given by

ξ =
(1+ | f |2

2
H + f · en+1,

1− | f |2

2
H − f · en+1, H f + en+1

)
,

where en+1 is the unit normal vector field of f in Rn+1. By direct computations,
we have

〈ξ, Y 〉 = 〈ξ, N 〉 = 〈ξ, Yi 〉 = 0 and 〈ξ, ξ〉 = 1.
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Then {Y, N , Y1, . . . , Yn, ξ} forms a moving frame in Rn+3
1 along Mn . In this

section we will use the range of indices 1 ≤ i, j, k ≤ n. The structure equations
are given by

dY = Yiωi ,

d N = Ai jωi Y j +Ciωiξ,

dYi =−Ai jω j Y −ωi N +ωi j Y j + Bi jω jξ,

dξ =−Ciωi Y −ωi Bi j Y j ,

where ωi j is the connection form of the Möbius metric g and is defined by the
structure equations dωi =ωi j ∧ω j and ωi j +ω j i = 0. Here and henceforth we use
Einstein summation on repeated indices.

The tensors

A= Ai jωi ⊗ω j , 8= Ciωi , B = Bi jωi ⊗ω j

are called the Blaschke tensor, the Möbius form and the Möbius second fundamen-
tal form of f , respectively. The covariant derivatives of Ci , Ai j and Bi j are defined
by

Ci, jω j = dCi +C jω j i ,(1)

Ai j,kωk = d Ai j + Aikωk j + Ak jωki ,(2)

Bi j,kωk = d Bi j + Bikωk j + Bk jωki .(3)

The integrability conditions for the structure equations are given by

Ai j,k − Aik, j = BikC j − Bi j Ck,(4)

Ci, j −C j,i = (Bik Ak j − B jk Aki ), Bi j,k − Bik, j = δi j Ck − δikC j ,(5)

Ri jkl = Bik B jl − Bil B jk + δik A jl + δ jl Aik − δil A jk − δ jk Ail,(6)

Ri j := Rik jk =−Bik Bk j + (tr A)δi j + (n− 2)Ai j ,(7)

Bi i = 0, (Bi j )
2
=

n−1
n
, tr A= Ai i =

1
2n
(1+ n2κ),(8)

where Ri jkl denote the components of the curvature tensor of g and

κ =
1

n(n−1)
Ri j i j

is its normalized Möbius scalar curvature. When n ≥ 3, we know that all coeffi-
cients in the structure equations are determined by {g, B} and we have this:

Theorem 2.2 [Wang 1998]. For n ≥ 3, two hypersurfaces f : Mn
→ Rn+1 and

f̃ : Mn
→ Rn+1 are Möbius equivalent if and only if there exists a diffeomorphism
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ϕ :Mn
→Mn that preserves the Möbius metric and the Möbius second fundamental

form.

The Möbius invariants and Euclidean invariants are related [Liu et al. 2001]:

(9)

Bi j = ρ
−1(hi j − Hδi j ),

Ci =−ρ
−2(ei (H)+ (hi j − Hδi j )e j (log ρ)

)
,

Ai j =−ρ
−2(hessi j (log ρ)− ei (log ρ)e j (log ρ)− Hhi j

)
−

1
2ρ
−2(|∇ log ρ|2+ H 2)δi j ,

where hessi j and ∇ denote, respectively, the Hessian matrix and the gradient with
respect to I = d f · d f . Then

8= ρCiθi , A = ρ2 Ai jθi ⊗ θ j , B = ρ2 Bi jθi ⊗ θ j .

The eigenvalues of (Bi j ) are called the Möbius principal curvatures of f . Clearly
the number of distinct Möbius principal curvatures is the same as that of its dis-
tinct Euclidean principal curvatures. Let {k1, . . . , kn} be the principal curvatures
of f , and {λ1, . . . , λn} the corresponding Möbius principal curvatures. Then the
curvature sphere of principal curvature ki is

ξi = λi Y + ξ =
(1+ | f |2

2
ki + f · en+1,

1− | f |2

2
ki − f · en+1, ki f + en+1

)
.

If 〈ξi , (1,−1, 0, . . . , 0)〉 = 0, then ki = 0. This means that the curvature sphere of
principal curvature ki is a hyperplane in Rn+1.

The second covariant derivative of Bi j is defined by

Bi j,klωl = d Bi j,k + Bl j,kωli + Bil,kωl j + Bi j,lωlk .

We have the Ricci identities

Bi j,kl − Bi j,lk = Bmj Rmikl + Bim Rmjkl .

The generalized Willmore functional W( f ) is the volume functional of the
Möbius metric g given by

W ( f )=
∫

Mn
ρnd A = Volg(M).

See [Guo et al. 2001; Wang 1998]. A critical point of the Willmore functional is
called a Willmore hypersurface.

Theorem 2.3. [Wang 1998] A hypersurface f : Mn
→ Rn+1 is a Willmore hyper-

surface if and only if

Bi j,i j + Bi j B jk Bki + Bi j Ai j = 0.
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Using (5) we have
Bi j, j =−(n− 1)Ci .

Thus the Euler–Lagrange equation is

(10) −(n− 1)Ci,i + Bi j B jk Bki + Bi j Ai j = 0.

3. Some examples of Willmore hypersurfaces in Rn+1

Let M2(c) denote a two-dimensional real space form of curvature c, and suppose
γ : I → M2(c) is a regular curve. For a fixed natural number r , the authors of
[Arroyo et al. 2003] have defined the functional

Fr (γ )=

∫
γ

κr ds,

where s, κ are the arclength parameter, the oriented curvature of γ , respectively.
Critical points of Fr (γ ) are called free r -hyperelastic curves. They also com-
puted the Euler–Lagrange equation for free r -hyperelastic curves. Under suitable
boundary conditions, γ is a free r -hyperelastic curve if and only if the following
Euler–Lagrange equation holds:

(11) r(r − 1)κr−3
(
κκss + (r − 2)κ2

s +
κ4

r
+ c κ2

r−1

)
= 0.

If r = 2, this equation reduces to the classical Euler–Lagrange equation for elastica
in two-dimensional space forms. In this section we will construct some Willmore
hypersurfaces in Rn+1 by free n-elastic curves in space forms.

Example 3.0.1. Let γ : I → R2 be a regular curve, and s denote the arclength
of γ (s). we define hypersurface in Rn+1

f (s, y)= (γ (s), y) : I ×Rn−1
→ Rn+1,

where y :Rn−1
→Rn−1 is the identity map. Clearly the hypersurface f is a cylinder

over the curve γ (s) in Euclidean plane R2.

Theorem 3.1. The cylinder f = (γ (s), y) : I ×Rn−1
→Rn+1 as in Example 3.0.1

is a Willmore hypersurface if and only if γ (s) is a free n-elastic curve in R2.

Proof. The first fundamental form I and the second fundamental form II of the
hypersurface f are

I = ds2
+ IRn−1 and II = κds2,

where κ is the oriented curvature of γ , and IRn−1 is the standard Euclidean metric
of Rn−1.
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Let {e1 = ∂/∂s, e2, . . . , en} be an orthonormal basis of T (I ×Rn−2) with dual
basis {ω1, . . . , ωn}, which consists of principal vectors, and {ωi j } connection forms
with respect to the basis {ω1, . . . , ωn}. Since I ×Rn−2 is a product manifold, we
have

ω1i = 0 for 2≤ i ≤ n.

Under the orthonormal basis {e1, e2, . . . , en}, the coefficients of the second fun-
damental form of the hypersurface f have the diagonal form

(hi j )= diag(κ, 0, . . . , 0).

We assume that the hypersurface f is umbilic-free; locally let κ > 0, so that ρ= κ .
Then the Möbius metric g of the hypersurface f is

g = ρ2 I = κ2(ds2
+ IRn−1).

We write κs = dκ/ds. Since {ρ−1e1, . . . , ρ
−1en} is an orthonormal basis with

respective to g, the coefficients of Möbius invariants of f with respect to the or-
thonormal basis can be obtained from (9) as follows:

(12)

C1 =−
1
κ2 e1(κ)=−

1
κ2 κs, C2 = · · · = Cn = 0;

(Bi j )= diag
(n− 1

n
,
−1
n
, . . . ,

−1
n

)
,

(Ai j )= diag(a1, a2, . . . , a2),

where

a1 =−
κss

κ3 +
3
2
(κs)

2

κ4 +
2n− 1

2n2 and a2 =−
1
2

((κs)
2

κ4 +
1
n2

)
.

Using (1) and (12), we get that

(13) C1,1 =
−κss

κ3 + 2
(κs)

2

κ4 and Ci,i =−C2
1 =−

(κs)
2

κ4 for 2≤ i ≤ n.

From (12) and (13), we have

(14) −(n− 1)Ci,i + Bi j B jk Bki + Bi j Ai j =
(n− 1)2

nκ4

(
κκss + (n− 2)κ2

s +
κ4

n

)
From (10), (11) and (14), we finish the proof of Theorem 3.1. �

Example 3.1.1. Let γ : I → S2(1) ⊂ R3 be a regular curve, and s denote the
arclength of γ (s). We define a hypersurface in Rn+1 by

f (s, t, y)= (tγ (s), y) : I ×R+×Rn−2
→ Rn+1,

where y : Rn−2
→ Rn−2 is the identity map and R+ = {t | t > 0}. We call the

hypersurface f a cone over the curve γ (s) in a 2-sphere.
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Theorem 3.2. The cone f = (tγ (s), y) : I×R+×Rn−2
→Rn+1 as in Example 3.1.1

is a Willmore hypersurface if and only if γ (s) is a free n-elastic curve in a 2-sphere.

Proof. The first fundamental form I and the second fundamental form II of the
hypersurface f are, respectively,

I = t2ds2
+ IRn−1 and II = tκds2,

where κ is the oriented curvature of γ , and IRn−1 is the standard Euclidean met-
ric of Rn−1. Let {e1 = t−1∂/∂s, e2 = ∂/∂t, . . . , en} be an orthonormal basis of
T (I×R+×Rn−2)with dual basis {ω1, . . . , ωn}, which consists of principal vectors.
Let {ωi j } be connection forms with respect to the basis {ω1, ω2, . . . , ωn}. Then

ω1i = 0 for 3≤ i ≤ n and ω12 = e2(log t−1κ)ω1.

Under the orthonormal basis {e1, e2, . . . , en}, the coefficients of the second fun-
damental form of the hypersurface f have the diagonal form

(hi j )= diag(t−1κ, 0, . . . , 0).

We assume that the hypersurface f is umbilic-free; locally let κ >0, so that ρ=κ/t .
Thus the Möbius metric g of the hypersurface f is

g = ρ2 I = κ
2

t2 (t
2ds2
+ IRn−1)= κ2(ds2

+ IHn−1),

where IHn−1 is the standard hyperbolic metric of

Rn−1
+
= {(t, y2, . . . , yn−1) | t > 0} = R+×Rn−2.

Since {ρ−1e1, . . . , ρ
−1en} is an orthonormal basis with respect to g, the coef-

ficients of Möbius invariants of f with respect to the orthonormal basis can be
obtained as follows using (9):

(15)

C1 =−
t
κ2 e1(κ)=−

1
κ2 κs, C2 = · · · = Cn = 0;

(Bi j )= diag
(n−1

n
,
−1
n
, . . . ,

−1
n

)
,

(Ai j )= diag(a1, a2, . . . , a2),

where

a1 =−
κss

κ3 +
3
2
(κs)

2

κ4 +
1

2κ2 +
2n− 1

2n2 and a2 =−
1
2

((κs)
2

κ4 +
1
κ2 +

1
n2

)
.

Using (1) and (15), we get that

(16) C1,1 =−
κss

κ3 + 2
(κs)

2

κ4 and Ci,i =−C2
1 =−

(κs)
2

κ4 for 2≤ i ≤ n.
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From (15) and (16), we have

(17) −(n− 1)Ci,i + Bi j B jk Bki + Bi j Ai j

=
(n− 1)2

nκ4

(
κκss + (n− 2)κ2

s +
κ4

n
+

κ2

n− 1

)
.

From (10), (11) and (17), we finish the proof of Theorem 3.2. �

Example 3.2.1. Let R2
+
= {(x1, x2) ∈ R2

| x2 > 0}. Let γ = (x1, x2) : I → R2
+

be
a regular curve, and denote by s the arclength of γ (s). We define a hypersurface
in Rn+1 by

f : I × Sn−1
→ Rn+1, (x1, x2, θ) 7→ (x1, x2θ),

where θ : Sn−1
→ Rn is a standard immersion of a round sphere. Clearly the

hypersurface f is a rotational hypersurface over the curve γ (s).

Theorem 3.3 [Arroyo et al. 2003]. The rotational hypersurface f = (x1, x2θ) :

I × Sn−1
→ Rn+1 as in Example 3.2.1 is a Willmore hypersurface if and only

if γ (s) is a free n-elastic curve in the Poincare half plane R2
+

endowed with the
hyperbolic metric ds2

= x−2
2 (dx1 · dx1+ dx2 · dx2).

For n = 2, the theorem was proved in [Langer and Singer 1984a], and it was
proved for all other n in [Arroyo et al. 2003]. We will prove it using Möbius
invariants.

Proof of Theorem 3.3. Let R3
1 be the Lorentzian space with the inner product

〈u, u〉 = −u2
1+ u2

2+ u2
3, where u = (u1, u2, u3).

Let H 2
= {u ∈ R3

1 | 〈u, u〉 = −1, u1 > 0} be hyperbolic space. We define the
isometric diffeomorphism

φ : R2
+
→ H 2, (x1, x2) 7→

(1+ x2
1 + x2

2

2x2
,

1− x2
1 − x2

2

2x2
,

x1

x2

)
.

Let α = (x ′1(s), x ′2(s)) and β = (y1, y2) be the unit tangent vector field and the
normal vector field of the curve γ in R2

+
, respectively. For the curve φ(γ (s)) in

hyperbolic space H 2, φ∗(α) and φ∗(β) are, respectively, the unit tangent vector
field and the normal vector field of the curve φ(γ ). Then

(18)

(φ(γ (s)))′ = φ∗(α),

(φ∗(α))
′
= φ(γ (s))+ κφ∗(β),

(φ∗(β))
′
=−κφ∗(α),

where (φ(γ (s)))′ denotes d/ds(φ(γ (s))), and κ denotes the oriented curvature of
the curve φ(γ (s)).
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The unit normal vector field of the hypersurface f in Rn+1 is ξ = x−1
2 (y1, y2φ).

Thus the first fundamental form of the hypersurface f in Rn+1 is

I = d f · d f = x2
2(ds2

+ ISn−1),

where ISn−1 is the standard metric of Sn−1 and the second fundamental form of the
hypersurface f in Rn+1 is

II = (x2κ − y2)ds2
− y2 Isn−1 .

The principal curvatures of the hypersurface f in Rn+1 are

(19)
{ κ

x2
+
−y2

x2
2
,
−y2

x2
2
, . . . ,

−y2

x2
2

}
.

Assume that the hypersurface f is umbilic-free; locally let κ > 0, so that ρ= κ/x2.
Thus the Möbius metric of f is

g = ρ2 I = κ2(ds2
+ ISn−1),

and Möbius position vector of f is

Y =
κ2

x2
2

(1+ x2
1 + x2

2

2
,

1− x2
1 − x2

2

2
, x1, x2θ

)
=
κ2

x2
2

( u1

u1+ u2
,

u2

u1+ u2
,

u3

u1+ u2
,

1
u1+u2

θ
)

= κ2(u1+ u2)(u1, u2, u3, θ).

From (18) and (19), we can obtain the coefficients of Möbius invariants of f under
a local orthonormal basis for g as follows:

(20)

C1 =−κs/κ
2, C2 = · · · = Cn = 0;

(Bi j )= diag
(n− 1

n
,
−1
n
, . . . ,

−1
n

)
,

(Ai j )= diag(a1, a2, . . . , a2),

where

a1 =
κss

κ3 −
5
2
(κs)

2

κ4 −
1

2κ2 +
2n− 1

2n2 and a2 =−
1
2

((κs)
2

κ4 −
1
κ2 +

1
n2

)
.

Using (1) and (20), we get that

(21) C1,1 =−
κss

κ3 + 2
(κs)

2

κ4 and Ci,i =−C2
1 =−

(κs)
2

κ4 for 2≤ i ≤ n.
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From (20) and (21), we have

(22) −(n− 1)Ci,i + Bi j B jk Bki + Bi j Ai j

=
(n− 1)2

nκ4

(
κκss + (n− 2)κ2

s +
κ4

n
−

κ2

n− 1

)
.

From (10), (11) and (22), we finish the proof of Theorem 3.3. �

4. The proof of Theorem 1.2

Lemma 4.1 [Kobayashi and Nomizu 1963]. Let (Mn, g) be a Riemannian mani-
fold, g̃ another Riemannian metric on Mn such that g̃ = ρ2g, where ρ is a positive
smooth function on Mn . Let {e1, . . . , en} be a local orthonormal basis for g with
dual basis {ω1, . . . , ωn}, and {ωi j } be the connection forms with respect to the
basis {ω1, . . . , ωn}. Then {ẽ1 = ρ

−1e1, . . . , ẽn = ρ
−1en} is a local orthonormal

basis for g̃, and {ω̃1 = ρω1, . . . , ω̃n = ρωn} is the dual basis.
If {ω̃i j } are the connection forms with respect to the basis {ω̃1, . . . , ω̃n}, then

ω̃i j = ωi j + ei (log ρ)ω j − e j (log ρ)ωi for 1≤ i, j ≤ n.

For n ≥ 3, let f : Mn
→ Rn+1 be a Willmore hypersurface with two distinct

principal curvatures. We denote by b1 and b2 the Möbius principal curvatures, with
multiplicity k and n− k, respectively. Using (8), we get

b1 =
1
n

√
(n− 1)(n− k)

k
and b2 =−

1
n

√
(n− 1)k

n− k
.

First we assume that the multiplicities of two principal curvatures are greater
than one. We can choose a local orthonormal basis {E1, . . . , En} with respect to
the Möbius metric g of f such that

(Bi j )= diag(b1, . . . , b1, b2, . . . , b2).

Using d Bi j + Bk jωki + Bikωk j = Bi j,kωk , we obtain that

(23)
Bi j,l = 0 for 1≤ i, j ≤ k and 1≤ l ≤ n;

Bαβ,l = 0 for k+ 1≤ α, β ≤ n and 1≤ l ≤ n.

Since the multiplicities of two principal curvatures are each greater than 1, from
(23) we have

C j = Bi i, j − Bi j,i = 0 for 1≤ i, j ≤ k and i 6= j,

Cα = Bββ,α − Bαβ,β = 0 for k+ 1≤ α, β ≤ n and α 6= β.

Thus the Möbius form8 vanishes, so f is a Möbius isoparametric hypersurface. In
[Li et al. 2002], the authors classified such hypersurfaces with two distinct principal
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curvatures in Sn+1. Using the inverse of the stereographic projection σ : Rn+1
→

Sn+1, we have this:

Proposition 4.2 [Li et al. 2002]. For n ≥ 4, let f : Mn
→ Rn+1 be an immersed

hypersurface with two distinct principal curvatures. If the multiplicities of two
principal curvatures are greater than 1, then f is Möbius equivalent to an open
part of one of the following Möbius isoparametric hypersurfaces in Rn+1:

(1) the image under σ of the standard torus Sk(r)× Sn−k(
√

1− r2) in Sn+1 for
1< k < n− 1,

(2) the standard cylinder Sk(1)×Rn−k
⊂ Rn+1 for 1< k < n− 1, or

(3) the image of σ ◦τ of Sk(r)×H n−k(
√

1+ r2) in H n+1 for 1< k < n−1. Here
σ and τ are defined in Remark 1.3.1.

Therefore we have the following results (or see [Guo et al. 2001]).

Proposition 4.3. For n ≥ 4, let f : Mn
→ Rn+1 be a Willmore hypersurface with

two distinct principal curvatures. If the multiplicity of two principal curvatures are
greater than 1, then f is Möbius equivalent to an open part of the image of σ of
the standard torus Sk((n− k)/n)× Sn−k(k/n) in Sn+1 for 1< k < n− 1.

Next we assume that one of principal curvatures is simple, and {k1, k2, . . . , k2}

are the principal curvatures. We can choose a local orthonormal basis {E1, . . . , En}

with respect to the Möbius metric g such that (Bi j )= diag(λ, µ, . . . , µ). From (8),
we can assume that

(Bi j )= diag
(n−1

n
,
−1
n
, . . . ,

−1
n

)
.

In this section we make fix the range of indices according to the convention

1≤ i, j, k ≤ n and 2≤ α, β, γ ≤ n.

Since Bαβ = n−1δαβ , we can choose another local orthonormal basis {E1, . . . , En}

with respect to the Möbius metric g such that

(Bi j )= diag
(n−1

n
,
−1
n
, . . . ,

−1
n

)
and (Ai j )=


A11 A12 A13 · · · A1n

A21 a2 0 · · · 0
A31 0 a3 · · · 0
...

...
...

. . .
...

An1 0 0 · · · an

 .

Let {ω1, . . . , ωn} be the dual basis, and {ωi j } the connection forms.

Lemma 4.4. For n ≥ 3, let f : Mn
→ Rn+1 be a Willmore hypersurface. If f has

two distinct principal curvatures, and one of the principal curvatures is simple,
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then we can choose a local orthonormal basis {E1, . . . , En} with respect to the
Möbius metric g such that

(Bi j )= diag
(n− 1

n
,
−1
n
, . . . ,

−1
n

)
, (Ai j )= diag(a1, a2, . . . , a2),

C2 = · · · = Cn = 0, R1α1α −C1,1+C2
1 = 0,

B1α,α =−C1,Cα,α =−C2
1 , Cα,β = 0, α 6= β.

Moreover, the distribution span{E2, . . . , En} is integrable.

Proof of Lemma 4.4. Using d Bi j + Bk jωki + Bikωk j = Bi j,kωk and (5), we get

(24)
B1α,α =−C1, otherwise Bi j,k = 0;

ω1α =−C1ωα, Cα = 0.

Thus dω1 = 0 and the distribution span{E2, . . . , En} is integrable.
Using dCi +Ckωki = Ci,kωk and (24), we can obtain

(25) Cα,α =−C2
1 , Cα,k = 0 for α 6= k.

From (24),

dω1α =−dC1 ∧ωα −C1dωα =−dC1 ∧ωα −C2
1ω1 ∧ωα −C1ωγ ∧ωγα,

and from dω1α −ω1 j ∧ω jα =−
1
2 R1αklωk ∧ωl , we get that

(26) R1α1α = C1,1−C2
1 , R1αβα −C1,β = 0.

Since R1α1α = −(n− 1)/n2
+ a1+ aα = C1,1−C2

1 and R1αβα = A1β for α 6= β;
thus we have

(27) a2 = a3 = · · · = an and A1β = C1,β .

Now we assume that f is a Willmore hypersurface, using (10), that is,

−(n− 1)Ci,i + b3
i + bi ai = 0,

and (25) and (26), we get that

a1− a2 = nC1,1− n(n− 1)C2
1 −

n−2
n
,

a1+ a2 = C1,1−C2
1 +

n−1
n2 .

Thus we have

(28)
a1 =

n+ 1
2

C1,1−
n2
− n+ 1

2
C2

1 −
n2
− 3n+ 1

2n2 ,

a2 = −
n− 1

2
C1,1+

n2
− n− 1

2
C2

1 +
n2
− n− 1
2n2 .
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Using d Aαβ + Akβωkα + Aαkωkβ = Aαβ,kωk and Cα = 0 we get that

(29)

Eβ(a2)= Aαα,β = Aαβ,α =−A1βC1 for α 6= β,

Aαβ,1 = 0 and Aαβ,γ = 0 for α 6= β, β 6= γ, α 6= γ,

E1(a2)= Aαα,1 = Aββ,1, A1α,α = Aαα,1−
C1

n
= Aββ,1−

C1

n
= A1β,β .

Similarly we have

(30)
A1α,k = Ek(A1α)+ A1βωβα(Ek) for k 6= α,

A1α,α = Eα(A1α)− (a1− a2)C1+ A1βωβα(Eα),

and

(31)
C1,αk = Ek(C1,α)+C1,βωβα(Ek) for k 6= α,

C1,αα = Eα(C1,α)− (C1,1−Cα,α)C1+C1,βωβα(Eα),

Since A1α = C1,α, from (30) and (31) we get

(32) A1α,k = C1,αk for k 6= α and C1,αβ = A1α,β = 0 for α 6= β.

From (28), (29), (32) and dC1,1+Ck,1ωk1+C1,kωk1 = C1,1kωk we get that

C1,1α = A1α,1 = (2n− 1)C1,αC1.

From (29) and d A1α,β+ Akα,βωk1+ A1k,βωkα+ A1α,kωkβ = A1α,βkωk we get that

(33) A1α,β1 = 0 for α 6= β.

Similarly we have

(34) A1α,1β =−(2n− 1)C1,αC1,β for α 6= β.

Using (33), (34) and the Ricci identity we get that

−(2n− 1)C1,αC1,β = A1α,1β − A1α,β1 = A1βRβα1β =−A1β A1α =−C1,αC1,β .

Thus there exist at least n − 2 coefficients in {C1,α} such that C1,α = 0. If there
exists a C1,α 6= 0, we can assume that

C1,2 6= 0,C1,3 = · · · = C1,n = 0.

Thus
A12 6= 0, A1,3 = · · · = A1,n = 0.

From d A1α + Akαωk1+ A1kωkα = A1α,kωk , we have

(35)
A1α,k = Ek(A1α)+ (a1− a2)ω1α(Ek)+ A12ω2α(Ek),

A1α,α =−(a1− a2)C1+ A12ω2α(Eα) for α 6= 2.
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From (24), (29) and (35) we get that

ω2α(E1)= 0, ω2α(E2)= 0 and ω2α(Eβ)= 0 for α 6= β.

Thus we assume that

(36) ω2α = ψωα for α 6= 2,

where ψ is local function on Mn .
From (24) and (36) we obtain

[E1, E2] = C1 E2.

Using (24), (36) and dω2α −ω2m ∧ωkα =−
1
2 R2αklωk ∧ωl we derive that

(37) E1(ψ)= ψC1− A12 and E2(ψ)=−ψ
2
−C2

1 − R2α2α.

From (29) and (35), we derive that

(38) E2(A12)= A12ψ, E1(A12)= A12,1 = A11,2 = (2n− 1)C1C1,2.

From (30), (38) and [E1, E2](A12)= C1 A12, we get that

−2nC2
1,2 = 0.

This is a contradiction, so

C1,2 = C1,3 = · · · = C1,n = 0

and
A12 = A13 = · · · = A1n = 0.

From (29) and (30) we get that

(39) E1(a2)= Aαα,1 =
(

a2− a1+
1
n

)
C1 and Eα(a1)= Eα(a2)= 0.

From (24), (25), (26) and (27), we finish the proof of Lemma 4.4. �

Now we choose the local orthonormal basis {E1, . . . , En} as in Lemma 4.4,
which consists of principal vectors. Then {Y, N , Y1, . . . , Yn, ξ} forms a moving
frame in Rn+3

1 along Mn . We define

F =−1
n

Y + ξ, X1 =−C1Y − Y1, P =−a2Y + N +C1 X1+
1
n

F.

Clearly F is the curvature sphere of principal curvature k2 of multiplicity n− 1.
Let K = 2a2+C2

1 + 1/n2. By direct computations, we have

(40)
〈F, X1〉 = 0, 〈F, P〉 = 0, 〈X1, P〉= 0,

〈F, F〉 = 〈X1, X1〉 = 1, 〈P, P〉 = −K .
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From Lemma 4.4, (39) and the structure equations of f we derive that

(41)

E1(F)= X1, Eα(F)= 0,

E1(X1)= P − F, Eα(X1)= 0,

E1(P)= C1 P + K X1, Eα(P)= 0.

Thus subspace V = span{F, X1, P} is fixed along Mn . From (39) we get that

(42) E1(K )= 2C1K and Eα(K )= 0.

Using theory of linear first order differential equations for K , formula (42) implies
that K ≡ 0 or K 6= 0 on an open subset U ⊂ Mn . Therefore we have to consider
three cases that K = 0 on Mn , that K < 0 on Mn , and that K > 0 on Mn .

Theorem 1.2 is proved in the next three propositions, one for each case.

Proposition 4.5. For n ≥ 3, let f : Mn
→ Rn+1 be a Willmore hypersurface with

two distinct principal curvatures, of which one is simple. Under the local orthonor-
mal basis {E1, . . . , En}, if K = 2a2+C2

1 + 1/n2
= 0, then f is Möbius equivalent

to a cylinder over a free n-elastic curve in a Euclidean 2-plane.

Proof. Since K = 0, we have 〈P, P〉 = 0. From (41), we know that P is of fixed
direction. From (40), up to a Möbius transformation we can write

P = ν(1,−1, 0, . . . , 0) for ν ∈ C∞(U ),

V = span{F, X1, P}

= span{(1,−1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), (0, 0, 0, 1, 0, . . . , 0)}

= R3
0.

Since f : Mn
→ Rn+1 has principal curvatures (k1, k2, . . . , k2) and

〈P, F〉 = 〈(1,−1, 0, . . . , 0), F〉 = 0 and 〈X1, P〉 = 0,

we have

(43) k2 = 0 and C1ρ+ E1(ρ)= 0, that is, E1(log ρ)=−C1.

From definition of F , X1 and P , we get that Yα ⊥ V ; thus 〈P, Yα〉 = 0, and

(44) Eα(ρ)= 0, that is, Eα(log ρ)= 0.

Let {ei =ρEi , 1≤ i ≤n}; then {e1, . . . , en} is a local orthonormal basis with respect
to the first fundamental form d f ·d f . Let {ω̃1, . . . , ω̃n} be the dual basis and {ω̃i j }

connection forms with respect to the basis {ω̃1, . . . , ω̃n}. Then from Lemma 4.1,
(24), (43) and (44) we get

ω̃1α = 0.
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Therefore hypersurface f : Mn
→ Rn+1 is Möbius equivalent to the hypersurface

given by Example 3.0.1. Since f is a Willmore hypersurface, from Theorem 3.1
we finish the proof. �

Proposition 4.6. For n ≥ 3, let f : Mn
→ Rn+1 be a Willmore hypersurface with

two distinct principal curvatures, one of which is simple. Under the local orthonor-
mal basis {E1, . . . , En}, if K = 2a2+C2

1 + 1/n2 < 0, then f is Möbius equivalent
to a cone over a free n-elastic curve in a 2-sphere.

Proof. Since K < 0, we know 〈P, P〉 is positive. From (40), up to a Möbius
transformation we can write

V = span{F, X1, P}

= span{(0, 0, 1, 0, . . . , 0), (0, 0, 0, 1, 0, . . . , 0), (0, 0, 0, 0, 1, 0, . . . , 0)}

= R3.

Thus
e = (1,−1, 0, . . . , 0)⊥ V .

Since f : Mn
→ Rn+1 has principal curvatures (k1, k2, . . . , k2) and

〈e, F〉 = 〈e, X1〉 = 0,

we have

(45) k2 = 0 and C1ρ+ E1(ρ)= 0, that is, E1(log ρ)=−C1.

Setting

T =−a2Y − N +C1Y1−
1
n
ξ, P = P

√
−K

, θ =
T
√
−K

,

we have

(46)
〈P, P〉 = 1, 〈θ, θ〉 = −1,

θ ⊥ V = R3, 〈θ, Yα〉 = 0 for θ ∈ Rn
1.

From Lemma 4.4, (39), (41) and the structure equations of f , we derive that

(47) E1(θ)= 0 and Eα(θ)=
√
−K Yα.

Since P + T =−K Y , we have

Y = 1
√
−K

(P, θ) ∈ Rn+3
1 = R3

×Rn
1.

Since the distribution span{E2, . . . , En} is integrable from (41), (46) and (47), the
map Y factors through a conformal diffeomorphism θ from the space of leaves V
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of this foliation to H n−1. Thus

P : I → S2
⊂ R3 and θ : H n−1

→ Rn
1.

From (9), we get ρ2
= k2

1 . Since k2= 0, we may assume that k1> 0, and ρ= k1.
Using Lemma 4.1, (9) and (45), the Möbius metric of f is

g = 〈dY, dY 〉 = k2
1(ds2

+ IHn−1).

and under the local orthonormal basis {E1, . . . , En}, the Möbius second funda-
mental form of f is

(Bi j )= diag
(n−1

n
,
−1
n
, . . . ,

−1
n

)
.

From Theorem 2.2, we know that the hypersurface f : Mn
→ Rn+1 is Möbius

equivalent to the hypersurface given by Example 3.1.1. Since f is a Willmore
hypersurface, the claim follows from Theorem 3.2. �

Proposition 4.7. For n ≥ 3, let f : Mn
→ Rn+1 be a Willmore hypersurface with

two distinct principal curvatures, on which is simple. Under the local orthonormal
basis {E1, . . . , En}, if K = 2a2+C2

1 + 1/n2 > 0, then f is Möbius equivalent to a
rotational hypersurface over a free n-elastic curve in a hyperbolic 2-plane.

Proof. Since K > 0, we know 〈P, P〉 is negative. From (40), up to a Möbius
transformation we can write

V = span{F, X1, P}

= span{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0)}

= R3
1.

Thus e = (1,−1, 0, . . . , 0) ∈ V , and from 〈e, Yα〉 = 0 we get that

Eα(ρ)= 0.

setting

T =−a2Y − N +C1Y1−
1
n
ξ, P = P

√
K
, θ =

T
√

K
.

Then

(48)
〈P, P〉 = −1, 〈θ, θ〉 = 1,

θ ⊥ V = R3
1, 〈θ, Yα〉 = 0, θ ∈ Rn.

From Lemma 4.4, (39), (41) and the structure equations of f we derive that

(49) E1(θ)= 0 and Eα(θ)=−
√

K Yα.
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Since P + T =−K Y , we have

Y = 1
−
√

K
(P, θ) ∈ Rn+3

1 = R3
1×Rn.

Since the distribution span{E2, . . . , En} is integrable from (41), (48) and (49), the
map Y factors through a conformal diffeomorphism θ from the space of leaves V
of this foliation to Sn−1. Thus

P : I → H 2
⊂ R3

1 and θ : Sn−1
→ Rn.

Write P = (u1, u2, u3) ∈ H 2; then

Y =
u1+ u2

−
√

K

( u1

u1+ u2
,

u2

u1+ u2
,

u3

u1+ u2
,

1
u1+u2

θ
)
.

Then the hypersurface f : I × Sn−1
→ Rn+1 is

f =
( u3

u1+ u2
,

1
u1+u2

θ
)
.

Using φ−1
: H 2
→ R2

+
, we know that the hypersurface f : Mn

→ Rn+1 is Möbius
equivalent to the hypersurface given by Example 3.2.1. Since f is a Willmore
hypersurface, the claim follows from Theorem 3.3. �

Theorem 1.2 follows from Propositions 4.5, 4.6 and 4.7. �
If the hypersurface f : Mn

→ Rn+1 with n ≥ 4 and without umbilical point
is conformally flat, then f has two distinct principal curvatures, one of which is
simple. Therefore Corollary 1.3 is proved by Theorem 1.2.

Remark. The circle S1(
√
(n− 1)/n) with radius

√
(n− 1)/n is a closed free n-

elastic curve with constant oriented curvature in the Poincare half plane R2
+

. The
rotational hypersurface over the circle S1(

√
(n− 1)/n) is the image of σ of the

standard torus S1(
√
(n− 1)/n)× Sn−1(

√
1/n).
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