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We give here an alternate construction for the previously studied parallel
transport associated with a superconnection, having the advantage that it is
independent of the way the superconnection splits as a connection part plus
a bundle-endomorphism valued form.

Consider, as in Section 4 of [Dumitrescu 2008] (the paper in the title), a super-
connection A in the sense of Quillen (see [Quillen 1985] and [Berline et al. 1992])
on a Z/2-graded vector bundle E over a manifold M . That is,

A :�∗(M, E)→�∗(M, E)

is an odd first-order differential operator satisfying the Leibniz rule

A(ω⊗ s)= dω⊗ s±ω⊗A(s),

where ω ∈ �∗(M) is a differential form on M and s ∈ 0(M; E) is an arbi-
trary section of the bundle E over M . For such a superconnection we defined
in [Dumitrescu 2008] a notion of parallel transport along (families of) superpaths
c : S × R1|1

→ M that is compatible under glueing of superpaths. Let us briefly
recall this construction. First, we write A=A1+A, where A1=∇ is the connection
part of the superconnection A and A ∈ �∗(M, End E)odd is the linear part of the
superconnection. For an arbitrary superpath c in M , consider the diagram

E
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c∗Eoo

vv

��

π∗E

ff

��

M S×R1|1coo

c̃vvm m m m m

5TM
π

ff
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where c̃ is a canonical lift (defined in [ibid., Section 4.1]) of the path c to 5TM ,
the “odd tangent bundle” of M . Parallel transport along c was defined by parallel
sections ψ ∈ 0(c∗E) along c that are solutions to the differential equation

(c∗∇)Dψ − (c̃∗A)ψ = 0.

Here D= ∂θ+θ∂t denotes the standard (right-invariant) vector field on R1|1 [ibid.,
Section 2.4].

To describe our alternate construction, we first write A = A0 + Ā, where A0

denotes the zero part of the superconnection and Ā the remaining part. Then we
define a connection ∇̄ on the bundle π∗E over 5TM as follows. For pullback
sections s ∈ 0(M; E) we set

∇̄LX s := ιX Ās, ∇̄ιX s := 0.

Here, for a vector field X on the manifold M , LX and ιX denote the Lie derivative
respectively contraction in the X -direction acting as even respectively odd deriva-
tions on�∗(M)=C∞(5TM), i.e. as vector fields on5TM . For arbitrary sections
of π∗E

0(5TM, π∗E)=�∗(M)⊗C∞(M) 0(M, E)

we extend the connection ∇̄ by the Leibniz rule

∇̄LX (ω⊗ s)= LXω⊗ s±ω⊗ ιX Ās, ∇̄ιX (ω⊗ s)= ιXω⊗ s,

whenever ω ∈ �∗(M) and s ∈ 0(M; E). These relations are enough to define a
connection ∇̄ on the bundle π∗E over 5TM since the algebra of vector fields on
5TM is generated over C∞(5TM) by vector fields of the type LX and ιX , where
X denotes an arbitrary vector field on M , i.e.

V ect (5TM)= C∞(5TM)〈LX , ιX | X ∈ Vect(M)〉.

Parallel transport along a superpath c : S×R1|1
→ M is then defined by paral-

lel sections ψ ∈ 0(c∗E) along c which are solutions to the following differential
equation

(c̃∗∇̄)Dψ − (c∗A0)ψ = 0

where the lift c̃ of c is defined as before. As in our previous construction, the
parallel transport is well-defined [ibid., Proposition 4.2] by this “half-order” dif-
ferential equation. Moreover, it is compatible under glueing of superpaths; that
is, it satisfies properties (i) and (ii) in [ibid., Theorem 4.3]. The advantage of this
construction resides in the fact that the parallel transport so defined is invariant
under the various ways in which a superconnection can be written as a sum of a
connection plus a linear part, as the Ā part of the superconnection A which gives
rise to the connection ∇̄ is invariant under such splittings.
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Denote by δ the de Rham differential on 5TM . If ω is a function on 5TM , the
1-form δω on 5TM evaluated on the standard odd vector field d on 5TM gives

(δω)(d)= dω,

the exterior derivative of ω, understood as a function on5TM . Therefore we have

∇̄ds = Ās,

for any s a section of the bundle E over M . We remark that the connection ∇̄ is
torsion free in the odd directions, i.e.,

[∇̄ιX , ∇̄ιY ] = ∇̄[ιX ,ιY ]

(and both sides are of course equal to zero). Here X and Y denote arbitrary vector
fields on the manifold M .

Remarks. (1) The two constructions of parallel transport associated to a supercon-
nection presented above coincide when the superconnection on the bundle E over
M reduces to an ordinary connection (has no linear part). When the manifold M is
just a point, a graded vector bundle with superconnection reduces to a Z/2-vector
space V together with an odd endomorphism A (= A0) of V . In this situation the
two constructions of parallel transport also coincide, giving rise to the supergroup
homomorphism of [Stolz and Teichner 2004, Example 3.2.9]:

R1|1
3 (t, θ) 7−→ e−t A2

+θ A
∈ GL(V ),

encoding the solutions to the half-order differential equation Dψ = Aψ .

(2) The superconnection can be recovered from its associated parallel transport,
as was the case with our previous construction. First, one recovers the zero part
A0 of the superconnection A by considering constant superpaths in M . One then
recovers Ā by looking at parallel transport along the superpath given by

R1|1
×5TM→ R0|1

×5TM→ M,

where the first map is the obvious projection and the second map is the standard
superpoint evaluation map. The lift of such a superpath to 5TM is given by the
composition

R1|1
×5TM→ R0|1

×5TM→5TM,

where the first map is the projection as before and the second map expresses the
flow of the vector field d on 5TM (since d2

= 0, the flow of d is given by an R0|1-
action). Given that the push-forward of the vector field D along the projection
map R1|1

→ R0|1 is the vector field d on R0|1 and that ∇̄ds = Ās, the parallel
transport equation recovers Ā. Compare with Section 4.4 of [Dumitrescu 2008],
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where we first obtained the connection part by taking an inverse adiabatic limit and
afterwards the linear part of the superconnection.
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