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Measure homology was introduced by Thurston in his notes about the ge-
ometry and topology of 3-manifolds, where it was exploited in the com-
putation of the simplicial volume of hyperbolic manifolds. Zastrow and
Hansen independently proved that there exists a canonical isomorphism
between measure homology and singular homology (on the category of CW-
complexes), and it was then shown by Löh that, in the absolute case, such
isomorphism is in fact an isometry with respect to the L1-seminorm on sin-
gular homology and the total variation seminorm on measure homology.
Löh’s result plays a fundamental rôle in the use of measure homology as a
tool for computing the simplicial volume of Riemannian manifolds.

This paper deals with an extension of Löh’s result to the relative case. We
prove that relative singular homology and relative measure homology are
isometrically isomorphic for a wide class of topological pairs. Our results
can be applied for instance in computing the simplicial volume of Riemann-
ian manifolds with boundary.

Our arguments are based on new results about continuous (bounded) co-
homology of topological pairs, which are probably of independent interest.

1. Introduction

Measure homology was introduced in [Thurston 1979], where it was exploited in
the proof that the simplicial volume of a closed hyperbolic n-manifold is equal to
its Riemannian volume divided by a constant only depending on n (this result is
attributed in [Thurston 1979] to Gromov). In order to rely on measure homology,
it is necessary to know that this theory “coincides” with the usual real singular
homology, at least for a large class of spaces. The proof that measure homology
and real singular homology of CW-pairs are isomorphic has appeared in [Hansen
1998; Zastrow 1998]. However, in order to exploit measure homology as a tool for
computing the simplicial volume, one has to show that these homology theories are
not only isomorphic, but also isometric (with respect to the seminorms introduced
below). In the absolute case, this result is achieved in [Löh 2006]. Our paper is
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devoted to extending Löh’s result to the context of relative homology of topological
pairs. As mentioned in [Fujiwara and Manning 2011, Appendix A] and [Löh 2007,
Remark 4.22], such an extension seems to raise difficulties that suggest that Löh’s
argument should not admit a straightforward translation into the relative context.
For a detailed account about the notion of measure homology and its applications
see, e.g., the introductions of [Zastrow 1998; Berlanga 2008].

In order to achieve our main results, we develop some aspects of the theory of
continuous bounded cohomology of topological pairs. More precisely, we compare
such theory with the usual bounded cohomology of pairs of groups and spaces.
Park [2003] provided the algebraic foundations to the theory of relative bounded
cohomology, extending Ivanov’s [1985] homological algebra approach to the rela-
tive case. However, Park endows the bounded cohomology of a pair of spaces with
a seminorm which is a priori different from the seminorm considered in this paper.
In fact, the most common definition of simplicial volume is based on a specific L1-
seminorm on singular homology, whose dual is just the L∞-seminorm on bounded
cohomology defined in [Gromov 1982, Section 4.1]. This seminorm does not co-
incide a priori with Park’s seminorm, so our results cannot be deduced from Park’s
arguments. More precisely, it is shown in [Park 2003, Theorem 4.6] that Gromov’s
and Park’s norms are bi-Lipschitz equivalent (see Theorem 6.1 below). In [Park
2003, page 206] it is stated that it remains unknown if this equivalence is actually an
isometry. In Section 6 we answer this question in the negative, providing examples
showing that Park’s and Gromov’s seminorms indeed do not coincide in general.

1A. Relative singular homology of pairs. Let X be a topological space and W ⊆
X a (possibly empty) subspace of X . For n ∈ N we denote by Cn(X) the module
of singular n-chains with real coefficients, i.e., the R-module freely generated by
the set Sn(X) of singular n-simplices with values in X . The natural inclusion of
W in X induces an inclusion of Cn(W ) into Cn(X), and we denote by Cn(X,W )

the quotient space Cn(X)/Cn(W ). The usual differential of the complex C∗(X)
defines a differential d∗ : C∗(X,W )→C∗−1(X,W ). The homology of the resulting
complex is the usual relative singular homology of the topological pair (X,W ), and
will be denoted by H∗(X,W ).

The real vector space Cn(X,W ) can be endowed with a natural L1-norm, as
follows. If α ∈ Cn(X,W ), then

‖α‖1 = inf
{ ∑
σ∈Sn(X)

|aσ | , where α =
[ ∑
σ∈Sn(X)

aσσ
]

in Cn(X)/Cn(W )

}
.

Such a norm descends to a seminorm on Hn(X,W ), which is defined as follows:
if [α] ∈ Hn(X,W ), then

‖[α]‖1 = inf{‖β‖1 | β ∈ Cn(X,W ), dnβ = 0, [β] = [α]}



MEASURE HOMOLOGY AND BOUNDED COHOMOLOGY OF PAIRS 93

(this seminorm can be null on nonzero elements of Hn(X,W )). Of course, we
recover the absolute homology modules of X just by setting Hn(X)= Hn(X,∅).

1B. Relative measure homology of pairs. We now recall the definition of relative
measure homology of the pair (X,W ). We endow Sn(X) with the compact-open
topology and denote by Bn(X) the σ -algebra of Borel subsets of Sn(X). If µ is a
signed measure on Bn(X) (in this case we say for short that µ is a Borel measure
on Sn(X)), the total variation of µ is defined by the formula

‖µ‖m = sup
A∈Bn(X)

µ(A)− inf
B∈Bn(X)

µ(B) ∈ [0,+∞]

(the subscript m stands for measure). For every n ≥ 0, the measure chain module
Cn(X) is the real vector space of the Borel measures on Sn(X) having finite total
variation and admitting a compact determination set. The graded module C∗(X)
can be given the structure of a complex via the boundary operator

∂n : Cn(X) → Cn−1(X),
µ 7→

∑n
j=0(−1) jµ j ,

where µ j is the push-forward of µ under the map that takes a simplex σ ∈ Sn(X)
into the composition of σ with the usual inclusion of the standard (n−1)-simplex
onto the j-th face of σ .

Let now W be a (possibly empty) subspace of X . It is proved in [Zastrow 1998,
Proposition 1.10] that the σ -algebra Bn(W ) of Borel subsets of Sn(W ) coincides
with the set {A∩ Sn(W ) | A ∈ Bn(X)}. For every µ ∈ Cn(W ), the assignment

ν(A)= µ(A∩ Sn(W )), A ∈ Bn(X),

defines a Borel measure on Sn(X), which is called the extension of µ. If µ has
compact determination set and finite total variation then the same is true for ν, so
that we have a natural inclusion Cn(W ) ↪→Cn(X) (see [Zastrow 1998, Proposition
1.10 and Lemma 1.11] for full details). The image of Cn(W ) in Cn(X) will be sim-
ply denoted by Cn(W ), and coincides with the set of the elements of Cn(X) which
admit a compact determination set contained in Sn(W ). We denote by Cn(X,W )

the quotient Cn(X)/Cn(W ).
It is readily seen that ∂n(Cn(W ))⊆Cn−1(W ), so ∂n induces a boundary operator

Cn(X,W )→ Cn−1(X,W ), which will still be denoted by ∂n . The homology of
the complex (C∗(X,W ), ∂∗) is the relative measure homology of the pair (X,W ),
and it is denoted by H∗(X,W ).

Just as in the case of singular homology, we may endow Hn(X,W ) with a semi-
norm as follows. For every α ∈ Cn(X,W ) we set

‖α‖m = inf {‖µ‖m, where µ ∈ Cn(X), [µ] = α in Cn(X,W )= Cn(X)/Cn(W )} .
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Then, for every [α] ∈Hn(X,W ) we set

‖[α]‖mh = inf{‖β‖m | β ∈ Cn(X,W ), ∂nβ = 0, [β] = [α]}

(the subscript mh stands for measure homology). The absolute measure homology
module Hn(X) can be defined just by setting Hn(X)=Hn(X,∅).

1C. Relative singular homology versus relative measure homology. For every
σ ∈ Sn(X) let us denote by δσ the atomic measure supported by the singleton
{σ } ⊆ Sn(X). The chain map

ι∗ : C∗(X,W ) → C∗(X,W ),∑k
i=0 aiσi 7→

∑k
i=0 aiδσi

induces a map

Hn(ι∗) : Hn(X,W )→Hn(X,W ), n ∈ N,

which is obviously norm-nonincreasing for every n ∈ N.

Theorem 1.1 [Zastrow 1998; Hansen 1998]. Let (X,W ) be a CW-pair. For every
n ∈ N, the map

Hn(ι∗) : Hn(X,W )→Hn(X,W )

is an isomorphism.

Zastrow’s and Hansen’s proofs of Theorem 1.1 are based on the fact that rel-
ative measure homology satisfies the Eilenberg–Steenrod axioms for homology
(on suitable categories of topological pairs). Therefore, their approach avoids the
explicit construction of the inverse maps Hn(ι∗)

−1, n ∈N, and does not give much
information about the behavior of such inverse maps with respect to the seminorms
introduced above. In the case when W = ∅, the fact that Hn(ι∗) is indeed an
isometry was proved by Löh:

Theorem 1.2 [Löh 2006]. If X is any connected CW-complex, then for every n ∈N

the map
Hn(ι∗) : Hn(X)→Hn(X)

is an isometric isomorphism.

Löh’s proof of Theorem 1.2 exploits deep results about the bounded cohomology
of groups and topological spaces. In Section 3 and Section 4 we develop a suitable
relative version of such results, which we use on page 125 to prove this:

Theorem 1.3. Let (X,W ) be a CW-pair, and let us suppose that the following
conditions hold:

(1) X (whence W ) is countable, and both X and W are connected;
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(2) the map π j (W )→ π j (X) induced by the inclusion W ↪→ X is injective for
j = 1, and it is an isomorphism for j ≥ 2.

Then, for every n ∈ N the isomorphism

Hn(ι∗) : Hn(X,W )→Hn(X,W )

is isometric.

In fact, we will deduce Theorem 1.3 from Theorem 1.7 below concerning the
relationships between continuous (bounded) cohomology and singular (bounded)
cohomology of topological pairs.

Definition 1.4. A CW-pair (X,W ) is good if it satisfies conditions (1) and (2) in
the statement of Theorem 1.3.

We conjecture that Theorem 1.3 holds even without the hypothesis that the pair
(X,W ) is good, so a brief comment about the places where this assumption comes
into play is in order. The fact that W is connected and π1-injective in X allows
us to exploit results regarding the bounded cohomology of a pair (G, A), where
G is a group and A is a subgroup of G. In order to deal with the case when W is
not assumed to be π1-injective, one could probably build on results regarding the
bounded cohomology of a pair (G, A), where A,G are groups and ϕ : A→ G is
a homomorphism of A into G. This case is treated in [Park 2003] by means of
a mapping cone construction. However, the mapping cone introduced there does
not admit a norm inducing Gromov’s seminorm in bounded cohomology, so Park’s
approach seems to be of no help to our purposes. Perhaps it is easier to drop from
the hypotheses of Theorem 1.3 the requirement that W be connected (provided that
we still assume that every component of W is π1-injective in X ). Several arguments
in our proofs make use of cone constructions which are based on the choice of a
basepoint in the universal coverings X̃ , W̃ of X , W . When W is connected (and
π1-injective in X ), the space W̃ is realized as a connected subset of X̃ , and this
allows us to define compatible cone constructions on X̃ and W̃ . It is not clear
how to replace these constructions when W is disconnected: one could probably
build on the theory of homology and cohomology of a group with respect to any
system of subgroups, as described for instance in [Bieri and Eckmann 1978] (see
also [Mineyev and Yaman 2007]), but several difficulties arise which we have not
been able to overcome. Finally, the assumption that πi (W ) is isomorphic to πi (X)
for every i ≥ 2 plays a fundamental rôle in our proof of Proposition 4.7 below.
One could get rid of this assumption by using a result stated without proof in [Park
2003, Lemma 4.2], but at the moment we are not able to provide a proof for Park’s
statement (see Remark 4.9 for a brief discussion of this issue).
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1D. Locally convex pairs. We are able to prove that measure homology is isomet-
ric to singular homology also for a large family of pairs of metric spaces, namely
for those pairs which support a relative straightening for simplices.

The straightening procedure for simplices was introduced in [Thurston 1979],
and establishes an isometric isomorphism between the usual singular homology of
a space and the homology of the complex of straight chains. Such a procedure
was originally defined on hyperbolic manifolds, and has then been extended to the
context of nonpositively curved Riemannian manifolds. In Section 2 we give the
precise definition of locally convex pair of metric spaces. Then, following some
ideas described in [Löh and Sauer 2009], for every locally convex pair (X,W )

we define a straightening procedure which induces a chain map between relative
measure chains and relative singular chains. It turns out that such a straightening
induces a well-defined norm-nonincreasing map Hn(X,W )→ Hn(X,W ). This
map provides the desired norm-nonincreasing inverse of Hn(ι∗), so that we can
prove (in Section 2D) the following:

Theorem 1.5. Let (X,W ) be a locally convex pair of metric spaces. Then the map

Hn(ι∗) : Hn(X,W )→Hn(X,W )

is an isometric isomorphism for every n ∈ N.

The class of locally convex pairs is indeed quite large, including for example
all the pairs (M, ∂M), where M is a nonpositively curved complete Riemannian
manifold with geodesic boundary ∂M .

Remark 1.6. Suppose that (X,W ) is a locally convex pair, and let K be a con-
nected component of W . An easy application of a metric version of Cartan–
Hadamard theorem (see [Bridson and Haefliger 1999, II.4.1]) shows that π1(K )
injects into π1(X), and πi (K )=πi (X)= 0 for every i ≥ 2. In particular, if (X,W )

is also a countable CW-pair and W is connected, then (X,W ) is good, and the
conclusion of Theorem 1.5 also descends from Theorem 1.3. Note however that
the request that W be connected could be quite restrictive in several applications
of our results. For example, it is well-known that the natural compactification of a
complete finite-volume hyperbolic manifold with geodesic boundary and/or cusps
is a manifold with boundary N admitting a locally CAT(0) (whence locally convex)
metric that turns the pair (N , ∂N ) into a locally convex pair (see [Bridson and
Haefliger 1999, pages 362–366], for example). We have discussed in [Frigerio and
Pagliantini 2010] some properties of the simplicial volume of such manifolds, and
in that context several interesting examples have in fact disconnected boundary. In
[Pagliantini 2012] it is shown how to apply Theorem 1.5 for getting shorter proofs
of the main results of [Frigerio and Pagliantini 2010].
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1E. (Continuous) relative bounded cohomology. As mentioned above, our proof
of Theorem 1.3 involves the study of the relative bounded cohomology of topo-
logical pairs. Introduced in [Gromov 1982], the relative bounded cohomology
of pairs (of groups or spaces) seems to be less clearly understood than absolute
bounded cohomology. Here below we define the continuous (bounded) coho-
mology of topological pairs, and we put on (continuous) bounded cohomology
Gromov’s L∞-seminorm which is “dual” (in a sense to be specified below) to the
seminorm on (measure) homology described above. Then, in Section 4 we com-
pare the continuous bounded cohomology of a good CW-pair to its usual singular
bounded cohomology (see Theorem 1.7 below). In Section 5 we show how this
result implies Theorem 1.3.

Let us now state more precisely our results. For every n ∈ N we denote by
Cn(X) and Cn(X,W ) the algebraic duals of Cn(X) and Cn(X,W ) (that is, the
respective modules of singular n-cochains with real coefficients). We will often
identify Cn(X,W ) with a submodule of Cn(X) via the canonical isomorphism

Cn(X,W )∼= { f ∈ Cn(X) | f |Cn(W ) = 0}.

If δ∗ : C∗(X,W ) → C∗+1(X,W ) is the usual differential, the homology of the
complex (C∗(X,W ), δ∗) is the relative singular cohomology of the pair (X,W ),
and it is denoted by H∗(X,W ).

We regard Sn(X) as a subset of Cn(X), so that for every cochain ϕ∈Cn(X,W )⊆

Cn(X) it makes sense to consider the restriction ϕ|Sn(X). In particular, we say that
ϕ is continuous if ϕ|Sn(X) is (recall that Sn(X) is endowed with the compact-open
topology). If we set

C∗c (X,W )= {ϕ ∈ C∗(X,W ) |ϕ is continuous},

then it is readily seen that δn(Cn
c (X,W )) ⊆ Cn+1

c (X,W ), so C∗c (X,W ) is a sub-
complex of C∗(X,W ), whose homology is denoted by H∗c (X,W ).

We now come to the definition of (continuous) bounded cohomology. We endow
Cn(X,W ) with the L∞-norm defined by

‖ f ‖∞ = sup
σ∈Sn(X)

| f (σ )| ∈ [0,∞], f ∈ Cn(X,W ),

and introduce the following submodules of C∗(X,W ):

C∗b (X,W )= { f ∈ C∗(X,W ) | ‖ f ‖∞ <∞},

C∗cb(X,W )= C∗b (X,W )∩C∗c (X,W ).

The coboundary map δn is bounded, so C∗b (X,W ) (resp. C∗cb(X,W )) is a sub-
complex of C∗(X,W ) (resp. of C∗c (X,W )). Its homology is denoted by H∗b (X,W )

(resp. H∗cb(X,W )), and it is called the bounded cohomology (resp. continuous
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bounded cohomology) of (X,W ). The L∞-norm on C∗(X,W ) descends (after
suitable restrictions) to a seminorm on each of the modules H∗(X,W ), H∗c (X,W ),
H∗b (X,W ), H∗cb(X,W ). These seminorms will still be denoted by ‖ · ‖∞. The
inclusion maps

ρ∗b : C
∗

cb(X,W ) ↪→ C∗b (X,W ), ρ∗ : C∗c (X,W ) ↪→ C∗(X,W )

induce maps

H∗(ρ∗b ) : H
∗

cb(X,W )→ H∗b (X,W ), H∗(ρ∗) : H∗c (X,W )→ H∗(X,W ),

that are a priori neither injective nor surjective.
We are now ready to state our main result about (continuous) bounded coho-

mology of pairs, which is proved in Section 4E:

Theorem 1.7. Let (X,W ) be a good CW-pair. Then the map

H n(ρ∗b ) : H
n
cb(X,W )→ H n

b (X,W )

admits a right inverse which is an isometric embedding (in particular, H n(ρ∗b ) is
surjective) for every n ∈ N.

In the absolute case, when W = ∅, Theorem 1.7 is proved in [Frigerio 2011,
Theorem 1.2]. In order to prove Theorem 1.7 we suitably develop the theory of
relative bounded cohomology of pairs of groups. In particular, our Theorem 4.1
implies the following result, which is maybe of independent interest (see Section 3
for the definition of H∗b (G, A), where G is a group and A is a subgroup of G):

Theorem 1.8. Let (X,W ) be a countable CW-pair. Also suppose that X,W are
connected, and that the map π1(W )→ π1(X) induced by the inclusion W ↪→ X is
injective. Then for every n ∈ N there exists a norm-nonincreasing isomorphism

H n
b (π1(X), π1(W ))→ H n

b (X,W ).

If in addition the pair (X,W ) is good, then this isomorphism is isometric.

In Section 4F we show how Theorem 1.7 and [Frigerio 2011, Theorem 1.1] can
be exploited to prove the following:

Theorem 1.9. Let (X,W ) be a locally finite good CW-pair. Then the map

H n(ρ∗) : H n
c (X,W )→ H n(X,W )

is an isometric isomorphism for every n ∈ N.
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2. The case of locally convex pairs

The following definitions can be found for instance in [Bridson and Haefliger
1999]. Let (X, d) be a metric space (when d is fixed, we denote (X, d) simply
by X ). A geodesic segment in X is an isometric embedding of a bounded closed
interval into X . The metric d (or the metric space X = (X, d)) is geodesic if every
two points in X are joined by a geodesic segment (in particular, X is path-connected
and locally path connected). Moreover, d (or X = (X, d)) is globally convex if it
is geodesic and if any two geodesic segments c1 : [0, a] → X , c2 : [0, a] → X
such that c1(0) = c2(0) satisfy the condition d(c1(ta), c2(ta)) ≤ td(c1(a), c2(a))
for every t ∈ [0, 1] (and in this case, X is contractible, see Lemma 2.1 below). We
say that d (or X = (X, d)) is locally convex if every point in X has a neighborhood
in which the restriction of d is convex (in particular, it is geodesic). A subspace
Y ⊆ X is convex if every geodesic segment (in X ) joining any two points of Y is
entirely contained in Y (in particular, if X is geodesic, then Y is path-connected).

Suppose that X is geodesic, complete and locally convex. Then it is locally
contractible, hence it admits a universal covering p : X̃ → X . We endow X̃
with the length metric induced by p, that is, the unique length metric d̃ such
that p : (X̃ , d̃) → (X, d) is a local isometry (see [Bridson and Haefliger 1999,
Proposition I.3.25]). Since (X, d) is complete and geodesic, the same is true for
(X̃ , d̃). Moreover, the Cartan–Hadamard theorem for metric spaces (see [loc. cit.,
II.4.1]) implies that the space (X̃ , d̃) is globally convex.

Let W be any subset of X . We say that (X,W ) is a locally convex pair of metric
spaces (or simply a locally convex pair) if the following conditions hold:

(1) X is geodesic, complete and locally convex;

(2) W is closed in X and locally path-connected;

(3) every path-connected component of p−1(W )⊆ X̃ is convex in X̃ .

Throughout the whole section we denote by (X,W ) a locally convex pair of
metric spaces, we fix a universal covering p : X̃ → X (where X̃ is endowed with
the induced metric), and we denote by W̃ the subset p−1(W )⊆ X̃ (on the contrary,
in Section 4 we will denote by W̃ a fixed connected component of p−1(W )).

2A. Straight simplices. In order to properly define straight simplices we first need
the following result, which is an immediate consequence of the Cartan–Hadamard
theorem for metric spaces:

Lemma 2.1 [Bridson and Haefliger 1999, II.4.1]. For every pair of points p, q ∈ X̃
there exists a unique geodesic segment in X̃ joining p to q. Moreover, if αp,q :

[0, 1] → X̃ is a constant-speed parametrization of such a segment, then αp,q con-
tinuously depends (with respect to the compact-open topology) on p and q. In
particular, X̃ is contractible.
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For i ∈ N we denote by ei the point (0, 0, . . . , 1, . . . , 0, 0, . . .) ∈ RN where
the unique nonzero coefficient is at the i-th entry (entries are indexed by N, so
(1,0, . . .)= e0). We denote by 1p the standard p-simplex, that is, the convex hull
of e0, . . . , ep, and we observe that with these notations we have 1p ⊆1p+1.

Let k ∈ N, and let x0, . . . , xk be points in X̃ . We recall here the well-known
definition of straight simplex [x0, . . . , xk] ∈ Sk(X̃) with vertices x0, . . . , xk : if
k = 0, then [x0] is the 0-simplex with image x0; if straight simplices have been
defined for every h ≤ k, then [x0, . . . , xk+1] : 1k+1 → X̃ is determined by the
following condition: for every z ∈ 1k ⊆ 1k+1, the restriction of [x0, . . . , xk+1]

to the segment with endpoints z, ek+1 is a constant speed parametrization of the
geodesic joining [x0, . . . , xk](z) to xk+1 (the fact that [x0, . . . , xk+1] is well-defined
and continuous is an immediate consequence of Lemma 2.1).

2B. Nets. Let 0∼= π1(X) be the group of covering automorphisms of p : X̃→ X ,
and observe that, since p is a local isometry, every element of 0 is an isometry
of X̃ .

Definition 2.2. A net in X̃ is given by a subset 3̃⊆ X̃ and a locally finite collection
of Borel sets {B̃x}x∈3̃ such that the following conditions hold:

(1) X̃ =
⋃

x∈3̃ B̃x and B̃x ∩ B̃y =∅ for every x, y ∈ 3̃ with x 6= y.

(2) γ (3̃)= 3̃ for every γ ∈ 0 and γ (B̃x)= B̃γ (x) for every x ∈ 3̃, γ ∈ 0.

(3) If K̃ is a path-connected component of W̃ , then K̃ ⊆
⋃

x∈3̃∩K̃ B̃x .

Lemma 2.3. There exists a net.

Proof. For every q ∈ X let us denote by Uq an evenly covered open neighborhood
of q in X (with respect to the universal covering X̃ → X ). Since W is closed and
locally path-connected, we may also suppose that W∩Uq is path-connected. Being
metrizable, X is paracompact, so the open covering {Uq}q∈X admits a locally finite
open refinement {Vi }i∈I . Now fix a total ordering � on I in such a way that i � j
whenever Vi ∩W 6=∅ and V j ∩W =∅, and let us set

Bi = Vi \

(⋃
j≺i

V j

)
.

By construction, the family {Bi }i∈I is locally finite in X . Moreover, every Bi is the
intersection of an open set and a closed set, so it is a Borel subset of X . Therefore,
up to replacing I with the subset {i ∈ I | Bi 6= ∅}, the family {Bi }i∈I provides a
locally finite cover of X by nonempty Borel sets. For every i ∈ I let us choose
xi ∈ Bi in such a way that xi ∈W whenever Bi∩W 6=∅, and let us set3=

⋃
i∈I {xi }.

We also set Bxi = Bi for every i ∈ I .
We now define 3̃= p−1(3). For every i ∈ I we choose an element x̃i ∈ p−1(xi ),

and we take qi ∈ X in such a way that Bxi ⊆Uqi . Being evenly covered, Uqi lifts to
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the disjoint union p−1(Uqi )=
⋃
γ∈0 γ (Ũqi ), where Ũqi is the connected component

of p−1(Uqi ) containing x̃i .
We are now ready to define B̃x , where x is any element of 3̃. In fact, every x ∈ 3̃

uniquely determines an index i ∈ I and an element γ ∈ 0 such that x = γ (x̃i ), and
we can set B̃x = γ (Ũqi ∩ p−1(Bxi )). Of course B̃x is a Borel subset of X̃ .

It is now easy to check that the pair
(
3̃, {B̃x}x∈3̃

)
provides a net: the local

finiteness of the family {B̃x , x ∈ 3̃} readily descends from the fact p is a covering
and {Bx , x ∈3} is locally finite in X , and conditions (1) and (2) of Definition 2.2
are an obvious consequence of our choices. We now show that condition (3) also
holds. We fix x ∈ 3̃ such that W̃ ∩ B̃x 6=∅. By construction we have x ∈ W̃ , and
there exist γ ∈ 0 and i ∈ I such that B̃x ⊆ γ (Ũqi ). Our assumption that Uq ∩W is
path-connected implies that γ (Ũqi )∩ W̃ is also path-connected, so the set B̃x ∩ W̃
is entirely contained in the path-connected component of W̃ containing x , whence
the conclusion. �

2C. Straightening. We are now ready to define our straightening operator. Let(
3̃, {B̃x}x∈3̃

)
be a net. We denote by S3̃n (X̃)⊆ Sn(X̃) the set of straight n-simplices

in X̃ with vertices in 3̃. Then we let s̃trn : Cn(X̃)→ Cn(X̃) be the unique linear
map such that for σ̃ ∈ Sn(X̃)

s̃trn(σ̃ )= [x0, . . . , xn] ∈ S3̃n (X̃),

where xi ∈ 3̃ is such that σ̃ (ei ) ∈ B̃xi for i = 0, . . . , n.

Proposition 2.4. The map s̃tr∗ :C∗(X̃)→C∗(X̃) satisfies the following properties:

(1) dn+1 ◦ s̃trn+1 = s̃trn ◦ dn+1 for every n ∈ N.

(2) s̃trn(γ ◦ σ̃ )= γ ◦ s̃trn(σ̃ ) for every n ∈ N, γ ∈ 0, σ̃ ∈ Sn(X̃).

(3) s̃tr∗(C∗(W̃ ))⊆ C∗(W̃ ).

(4) The induced chain map C∗(X̃ , W̃ )→C∗(X̃ , W̃ ), which we will still denote by
s̃tr∗, is 0-equivariantly homotopic to the identity.

Proof. If x0, . . . , xn ∈ X̃ , then it is easily seen that for every i ≤ n the i-th
face of [x0, . . . , xn] is given by [x0, . . . , x̂i , . . . , xn]; moreover since isometries
preserve geodesics we have γ ◦ [x0, . . . , xn] = [γ (x0), . . . , γ (xn)] for every γ ∈
Isom(X̃). Together with property (2) in the definition of net, these facts readily
imply points (1) and (2) of the proposition.

If σ̃ ∈ Sn(W̃ ), then all the vertices of σ̃ lie in the same connected component
K̃ of W̃ . By property (3) in the definition of net, the vertices of s̃trn(σ̃ ) still lie in
K̃ . Since (X,W ) is a locally convex pair, the subset K̃ is convex in X̃ , so s̃trn(σ̃ )

belongs to Sn(W̃ ), whence (3).
Finally, for σ̃ ∈ Sn(X̃), let Fσ̃ : 1n × [0, 1] → X̃ be defined by Fσ̃ (x, t) =

βx(t), where βx : [0, 1]→ X̃ is the constant-speed parametrization of the geodesic
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segment joining σ̃ (x) with s̃tr(σ̃ )(x). We set Tn(σ̃ ) = (Fσ̃ )∗(c), where c is the
standard chain triangulating the prism 1n × [0, 1] by (n+ 1)-simplices. The fact
that dn+1Tn + Tn−1dn = Id− s̃trn is now easily checked, while the 0-equivariance
of T∗ is a consequence of property (2) of nets together with the fact that geodesics
are preserved by isometries. As above, the fact that Tn(Cn(W̃ )) ⊆ Cn+1(W̃ ) is a
consequence of the convexity of the components of W̃ . �

Let 3 = p(3̃), and let S3
∗
(X) be the subset of S∗(X) given by those singular

simplices which are obtained by composing a simplex in S3̃
∗
(X̃) with the covering

projection p. As a consequence of Proposition 2.4 we get the following:

Proposition 2.5. The map s̃tr∗ induces a chain map str∗ : C∗(X,W )→ C∗(X,W )

which is homotopic to the identity.

Remark 2.6. The maps s̃tr∗, str∗ obviously depend on the net chosen for their
construction. Such a dependence is however somewhat inessential in our arguments
below. Henceforth we understand that a net

(
3̃, {B̃x}x∈3̃

)
is fixed, and we denote

by s̃tr∗, str∗ the corresponding straightening operators.

We are now ready to construct a chain map θ∗ : C∗(X,W )→ C∗(X,W ) whose
induced map in homology will provide the desired norm-nonincreasing inverse of
H∗(ι∗).

Fix a simplex σ ∈ S3n (X). It is readily seen that the set str−1
n (σ ) is a Borel subset

of Sn(X). Therefore, for every measure µ ∈ Cn(X) it makes sense to set

cσ (µ)= µ(str−1
n (σ )) ∈ R.

Lemma 2.7. For every measure µ ∈ Cn(X), the set

{σ ∈ S3n (X) | cσ (µ) 6= 0}

is finite.

Proof. Since µ admits a compact determination set, it is sufficient to show that the
family {str−1

n (σ ), σ ∈ S3n (X)} is locally finite in Sn(X). So, let us take σ0 ∈ Sn(X),
and let σ̃0 ∈ Sn(X̃) be a lift of σ0 to X̃ . For every j = 0, . . . , n, let Zi be an
open neighborhood of σ̃0(ei ) that intersects only a finite number of B̃xi ’s, and let
�̃ ⊆ Sn(X̃) be the set of n-simplices whose i-th vertex belongs to Zi for every
i = 0, . . . , n. Then �̃ is an open neighborhood of σ̃0 in Sn(X̃).

Let pn : Sn(X̃)→ Sn(X) be the map taking every σ̃ ∈ Sn(X̃) into p ◦ σ̃ . It is
proved in [Frigerio 2011, Lemma A.4] (see also [Löh 2006]) that pn is a covering,
whence an open map, so � = pn(�̃) is an open neighborhood of σ0 in Sn(X).
Moreover, by construction the set strn(�) = strn(pn(�̃)) = pn(s̃trn(�̃)) is finite,
whence the conclusion. �
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By Lemma 2.7 we can define the map

θn : Cn(X)→ Cn(X), θn(µ)=
∑

σ∈S3n (X)

cσ (µ)σ.

Lemma 2.8. (1) θn ◦ ∂n+1 = dn+1 ◦ θn+1 for every n ∈ N.

(2) θn(Cn(W ))⊆ Cn(W ) for every n ∈ N.

(3) ‖θn(µ)‖1 ≤ ‖µ‖m for every µ ∈ Cn(X), n ∈ N.

Proof. Point (1) is a direct consequence of the fact that str∗ is a chain map.
Since strn(Cn(W ))⊆Cn(W ), if σ ∈ S3n (X)\Sn(W ), then str−1

n (σ )∩Sn(W )=∅.
Therefore, ifµ∈Cn(W )⊆Cn(X), then cσ (µ)=µ(str−1

n (σ ))=0, whence point (2).
Point (3) is a consequence of the fact that, if {Z j } j∈J is a finite collection of

pairwise disjoint Borel subsets of Sn(X), then
∑

j∈J |µ(Z j )| ≤ ‖µ‖m. �

2D. Concluding the proof of Theorem 1.5. As a consequence of Lemma 2.8, the
map θ∗ : C∗(X)→ C∗(X) induces norm-nonincreasing maps

θ∗ : C∗(X,W )→ C∗(X,W ), H∗(θ∗) :H∗(X,W )→ H∗(X,W ).

Since we have already seen that H∗(ι∗) : H∗(X,W )→ H∗(X,W ) is a norm-non-
increasing isomorphism, in order to prove that H∗(ι∗) is an isometry it is sufficient
to show that Hn(θ∗) ◦ Hn(ι∗) is the identity of Hn(X,W ) for every n ∈ N. How-
ever, we have from the very definitions that θn ◦ ιn = strn for every n ∈ N, so the
conclusion follows from Proposition 2.5.

3. Relative bounded cohomology of groups

Let us recall some basic definitions and results about the bounded cohomology of
groups. For full details we refer the reader to [Gromov 1982; Ivanov 1985; Monod
2001]. Henceforth, we denote by G a fixed group, which has to be thought as
endowed with the discrete topology.

Definition 3.1 [Ivanov 1985; Monod 2001]. A Banach G-module is a Banach
space V with a (left) action of G such that ‖g · v‖ ≤ ‖v‖ for every g ∈ G and
every v ∈ V . A G-morphism of Banach G-modules is a bounded G-equivariant
linear operator.

From now on we refer to a Banach G-module simply as a G-module.

3A. Relative injectivity. A bounded linear map ι : A → B of Banach spaces is
strongly injective if there is a bounded linear map σ : B → A with ‖σ‖ ≤ 1 and
σ ◦ ι = IdA (in particular, ι is injective). We emphasize that, even when A and B
are G-modules, the map σ is not required to be G-equivariant.
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Definition 3.2. A G-module E is relatively injective if for every strongly injective
G-morphism ι : A→ B of Banach G-modules and every G-morphism α : A→ E
there is a G-morphism β : B→ E satisfying β ◦ ι= α and ‖β‖ ≤ ‖α‖.

0 // A ι
//

α

��

B

β��

σ
uu

E

3B. Resolutions. A G-complex (or simply a complex) is a sequence of G-modules
E i and G-maps δi

: E i
→ E i+1 such that δi+1

◦ δi
= 0 for every i , where i runs

over N∪ {−1}:

0→ E−1 δ−1

−→ E0 δ0

−→ E1 δ1

−→ . . .
δn

−→ En+1 δn+1

−→ . . .

Such a sequence will often be denoted by (E∗, δ∗).
A G-chain map (or simply a chain map) between G-complexes (E∗, δ∗E) and

(F∗, δ∗F ) is a sequence of G-maps {αi
: E i
→ F i

| i ≥ −1} such that δi
F ◦ α

i
=

αi+1
◦δi

E for every i ≥−1. If α∗, β∗ are chain maps between (E∗, δ∗E) and (F∗, δ∗F )
which coincide in degree −1, a G-homotopy between α∗ and β∗ is a sequence of
G-maps {T i

: E i
→ F i−1

| i ≥ 0} such that δi−1
F ◦ T i

+ T i+1
◦ δi

E = α
i
− β i for

every i ≥ 0, and T 0
◦ δ−1

E = 0. We recall that, according to our definition of G-
maps, both chain maps between G-complexes and G-homotopies between such
chain maps have to be bounded in every degree.

A complex is exact if δ−1 is injective and ker δi+1
= Im δi for every i ≥−1. A G-

resolution (or simply a resolution) of a G-module E is an exact G-complex (E∗, δ∗)
with E−1

= E . A resolution (E∗, δ∗) is relatively injective if En is relatively
injective for every n ≥ 0.

A contracting homotopy for a resolution (E∗, δ∗) is a sequence of linear maps
ki
: E i
→ E i−1 such that ‖ki

‖ ≤ 1 for every i ∈ N, δi−1
◦ ki
+ ki+1

◦ δi
= IdE i if

i ≥ 0, and k0
◦ δ−1

= IdE .

0 // E−1
δ−1

// E0
δ0

//

k0
ss

E1
δ1

//

k1
tt . . .

k2
tt

δn−1
// En

δn
//

kn
tt . . .

kn+1
tt

Note however that it is not required that ki be G-equivariant. A resolution is
strong if it admits a contracting homotopy.

The following result can be proved by means of standard homological algebra
arguments (see [Ivanov 1985] and [Monod 2001, Lemmas 7.2.4 and 7.2.6]).

Proposition 3.3. Let α : E→ F be a G-map between G-modules, let (E∗, δ∗E) be
a strong resolution of E , and suppose (F∗, δ∗F ) is a G-complex such that F−1

= F
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and F i is relatively injective for every i ≥ 0. Then α extends to a chain map α∗,
and any two extensions of α to chain maps are G-homotopic.

3C. Absolute bounded cohomology of groups. If E is a G-module, we denote by
EG
⊆ E the submodule of G-invariant elements in E .

Let (E∗, δ∗) be a relatively injective strong resolution of the trivial G-module
R (such a resolution exists, see Section 3D). Since coboundary maps are G-maps,
they restrict to the G-invariant submodules of the E i ’s. Thus ((E∗)G, δ∗|) is a
subcomplex of (E∗, δ∗). A standard application of Proposition 3.3 now shows that
the isomorphism type of the homology of ((E∗)G, δ∗|) does not depend on the
chosen resolution (while the seminorm induced on such homology module by the
norms on the E i ’s could depend on it). What is more, there exists a canonical
isomorphism between the homology of any two such resolutions, which is induced
by any extension of the identity of R. For every n ≥ 0, we now define the n-
dimensional bounded cohomology module H n

b (G) of G as follows: if n ≥ 1, then
H n

b (G) is the n-th homology module of the complex ((E∗)G, δ∗|), while if n = 0
then H n

b (G)= ker δ0 ∼= R.

3D. The standard resolution. For every n ∈N, let Bn(G) be the space of bounded
real maps on Gn+1. We endow Bn(G) with the supremum norm and with the
diagonal action of G defined by (g · f )(g0, . . . , gn)= f (g−1g0, . . . , g−1gn), thus
defining on Bn(G) a structure of G-module. For n ≥ 0 we define δn

: Bn(G)→
Bn+1(G) by setting:

δn( f )(g0, g1, . . . , gn+1)=

n+1∑
i=0

(−1)i f (g0, . . . , ĝi , . . . , gn+1).

Moreover, we let B−1(G) = R be the trivial G-module, and we define δ−1
: R→

B0(G) by setting δ−1(t)(g)= t for every g ∈G. The complex (B∗(G), δ∗) admits
the following contracting homotopy:

(1) vn
: Bn(G)→ Bn−1(G), vn( f )(g0, . . . , gn−1)= f (e, g0, . . . , gn−1)

(for n = 0 we understand that v0( f )= f (e) ∈R= B−1(G) for every f ∈ B0(G)).
Therefore, the complex (B∗(G), δ∗) provides a strong resolution of the trivial G-
module R, and we will see in Proposition 3.5 below that such a resolution is also
relatively injective. In fact, the complex (B∗(G), δ∗) is usually known as the stan-
dard resolution of the trivial G-module R.

Remark 3.4. We briefly compare our notion of standard resolution with Ivanov’s
and Monod’s ones. In [Ivanov 1985], for every n ∈N the set Bn(G) is denoted by
B(Gn+1), and is turned into a Banach G-module by the action g · f (g0, . . . , gn)=
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f (g0, . . . , gn · g). Moreover, the sequence of modules B(Gn), n ∈ N, is equipped
with a structure of G-complex

0→ R
d−1
−→ B(G)

d0
−→ B(G2)

d1
−→ · · ·

dn
−→ B(Gn+2)

dn+1
−→ · · · ,

where d−1(t)(g)= t and

dn( f )(g0, . . . , gn+1)

= (−1)n+1 f (g1, . . . , gn+1)+

n∑
i=0

(−1)n−i f (g0, . . . , gi gi+1, . . . , gn+1)

for every n≥ 0 (here we are using Ivanov’s notation also for the differential). Now,
it is readily seen that Ivanov’s resolution is isomorphic to our standard resolution
via the isometric G-chain isomorphism ϕ∗ : B∗(G)→ B(G∗+1) defined by

ϕn( f )(g0, . . . , gn)= f (g−1
n , g−1

n g−1
n−1, . . . , g−1

n g−1
n−1 · · · g

−1
1 g−1

0 );

its inverse is given by

(ϕn)−1( f )(g0, . . . , gn)= f (g−1
n gn−1, g−1

n−1gn−2, . . . , g−1
1 g0, g−1

0 ).

We observe that our contracting homotopy (1) is conjugated by ϕ∗ into Ivanov’s
contracting homotopy [1985] for the complex (B(G∗), d∗).

Our notation is much closer to Monod’s one. In fact, in [Monod 2001] the more
general case of a topological group G is addressed, and the n-th module of the
standard G-resolution of R is inductively defined by setting

C0
b(G,R)= Cb(G,R), Cn

b (G,R)= Cb(G,Cn−1
b (G,R)),

where Cb(G, E) denotes the space of continuous bounded maps from G to the
Banach space E . However, as observed in [Monod 2001, Remarks 6.1.2 and 6.1.3],
the case when G is an abstract group may be recovered from the general case just
by equipping G with the discrete topology. In that case, our notion of standard
resolution coincides with Monod’s. (See also [Monod 2001, Remark 7.4.9].)

Proposition 3.5 [Ivanov 1985; Monod 2001]. The standard resolution of R as a
G-module is relatively injective and strong.

Proof. We have already shown that the standard resolution is strong. The fact that
it is also relatively injective is proved in [Monod 2001, Proposition 4.4.1] (see also
Remark 7.4.9 of the same reference). Alternatively, since our standard resolution is
isometrically isomorphic to Ivanov’s one (see Remark 3.4), the relative injectivity
of the standard resolution may be deduced from [Ivanov 1985, Lemma 3.2.2]. �

The seminorm induced on H∗b (G) by the standard resolution is called the canon-
ical seminorm. It is shown in [Ivanov 1985] that the canonical seminorm coincides
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with the infimum of all the seminorms induced on H∗b (G) by any relatively injective
strong resolution of the trivial G-module R (see also Proposition 3.10 below).

3E. Relative bounded cohomology of groups. Let A be a subgroup of G. Hence-
forth, whenever E is a G-module we understand that E is endowed also with the
natural structure of A-module induced by the inclusion of A in G.

Definition 3.6 [Park 2003, Definitions 3.1 and 3.5]. Let (U∗, δ∗U ) be a relatively
injective strong G-resolution of the trivial G-module R and (V ∗, δ∗V ) be a relatively
injective strong A-resolution of the trivial A-module R. By Proposition 3.3, the
identity of R may be extended to an A-chain map λ∗ : U∗ → V ∗. The pair of
resolutions (U∗, δ∗U ), (V

∗, δ∗V ), together with the chain map λ∗, provides a pair of
resolutions for (G, A;R). We say that such a pair is

(1) allowable, if the chain map λ∗ commutes with the contracting homotopies of
(U∗, δ∗U ) and (V ∗, δ∗V );

(2) proper, if the map λn restricts to a surjective map λ̂n
: (U n)G → (V n)A for

every n ∈ N.

We denote by ker(U n
→ V n) the kernel of λn . It is readily seen that the module

ker(U n
→ V n)G ⊆ (U n)G coincides with the kernel of λ̂n .

If the pair of resolutions (U∗, δ∗U ), (V
∗, δ∗V ) is proper, there exists an exact

sequence

0 // ker(U n
→ V n)G // (U n)G

λ̂n
// (V n)A // 0,

which induces the long exact sequence

· · · // H n−1
b (A) // H n(ker(U∗→ V ∗)G) // H n

b (G) // H n
b (A) // · · ·

As observed in [Park 2003], if the pair (U∗, δ∗U ), (V
∗, δ∗V ) is also allowable,

then the isomorphism type of H n(ker(U∗→ V ∗)G) does not depend on the chosen
proper allowable pair of resolutions (see also Proposition 3.10 below). Such a
module is called the n-th bounded cohomology group of the pair (G, A), and it is
denoted by H n

b (G, A).

3F. The standard pair of resolutions. The following result is proved in [Park
2003, Propositions 3.1 and 3.18], and shows that, just as in the absolute case,
there exists a canonical proper allowable pair of resolutions for (G, A;R). Strictly
speaking, Park’s notion of standard pair of resolutions is different from ours, since
it is based on Ivanov’s definition of standard resolution. However, the isomorphism
described in Remark 3.4 translates Park’s results into the following:
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Proposition 3.7. The standard resolutions B∗(G) and B∗(A) of the trivial G- and
A-module R, together with the obvious restriction map B∗(G)→ B∗(A), provide
a proper allowable pair of resolutions for (G, A;R).

The seminorm induced on H∗b (G, A;R) by this resolution is called the canonical
seminorm. In order to save some words, from now on we fix the following notation:

Bn(G, A)= ker(Bn(G)→ Bn(A)).

3G. Morphisms of pairs of resolutions. Let (U∗, δ∗U ), (V
∗, δ∗V ) and (E∗, δ∗E),

(F∗, δ∗F ) be pairs of resolutions for (G, A;R). A morphism between such pairs
is a pair of chain maps (α∗G, α

∗

A) such that:

(1) α∗G :U
∗
→ E∗ (resp. α∗A : V

∗
→ F∗) is a G-chain map (resp. an A-chain map)

extending the identity of R = U−1
= E−1 (resp. the identity of R = V−1

=

F−1);

(2) for every n ∈ N, the following diagram commutes

U n //

αn
G

��

V n

αn
A

��

En // Fn,

where the horizontal rows represent the A-morphisms involved in the defini-
tion of a pair of resolutions.

By condition (2), if (α∗G, α
∗

A) is a morphism of pairs of resolutions, then α∗G
restricts to a chain map

α∗G,A : ker(U∗→ V ∗)→ ker(E∗→ F∗),

which induces in turn a map

H∗(α∗G,A) : H
∗(ker(U∗→ V ∗)G)→ H∗(ker(E∗→ F∗)G).

Proposition 3.8. If the pairs of resolutions

(U∗, δ∗U ), (V
∗, δ∗V ) and (E∗, δ∗E), (F

∗, δ∗F )

are proper, the map H∗(α∗G,A) is an isomorphism.

Proof. Our hypothesis ensures that we have the commutative diagram

· · · H n−1((V ∗)A) //

Hn−1(α∗A)

��

H n(ker(U∗→V ∗)G) //

Hn(α∗G,A)

��

H n((U∗)G) //

Hn(α∗G)

��

H n((V ∗)A) · · ·

Hn(α∗A)

��

· · · H n−1((F∗)A) // H n(ker(E∗→F∗)G) // H n((E∗)G) // H n((F∗)A) · · ·
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The discussion carried out in Section 3C implies that the vertical arrows corre-
sponding to H∗(α∗G) and H∗(α∗A) are isomorphisms, so the conclusion follows
from the Five Lemma. �

Remark 3.9. At the moment we are not able to prove either that every two proper
allowable pairs of resolutions for (G, A;R) are related by a morphism of pairs of
resolutions, or that any two such morphisms induce the same map in cohomol-
ogy. In fact, whenever two proper allowable pairs of resolutions are given, using
Proposition 3.3 one can easily construct the needed chain maps α∗G and α∗A. How-
ever, some troubles arise in proving that such chain maps can be chosen so to fulfill
condition (2) in the above definition of morphism of pairs of resolutions. Despite
these difficulties, the results proved in Propositions 3.8 and 3.10 are sufficient to
our purposes.

Also observe that in the statement of Proposition 3.8 we do not require the
involved pairs of resolutions to be allowable. However, allowability plays a fun-
damental rôle in constructing a morphism of pairs of resolutions between any
generic proper allowable pair of resolutions and the standard pair of resolutions
(see Proposition 3.10 below), and in getting explicit bounds on the norm of such a
morphism.

The following result shows that, just as in the absolute case, the bounded co-
homology of (G, A) is computed by any proper allowable pair of resolutions for
(G, A;R). Moreover, the canonical seminorm coincides with the infimum of all
the seminorms induced on H∗b (G, A) by any such pair of resolutions.

Proposition 3.10. Let (U∗, δ∗U ), (V
∗, δ∗V ) be a proper allowable pair of resolutions

for (G, A;R). Then there exists a morphism (α∗G, α
∗

A) between this pair of reso-
lutions and the canonical pair of resolutions introduced in Section 3F. Moreover,
one may choose α∗G , α∗A in such a way that the induced map

H∗(α∗G,A) : H
∗(ker(U∗→ V ∗)G)→ H∗(B∗(G, A)G)∼= H∗b (G, A)

is a norm-nonincreasing isomorphism.

Proof. Let k∗G and k∗A be the contracting homotopies of (U∗, δ∗U ) and (V ∗, δ∗V ),
respectively. Define αn

G and αn
A by induction as follows:

(2)
αn

G( f )(g0, . . . , gn)= α
n−1
G (g0(kn

G g−1
0 ( f )))(g1, . . . , gn) ∈ R,

αn
A( f )(g0, . . . , gn)= α

n−1
A (g0(kn

Ag−1
0 ( f )))(g1, . . . , gn) ∈ R.

That α∗G is indeed a G-chain map and α∗A is an A-chain map is showed in the
proof of [Monod 2001, Theorem 7.3.1]. (Alternatively, one may easily check that
the maps α∗G and α∗A are related to the maps given in [Ivanov 1985, Theorem 3.6]
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via the isomorphism described in Remark 3.4.) Moreover, it is clear from the
definitions that α∗G and α∗A are norm-nonincreasing in every degree.

Since the chain map U∗→ V ∗ commutes with the contracting homotopies of
(U∗, δ∗U ) and (V ∗, δ∗V ), the following diagram commutes:

U n //

αn
G

��

V n

αn
A

��

Bn(G) // Bn(A).

This implies that (α∗G, α
∗

A) is a morphism of pairs of resolutions. Now the conclu-
sion follows from Proposition 3.8. �

4. Relative (continuous) bounded cohomology of spaces

Throughout the whole section we denote by (X,W ) a countable CW-pair. We also
make the following:

Standing assumption: Both X and W are connected, and the inclusion of W in
X induces an injective map on fundamental groups.

Being locally contractible, the space X admits a universal covering p : X̃→ X .
We denote by W̃ a fixed connected component of p−1(W ) ⊆ X̃ . We also choose
a basepoint b0 ∈ W̃ . This choice determines a canonical isomorphism between
π1(X, p(b0)) and the group G of the covering automorphisms of X̃ . We denote by
A ⊆ G the subgroup corresponding to i∗(π1(W, p(b0))) under this isomorphism,
where i : W → X is the inclusion. Observe that A coincides with the group of
automorphisms of X̃ that leave W̃ invariant. In particular, for every n ∈ N the
module Cn

b (X̃) (resp. Cn
b (W̃ )) admits a natural structure of G-module (resp. A-

module). Moreover, the covering projection p : X̃ → X defines a pull-back map
p∗ : C∗b (X,W ) → C∗b (X̃ , W̃ ) which induces in turn an isometric isomorphism
C∗b (X,W )→ C∗b (X̃ , W̃ )G . As a consequence, we get the natural identification

H∗b (X,W )∼= H∗(C∗b (X̃ , W̃ )G).

The straightening procedure described in Section 2 shows that, when (X,W )

is a locally convex pair of metric spaces, in order to compute the relative singular
homology of (X,W ) one may replace the singular complex C∗(X,W ) with the
subcomplex of straight chains. As a consequence, it is easily seen that in order
to compute the cohomology (resp. the bounded cohomology) of (X,W ) one may
replace the complex C∗(X̃ , W̃ )G (resp. C∗b (X̃ , W̃ )G) with the subcomplex of those
invariant cochains whose value on each simplex only depends on the vertices of
the simplex (recall that straight simplices in X̃ only depend on their vertices).
Following [Gromov 1982], we say that any such cochain is straight.
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Observe that the definition of straight cochain makes sense even when it is
not possible to properly define a straightening on singular chains. Let us briefly
describe some known results about straight cochains in the absolute case (when
W =∅). If X̃ is contractible, a classical result ensures that both straight cochains
and singular cochains compute the cohomology of G, so the cohomology of straight
cochains is isomorphic to the singular cohomology of X . An important result in
[Gromov 1982, Section 2.3] shows that the same is true for bounded cohomology,
even without the assumption that X̃ is contractible. More precisely, both bounded
straight cochains and bounded singular cochains compute the bounded cohomology
of G, and they both induce the canonical seminorm on H∗b (G), so the cohomology
of bounded straight cochains is isometrically isomorphic to the bounded cohomol-
ogy of X . Moreover by [Monod 2001, Theorem 7.4.5], the bounded cohomology
of G (whence of X ) is computed also by continuous bounded straight cochains.
Monod’s result plays a fundamental rôle in Löh’s description of the isometric iso-
morphism between measure homology and singular homology in the absolute case.

In this section we show that, in the case when W 6= ∅, continuous bounded
straight cochains compute the bounded cohomology of the pair (G, A), thus ex-
tending Monod’s result to the relative case (see Theorem 4.1).

Moreover, in the case when the pair (X,W ) is good we prove that also H∗b (X,W )

is isometrically isomorphic to H∗b (G, A), thus obtaining that the bounded cohomol-
ogy of (X,W ) is computed by continuous bounded straight cochains. Finally, in
Section 4E we show that this result easily implies our Theorem 1.7.

4A. Bounded cochains versus continuous bounded straight cochains. We next
give the precise definition of the complex of continuous bounded straight cochains.
For every n ∈ N we consider the following Banach spaces:

Cn
cbs(X̃)= { f : X̃n+1

→ R, f continuous and bounded},

Cn
cbs(W̃ )= { f : W̃ n+1

→ R, f continuous and bounded},

both endowed with the supremum norm. The diagonal G-action such that g ·
f (x0, . . . , xn) = f (g−1x0, . . . , g−1xn) for every g ∈ G endows Cn

cbs(X̃) with a
structure of G-module. The obvious coboundary maps δn

: Cn
cbs(X̃)→ Cn+1

cbs (X̃)
given by

δn( f )(x0, . . . , xn+1)=

n+1∑
i=0

(−1)i f (x0, . . . , x̂i , . . . , xn+1)

define on C∗cbs(X̃) a structure of G-complex. In the very same way one endows
C∗cbs(W̃ ) with a structure of A-complex. For every n ∈ N, the inclusion W̃ n+1 ↪→

X̃n+1 induces an obvious restriction Cn
cbs(X̃)→ Cn

cbs(W̃ ), whose kernel will be
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denoted by Cn
cbs(X̃ , W̃ ). Finally, for every n ∈ N we set

(3) H n
cbs(X,W )= H n(C∗cbs(X̃ , W̃ )G).

We will prove in Propositions 4.3 and 4.7 that both C∗b (X̃), C∗b (W̃ ) and C∗cbs(X̃),
C∗cbs(W̃ ) provide proper pairs of resolutions for (G, A;R). The pair of norm-
nonincreasing chain maps

(4)
η∗G : C

∗

cbs(X̃) → C∗b (X̃), ηn
G( f )(σ )= f (σ (e0), . . . , σ (en)),

η∗A : C
∗

cbs(W̃ )→ C∗b (W̃ ), ηn
A( f )(σ )= f (σ (e0), . . . , σ (en))

allows us to identify C∗cbs(X̃)with the subcomplex of C∗b (X̃) of continuous bounded
straight cochains on X̃ , and likewise with W̃ in place of X̃ . Moreover, it is readily
seen that the pair (η∗G, η

∗

A) is a morphism of resolutions. Therefore, Proposition 3.8
implies that the induced map in cohomology

H∗(η∗G,A) : H
∗

cbs(X,W )= H∗(C∗cbs(X̃ , W̃ )G)→ H∗(C∗b (X̃ , W̃ )G)= H∗b (X,W )

is an isomorphism. Moreover, the explicit description of η∗G,A shows that H∗(η∗G,A)
is norm-nonincreasing.

Under the assumption that the pair (X,W ) is good, the isomorphism H∗(η∗G,A)
is in fact an isometry. This fact is proved in the following subsections, and will
play a fundamental rôle in our proof of Theorem 1.7.

We now describe briefly the content of the following subsections. In Section 4B
we define a morphism of resolutions (β∗G, β

∗

A) between the standard pair of resolu-
tions and continuous bounded straight cochains via an ad hoc construction, and we
show that this morphism induces an isometric isomorphism in cohomology. Then,
under the assumption that (X,W ) is good, we prove in Proposition 4.7 that bounded
cochains provide a proper allowable pair of resolutions for (G, A;R), so we may
exploit Proposition 3.10 to construct a morphism of pairs of resolutions (α∗G, α

∗

A)

between bounded cochains and the standard pair of resolutions for (G, A;R). This
morphism induces a norm-nonincreasing isomorphism in cohomology, so in order
to prove that the isomorphism H∗(η∗G,A) is isometric we will be left to show that
the composition β∗G,A ◦ α

∗

G,A induces the inverse of H∗(η∗G,A) in cohomology; in
other words, that the following diagram commutes:

H∗b (G, A)
H∗(β∗G,A)

ww

H∗cbs(X,W )
H∗(η∗G,A)

// H∗b (X,W ).

H∗(α∗G,A)
ff

We can summarize the results just described in the following theorem, whose
proof is carried out in Subsections 4B, 4C, 4D.
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Theorem 4.1. For every n ∈ N the map

H n(β∗G,A) : H
n
b (G, A)→ H n

cbs(X,W )

is an isometric isomorphism, and the map

H n(η∗G,A) : H
n
cbs(X,W )→ H n

b (X,W )

is a norm-nonincreasing isomorphism. In particular, the composition

H n(η∗G,A) ◦ H n(β∗G,A)

is a norm-nonincreasing isomorphism between H n
b (G, A) and H n

b (X,W ). If ,
in addition, (X,W ) is good, then H n(η∗G,A) is an isometry, and H n

b (G, A) and
H n

b (X,W ) are isometrically isomorphic.

In fact, one may notice that the proof that H n(β∗G,A) is an isometric isomorphism
still works without the assumption that X and W are countable.

4B. Mapping standard resolutions into continuous bounded straight cochains.
We begin with a generalization of [Frigerio 2011, Lemma 5.1]:

Lemma 4.2. There exists a continuous map χ : X̃ → [0, 1] with the following
properties:

(1) For every x ∈ X̃ there exists a neighborhood Ux of x ∈ X̃ such that the set
{g ∈ G | supp(χ)∩ g(Ux) 6=∅} is finite.

(2) For every x ∈ X̃ , we have
∑

g∈G χ(g · x) = 1. (Note that the sum on the
left-hand side is finite by (1).)

(3) For everyw∈ W̃ and every g∈G\A, we have χ(g·w)=0, whence
∑

g∈A χ(g·
w)= 1.

(4) We have χ(b0)= 1, so χ(g · b0)= 0 for every g 6= 1.

Proof. Recall that p : X̃ → X is the universal covering of X . Using that W
is a subcomplex of X , one can easily construct an open covering U = {Ui }i∈I

of X such that every Ui is contractible (whence evenly covered with respect to
p : X̃→ X ) and Ui ∩W is path-connected for every i ∈ I (for example, if ε > 0 is
small enough and x ∈ X , the contractible ε-neighborhood Nε(x) of x constructed
in [Hatcher 2002, page 522] intersects any subcomplex of X in a contractible,
whence path-connected, subset). Now choose i0 ∈ I such that p(b0) ∈Ui0 , and set
J = {i ∈ I |Ui ∩W 6=∅} (so i0 ∈ J ).

For every Ui we choose an open subset Hi ⊆ X̃ in such a way that the following
conditions hold:

(a) p|Hi : Hi →Ui is a homeomorphism.

(b) p−1(Ui )=
⋃

g∈G g(Hi ) and g(Hi )∩ g′(Hi )=∅ for every g 6= g′.
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(c) b0 ∈ Hi0 .

(d) Hi ∩ W̃ 6=∅ for every i ∈ J .

We now set U ′i =Ui\{p(b0)} for every i 6= i0, U ′i0
=Ui0 , and U′={U ′i }i∈I . Let also

H ′i = Hi ∩ p−1(U ′i ). Since Ui ∩W is path-connected, condition (d) easily implies
that

Hi ∩ p−1(W )= Hi ∩ W̃ for every i ∈ I,

whence

(5) H ′i ∩ p−1(W )= H ′i ∩ W̃ for every i ∈ I.

Since every CW-complex is paracompact (see [Miyazaki 1952; Bourgin 1952],
for instance), we may now take a partition of unity {ϕi }i∈I adapted to U′, and let
ψi : X̃→ R be the map which coincides with ϕi ◦ p on H ′i and is null outside H ′i .
We finally set

χ =
∑
i∈I

ψi .

The fact that χ satisfies properties (1) and (2) of the statement is proved in [Frigerio
2011, Lemma 5.1]. Moreover, for every w ∈ W̃ and g ∈ G \ A we have g ·w ∈
p−1(W ) \ W̃ , so Equation (5) implies that g ·w does not belong to any H ′i . This
implies point (3). Finally, since p(b0) /∈ U ′i for every i 6= i0, we have necessarily
ϕi (p(b0))=0 for every i 6= i0, and ϕi0(p(b0))=1. By (c) this implies thatψi0(b0)=

1, whence χ(b0)= 1, as desired. �

Proposition 4.3. The pair (C∗cbs(X̃), δ
∗), (C∗cbs(W̃ ), δ∗) provides a proper allow-

able pair of resolutions for (G, A;R).

Proof. The fact that (C∗cbs(X̃), δ
∗) (resp. (C∗cbs(W̃ ), δ∗)) provides a relatively in-

jective resolution of R as a trivial G-module (resp. A-module) is proved in [Monod
2001, Theorem 7.4.5]. (To apply that result our CW-complexes X and W should
be locally compact, whence locally finite; but these conditions are used in Monod’s
proof only to ensure the existence of a suitable Bruhat function on X̃ and on W̃ ;
in our case of interest the fact that G and A are discrete allows us to explicitly
describe such a map; see Lemma 4.2.)

It is readily seen that these resolutions admit the contracting homotopies

(6)
tn
G( f )(x1, . . . , xn)= f (b0, x1, . . . , xn), f ∈ Cn

cbs(X̃), (x1, . . . , xn) ∈ X̃n,

tn
A( f )(w1, . . . ,wn)= f (b0,w1, . . . ,wn), f ∈ Cn

cbs(W̃ ), (w1, . . . ,wn) ∈ W̃ n.

This clearly implies that the A-chain map γ ∗ :C∗cbs(X̃)→C∗cbs(W̃ ) induced by the
inclusion W̃ ↪→ X̃ commutes with the contracting homotopies.



MEASURE HOMOLOGY AND BOUNDED COHOMOLOGY OF PAIRS 115

In order to conclude we have to show that γ ∗ restricts to a surjective map

γ̂ ∗ : C∗cbs(X̃)
G
→ C∗cbs(W̃ )A.

Let f : W̃ n+1
→ R be an A-invariant bounded continuous map. The inclusion

W̃ n+1 ↪→ X̃n+1 induces a homeomorphismψ between W̃ n+1/A and a closed subset
K of X̃n+1/G (recall that W is a CW-subcomplex of X , so it is closed in X ).
Therefore, f defines a bounded continuous map f on K , and by Tietze’s theorem
we may extend f to a bounded continuous map g : X̃n+1/G→R. If g is obtained
by precomposing g with the projection X̃n+1

→ X̃n+1/G, then g ∈Cn
cbs(X̃)

G , and
γ̂ n(g)= f . We have thus shown that γ̂ ∗ is surjective, and this concludes the proof.

�

We are now ready to describe a morphism of pairs of resolutions (β∗G, β
∗

A) be-
tween the standard pair of resolutions for (G, A;R) and the complexes of straight
cochains. Let

βn
G : B

n(G)→ Cn
cbs(X̃), βn

A : B
n(A)→ Cn

cbs(W̃ )

be defined as follows:

βn
G( f )(x0, . . . , xn)=

∑
(g0,...,gn)∈Gn+1

χ(g−1
0 x0) · · ·χ(g−1

n xn) · f (g0, . . . , gn),

βn
A( f )(w0, . . . , wn)=

∑
(g0,...,gn)∈An+1

χ(g−1
0 w0) · · ·χ(g−1

n wn) · f (g0, . . . , gn).

Lemma 4.4. For every f ∈ Bn(G), (g0, . . . , gn) ∈ Gn+1 we have

βn
G( f )(g0b0, . . . , gnb0)= f (g0, . . . , gn).

Proof. By Lemma 4.2(4), for every (γ0, . . . , γn) ∈ Gn+1 we have

χ(γ−1
0 g0b0) · · ·χ(γ

−1
n gnb0) · f (γ0, . . . , γn)

=

{
f (g0, . . . , gn) if γi = gi for every i,
0 otherwise,

and this readily implies the conclusion. �

Proposition 4.5. The pair (β∗G, β
∗

A) provides a well-defined morphism of pairs of
resolutions. For every n ∈ N the induced map

H n(β∗G,A) : H
n
b (G, A)→ H n

cbs(X,W )

is an isometric isomorphism.
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Proof. We begin by showing that β∗G is a G-map. So, take f ∈ Bn(G), g ∈G, and
(x0, . . . , xn) ∈ X̃n+1. By definition we have

βn
G(g· f )(x0, . . . , xn)=

∑
(g0,...,gn)∈Gn+1

χ(g−1
0 x0) · · ·χ(g−1

n xn)·f (g−1g0, . . . , g−1gn),

(g·βn
G( f ))(x0, . . . , xn)=

∑
(g0,...,gn)∈Gn+1

χ(g−1
0 g−1x0) · · ·χ(g−1

n g−1xn)·f (g0, . . . , gn),

and an easy change of variables implies that βn
G is a G-map. A similar argu-

ment shows that βn
A is an A-map. We now check that β∗G is a chain map. By

Lemma 4.2(2), for every xi ∈ X̃ we have
∑

g∈G χ(g
−1xi )=1, so if (g0, . . . , gn+1)∈

Gn+2 and (x0, . . . , xn+1) ∈ X̃n+2 are fixed, then

χ(g−1
0 x0) · · ·

̂
χ(g−1

i xi ) · · ·χ(g−1
n+1xn+1)

=

∑
g∈G

χ(g−1
0 x0) · · ·χ(g−1xi ) · · ·χ(g−1

n+1xn+1)

and βn
G( f )(x0, . . . , x̂i , . . . , xn+1) is equal to∑

(g0,...,̂gi ,...,gn+1)∈Gn+1

χ(g−1
0 x0) · · ·

̂
χ(g−1

i xi ) · · ·χ(g−1
n+1xn+1) · f (g0, . . . , ĝi , . . . , gn+1),

which in turn equals∑
(g0,...,gi ,...,gn+1)∈Gn+2

χ(g−1
0 x0) · · ·χ(g−1

i xi ) · · ·χ(g−1
n+1xn+1) · f (g0, . . . , ĝi , . . . , gn+1).

From this equality it is easy to deduce that δn(βn
G( f )) = βn+1

G (δn( f )), and this
proves that β∗G is a chain map. Since χ has been chosen in such a way that
Lemma 4.2(3) holds, the same argument may be exploited to show that β∗A is also
a chain map.

Using again Lemma 4.2(3), it is easily checked that the restriction βn
G( f )|W̃ n+1

coincides with the map βn
A( f |An+1) for every f ∈ Bn(G). As a consequence, the

pair (β∗G, β
∗

A) is a morphism of pairs of resolutions, and Proposition 3.8 implies
that H∗(β∗G,A) is an isomorphism. Moreover, H n(β∗G,A) is obviously norm-non-
increasing for every n ∈ N.

Recall now that Proposition 3.10 provides a morphism of pairs of resolutions

ζ ∗G : C
∗

cbs(X̃)→ B∗(G), ζ ∗A : C
∗

cbs(W̃ )→ B∗(A),

which induces a norm-nonincreasing isomorphism

H∗(ζ ∗G,A) : H
∗

cbs(X,W )→ H∗b (G, A).
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In order to conclude it is sufficient to show that for every n ∈ N the composition
ζ n

G ◦β
n
G is the identity of Bn(G).

The proof of Proposition 3.10 implies that the map ζ n
G can be described by the

following inductive formula:

ζ n
G( f )(g0, . . . , gn)= ζ

n−1
G (g0(tn

G(g
−1
0 ( f ))))(g1, . . . , gn),

where t∗G is the contracting homotopy for the resolution C∗cbs(X̃) described in
Equation (6). As a consequence, an easy induction shows that ζ n

G( f )(g0, . . . , gn)=

f (g0b0, . . . , gnb0) for every f ∈ Cn
cbs(X̃), (g0, . . . , gn) ∈ Gn+1. By Lemma 4.4,

this implies that ζ n
G ◦β

n
G is the identity of Bn(G), whence the conclusion. �

4C. Ivanov’s contracting homotopy. In order to show that, under the hypothesis
that (X,W ) is good, bounded cochains provide a proper allowable pair of resolu-
tions for (G, A;R), we first recall Ivanov’s construction of a contracting homotopy
for the resolution C∗b (X̃).

It is shown in [Ivanov 1985] that one can construct an infinite tower of bundles

(7) . . .
pm

// Xm
pm−1

// Xm−1
pm−2

// · · · · · ·
p2

// X2
p1

// X1,

where X1 = X̃ , πi (Xm) = 0 for every i ≤ m, πi (Xm) = πi (X) for every i > m
and each map pm : Xm+1 → Xm is a principal Hm-bundle for some topological
connected abelian group Hm , which has the homotopy type of a K (πm+1(X),m).
Moreover, the induced chain maps p∗m : C

∗

b (Xm)→ C∗b (Xm+1) admit left inverse
chain maps A∗m : C

∗

b (Xm+1)→ C∗b (Xm) obtained by averaging cochains over the
preimages in Xm+1 of simplices in Xm , in such a way that the Am’s are norm-
nonincreasing.

Denote by Wm ⊆ Xm the preimage p−1
m−1(p

−1
m−2( . . . (p

−1
1 (W̃ ))))⊆ Xm (so Wm+1

is a principal Hm-bundle over Wm for every m ≥ 1). We denote simply by

pm :Wm+1→Wm

the restriction of pm to Wm+1. It follows from Ivanov’s construction that each A∗m
induces a norm-nonincreasing chain map C∗b (Wm+1)→ C∗b (Wm), which will still
be denoted by A∗m .

Lemma 4.6. Suppose that (X,W ) is good. Then πi (Wm)= 0 for every i ≤ m.

Proof. Of course, it is sufficient to prove that πi (Wm) ∼= πi (Xm) for every i ∈ N,
m ∈N. Let us prove this last statement by induction on m. Since the inclusion map
W ↪→ X is π1-injective we have π1(W1)=π1(X1)= 0. Therefore, since coverings
induce isomorphisms on homotopy groups of order at least two, the case m = 1
follows from the fact that the pair (X,W ) is good. The inductive step follows from
an easy application of the Five Lemma to the following commutative diagram,
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which descends in turn from the naturality of the homotopy exact sequences for
the bundles Xm+1→ Xm , Wm+1→Wm :

πi+1(Wm) //

��

πi (Hm) // πi (Wm+1) //

��

πi (Wm) //

��

πi−1(Hm)

πi+1(Xm) // πi (Hm) // πi (Xm+1) // πi (Xm) // πi−1(Hm). �

Now suppose that (X,W ) is good. We choose basepoints wm ∈ Wm in such a
way that pm(wm+1) = wm for every m ≥ 1, and w1 ∈ W1 = W̃ coincides with
the basepoint b0 fixed above. Since Xm is m-connected, for every n ≤ m it is
possible to construct a map Lm

n : Sn(Xm) → Sn+1(Xm) that associates to every
σ ∈ Sn(Xm) a cone of σ over wm (see [Ivanov 1985]). We stress that, since Wm is
also m-connected, if σ ∈ Sn(Wm)⊆ Sn(Xm), then Lm

n (σ ) can be chosen to belong
to Sn+1(Wm). The maps Lm

n , n ≤ m, induce a (partial) homotopy between the
identity and the null map of C∗(Xm), which in turn induces a (partial) contracting
homotopy {kn

m}n≤m for the (partial) complex {Cn
b (Xm)}n≤m . Since Lm

n (Sn(Wm))⊆

Sn+1(Wm), this contracting homotopy induces a (partial) contracting homotopy for
{Cn

b (Wm)}n≤m , which we still denote by k∗m . Moreover, it is possible to choose
these contracting homotopies in a compatible way, in the sense that the equality
An−1

m ◦ kn
m+1 ◦ pn

m = kn
m holds for every n ≤ m (see again [Ivanov 1985]). Thanks

to this compatibility condition, one can finally define the contracting homotopy

k∗G : C
∗

b (X̃)→ C∗−1
b (X̃),

via the formula

kn
G = An−1

1 ◦ · · · ◦ An−1
m−1 ◦ kn

m ◦ pn
m−1 ◦ · · · ◦ pn

2 ◦ pn
1 for any m ≥ n.

The very same formula defines a contracting homotopy for C∗b (W̃ ). By construc-
tion, the restriction map C∗b (X̃)→C∗b (W̃ ) commutes with these contracting homo-
topies, and it obviously restricts to a surjective map C∗b (X̃)

G
→ C∗b (W̃ )A. Since

Cn
b (X̃), Cn

b (W̃ ) are relatively injective for every n ≥ 0 (see [Ivanov 1985]), we
have finally proved the following:

Proposition 4.7. The pair (C∗b (X̃), δ
∗), (C∗b (W̃ ), δ∗) provides a proper pair of res-

olutions for (G, A;R). If in addition (X,W ) is good, then this pair of resolutions
is also allowable.

Corollary 4.8. For every n ∈ N, the map

H n(η∗G,A) : H
n
cbs(X,W )→ H n

b (X,W )

is a norm-nonincreasing isomorphism.
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Proof. By Proposition 4.7, bounded cochains provide a proper pair of resolutions
for (G, A;R), so Proposition 3.8 implies that H n(η∗G,A) is an isomorphism. That
it is norm-nonincreasing is a direct consequence of its explicit description. �

Remark 4.9. The fact that the pair of resolutions (C∗b (X̃), δ
∗), (C∗b (W̃ ), δ∗) is

allowable is stated in [Park 2003, Lemma 4.2] under the only assumption that
(X,W ) is a pair of connected CW-pairs. However, at the moment we are not able
to prove such a statement without the assumption that (X,W ) is good. For example,
let us suppose that X is simply connected and W is a point (so that πn(W ) injects
into πn(X) for every n ∈ N, and X1 = X̃ = X , W1 = W̃ = W ). Then for every
n ∈N there exists only one simplex in Sn(W ), namely the constant n-simplex σW

n .
Therefore, the only possible contracting homotopy for W is given by the map which
sends the cochain ϕ∈Cn

b (W ) to the cochain kn
A(ϕ) such that kn

A(ϕ)(σ
W
n−1)=ϕ(σ

W
n ).

On the other hand, it is not difficult to show that πi (Wm)=πi+1(X) for every i<m,
and πi (Wm)= 0 for every i ≥m. Therefore, if πi+1(X) 6= 0, then πi (Wm) 6= 0 for
every m > i . This readily implies that for m > i one cannot construct cone-like
operators Lm

j : C j (Xm)→ C j+1(Xm), j ≤ i , such that d j+1Lm
j + Lm

j−1d j = Id and
Lm

j (C j (Wm))⊆ C j+1(Wm) for every j ≤ i , so it is not clear how to show that the
pair of resolutions C∗b (X̃), C∗b (W̃ ) is allowable. This difficulty already arises for
the pair (S2, q), where q is any point of the 2-dimensional sphere S2.

Some troubles arise also in the case when the inclusion induces surjective (but
not bijective) maps between the homotopy groups of W and of X . For instance, if
X is the Euclidean 3-space and W = S2, then Xm = X for every m ∈N, so Wm =W
for every m ∈ N, and, if i is sufficiently high, the partial complex {C j (X,W )} j≤i

does not support a relative cone-like operator. Also observe that, if {W ′m, m ∈N}

is the tower of bundles constructed starting from W just as Xm is constructed
starting from X , then the only map W ′m→Wm = S2

⊆ R3
= Xm which commutes

with the projections of W ′m and Xm onto W1 = S2 and X1 = R3 is the projection
W ′m→W1 = S2. As a consequence, also in this case it is not clear why the pair of
resolutions C∗b (X̃), C∗b (W̃ ) should be allowable.

4D. Proof of Theorem 4.1. We now come back to the proof of Theorem 4.1. By
Proposition 4.5 and Corollary 4.8, we are only left to show that, under the assump-
tion that (X,W ) is good, the isomorphism

H n(η∗G) : H
n
cbs(X,W )→ Hb(X,W )

is isometric for every n ∈ N.
So, suppose that (X,W ) is good. By Proposition 4.7 bounded cochains provide

a proper allowable pair of resolutions for (G, A;R). Therefore, Proposition 3.10
provides a morphism of pairs of resolutions

α∗G : C
∗

b (X̃)→ B∗(G), α∗A : C
∗

b (W̃ )→ B∗(A),
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such that the induced map H∗(α∗G,A) is a norm-nonincreasing isomorphism.
We already know that all the maps in the diagram

H∗b (G, A)
H∗(β∗G,A)

ww

H∗cbs(X,W )
H∗(η∗G,A)

// H∗b (X,W ).

H∗(α∗G,A)
ff

are norm-nonincreasing isomorphisms, so in order to conclude it is sufficient to
show that the diagram commutes. This fact is obviously implied by the following
result, which concludes the proof of Theorem 4.1.

Proposition 4.10. Suppose that (X,W ) is good. Then, for every n ∈N the compo-
sition

αn
G,A ◦ η

n
G,A ◦β

n
G,A : B

n(G, A)→ Bn(G, A)

is equal to the identity of Bn(G, A).

Proof. Since the composition αn
G,A ◦ η

n
G,A ◦ β

n
G,A coincides with the restriction of

αn
G ◦η

n
G ◦β

n
G to Bn(G, A)⊆ Bn(G), it is sufficient to show that αn

G ◦η
n
G ◦β

n
G is the

identity of Bn(G).
Before going into the needed computations, let us stress that the definition

of α∗G involves the contracting homotopy for the resolution C∗b (X̃) described in
Section 4C. Being based on a non-explicit averaging procedure, this contracting
homotopy cannot be described by an explicit formula, and the same is true for the
chain map α∗G . However, the explicit description of the composition α∗G ◦ η

∗

G is
sufficient to our purposes.

In fact, we already know from Lemma 4.4 that

βn
G( f )(g0b0, . . . , gnb0)= f (g0, . . . , gn)

for every f ∈ Bn(G), (g0, . . . , gn) ∈ Gn+1. Therefore, in order to conclude it is
sufficient to prove that

(8) αn
G(η

n
G( f ))(g0, . . . , gn)= f (g0b0, . . . , gnb0)

for every f ∈ Cn
cbs(X̃). So, let t∗G and k∗G be the contracting homotopies for con-

tinuous bounded straight cochains and for bounded cochains, respectively; see (6)
and (7). We first show that for every n ∈ N we have

(9) kn
G ◦ η

n
G = η

n−1
G ◦ tn

G .

Fix f ∈ Cn
cbs(X̃) and σ ∈ Sn−1(X̃), and let us compute kn

G(η
n
G( f ))(σ ). With

notation as in Section 4C, we choose m ≥ n and set

fm = pn
m−1( . . . pn

1(η
n
G( f ))) ∈ Cn

b (Xm).
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Then, if σm is any lift of σ in Xm , we have kn
m( fm)(σm) = fm(σ

′
m), where σ ′m ∈

Sn(Xm) has vertices wm, σm(e0), . . . , σm(en−1). It readily follows that

kn
m( fm)(σm)= f (b0, σ (e0), . . . , σ (en−1)).

We have thus shown that the cochain kn
m( fm) is constant on all the lifts of σ in

Xm . By definition, the value of kn
G(η

n
G( f ))(σ ) is obtained by suitably averaging

the values taken by kn
m( fm) on such lifts, so we finally get

kn
G(η

n
G( f ))(σ )= f (b0, σ (e0), . . . , σ (en−1)),

whence (9).
Recall now that the map α∗G is explicitly described (in terms of the contracting

homotopy k∗G) in Proposition 3.10; see (2). Therefore, (2) and (9) readily imply
that the composition αn

G ◦η
n
G can be described by the following inductive formula:

αn
G(η

n
G( f ))(g0, . . . , gn)= α

n−1
G (g0(η

n−1
G (tn

G(g
−1
0 ( f )))))(g1, . . . , gn).

An easy induction now implies (8), whence the conclusion. �

4E. Proof of Theorem 1.7. We next describe how Theorem 1.7 can be deduced
from Theorem 4.1. For every n ∈ N the module Cn

cb(X̃) (resp. Cn
cb(W̃ )) admits a

natural structure of G-module (resp. A-module). Moreover, it is proved in [Frige-
rio 2011, Lemma 6.1] that the isometric isomorphism C∗b (X,W )→ C∗b (X̃ , W̃ )G

induced by the covering projection p : X̃→ X restricts to an isometric isomorphism
C∗cb(X,W )→ C∗cb(X̃ , W̃ )G , which induces in turn a natural identification

(10) H∗cb(X,W )∼= H∗(C∗cb(X̃ , W̃ )G).

The G-chain map ν∗G : C
∗

cbs(X̃)→ C∗cb(X̃) defined by

νn
G( f )(σ )= f (σ (e0), . . . , σ (en)) for every n ∈ N, f ∈ Cn

cbs(X̃), σ ∈ Sn(X̃),

obviously restricts to a chain map ν∗G,A : C∗cbs(X̃ , W̃ )G → C∗cb(X̃ , W̃ )G . Under
the identifications described in (3) and (10), this chain map induces the norm-
nonincreasing map

H∗(ν∗G,A) : H
∗

cbs(X,W )→ H∗cb(X,W )

(we cannot realize H∗(ν∗G,A) as the map induced by a morphism of pairs of resolu-
tions just because we are not able to prove that the pair C∗cb(X̃), C∗cb(W̃ ) provides
a pair of resolutions for (G, A;R); see Remark 4.11 below).
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It readily follows from the definitions that the following diagram commutes:

H∗cbs(X,W )
H∗(η∗G,A)

//

H∗(ν∗G,A) ''

H∗b (X,W )

H∗cb(X,W )

H∗(ρ∗b )

88

where H∗(ρ∗b ) : H
∗

cb(X,W )→ H∗b (X,W ) is the map described in the Introduction.
Now suppose that (X,W ) is good. Then Theorem 4.1 implies that the map

H∗(η∗G,A) is an isometric isomorphism, so the map H∗(ν∗G,A) ◦ H∗(η∗G,A)
−1 pro-

vides a right inverse to H∗(ρ∗b ). Since H∗(ν∗G,A) is norm-nonincreasing, this map
is an isometric embedding, and this concludes the proof of Theorem 1.7.

Remark 4.11. Suppose that (X,W ) is good. If we were able to prove that the
complexes C∗cb(X̃), C∗cb(W̃ ) provide a proper pair of resolutions for (G, A;R),
then we could prove that H∗(ρ∗b ) : H∗cb(X,W )→ H∗b (X,W ) is an isometric iso-
morphism for every good pair (X,W ). However, it is not clear why Ivanov’s
contracting homotopies should take continuous cochains into continuous cochains,
thus restricting to contracting homotopies for C∗cb(X̃), C∗cb(W̃ ).

4F. (Unbounded) continuous cohomology of pairs. We conclude the section by
proving Theorem 1.9, which asserts that, when (X,W ) is a locally finite good
CW-pair, the map

H∗(ρ∗) : H∗c (X,W )→ H∗(X,W )

is an isometric isomorphism.
We first observe that, since W is closed in X , the subspace Sn(W ) is closed in

Sn(X) for every n ∈ N. Moreover, since X is locally finite, it is metrizable, and
this implies that Sn(X) is also metrizable. Therefore, by Tietze’s theorem, every
continuous cochain on W extends to a continuous cochain on X ; i.e., the restriction
map C∗c (X)→C∗c (W ) is surjective. As a consequence, both rows of the following
commutative diagram are exact:

H n+1
c (X) //

��

H n+1
c (W ) //

��

H n
c (X,W ) //

Hn(ρ∗)

��

H n
c (X) //

��

H n
c (W )

��

H n+1(X) // H n+1(W ) // H n(X,W ) // H n(X) // H n(W ).

We know from [Frigerio 2011, Theorem 1.1] that, in the absolute case, the vertical
arrows are isomorphisms, and the Five Lemma implies now that H n(ρ∗) is an
isomorphism. We are left to show that it is also an isometry.

The inclusions C∗b (X,W ) ↪→ C∗(X,W ), C∗cb(X,W ) ↪→ C∗c (X,W ) induce the
comparison maps c∗ : H∗b (X,W )→ H∗(X,W ), c∗c : H

∗

cb(X,W )→ H∗c (X,W ) and



MEASURE HOMOLOGY AND BOUNDED COHOMOLOGY OF PAIRS 123

it follows from the very definitions that for every ϕ ∈ H n(X,W ), ϕc ∈ H n
c (X,W )

the following equalities hold:

‖ϕ‖∞ = inf{‖ψ‖∞ | ψ ∈ H n
b (X,W ), cn(ψ)= ϕ},

‖ϕc‖∞ = inf{‖ψc‖∞ | ψc ∈ H n
cb(X,W ), cn

c (ψc)= ϕc},

where we understand that inf ∅=+∞. Moreover, since H∗(ρ∗)◦c∗c = c∗◦H∗(ρ∗b ),
for every ϕc ∈ H∗c (X,W ) we have

‖H∗(ρ∗)(ϕc)‖∞ = inf{‖ψ‖∞ | ψ ∈ H∗b (X,W ), c∗(ψ)= H∗(ρ∗)(ϕc)}

= inf{‖ψc‖∞ | ψc ∈ H∗cb(X,W ), c∗(H∗(ρ∗b )(ψc))= H∗(ρ∗)(ϕc)}

= inf{‖ψc‖∞ | ψc ∈ H∗cb(X,W ), H∗(ρ∗)(c∗c (ψc))= H∗(ρ∗)(ϕc)}

= inf{‖ψc‖∞ | ψc ∈ H∗cb(X,W ), c∗c (ψc)= ϕc} = ‖ϕc‖∞,

where the second equality is due to Theorem 1.7 (recall that locally finite CW-pairs
are countable). The proof of Theorem 1.9 is now complete.

5. The duality principle

This section is mainly devoted to the proof of Theorem 1.3. As already mentioned
in the Introduction, once a suitable duality pairing between measure homology
and continuous bounded cohomology is established, Theorem 1.3 can be easily
deduced from Theorem 1.7.

5A. Duality between singular homology and bounded cohomology. Let us begin
by recalling the well-known duality between bounded cohomology and singular
homology. Let (X,W ) be any pair of topological spaces. By definition, Cn(X,W )

is the algebraic dual of Cn(X,W ), and it is readily seen that the L∞-norm on
Cn(X,W ) is dual to the L1-norm on Cn(X,W ). As a consequence, Cn

b (X,W ) co-
incides with the topological dual of Cn(X,W ). This does not imply that H n

b (X,W )

is the topological dual of Hn(X,W ), because taking duals of normed chain com-
plexes does not commute in general with homology (see [Löh 2008] for a detailed
discussion of this issue). However, if we denote by

〈 · , · 〉 : H n
b (X,W )× Hn(X,W )→ R

the Kronecker product induced by the pairing Cn
b (X,W )×Cn(X,W )→ R, then

an application of Hahn–Banach theorem (for details, see [Löh 2007, Theorem 3.8],
for instance) gives the following:

Proposition 5.1. For every α ∈ Hn(X,W ) we have

‖α‖1 = sup
{

1
‖ϕ‖∞

∣∣ϕ ∈ H n
b (X,W ), 〈ϕ, α〉 = 1

}
,
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where we understand that sup ∅= 0.

5B. Duality between measure homology and continuous bounded cohomology.
The topological dual of C∗(X,W ) does not admit an easy description, so in order
to compute seminorms in H∗(X,W ) via duality more work is needed. We first
observe that, if µ is any measure on Sn(X) with compact determination set and f
is any continuous function on Sn(X), it makes sense to integrate f with respect to
µ. Therefore, for every n ∈ N the bilinear pairing

〈 · , · 〉 : Cn
cb(X,W )×Cn(X,W )→ R, 〈 f, µ〉 =

∫
Sn(X)

f (σ ) dµ(σ)

is well-defined. It readily follows from the definitions that |〈 f, µ〉| ≤ ‖ f ‖∞ ·‖µ‖m
for every f ∈Cn

cb(X,W ), µ∈Cn(X,W ), so C∗cb(X,W ) lies in the topological dual
of C∗(X,W ). Moreover, for every i ∈N, f ∈C i

cb(X,W ) and µ ∈Ci+1(X,W ) we
have 〈δ f, µ〉 = 〈 f, ∂µ〉, so this pairing defines a Kronecker product

〈 · , · 〉 : H n
cb(X,W )×Hn(X,W )→ R

such that

(11) |〈ϕc, α〉| ≤ ‖ϕc‖∞ · ‖α‖mh for every ϕc ∈ H n
cb(X,W ), α ∈Hn(X,W ).

The following proposition is an immediate consequence of inequality (11), and
provides a sort of weak duality theorem for continuous bounded cohomology and
measure homology. The term “weak” refers to the fact that while Proposition 5.1
allows to compute seminorms in homology in terms of seminorms in bounded
cohomology, here only an inequality is established. However, this turns out to
be sufficient to our purposes. Moreover, once Theorem 1.3 is proved, one could
easily prove that (in the case of good CW-pairs) the inequality of Proposition 5.2
is in fact an equality, thus recovering a “full” duality between continuous bounded
cohomology and measure homology.

Proposition 5.2. For every α ∈Hn(X,W ) we have

‖α‖mh ≥ sup
{

1
‖ϕc‖∞

∣∣∣ ϕc ∈ H n
cb(X,W ), 〈ϕc, α〉 = 1

}
,

where we understand that sup ∅= 0.

To conclude the proof of Theorem 1.3, we need one more result, which follows
readily from the definitions and ensures that the Kronecker products introduced
above are compatible with each other:

Proposition 5.3. For every ϕc ∈ H n
cb(X,W ), α ∈ Hn(X,W ) we have

〈H n(ρ∗b )(ϕc), α〉 = 〈ϕc, Hn(ι∗)(α)〉.
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Proof of Theorem 1.3. Suppose that (X,W ) is a good CW-pair. We already know
that the map H∗(ι∗) : H∗(X,W )→ H∗(X,W ) is a norm-nonincreasing isomor-
phism, so we are left to show that ‖H∗(ι∗)(α)‖mh ≥‖α‖1 for every α ∈ H∗(X,W ).

However, for every α ∈ Hn(X,W ) we have

‖Hn(ι∗)(α)‖mh ≥ sup
{

1
‖ϕc‖∞

∣∣∣ ϕc ∈ H n
cb(X,W ), 〈ϕc, Hn(ι∗)(α)〉 = 1

}
= sup

{
1

‖ϕc‖∞

∣∣∣ ϕc ∈ H n
cb(X,W ), 〈H n(ρ∗b )(ϕc), α〉 = 1

}
= sup

{
1
‖ϕ‖∞

∣∣∣ ϕ ∈ H n
b (X,W ), 〈ϕ, α〉 = 1

}
= ‖α‖1,

where the inequality is due to Proposition 5.2, the first equality to Proposition 5.3,
the second equality to Theorem 1.7, and the last equality to Proposition 5.1. �

Remark 5.4. Let (X,W ) be any CW-pair. The arguments described in this section
show that if H∗(ρ∗b ) : H

∗

cb(X,W )→ Hb(X,W ) admits a norm-nonincreasing right
inverse, then the map H∗(ι∗) : H∗(X,W ) → H∗(X,W ) is an isometric isomor-
phism.

6. A comparison with Park’s seminorms

Park [2003] describes an algebraic foundation of relative bounded cohomology of
pairs, both in the case of a pair of groups (G, A) equipped with a homomorphism
A → G and in the case of a pair of path-connected topological spaces (X,W )

equipped with a continuous map W → X . However, recall from the Introduction
that the seminorms considered by Park are quite different from the ones considered
in this paper, which go back to [Gromov 1982]. In this section we investigate the
relationships between our seminorms and the seminorms introduced in [Park 2003],
proving in particular that there exist examples for which they are not isometric to
each other.

6A. Park’s mapping cone for homology. Let (X,W ) be a countable CW-pair,
where both X and W are connected, and let us suppose that the inclusion i :W ↪→ X
induces an injective map on the fundamental groups (several considerations here
below also hold without this last assumption, but this is not relevant to our pur-
poses). We also denote by i∗ :C∗(W )→C∗(X) the map induced by the inclusion i .
The homology mapping cone complex of (X,W ) is the complex

(C∗(W → X), d∗)= (C∗(X)⊕C∗−1(W ), d∗),
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where

dn : Cn(X) ⊕ Cn−1(W ) → Cn−1(X) ⊕ Cn−2(W )

(un , vn−1) 7→ (dnun + in−1(vn−1) , −dn−1vn−1),

and d∗ denotes the usual differential both of C∗(X) and of C∗(W ). The homology
of the mapping cone (C∗(W → X), d∗) is denoted by H∗(W → X). For every
ω ∈ [0,∞) one can endow C∗(W → X) with the L1-norm

‖(u, v)‖1(ω)= ‖u‖1+ (1+ω)‖v‖1,

which induces in turn a seminorm (still denoted by ‖ · ‖1(ω)) on H∗(W → X) (in
fact, in [Park 2004] the case ω =∞ is also considered, but this is not relevant to
our purposes).

As observed in [Park 2004], the chain map

(12) β∗ : C∗(W → X)→ C∗(X,W )= C∗(X)/C∗(W ), β∗(u, v)= [u]

induces an isomorphism

H∗(β∗) : H∗(W → X)→ H∗(X,W ).

The explicit description of β∗ implies that

‖H∗(β∗)(α)‖1 ≤ ‖α‖1(0)≤ ‖α‖1(ω)

for every α ∈ H∗(W → X), ω ∈ [0,∞).

6B. Park’s mapping cone for bounded cohomology. We define the mapping cone
for bounded cohomology as the (topological) dual of the mapping cone for ho-
mology. More precisely, we fix ω ∈ [0,∞), and endow C∗(W → X) with the
norm ‖ · ‖1(ω). It is readily seen that the topological dual of Cn(W → X) =
Cn(X)⊕Cn−1(W ) is isometrically isomorphic to the space

Cn
b (W → X)= Cn

b (X)⊕Cn−1
b (W )

endowed with the L∞-norm ‖ · ‖∞(ω) defined by

‖( f, g)‖∞(ω)=max{‖ f ‖∞, (1+ω)−1
‖g‖∞}.

In other words, the pairing

C∗b (W → X)×C∗(W → X)→ R, (( f, f ′), (a, a′)) 7→ f (a)− f ′(a′)

realizes C∗b (W→ X) as the topological dual of C∗(W→ X), and an easy computa-
tion shows that the norm ‖ ·‖∞(ω) just introduced on C∗b (W→ X) coincides with
the operator norm (with respect to the norm ‖·‖1(ω) fixed on C∗(W→ X)). There-
fore, if i∗ :C∗b (X)→C∗b (W ) is the cochain map induced by the inclusion, then the
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cohomology mapping cone complex of (X,W ) is the complex (C∗b (W → X), δ
∗
),

where δ
∗

is defined as the dual map of d∗, and admits therefore the following
explicit description (see [Park 2003] for the details):

δ
n
: Cn

b (X) ⊕ Cn−1
b (W ) → Cn+1

b (X) ⊕ Cn
b (W )

( fn , gn−1) 7→ (δn fn , −in( fn)− δ
n−1gn−1)

(here δ∗ denotes the usual differential both of C∗b (X) and of C∗b (W )). The coho-
mology of the complex (C∗b (W → X), δ

∗
) is denoted by H∗b (W → X). Just as

in the case of homology, the L∞-norm ‖ · ‖∞(ω) on Cn
b (W → X) descends to a

seminorm (still denoted by ‖ · ‖∞(ω)) on H∗b (W → X).
The chain map

β∗ : C∗b (X,W )→ C∗b (W → X), β∗( f )= ( f, 0)

is the dual of the chain map β∗ introduced in Equation (12) above, and induces an
isomorphism

H∗(β∗) : H∗b (X,W )→ H∗b (W → X)

such that
‖H∗(β∗)(ϕ)‖∞(ω)≤ ‖H∗(β∗)(ϕ)‖∞(0)≤ ‖ϕ‖∞

for every ϕ ∈ H∗b (X,W ), ω ∈ [0,∞). More precisely:

Theorem 6.1 [Park 2003, Theorem 4.6]. For every n∈N, the isomorphism H n(β∗)

is such that
1

n+ 2
‖ϕ‖∞ ≤ ‖H n(β∗)(ϕ)‖∞(0)≤ ‖ϕ‖∞ for every ϕ ∈ H n

b (X,W ).

It is asked in [Park 2003] whether H∗(β∗) is actually an isometry or not. We
show in Proposition 6.4 below that there exist examples for which H∗(β∗) is not
an isometry.

6C. Mapping cones and duality. In the previous subsection we have seen that, for
every ω ≥ 0, the normed space (C∗b (W → X), ‖ · ‖∞(ω)) coincides with the topo-
logical dual of the normed space (C∗(W→ X), ‖·‖1(ω)). We may therefore apply
the duality result proved in [Löh 2007, Theorem 3.14], and obtain the following:

Proposition 6.2. If the map

H∗(β∗) :
(
H∗b (X,W ), ‖ · ‖∞

)
→
(
H∗b (W → X), ‖ · ‖∞(ω)

)
is an isometric isomorphism, then

‖H∗(β∗)(α)‖1 = ‖α‖1(ω)

for every α ∈ H∗(X,W ).
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6D. An explicit example. Let M be a compact, connected, oriented manifold with
connected boundary, and suppose that the inclusion i : ∂M→ M induces an injec-
tive homomorphism i∗ : π1(∂M)→ π1(M).

We denote by [M, ∂M] the (real) fundamental class in Hn(M, ∂M) and we set

[∂M→ M] = Hn(β∗)
−1([M, ∂M]) ∈ Hn(∂M→ M).

The L1-seminorm ‖[M, ∂M]‖1 of the real fundamental class of M is usually known
as the simplicial volume of M , and it is denoted simply by ‖M‖. Similarly, the
L1-seminorm of the real fundamental class [∂M] ∈ Hn−1(∂M) is the simplicial
volume of ∂M , and it is denoted by ‖∂M‖.

Lemma 6.3. We have

‖[∂M→ M]‖1(ω)≥ ‖M‖+ (1+ω)‖∂M‖.

Proof. It is shown in [Park 2004] that, if α ∈ Ci (M) is such that diα ∈ Ci−1(∂M)
(so that α defines an element [α] ∈ Hi (M, ∂M)), then

Hi (β∗)
−1([α])= [(α,−diα)].

Therefore, if α ∈ Cn(M) is a representative of the fundamental class [M, ∂M] ∈
Hn(M, ∂M), then (α,−dnα) is a representative of [∂M → M] ∈ Hn(∂M → M).
If (α′, γ ) is any other representative of such a class, then by definition of mapping
cone there exist x ∈ Cn+1(M) and y ∈ Cn(∂M) such that:

α−α′ = dn+1x + in(y) and γ + dnα =−dn y.

These equalities readily imply that [α′] = [α] in Hn(M, ∂M) and [γ ] = [−dnα]

in Hn−1(∂M). As a consequence, since dnα is a representative of the fundamental
class of ∂M , we have ‖α′‖1≥‖[α′]‖1=‖M‖ and ‖γ ‖1≥‖[γ ]‖1=‖∂M‖, whence

‖(α′, γ )‖1(ω)≥ ‖M‖+ (1+ω)‖∂M‖.

The conclusion follows from the fact that (α′, γ ) is an arbitrary representative of
[∂M→ M]. �

Proposition 6.4. Let M be a compact connected oriented hyperbolic n-manifold
with connected geodesic boundary. Then, for every ω ∈ [0,∞) the isomorphism

H n(β∗) :
(
H n

b (M, ∂M), ‖ · ‖∞
)
→
(
H n

b (∂M→ M), ‖ · ‖∞(ω)
)

is not isometric.

Proof. It is well-known that the inclusion ∂M ↪→ M induces an injective map on
fundamental groups. Moreover, since ∂M is a closed oriented hyperbolic (n− 1)-
manifold, we also have ‖∂M‖>0. By Proposition 6.2, if H n(β∗)were an isometry
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we would have ‖[∂M → M]‖1(ω) = ‖[M, ∂M]‖1 = ‖M‖, and this contradicts
Lemma 6.3. �
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