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We study asymptotic behavior of the height of a static liquid surface in a
cusp domain as modelled by the Laplace–Young capillary surface equation.
We introduce a new form of an asymptotic expansion in terms of the func-
tions defining the boundary curves forming a cusp. We are able to address
the asymptotic behavior of the capillary surface in cusp domains not previ-
ously considered, such as an exponential cusp. In addition, we have shown
that the capillary surface in a cusp domain is bounded if the contact an-
gles of the boundary walls forming a cusp are supplementary angles, which
implies the continuity of the capillary surface at the cusp.

1. Introduction

Background. In everyday life, it is often safe to assume that the surface of water
at rest is almost flat; however, careful observation shows that the surface of water
in a container can exhibit complicated geometry near the interface where the water
meets the container. One of the most extreme examples is when the container has
a sharp (cusped) boundary. As seen in the photo, the static liquid surface (capillary
surface) rises very steeply near a cusp — formed in
the case illustrated here by the tangency between a
circular cylinder and a straight wall. This behavior
can be understood through a singular solution of the
Laplace–Young capillary surface equation.

As noted in [Finn 1986], the study of a singular
capillary surface can be traced back to Brook Taylor
in 1712. Later contributions to the study of singu-
lar capillary surfaces by Concus and Finn [1969] and
Miersemann [1993] spurred considerable interest in
the field; see, for example [King et al. 1999; Scholz
2001; 2004; Norbury et al. 2005; Aoki 2007]. In
particular, Scholz’s work on capillary surfaces in a
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domain containing a cusp where the boundaries can be approximated by power
series (including fractional powers) led him to conclude that “[the capillary surface]
rises with the same order [as] the order of contact of the two arcs, which form the
cusp” [Scholz 2004]. Since this is a is very intuitive statement, our curiosity led
us to ask whether this statement holds for cases that Scholz did not consider in his
paper [2004].

In this paper we extend Scholz’s results in two directions. We first consider cusp
domains not limited to the power-law cusp. Instead of approximating the boundary
by power series, we directly use the distance between two arcs forming a cusp in
the asymptotic expansion. Although one may argue that most of the shapes used in
real life applications can be approximated by power series, our main focus was to
justify the above statement in a more direct and intuitive manner, by avoiding the
extra approximation step. The second direction of extension is to include cases in
which the contact angles of the boundary walls forming a cusp are supplementary
angles. Although all the known results suggest that a capillary surface in a domain
with a cusp is unbounded, we have shown that a capillary surface can be bounded,
and hence continuous, if the contact angles are supplementary angles.

Statement of the problems. Here we state the problems we are going to consider
in this paper. We first define a cusp domain. Without loss of generality, and for
simplicity of writing, we consider the following domain (see Figure 1):

(1-1) �= {(x, y) : x > 0, f2(x) < y < f1(x)},

where

(1-2)
f1(x), f2(x) ∈ C3(0,∞), f1(x) > f2(x) for x > 0,

lim
x→0+

f1(x)= lim
x→0+

f2(x) = 0, lim
x→0+

f ′1(x)= lim
x→0+

f ′2(x) = 0.

Figure 1. The cusped domain � and its boundary.
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Also we denote the boundaries as follows:

∂�1 = {(x, y) : x > 0, y = f1(x)}, ∂�2 = {(x, y) : x > 0, y = f2(x)}.

Although we base our dicussion on this infinite domain, all of the results presented
in this paper only depend locally on a domain sufficiently close to the cusp, so the
results hold for any domain that coincides with � in a neighborhood of the origin.

We now state the partial differential equation that interests us, the Laplace–
Young capillary surface equation. Let u(x, y) be the height of a capillary surface
in domain �. It satisfies the following boundary value problem (see [Finn 1986]
for a derivation):

∇ · T u = κu in �,(1-3)

Eν1 · T u = cos γ1 on ∂�1,(1-4)

Eν2 · T u = cos γ2 on ∂�2,(1-5)

where

(1-6) T u =
∇u√

1+ |∇u|2
,

κ is the capillarity constant, Eν1 and Eν2 are exterior unit normal vectors on the
boundaries ∂�1 and ∂�2, and γ1, γ2 are the contact angles. The capillarity constant
κ can be normalized by rescaling x , y, and u. In the sequel we let κ = 1.

Here we introduce the big theta notation to replace the statement “is of the same
order as”, to make this expression more precise. If f (x) = 2(g(x)), there exist
constants k1, k2 > 0 and x0 > 0 such that

k1|g(x)|< | f (x)|< k2|g(x)| for all x < x0.(1-7)

We note that2 is a more strict order relation than that of O , i.e., if f (x)=2(g(x))
then f (x)= O(g(x)); however the converse is not true.

We can now write our core research questions as follows:

• Suppose γ1+ γ2 6= π . Does u(x, y)=2
(

1
f1(x)− f2(x)

)
hold for any f1(x)

and f2(x) satisfying (1-2)?

• How does u(x, y) behave asymptotically as x→ 0+ when γ1+ γ2 = π?

Structure of the paper. As the title of this paper suggests, there are two main parts:
unbounded and bounded cases.

In Section 2 we consider unbounded capillary surfaces in cusp domains. We
first prove in Section 2A that capillary surfaces are unbounded if γ1 + γ2 6= π .
Then in Section 2B the formal asymptotic expansion is presented. Using the for-
mal asymptotic expansion, in Section 2C we prove the asymptotic behavior of the
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solution. In Section 2D we give examples of power-law and non-power-law cusps
with the intention of comparing our findings with the results in [Scholz 2004].

In Section 3 we consider bounded capillary surfaces in cusp domains. We first
prove in Section 3A that capillary surfaces are bounded if γ1 + γ2 = π and the
curvature of the boundaries is finite. In Section 3B we show that if a capillary
surface is bounded at the cusp, then it is continuous at the cusp. Section 4 contains
concluding remarks summarizing our findings and suggesting some future exten-
sions of our results. In addition, an Appendix we have included the Concus–Finn
comparison principle and its Corollary used in Sections 2C and 3A.

2. Unbounded capillary surfaces

In this section, we assume γ1+ γ2 6= π and aim to prove that

u(x, y)=2
(

1
f1(x)− f2(x)

)
as x→ 0+,

with as few restrictions on f1(x) and f2(x) as possible.

2A. Unboundedness of the capillary surface when γ1 + γ2 6= π . We show that
u(x, y) 6= O(1). This is intuitively obvious from the remarkable result of Concus
and Finn [1969], as a cusp can be considered as a corner with zero opening angle.

Lemma 2.1 (unboundedness of u(x, y) when γ1 + γ2 6= π ). Let u(x, y) be the
solution of the boundary value problem (1-3)–(1-5).

If cos γ1+ cos γ2 > 0, then u(x, y) cannot be bounded from above.
If cos γ1+ cos γ2 < 0, then u(x, y) cannot be bounded from below.

Proof. Similar to the proof in [Concus and Finn 1969], we work by contradiction.
First consider the case cos γ1+cos γ2>0, and assume there exists a constant M>0
such that u(x, y) < M in �. Integrate the PDE (1-3) in a subdomain �ε given by

�ε = {(x, y) : 0< x < ε, f2(x) < y < f1(x)}.

By applying the divergence theorem and the boundary conditions (1-4) and (1-5),
we obtain after some calculation the equation

(2-1)
∫ ε

x=0

∫ f1(x)

y= f2(x)
u dy dx

=

∫ ε

x=0

(
cos γ1

√
1+ f ′21 +cos γ2

√
1+ f ′22

)
dx+

∫ f1(ε)

y= f2(ε)

ux
√

1+u2
x+u2

y

∣∣∣∣
x=ε

dx .

The trick is to realize that the last term of (2-1) can be bounded from below, i.e.,
ux

√

1+ u2
x + u2

y

>−1,
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which implies ∫ f1(ε)

y= f2(ε)

ux
√

1+ u2
x + u2

y

∣∣∣∣
x=ε

dx >−( f1(ε)− f2(ε)).

We now apply the assumption u(x, y) < M and the preceding inequality to (2-1)
and obtain the inequality

εM max
0<x≤ε

( f1(x)− f2(x))+ ( f1(ε)− f2(ε))

>

∫ ε

x=0

(
cos γ1

√
1+ f ′21 + cos γ2

√
1+ f ′22

)
dx .

Dividing both sides by ε > 0 and taking the limit as ε approaches 0 gives

lim
ε→0+

M max
0<x≤ε

( f1(x)− f2(x))+ lim
ε→0+

f1(ε)− f2(ε)

ε

≥ lim
ε→0+

∫ ε
x=0

(
cos γ1

√

1+ f ′21 + cos γ2
√

1+ f ′22

)
dx

ε
.

Applying the definition of the derivative together with (1-2) then gives

f ′1(0)− f ′2(0)≥
(
cos γ1

√
1+ f ′1(0)

2
+ cos γ2

√
1+ f ′2(0)

2 ),
which implies 0≥ cos γ1+cos γ2. Hence we obtain a contradiction. The proof for
the case where cos γ1+ cos γ2 < 0 can be constructed similarly. �

Lemma 2.1 and Corollary A.1 together imply that u(x, y) is unbounded at the
cusp and bounded away from the cusp.

2B. Formal asymptotic expansion of the boundary value problem (1-3)–(1-5).
The main idea is to consider an asymptotic expansion of the form

(2-2) v(x, y)=
A

f1(x)− f2(x)
+ g(x, y)

f ′1(x)− f ′2(x)
f1(x)− f2(x)

+h(x, y)
( f ′1(x)− f ′2(x))

2

f1(x)− f2(x)
,

where g(x, y), h(x, y) ∈ O(1) as x → 0+. Recalling that limx→0+ f1(x) = 0 and
limx→0+ f2(x)= 0, we have the first term significantly larger than the second term
near the cusp. Also note that the leading order term is of the same order as the
reciprocal of the distance between two boundaries measured in Ey direction.

The aim of this subsection is to find g(x, y) and h(x, y) such that (2-2) satisfies
asymptotically the PDE (1-3) and the boundary conditions (1-4) and (1-5).

For simplicity of computation, we introduce coordinate variables s and t as
follows:

s := x, t :=
2y− ( f1(x)+ f2(x))

f1(x)− f2(x)
.
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We have chosen t so that y = f1(x) when t = 1, and y = f2(x) when t =−1.

Lemma 2.2 (first two terms of the formal asymptotic expansion). In (2-2), let
A = cos γ1+ cos γ2, and

g(s, t)=−

√
1−

(
cos γ1(t + 1)+ cos γ2(t − 1)

2

)2

+C1

(where C1 is an arbitrary constant), and h(s, t)= 0. If f1(s) and f2(s) satisfy

(2-3)
f1(s)− f2(s)= o

(
f ′1(s)− f ′2(s)

)
,

f ′′1 (s)− f ′′2 (s)
f1(s)− f2(s)

= o
(

f ′1(s)− f ′2(s)
( f1(s)− f2(s))2

)
,

f ′′′1 (s)− f ′′′2 (s)
f ′1(s)− f ′2(s)

= o
(

1
( f1(s)− f2(s))2

)
,

as s→ 0+, then

(2-4)
Eν1 · T v|t=1 = cos γ1+ o(1), Eν2 · T v|t=−1 = cos γ2+ o(1),

∇ · T v− v = o
(

1
f1(s)− f2(s)

)
as s→ 0+.

A tedious but straightforward calculation will verify this lemma. Instead of
showing this calculation, we briefly explain here how the expressions for A, g, and
h in the statement of the lemma were deduced. We first let

v(s, t)=
A

f1(s)− f2(s)
+ g(t)

f ′1(s)− f ′2(s)
f1(s)− f2(s)

.

(It is desirable — and, as it turns out, possible — to make the function g depend
only on t , so we will suppress the dependence of g on s; the same applies to the
function h.) After some lengthy calculations with assumptions (2-3) we obtain

Eν1 · T v|t=1=
2g′(1)√

A2+ 4g′2(1)
+o(1), Eν2 · T v|t=−1=−

2g′(−1)√
A2+ 4g′2(−1)

+o(1),

∇ · T v− v =
(

4g′′(t)A2

(A2+ 4g′2(t))3/2
− A

)
1

f1(s)− f2(s)
+ o

(
1

f1(s)− f2(s)

)
.

We now impose the desired equalities (2-4) and obtain a nonlinear ordinary differ-
ential equation of the first order in g′(t),

(2-5)
4g′′(t)A2

(A2+ 4g′2(t))3/2
= A for − 1< t < 1,



BOUNDED AND UNBOUNDED CAPILLARY SURFACES IN A CUSP DOMAIN 149

with boundary conditions

(2-6)
2g′(1)√

A2+ 4g′2(1)
= cos γ1, −

2g′(−1)√
A2+ 4g′2(−1)

= cos γ2.

Though there are two boundary conditions for this first-order ODE, note that A is an
indeterminate constant. Both g′(t) and A are determined by first integrating (2-5)
udner the boundary conditions (2-6). One essential observation from this derivation
is that the coefficient A of the leading-order term was found together with that of the
second-order term, g(t). In fact this pattern continues; the constant on the second-
order term C1 will be determined (it vanishes) at the same time as the third-order
term of the formal asymptotic expansion is found.

Lemma 2.3 (first three terms of the formal asymptotic expansion). In (2-2), let
A = cos γ1+ cos γ2,

g(t)=−

√
1−

(
cos γ1(t + 1)+ cos γ2(t − 1)

2

)2

,

and

h(t)=−
A
4

(
δt +

t2

2

)
+

1−α
2A

g(t)2+C2,

where C2 is an arbitrary constant. If f1(s) and f2(s) satisfy the conditions

f ′1(s) > f ′2(s) for s > 0,(2-7)

f1(s)− f2(s)= o
(

f ′1(s)− f ′2(s)
)
,(2-8)

f ′′1 (s)− f ′′2 (s)
f1(s)− f2(s)

= α
( f ′1(s)− f ′2(s))

2

( f1(s)− f2(s))2
+ o

(
( f ′1(s)− f ′2(s))

2

( f1(s)− f2(s))2

)
,(2-9)

f ′′′1 (s)− f ′′′2 (s)
f ′1(s)− f ′2(s)

= O
(
( f ′1(s)− f ′2(s))

2

( f1(s)− f2(s))2

)
,(2-10)

f ′1(s)+ f ′2(s)= δ( f ′1(s)− f ′2(s))+ o( f ′1(s)− f ′2(s)),(2-11)

f ′′1 (s)+ f ′′2 (s)= O( f ′′1 (s)− f ′′2 (s)),(2-12)

as s→ 0+, where α, δ ∈ R, then

Eν1 ·T v |t=1= cos γ1+o( f ′1(s)− f ′2(s)), Eν2 ·T v |t=−1= cos γ2+o( f ′1(s)− f ′2(s)),

∇ · T v− v = o
(

f ′1(s)− f ′2(s)
f1(s)− f2(s)

)
as s→ 0+.
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Again, a long tedious calculation will prove this lemma. We followed similar
steps to determine h(t), although solving the differential equation for h(t) was not
nearly as straightforward as for g(t). The constant C1 was determined to be 0 when
h(t) was determined and a new unknown constant C2 appeared in the third-order
term.

Comparing assumptions (2-3) with assumptions (2-8)–(2-12), we can see that
the restrictions on f1 and f2 increase as the number of terms in the formal asymp-
totic expansion increases from two terms to three terms. Although these assump-
tions are not proven to be necessary conditions for these lemmas to hold, it is our
suspicion that as the number of the terms in the asymptotic expansion increases,
the restrictions on f1 and f2 do become more strict.

2C. Asymptotic behavior of the capillary surface. The main result of Section 2
is stated and proven in this subsection. We first show that the asymptotic growth
order of the solution is the same order as the reciprocal of the distance between
two arcs forming a cusp.

Theorem 2.1 (growth order of u(x, y)). Let u(x, y) be the solution of the bound-
ary value problem (1-3)–(1-5). If f1(s) and f2(s) satisfy the conditions (2-3) and
|cos γ1| 6= 1 and |cos γ2| 6= 1, then there exist positive constants s0, k1 and k2 such
that

(2-13) k2

(
1

f1(s)− f2(s)

)
< |u(s, t)|< k1

(
1

f1(s)− f2(s)

)
, for s < s0.

Proof. The main idea of our proof is to construct a supersolution and a subsolution
by modifying the formal asymptotic expansion given in Lemma 2.2. We prove
these modified equations are in fact supersolution and subsolution by applying the
Concus–Finn comparison principle (Theorem A.1). Let

v(s, t; K1, K2)=
A(K1)

f1(s)− f2(s)
+ g(t; K1)

f ′1(s)− f ′2(s)
f1(s)− f2(s)

+ K2,

where

(2-14)

A(K1)= cos γ1+ cos γ2+ K1,

g(t; K1)=−
A

A− 1
3 K1

√
1−

(
cos γ1(t + 1)+ cos γ2(t − 1)

2
−

K1

6
t
)2

;

here we choose K1 and K2 appropriately to construct the supersolution and the
subsolution. The trick of this proof is to realize that A and g(t), the first and
second terms of the formal asymptotic expansion, need to be modified to obtain a
supersolution and a subsolution. We first impose the following conditions on K1
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so that the quantities in (2-14) behave reasonably:

|K1|< |cos γ1+ cos γ2|,(2-15)

|K1|< 6(1− |cos γ1|),(2-16)

|K1|< 6(1− |cos γ2|).(2-17)

We restrict the choice of K1 so that the sign of A(K1) only depends on the sign of
cos γ1+cos γ2. Also, if K1 is chosen to satisfy (2-15)–(2-17), then g(t, K1) is real
and bounded. After some calculations assuming (2-3), we obtain

Eν1 · T v |t=1 = cos γ1+
1
3 K1+o(1), Eν2 · T v |t=−1 = cos γ2+

1
3 K1+o(1),(2-18)

∇ · T v− v =− 1
3 K1

1
f1(s)− f2(s)

− K2+ o
(

f ′1(s)− f ′2(s)
f1(s)− f2(s)

)
,(2-19)

as s→0+. The essential observation in this step of the proof is that the expressions
in (2-18) do not depend on K2 including the “small o” terms. Similarly, (2-19) has
K2 dependence only at the second term and not in the “small o” term.

We now construct a function v+ that satisfies inequalities (A-1)–(A-4) in the
Appendix, and is therefore a supersolution. We denote the associated constants
by K+1 and K+2 ; i.e., v+ = v(s, t; K+1 , K+2 ). Firstly, K+1 are chosen to be a small
enough positive real number so as to satisfy (2-15)–(2-17). Then we choose a
constant s+0 > 0 so that for all s < s+0 the inequalities

Eν1 · T v+ |t=1− cos γ1 > 0, Eν2 · T v+ |t=−1− cos γ2 > 0,(2-20)

∇ · T v+− v++ K+2 < 0.(2-21)

are satisfied. Based on our previous observation we note that the choice of s+0 is
independent of K+2 . Let �+0 be the subdomain of � such that s < s+0 . By adding
a restriction on K+2 to be a positive real number, it follows from (2-21) that

∇ · T v+− v+ < 0 in �+0 .

Note that v+ now satisfies conditions (A-1)–(A-3) of the Concus–Finn comparison
principle (Theorem A.1). It remains to choose K+2 so as to satisfy condition (A-4).
According to Corollary A.1, u(s, t) is bounded at s = s+0 . Hence there exists K+2
such that

v+ > u on s = s+0 .

Thus by Theorem A.1 we have shown that there exists �+0 , K+1 , K+2 such that

v+(s, t; K+1 , K+2 ) > u(s, t) in �+0 .
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Similarly we can construct a subsolution v−(s, t; K−1 , K−2 ) such that

v−(s, t; K−1 , k−2 ) < u(s, t) in �−0 .

Hence in �+0 ∩�
−

0 we have v− < u < v+, i.e.,

A(K−1 )
f1(s)− f2(s)

+ g(t; K−1 )
f ′1(s)− f ′2(s)
f1(s)− f2(s)

+ K−2 < u

and

u <
A(K+1 )

f1(s)− f2(s)
+ g(t; K+1 )

f ′1(s)− f ′2(s)
f1(s)− f2(s)

+ K+2 .

Since K+1 and K−1 were chosen to satisfy (2-15), A(K+1 ) and A(K−1 ) have the same
sign. Without loss of generality assume A(K+1 ) > 0. Let

m1(s)= A(K+1 )+
(

max
−1<t<1

{
g(t; K+1 )( f ′1(s)− f ′2(s))

}
+ K+2 ( f1(s)− f2(s))

)
,

m2(s)= A(K−1 )+
(

min
−1<t<1

{
g(t; K−1 )( f ′1(s)− f ′2(s))

}
+ K−2 ( f1(s)− f2(s))

)
.

Since f ′1(s)− f ′2(s) and f1(s)− f2(s) are o(1) and continuous, there exists s0 > 0
so that m1(s),m2(s) > 0 for s < s0. By choosing

(2-22) k1 = max
0<s<s0

m1(s), k2 = min
0<s<s0

m2(s),

we obtain (2-13). �

Note that the proof holds for arbitrarily small |K±1 |. Hence it is natural to guess
that (cos γ1+cos γ2)/( f1(s)− f2(s)) is the correct leading-order term of the asymp-
totic expansion. We now show that the leading-order term of the formal asymptotic
expansion is in fact the first-order term of the asymptotic expansion of u(s, t).

Theorem 2.2 (leading-order behavior of u(x, y)). Let u(x, y) be the solution of
the boundary value problem (1-3)–(1-5). Assume that f1(s) and f2(s) satisfy the
conditions (2-8)–(2-12). Then

(2-23) u(s, t)=
cos γ1+ cos γ2

f1(s)− f2(s)
+ O

(
f ′1(s)− f ′2(s)
f1(s)− f2(s)

)
as s→ 0+.

Proof. We let

v(s, t; K3, K4, K5)=
A

f1(s)− f2(s)
+ g(t, K3)

f ′1(s)− f ′2(s)
f1(s)− f2(s)

+h(t; K4)
( f ′1(s)− f ′2(s))

2

f1(s)− f2(s)
+ K5,
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where

A = cos γ1+ cos γ2,

g(t; K3)=−

√
1−

(
cos γ1(t + 1)+ cos γ2(t − 1)

2

)2

+ K3,

h(t; K4)=−
A
4

(
δt + t2

2

)
+

1−α
2A

{
1−

(
cos γ1(t+1)+ cos γ2(t−1)

2

)2}
+

K4

2
t2.

Unlike the proof of Theorem 2.1, we can choose K3 and K4 as any real numbers.
After some calculations assuming (2-8)–(2-12), we obtain

Eν1 · T v |t=1 = cos γ1+ K4
( f ′1(s)− f ′2(s))(
A2+4(g′(t))2

)
3/2
+ o( f ′1(s)− f ′2(s)),(2-24)

Eν2 · T v |t=−1 = cos γ2+ K4
( f ′1(s)− f ′2(s))(
A2+4(g′(t))2

)
3/2
+ o( f ′1(s)− f ′2(s)),(2-25)

∇ · T v− v =
{(
−

12g′(t)t
A2+ 4(g′(t))2

+
4A2(

A2+ 4(g′(t))2
)

3/2

)
K4− K3

}
f ′1(s)− f ′2(s)
f1(s)− f2(s)

−K5+ o
(

f ′1(s)− f ′2(s)
f1(s)− f2(s)

)
,(2-26)

as s→ 0+.
We now construct a supersolution. Let v+ denote the supersolution, with asso-

ciate constants K+3 , K+4 , K+5 ; i.e., v+ = v(s, t; K+3 , K+4 , K+5 ). We first choose the
positive constant K+4 arbitrarily. Then we choose K+3 big enough so that{(
−

12g′(t)t
A2+ 4(g′(t))2

+
4A2(

A2+ 4(g′(t))2
)

3/2

)
K+4 − K+3

}
< 0 for − 1< t < 1.

We now choose s+2 > 0 so that

Eν1 · T v |t=1− cos γ1 > 0, Eν2 · T v |t=−1− cos γ2 > 0, ∇ · T v− v+ K+5 < 0

for 0< s< s+2 . Let�+2 be the subdomain of� such that s< s+2 . By Corollary A.1,
we know that u(s+2 , t) is bounded; hence there exists a large enough positive con-
stant K+5 so that

v+ > u on s = s+2 .

Thus by the Concus–Finn comparison principle (Theorem A.1) we have

v+ > u in �+2 .
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Similarly we can construct a subsolution v− by choosing suitable K−3 , K−4 , K−5
and s−2 . Thus we can bound the solution u(s, t) by v− and v+; i.e.,

v− < u < v+ in �+2 ∩�
−

2 ,

and (2-23) holds. �

From this section, we conclude that the height of a capillary surface near a cusp
is proportional to the reciprocal of the distance between the two arcs forming the
cusp, assuming these arcs satisfy (2-3).

2D. Examples of cusp domains. In the previous subsection, we have shown the
behavior of the capillary surface near a cusp under certain assumptions f1(x) and
f2(x) giving the shape of the boundaries. Those assumptions, expressed by (2-3)
or (2-8)–(2-12), are left in these forms in order to make the theorem as general
as possible. On the other hand, it is hard to grasp what kind of cusps are allowed
or not. In this subsection, we will show through examples when the theorem is
applicable and when it is not.

It is easy to show that if the difference between f1 and f2 can be written in the
following form, these functions satisfy (2-8)–(2-10):

(2-27) f1(x)− f2(x)= c xa0 exp
( ∞∑

i=1

ai xbi

)
,

where c > 0, a1 < 0, b1 < 0, bi+1 > bi . An alternative way to write this is

(2-28) f1(x)− f2(x)= exp
(∫ x

c

∑
∞

i=0 ãiζ
b̃i∑

∞

i=0 aiζ bi
dζ
)
,

where c> 0, b0− b̃0 ≥ 1, bi+1 > bi , a0 > 0 and ã0 > 0. As (2-8)–(2-10) are stricter
requirements for f1(x) and f2(x) than (2-3), if f1(x) − f2(x) can be written as
(2-27) or (2-28), then f1 and f2 satisfy (2-3).

Note that (2-11) and (2-12) can be interpreted as saying that some osculat-
ing cusps (cusps with boundaries tangent to second order) are not allowed, and
Equation (2-7) can be interpreted as saying that infinitely oscillating cusp bound-
aries are not allowed.

Example 1 (fractional power cusp). We now consider a cusp that can be analyzed
through the result of Scholz. Consider (2-28) and let b0 > 1, ãi = ai bi and b̃i =

bi − 1. Then we have

(2-29) f1(x)− f2(x)= c̃
∞∑

i=0

ai xbi .



BOUNDED AND UNBOUNDED CAPILLARY SURFACES IN A CUSP DOMAIN 155

ï!"#

ï#"$

$"$

&"#

ï&"#

ï'&"#

(

$"$!#$"$&# $"'$"$#$"$

ï'$"$

0.70.6

x

1.0

−0.5

0.90.80.3

−0.25

0.1 0.40.20.0

−0.75

0.5

−1.0

0.25

0.0

Figure 2. Left: fractional power cusp (Example 1). Right: expo-
nential cusp (Example 2). In both cases, p = 1 and q =−3.

To be more specific, we consider the cusp boundaries

(2-30) f1(x)= p (x5/2
+ x3), f2(x)= q (x5/2

+ x3),

with constants p > q (see Figure 2, left). According to Theorem 2.2, we obtain
the asymptotic expansion

u(x, y)=
cos γ1+ cos γ2

(p− q)(x5/2+ x3)
+ O(x−1)

=
cos γ1+ cos γ2

p− q

(
1

x5/2 −
1
x2 +

1
x3/2

)
+ O(x−1)

as x→0+. We note that this result is consistent with that of Scholz. It is noteworthy
that by finding the first order term of our asymptotic expansion we find the first
three terms of the asymptotic series solution in power series.

Example 2 (exponential cusp). We now consider cusps to which the results of
Scholz do not apply. Equation (2-27) implies that f1(x) and f2(x) can contain
exponential terms. We now consider a very sharp cusp, an “exponential cusp”,
where

f1(x)= p e−1/x2
, f2(x)= q e−1/x2

.

with constants p > q (see Figure 2, right). According to Theorem 2.2, we obtain
the asymptotic expansion

u(x, y)=
cos γ1+ cos γ2

p− q
e1/x2
+ O(x−3) as x→ 0+.

This example shows that our result has extended the result of Scholz on the leading
order behavior of a capillary surface in a cusp domain.
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Figure 3. Osculatory cusp (p = 3, q = 1).

Example 3 (osculatory cusp). We now consider a case where Theorem 2.2 cannot
be applied. Consider the cusp boundaries

(2-31) f1(x)= x2
+ px3, f2(x)= x2

+ qx3,

with constants p > q (see Figure 3).
These functions do not satisfy (2-11)–(2-12); hence Theorem 2.2 does not apply.

On the other hand, if |cos γ1| 6= 1 and |cos γ2| 6= 1, Theorem 2.1 applies, as this f1

and f2 satisfy (2-3). Hence even the case of the osculating cusp, we have shown
that the height of the capillary surface rises as the same order as the reciprocal of
the distance of two arcs forming a cusp, i.e.,

(2-32) u(x, y)=2
( 1

x3

)
.

As the two functions f1 and f2 forming a cusp only appear as ( f1(x)− f2(x)) or
( f ′1(x)− f ′2(x)) in the asymptotic expansion (2-2), it is not immediately obvious
as to why we cannot conduct the asymptotic analysis of this problem similarly to
the case where f1(x)= px3, f2(x)= qx3. However, the difference in asymptotic
order between f1(x)− f2(x) on the one hand and f1(x) or f2(x) on the other be-
comes crucial in calculating the asymptotic relations (2-24)–(2-26) of the boundary
conditions and the PDE. For example, for the calculation of (2-24), since

Eν1 =
(− f ′1(x), 1)
√

1+ ( f ′1(x))
2
,

the function f1(x) appears without subtracting f2(x). As a result, the asymptotic
relation (2-24) does not hold for the case of osculatory cusp. Thus for the osculatory
cusps, we cannot use the asymptotic expansion (2-2) to prove the leading order
behavior.
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3. Bounded capillary surfaces

In this section we assume γ1+ γ2 = π and prove that u(x, y) is bounded.

3A. Proof of the boundedness of the capillary surface when γ1 + γ2 = π .

Theorem 3.1 (boundedness of u(x, y) when γ1 + γ2 = π ). Let u(x, y) be the
solution of the boundary value problem (1-3)–(1-4) with γ1 = γ and γ2 = π − γ .
If the boundaries ∂�1 and ∂�2 have finite curvatures in the neighborhood of the
cusp, in other words, if there exists εo such that

(3-1) f1(x), f2(x) ∈ C2([0, εo]),

then u(x, y) is bounded.

Proof. It follows immediately from Corollary A.1 that u(x, y) is bounded in the
domain away from the origin. Hence our problem reduces to show that u(x, y) is
bounded in the neighborhood of the origin.

First we show that u(x, y) is bounded above at the origin by using the Concus–
Finn comparison principle (Theorem A.1). In order to apply Theorem A.1, we need
to construct a surface that satisfies (A-1)–(A-4). The most difficult part of this proof
is to construct a surface that satisfies both (A-2) and (A-3). Our unique idea is to
construct a surface that satisfies (1-4) exactly hence (A-2) and also satisfies (A-3).
Such surface can be constructed by a surface with contour lines parallel to the
boundary ∂�1. In other words by letting the height of the surface only depends on
the distance from the boundary ∂�1, we can easily construct a surface with exact
constant contact angle γ on this boundary. We choose a surface so that the height
and the mean curvature is bounded so that Inequalities (A-1) and (A-4) can easily
be satisfied by shifting this surface upwards.

We now translate the above statement to the precise language of mathematics.
Without loss of generality we assume 0 ≤ γ ≤ π/2. First we define a coordinate
system such that the one family of the coordinate curves is parallel curves of the
boundary ∂�1 and another family of the coordinate curves is lines perpendicular
to the boundary ∂�1. Let s and t be new coordinate variables defined implicitly as
the following (note that s here has different meaning from s used in Section 2):

(3-2) (x, y)= (s, f1(s))− t Eν1(s),

where Eν1(s) is the exterior unit normal vector of the boundary ∂�1 at (s, f1(s)).
More explicitly, the coordinate variables of Cartesian coordinate system x and y
can be written using the new coordinate variables s and t as follows:

(3-3) x = s+ t
f ′1(s)

√

1+ ( f ′1(s))
2
, y = f1(s)− t

1
√

1+ ( f ′1(s))
2
.
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Figure 4. Left: coordinate lines of the s-t coordinate system.
Right: the domain �0.

The variable t can be interpreted as the distance of the point from the boundary
∂�1. The coordinate curves are sketched in Figure 4, left.

The Jacobian of (3-3) is calculated to be

∂(x, y)
∂(s, t)

=
f ′1(s)

2
− 1

√

1+ ( f ′1(s))
2

(
1+ t

f ′′1 (s)
(1+ ( f ′1(s))

2)3/2

)
.

This gives that the point (x, y) in the Cartesian coordinate system can be specified
uniquely by the new coordinate variables (s, t) defined by (3-3) if both

(3-4) f ′1(s)
2
− 1 6= 0

and

(3-5) 1+ t
f ′′1 (s)

(1+ ( f ′1(s))
2)3/2

6= 0.

Since f1(s) ∈ C2([0, εo]) and lims→0+ f1(s) = 0, there exists 0 < s0 ≤ ε0 so that
(3-4) is satisfied for all s ∈ [0, s0]. Also due to the smoothness of f1(s), we can
find t0 > 0 such that (3-5) holds for all t ∈ [0, t0] in s ∈ [0, s0]. That is to say, the
coordinate system defined in (3-3) is valid in the domain

�d := {(s, f1(s))− t Eν1(s) ∈ R2
: 0≤ s ≤ s0, 0≤ t ≤ t0}.

Then we choose the subdomain

�0 :=�d ∩�ε0,

where�ε0 := {(x, y)∈R2
: 0< x <ε0, f2(x)< y< f1(x)}, as depicted in Figure 4,

right. Since �̄0 contains the cusp at the origin, finding an upper bound for the sur-
face u in domain �0 by using Theorem A.1 would prove that the capillary surface
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Figure 5. Cross section of a surface v+(s, t) on the line of con-
stant s: Choice of function g(t) for γ 6= 0 (left) and for γ = 0
(right).

is bounded above at the cusp. Using the parameters t and s, we now construct a
surface v+(s, t) in �0, with components (x, y, z), as follows:
(3-6)

x(s, t)= s+ t
f ′1(s)

√

1+( f ′1(s))
2
, y(s, t)= f1(s)− t

1
√

1+( f ′1(s))
2
, z(s, t)= g(t).

The choice of the height function g(t) depends on the contact angle γ . In our
opinion, the simplest choice such that the surface v+ satisfies (1-4) exactly and
also satisfies (A-3) is

(3-7) g(t)=

{
− cot γ t + K for γ 6= 0,

−

√

t2
0 − (t − t0)2+ K for γ = 0,

where K is a constant that we will specify later. The cross section of this surface
on a line of constant s is depicted in Figure 5, left.

The surface v+(s, t) can be sketched as in Figure 6. For example, if the curve
∂�1 is a part of a circle, then the surface v+(s, t) for the case γ 6= 0 becomes a
part of a cone, and for the case γ = 0 it becomes a part of a torus.

We now verify that the surface v+(s, t) satisfies (1-4) exactly and also satisfies
(A-3). We first consider the case γ 6= 0, as the vector T v+ can be interpreted as
a unit downwards vector of the surface v+, it follows immediately from Figure 5
(left) that T v+(s, t) can be written as

T v+ = cos γ Eν1− sin γ ẑ,
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Figure 6. Sketch of the surface v+(s, t) for γ 6= 0 (left) and for
γ = 0 (right).

where ẑ is a unit vector in z direction. Noting that the vector Eν1 is orthogonal to ẑ,
we obtain that (1-4) is satisfied exactly by the surface v+(s, t), i.e.,

Eν1 · T v+ = cos γ on ∂�1 ∩ ∂�0.

We now verify that the surface v+(s, t) satisfies Inequality (A-3). By noticing Eν2

and ẑ are orthogonal and both Eν1 and Eν2 are unit vectors, we obtain the inequality

Eν2 · T v+ = cos γ Eν1 · Eν2, >− cos γ,= cos(π − γ ).

Although the case of γ = 0 may look complicated, it follows immediately from
Figure 5 (right) that the angle between the unit downward normal vector of v+ and
Eν1 are parallel on the boundary, on ∂�1 ∩ ∂�0,

Eν1 · T v+ = 1= cos 0.

Also it follows immediately from the definition of the differential operator T that
|T v+| ≤ 1; see (1-6). By noting that Eν2 is a unit vector, i.e., |Eν2| = 1, we have

ν2 · T v+ >−1= cos(π − 0).

Hence the surface v+(s, t) defined by (3-6)–(3-7) satisfies Inequalities (A-2) and
(A-3). We now show that the surface v+(s, t) satisfies (A-1) by choosing large
enough constant K .

Since ∇ · T v+ is twice the mean curvature of the surface v+, it is given by the
well-known formula (see [Moon and Spencer 1970], for example)

∇ · T v+ = −2H(v+)=−
E N +GL − 2F M

EG− F2 ,
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where

E = (xs)
2
+ (ys)

2
+ (zs)

2, F = xs xt + ys yt + zszt , G = (xt)
2
+ (yt)

2
+ (zt)

2,

and

L =

∣∣∣∣∣∣
xss yss zss

xs ys zs

xt yt zt

∣∣∣∣∣∣
√

EG− F2
, M =

∣∣∣∣∣∣
xst yst zst

xs ys zs

xt yt zt

∣∣∣∣∣∣
√

EG− F2
, N =

∣∣∣∣∣∣
xt t yt t zt t

xs ys zs

xt yt zt

∣∣∣∣∣∣
√

EG− F2
.

After some calculation we obtain

∇ · T v+ =
g′′1 (t)

(1+ (g′(t))2)3/2

+
f ′′1 (s)

(1+ ( f ′1(s))
2)3/2

(
1+ t

f ′′1 (s)
(1+ ( f ′1(s))

2)3/2

) g′(t)√
1+ (g′(t))2

.

Recalling that we have chosen the domain �0 so that (3-5) holds in �0 and that
f ′′1 (s) ∈ C2([0, εo]), in order to show ∇ · T v+ is bounded, all we need to show
is that g′′1 (t)/(1+ (g

′(t))2)3/2 is bounded, that is to say, the curvature of the curve
g(t) is bounded. For the case of γ 6= 0, we have chosen g(t) to be a linear function,
so g′′(t) is zero. For the case of γ = 0, we have chosen g(t) to be the part of a
circle with radius t0, so g′′1 (t)/(1+ (g

′(t))2)3/2 = 1/t0. In either case, it follows
that ∇ · T v+ is bounded. We now consider the quantity ∇ · T v+− v+, which can
be written as

∇ · T v+− v+ =∇ · T v+− (g(t)+ K ).

It follows immediately from the choice of g(t) that it is bounded in the domain
�̄0 and also we have shown that twice the mean curvature ∇ ·T v+ is bounded and
does not depend on K . Hence there exists a constant K0 such that

∇ · T v+− v+ =∇ · T v+− (g(t)+ K )≤ 0 for all K ≥ K0.

Thus we have shown that the surface v+ satisfies the (A-1) when K > K0.
We now put the last piece of the puzzle in place by showing v+ satisfies (A-4) for

an appropriate choice of the constant K . Corollary A.1 implies that the capillary
surface u is bounded away from the cusp, hence it is bounded on

∂�0\(∂�1 ∪ ∂�2 ∪ {(0, 0)}).

Since g(t) is bounded in the domain �̄0, there exists a constant K1 ≥ K0 such that
g(t)+K1 > u on ∂�0\(∂�1∪∂�2∪{(0, 0)}). Thus the surface v+ satisfies (A-4)
when K = K1.
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We have shown that the surface v+(s, t) defined in (3-6)–(3-7) satisfies inequal-
ities (A-1)–(A-4), so by the Concus–Finn comparison principle we have

v+(s, t)≥ u(x, y) in �0.

Therefore the capillary surface at the cusp is bounded above when γ1+γ2=π and
each boundary (∂�1, ∂�2) has finite curvature near the cusp.

We can follow the similar steps for constructing the subsurface to show that this
capillary surface is bounded below. We first construct a coordinate system such that
one of the families of the coordinate curves is parallel curves of the boundary ∂�2

and another is perpendicular lines of the boundary ∂�2. Then choose a surface
v− so that the heigh only depends on the distance from ∂�2 which satisfies the
contact angle condition exactly on ∂�2 and also it satisfies Eν1 · T v−− cos γ ≤ 0.
By choosing v− to have the bounded height and the finite mean curvature, we can
shift this surface downwards enough to satisfy ∇ ·T v−−v− ≥ 0 in �0 and v− ≤ u
on ∂�0\(∂�1∪∂�2∪{(0, 0)}). Then using the Concus–Finn comparison principle,
we can prove that u(x, y) is bounded below.

Thus by showing that there exist bounded sub- and supersolutions of the Laplace–
Young capillary surface equation, we have proven that the capillary surface is
bounded if the contact angles of the boundaries are supplementary angles and
boundaries have finite curvatures near the cusp. �

3B. Proof of the continuity of the capillary surface when γ1 + γ2 = π .

Theorem 3.2. If the capillary surface satisfies the conditions in Theorem 3.1, it is
continuous at the cusp.

Proof. Having established the boundedness of the solution, we can use the methods
of [Lancaster and Siegel 1996] to establish a parametric description of the surface,
with parameter domain at first the unit disk. The above comparison surface is
needed in proving Case 5 (page 173) in that reference. Assuming the surface is
discontinuous at the corner implies that an arc of the unit circle corresponds to the
points on the surface above the corner point. A change of coordinates allows us to
use the half-unit disk as the parameter domain, where the boundary line segment
corresponds to the points on the surface above the corner point. Following the proof
of Step 3 (page 175) of [Lancaster and Siegel 1996], for two different heights, there
are level curves going through the corner point, and this leads to a contradiction
(last paragraph of page 175 of the same reference). �

4. Concluding remarks

We have shown that the validity of the statement “[the capillary surface] rises with
the same order like the order of contact of the two arcs, which form the cusp”
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[Scholz 2004] is not restricted to power-law cusps; it can be extended further. Our
proof directly uses the the functions f1(x) and f2(x) without approximating them
by series. This idea has given us an advantage in the sense that our leading order
term expression gives clearer intuitive understanding of the relationship between
the shape of the domain and the shape of the singular capillary surface. Also as
shown in an Example in Subsection 2.4.1, our leading order term gives first three
terms of the power series asymptotic expansion, owing to the fact we have avoided
approximating the boundary by the power series.

Even though we have extended the results beyond power-series cusps, our re-
sults still suffer from certain restrictions, including (2-8)–(2-12). Also a complete
asymptotic series solution maybe desirable in order to claim a complete under-
standing of the asymptotic behavior; however, this will require further assumptions
to the boundary functions f1 and f2. The authors suspect that functions f1 and f2

of a form similar to the right-hand side of (2-27) can be potential candidates for a
type of cusp for which a complete asymptotic series can be determined.

Also we have shown the previously unknown phenomenon of a bounded capil-
lary surface in a cusp domain is possible when the contact angles of the two walls
are supplementary (i.e., γ1+γ2= π ). Although our proof covers most of the cases
when the boundaries are smooth except at the cusp, the behavior of the capillary
surface is unknown when the curvature of the boundary is not finite at the cusp.
For example, it is unknown whether or not the capillary surface is bounded in a
cusp domain bounded by f1= x3/2 and f2=−x3/2 when the contact angles of the
two walls are supplementary.

The phenomenon that the capillary surface can be bounded or unbounded in a
cusp domain depending on the contact angle can be interesting physically, as it in-
dicates that a gradual change in the contact angle (e.g., by changing the temperature
of the liquid) can cause a dramatic change in the liquid surface from unbounded
to bounded. However, as the bounded capillary surface in a cusp domain only
appears when the contact angles are exactly supplementary, it is not unknown to
the authors how easily this phenomena can be observed through an experiment.

Thus we end this paper by remarking that the further exploration of singular cap-
illary surfaces through theoretical, experimental and possibly numerical analyses
is desired.

Appendix: The Concus–Finn comparison principle

In Sections 2C and 3A we have used the Concus–Finn comparison principle. We
present it here for readers unfamiliar with it; see [Finn 1986, pages 110–113;
1989] for detailed discussions and proofs. We use the following formulation of
the comparison principle:
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Theorem A.1 (supersolution). Let u(x, y) be a solution of the boundary value
problem (1-3)–(1-5) and let�0 be a subdomain of�, with boundary ∂�0. Suppose
a function v+(x, y) satisfies the inequalities

∇ · T v+− v+ ≤ 0 in �0,(A-1)

Eν1 · T v+− cos γ1 ≥ 0 on ∂�1 ∩ ∂�0,(A-2)

Eν2 · T v+− cos γ2 ≥ 0 on ∂�2 ∩ ∂�0,(A-3)

v+(x, y)≥ u(x, y) on ∂�0\(∂�1 ∪ ∂�2 ∪ {(0, 0)}).(A-4)

Then v+(x, y) is a supersolution of the boundary value problem (1-3)–(1-5), i.e.,

v+(x, y)≥ u(x, y) in �0.

A similar statement holds for subsolutions.

Also we make use of one of the corollaries of the comparison principle to con-
struct an upper bound for the solution; see [Concus and Finn 1974] or pages 113–
114 of [Finn 1986].

Corollary A.1 (bound by hemispheres). Let u(x, y) be a solution of the bound-
ary value problem (1-3)–(1-5) and Br0(x0, y0) a disk of radius r0 > 0 centered at
(x0, y0). If Br0(x0, y0)⊆�, then

−

( 1
r0
+ r0

)
≤ u(x, y) ≤ 1

r0
+ r0 in Br0(x0, y0).(A-5)

Recalling from (1-2) that the boundary is assumed to be of class C3 away from
the origin, it follows immediately from Corollary A.1 that u(x, y) can only be
unbounded at the origin (cusp).
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