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TO THE 3-DISK PRESERVING A 4-COLORING

RUI PEDRO CARPENTIER

We prove that any triangulation of a 2-dimensional sphere with a proper
strict 4-coloring on its vertices can be seen as the boundary of a triangula-
tion of a 3-dimensional disk with the same vertices in such a way that the
4-coloring remains proper.

1. Introduction

We are interested in triangulations of the sphere whose vertices can be assigned
four colors in a way that is proper (no adjacent vertices receive the same color) and
strict (all colors are used). Eliahou, Gravier and Payan [2002] proved that all such
triangulations can be obtained from the tetrahedron by sequences of the following
moves:

move I: +

+

←→
-

-

move II:
+

−→
- -

-

-

−→

+

+ +

Here the signs are defined by the 4-coloring in the following manner. A proper
vertex 4-coloring of a triangulation induces a 3-coloring on the edges if we regard
the four colors as the elements of the field of order 4; each edge is assigned the
sum (or difference) of the colors of its end points. By fixing an order on the three
edge colors we get a signing on the triangles: “+” if the colors on the boundary
are ordered counterclockwise and “−” if the colors on the boundary are ordered
clockwise. Thus move I does not change the coloring on the vertices, and move II
extends the coloring on the vertices in a unique way to the central vertex.
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Disregarding signs and the unidirectional arrows, these are the same moves of
[Pachner 1991], which can be seen as the gluing of tetrahedra onto the triangulation.
This observation led the author to wonder whether or not any triangulation of a
sphere with a proper strict 4-coloring can be seen as the boundary of a properly
vertex-colored triangulation of the 3-dimensional disk with the same vertices, even
though the extended triangulation has many extra edges.

The answer to this question in the affirmative is the main result of this paper,
and the result stated at the start of this introduction follows from this as a corollary.

2. Triangulations, 1-structures and other algebraic topological prerequisites

We clarify some topological definitions that we use in this paper. Eliahou et al.
[2002] defined a triangulation of a closed surface S as a finite graph, loop-free but
possibly with multiple edges, embedded in the surface S and subdividing it into
triangular faces. However, this definition, by allowing parallel edges, differs from
the usual meaning given by many topologists, which defines a triangulation of S
as an ordered pair (K , h), where K is a simplicial complex and h : |K | → S is a
homeomorphism from the geometric realization of K to the space S (for example,
see [Rotman 1988]). Instead, we use as the definition of a triangulation on a space
X what is called in [Hatcher 2002] a 1-complex structure on X .

Let
1n
=
{
(t0, . . . , tn) ∈ Rn+1

:

∑
i

ti = 1 and ti ≥ 0 for all i
}

be the standard n-simplex. A k-dimensional face of 1n (with k < n) is a subset
of 1n where n− k coordinates ti1, . . . , tin−k are equal to zero. The union of all the
faces of 1n is the boundary of 1n , denoted by ∂1n . The open n-simplex 1̊n is
1n
− ∂1n , the interior of 1n:

1̊n
=
{
(t0, . . . , tn) ∈ Rn+1

:

∑
i

ti = 1 and ti > 0 for all i
}
.

A 1-complex structure on a space X (which we also call a triangulation on X )
is a (finite) collection of maps σα : 1n

→ X , with n depending on the index α,
such that:

(i) The restriction σα|1̊n is injective, and each point in X is in the image of
exactly one such restriction σα|1̊n .

(ii) Each restriction σα to a face (of dimension k < n) of 1n is one of the maps
σβ :1

k
→ X . Here we identify the (k-dimensional) face of1n with1k by the

canonical linear homeomorphism between them that preserves the ordering of
the vertices.

(iii) A set A ⊂ X is open if and only if σ−1
α (A) is open in 1n for each σα.



EXTENDING TRIANGULATIONS FROM 2D TO 3D PRESERVING A COLORING 259

We call a space X provided with a 1-complex structure T a triangulated space.
We call the images of the 0-simplex σα :10

→ X the vertices in X , the images
of the 1-simplex σα : 11

→ X the edges in X , the images of the 2-simplex the
triangles in X , and the images of the 3-simplex the tetrahedra in X . The graph of
a triangulation is formed by its sets of vertices and edges, and a (proper) coloring
on a triangulation is a (proper) coloring on its graph.

The star of a vertex v in X is formed by the images of the maps σα : 1n
→ X

that contain v:
st(v)=

⋃
v∈σα(1n)

σα(1
n).

The deletion of a vertex v in X is formed by the images of the maps σα :1n
→ X

that do not contain v:
dl(v)=

⋃
v 6∈σα(1n)

σα(1
n).

A 1-complex structure on a space X induces a 1-complex structure on its cone
C X = X × [0, 1]/X × {0} in a natural way. For each map σα : 1k

→ X , we
have two maps: σ α :1k

→ C X given by σ α(t0, . . . , tk)= (σα(t0, . . . , tk), 1), and
σ̂α :1

k+1
→ C X given by

σ̂α(t0, . . . , tk+1)=
(
σα

( t0
1− tk+1

, . . . ,
tk

1− tk+1

)
, 1− tk+1

)
(for tk+1 6= 1) and σ̂α(0, . . . , 0, 1)=∗, where ∗ is the point X×{0} in C X . Finally
we complete the triangulation with the map σ∗ :10

→ C X given by σ∗(10) = ∗.
We call this construction the cone of the triangulation of X .

For the proof of the main result we need to introduce the following topological
concept. Consider a 3-disk D with a 1-complex structure and an edge e on the
boundary of the 3-disk that is in the boundary of a triangle t such that its interior t̊
is contained in the interior of D. Then the inner star of the edge e,

s̊t(e)=
⋃

e⊆σα(1n)

σα(1̊
n),

is topologically a half open ball, {(x, y, z) ∈ R3
: x2
+ y2
+ z2 < 1, z ≥ 0}, which

is split into two pieces �1 and �2 by the triangle t (or t̊ ∪ e̊). This means that �1

and �2 are the two connected components of s̊t(e)\(t̊∪ e̊). Now consider �1∪�2

as a subspace of D \ (t̊ ∪ e̊) and a subspace of (�1 ∪ t̊ ∪ e̊)
∐
(�2 ∪ t̊ ∪ e̊) (where

each component (�i ∪ t̊ ∪ e̊) is given the subspace topology induced from D). By
gluing1 D \ (t̊ ∪ e̊) and (�1∪ t̊ ∪ e̊)

∐
(�2∪ t̊ ∪ e̊) via �1∪�2, we get a new space

1If a space A is a subspace of two spaces X and Y , the gluing of X and Y via A is the space
obtained by taking the quotient of X

∐
Y that identifies the two copies of A (as a subspace of X and

as a subspace of Y ).
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that we say to be obtained from D by opening a fissure through the edge e along
the triangle t .

3. The main result and a corollary

Our main result can be stated as follows:

Theorem 1. If ψ is a proper strict 4-coloring of a triangulation T of the 2-sphere
S2, then there exists a triangulation T ′ of the 3-disk D3 such that T is the triangu-
lation induced by T ′ on the boundary of the disk, the vertices of T ′ are in T and ψ
is still a proper 4-coloring of T ′.

To prove this theorem, we make use of the following lemma, which can be seen
as a version of the theorem for one dimension lower:

Lemma 2. If ψ is a proper strict 3-coloring of a triangulation T of the circle S1,
then there exists a triangulation T ′ of the disk D2 such that T is the triangulation
induced by T ′ on the boundary of the disk, the vertices of T ′ are in T and ψ is still
a proper a 3-coloring of T ′.

Proof. In this case T is just a cycle graph, and thus ifψ is a proper strict 3-coloring,
then there are three consecutive vertices v1, v2 and v3 with distinct colors a, b and c.
Suppose that the middle vertex v2 is colored by b. If v2 is the only vertex in T
colored by b, then we can add edges linking v2 with all vertices of T , and therefore
we get a triangulation T ′ of the disk D2 with the desired properties.

b

a

c

a

c

a

c

−→

b

a

c

a

c

a

c

If v2 is not the only vertex in T colored by b, then we can add an edge linking
v1 with v3, and then complete, by induction on the number of vertices of T , the
triangulation on the disk whose boundary is the cycle v1, v3, . . . , vn .

b

a

c

a

b

c

b

−→

b

a

c

a

b

c

b

induction
−→

b

a

c

a

b

c

b

�

Proof of Theorem 1. The topological procedures used in this proof are:
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(1) taking the triangulated cone of a triangulated 2-disk,

(2) attaching a triangulated cone of a triangulated 2-disk without inner vertices to
a previously triangulated 3-disk,

(3) “grafting” a triangulated 3-disk into another triangulated 3-disk using a fissure
(see the end of Section 2),

(4) gluing two previously triangulated 3-disks along a shared triangle on their
surface, and

(5) gluing two triangulated cones of 2-disks along two adjacent shared triangles
on their surface.

The details of the procedures follow.
First we consider the case where the triangulation T has no parallel edges (edges

between the same pair of vertices), so the star and the deletion (see Section 2) of
any vertex of T are simplicial disks.

We start by proving that in the triangulation T there exists a vertex v that is
adjacent to a cycle colored by three colors. We take a triangle colored by (say) a, b
and c and consider the region formed by the triangles colored by the same colors.
Since ψ is a strict 4-coloring, this region has a nonempty boundary, and any vertex
of the boundary satisfies the required condition, because its link necessarily has
vertices colored by d and by two colors amongst a, b and c that differ from the
color of the vertex itself.

Now, if v is the only vertex in T colored by its color ψ(v), then we take the
cone of the deletion of v to get a triangulation T ′ of the disk D3 with the desired
properties. This is procedure (1).

If, on the contrary, v is not the only vertex in T colored by ψ(v), we remove v,
use Lemma 2 to triangulate the region R bounded by the link of v to get a trian-
gulation T ′′ of S2 that is still strict 4-colored and with one less vertex than T , use
induction to get a triangulation of the disk D3 bounded by this, and attach its cone
to the region R to obtain the desired triangulation T ′ of D3. This is procedure (2).

In the case where the triangulation does have parallel edges, we take two parallel
edges e and e′ linking two vertices vi and v j colored by two colors (say 1 and 2).
The two parallel edges form a cycle C that splits the sphere into two (triangulated)
2-disks D1 and D2.

Suppose that we have a strict 4-coloring for at least one of the disks (say D1

has vertices colored by all four colors). Then, gluing the edges e and e′, we get a
(triangulated) sphere S1 with fewer vertices2 than the original sphere. To the other
disk we attach along the cycle C its cone (formed by two triangles te and te′) in

2Since the cycle C is formed by only two edges, each disk must contain inner vertices.
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order to get another (triangulated) sphere S2 with fewer vertices3 than the original
sphere. The disk D2 is colored by at least three colors (say 1, 2 and 3), so we
color the inserted vertex on S2 with the color 4 in order to guarantee we have a
strict 4-coloring on S2. Therefore, by induction on the number of vertices, S1 is
the boundary of a triangulated 3-disk D′1 without inner vertices and preserving the
properness of the 4-coloring, and S2 is the boundary of a triangulated 3-disk D′2
with the same properties.

Now we perform the following surgery: take the edge e∗ on S1 resulting from
the gluing of the parallel edges e and e′, and search in D′1 for a triangle t containing
that edge and a vertex colored with the color 4 (Such a triangle exists because the
edge belongs to some tetrahedron.)

If t is not on the surface S1, then it is adjacent to two tetrahedra τ1 and τ2 in D′1.
We replace t by two copies of it, t1 (adjacent to τ1) and t2 (adjacent to τ2), sharing
the same vertices and the same edges except the edge e∗, which is replaced by the
old parallel edges e and e′. In other words, we are opening a fissure in D′1 through
the edge e∗ along the triangle t . Suppose, without loss of generality, that e is an
edge of t1 and e′ is an edge of t2. Then we identify the triangles t1 and t2 with
the triangles te and te′ in S2 (which are in D′2) that made the cone of the cycle C
(formed by e and e′). This “grafting” of the disk D′2 in the disk D′1 produces the
desired triangulated 3-disk. This is procedure (3).

If t is on the surface S1, then there exists a triangle t ′ on D1 with the same
vertices. If the triangle t ′ is adjacent to the edge e (resp. e′), then we identify
the triangle t with the triangle on S2 that belongs to the cone of the cycle C and
is adjacent to the edge e′ (resp. e). This gluing of the disk D′1 with the disk D′2
produces the desired triangulated 3-disk. This is procedure (4).

Finally, if neither of the disks D1 and D2 has a strict 4-coloring (we can suppose
that D1 is colored by 1, 2 and 3 and D2 is colored by 1, 2 and 4), then we remove
from D1 the edge e and the triangle t1 in D1 incident to it, and remove from D2

the edge e′ and the triangle t2 in D2 incident to it. We then get two new 2-disks
D′1 and D′2. We take the triangulated cones of them both. Let v1 be the opposite
vertex to the edge e in the triangle t1, v2 the opposite vertex to the edge e′ in the
triangle t2, v∗1 the cone vertex of the cone of D′1, and v∗2 the cone vertex of the cone
of D′2. Then we get the desired triangulation of the 3-disk by gluing the two cones
by identifying the triangle in the cone of D′1 having vertices v1, vi and v∗1 with the
triangle in the cone of D′2 having vertices v2, vi and v∗2 , and identifying the triangle
in the cone of D′1 having vertices v1, v j and v∗1 with the triangle in the cone of D′2
having vertices v2, v j and v∗2 (Recall that the two ends of the parallel edges e and
e′ were called vi and v j , and note that through the identifications, the triangles t1

3Since the disk D1 has vertices of all colors, at least two vertices must be deleted from the original
triangulated sphere in order to get the disk D2.
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and t2 appear on the boundary of the 3-disk as faces of the cones of D′2 and D′1,
respectively.) This is procedure (5). �

As a corollary, we get an alternative proof of [Eliahou et al. 2002, Theorem 1.3]:

Theorem 3. Suppose we are given a triangulation T of the sphere with signed
faces. Then the signing comes from a proper strict 4-coloring of T if and only
if T comes from the tetrahedron with the same sign on all its faces, by means of
a sequence of signed diagonal flips (move I) and/or divisions of a triangle into
three triangles (by adding a vertex v inside the triangle and edges joining v to the
vertices of the triangle) with the opposite sign (move II).

move I: +

+

←→
-

-

move II:
+

−→
- -

-

-

−→

+

+ +

Proof. Sufficiency is easy, and we take the proof from [Eliahou et al. 2002]: move I
does not change the coloring, and move II extends the coloring in a unique way.

For necessity, we take the triangulation of D3 obtained in Theorem 1, choose
one tetrahedron, and by adding the adjacent tetrahedra one by one, get a sequence
of moves I and II (The signs of the faces are determined by the coloring, as was
observed in the paragraph following Theorem 1.)

We have only to see that this sequence of attaching adjacent tetrahedra can be
done while keeping the topology of a 3-disk in each step. We prove by induction
on the number of tetrahedra that this can be done independently of the tetrahedron
we choose to start with.

Recall that the triangulation produced in Theorem 1 is obtained by one of the
following procedures: (1) taking the triangulated cone of a triangulated 2-disk,
(2) attaching a triangulated cone of a triangulated 2-disk without inner vertices to
a previously triangulated 3-disk, (3) “grafting” a triangulated 3-disk into another
triangulated 3-disk, (4) gluing two previously triangulated 3-disks along a shared
triangle on their surface, and (5) gluing two triangulated cones of 2-disks along
two adjacent shared triangles on their surface.

In procedure (1) we have to prove that, given a triangulation of the 2-disk and a
triangle in it, there exists a sequence of attaching adjacent triangles, starting from
the given triangle and ending with the given triangulation, such that in each step
we have a triangulation of a 2-disk. This can be easily proved by induction on the
number of triangles of the triangulation. If there exists an edge that cuts the 2-disk
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in two, then we get, by induction, a sequence of attaching triangles on the disk
that contains the starting triangle, and we continue the sequence on the other disk
starting with the triangle incident to the cutting edge. If there are no such cutting
edges and the triangulation has more than one triangle (the case of a one-triangle
triangulation is trivial), then we choose one triangle incident to a boundary edge
different from the starting triangle, remove it, and use induction to get a sequence
of attaching triangles from the starting triangle to this triangulation of the disk with
the triangle removed, and complete the sequence by attaching this last triangle.

In procedure (2), we have by induction sequences for any starting tetrahedron
both in the smaller 3-disk and in the attaching cone. If the starting tetrahedron is in
the smaller 3-disk, then we take a sequence in the smaller 3-disk for that tetrahedron
and complete it with a sequence in the attaching cone. If the starting tetrahedron
is in the cone, then we take a sequence in the cone starting at that tetrahedron
and a sequence in the smaller 3-disk starting at the tetrahedron adjacent to that
tetrahedron, and proceed in the following way. Start with the starting tetrahedron,
follow it with the sequence in the smaller 3-disk, and complete the sequence with
the rest of the sequence in the cone.

In the “grafting” case (3), if the starting tetrahedron is in the 3-disk D′2 that
is grafted into the other 3-disk D′1 (see the final part of the proof of Theorem 1)
using an inner triangle, then we take, by induction, a sequence in D′1 starting at
that tetrahedron and complete the sequence in the other disk by starting at one of
the tetrahedra incident to the triangle where the “grafting” is done. If the starting
tetrahedron is in the other 3-disk (D′1), then from a sequence in that disk starting at
that tetrahedron, given by induction, we take the partial sequence from that starting
tetrahedron to the first tetrahedron in the sequence that is incident to the triangle
where the “grafting” is done, then follow with a sequence in the grafted disk D′2
that starts at the tetrahedron adjacent to the latter tetrahedron, and finish with the
rest of the sequence in D′1.

In the case (4) of two 3-disks attached by a single triangle, we start with a given
tetrahedron, take the sequence given by induction in the disk that contains it, and
complete the sequence in the other disk starting at the tetrahedron incident to the
gluing triangle.

In the final case (5), we have the cones of two disks D′1 and D′2 glued by identi-
fying a certain pair of adjacent triangles on each cone. Without loss of generality,
suppose that the starting tetrahedron is in the cone of the disk D′1. We know that
for a cone of a triangulated 2-disk there is a sequence of attaching tetrahedra from
any starting tetrahedron to the whole triangulation keeping the 3-disk topology in
each step. So we can find such a sequence for the cone of the disk D′1 starting at
the given tetrahedron, say T1, T2, . . . , Tk , and another such sequence for the cone
of the disk D2 (that is, the disk D′2 with the triangle with vertices vi , v2 and v j
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attached to it; see the last part of the proof of Theorem 1), starting at the cone of this
last triangle, say T ′1, T ′2, . . . , T ′l . Thus we obtain a sequence for the whole 3-disk
by omitting T ′1 and composing these two sequences as T1, T2, . . . , Tk, T ′2, . . . , T ′l .

�

4. Comments and a conjecture

We have seen the analogy between Theorem 1 and Lemma 2 and how the second
result is used in the proof of the first. This leads us to conjecture the following:

Conjecture 4. If ψ is a proper strict (n + 2)-coloring of a triangulation T of the
n-sphere Sn , then there is a triangulation T ′ of the disk Dn+1 such that ∂T ′ = T ,
the vertices of T ′ are in T , and ψ is still a proper a (n+ 2)-coloring of T ′.

It is not clear if and how the proof of Theorem 1 can be adapted to higher
dimensions even in the weaker case of triangulations without parallel edges (the
usual definition for triangulation). This is because, for triangulations of spheres
of dimension greater than 4, the link of a vertex is not necessarily a sphere of
lower dimension. However, if we consider only the case of piecewise linear trian-
gulations (where the link of any simplex is a piecewise linear sphere [Thurston
1997]), the first part of the proof of Theorem 1 seems to apply recursively to
prove Conjecture 4. Also, for piecewise linear triangulations, a weaker version
of this conjecture (allowing inner vertices) follows from [Hatcher and Wahl 2010,
Lemma 3.1].

Another open problem is to what extent the proof of Theorem 3 depends on the
triangulations of the 3-disk obtained in the proof of Theorem 1. In other words,
given a triangulation of the 3-disk, not necessarily of the type used in the proof of
Theorem 1, we want to know if there is a sequence of attaching tetrahedra from an
initial tetrahedron to the final triangulation such that the topology of the 3-disk is
kept in each step.
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