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We first study the Chern–Simons partition function of orthogonal quantum
group invariants and then propose a new orthogonal Labastida–Mariño–
Ooguri–Vafa (LMOV) conjecture as well as a degree conjecture for free
energy associated to the orthogonal Chern–Simons partition function. We
prove the degree conjecture and some interesting cases of the orthogonal
LMOV conjecture. In particular, we provide a formula of the colored Kauff-
man polynomials for torus knots and links, and applied this formula to
verify certain cases of the conjecture at roots of unity except 1. We also
derive formulas of Lickorish–Millett type for Kauffman polynomials and
relate all these to the orthogonal LMOV conjecture.

1. Introduction

1.1. Overview. Jones’s seminal papers [1985; 1987] initiated a new era in knot
theory. The HOMFLY polynomial [Freyd et al. 1985] and Kauffman [1990] poly-
nomial for links were subsequently discovered. In the 1990s, Witten, Reshetikhin
and Turaev constructed the colored version of these invariants, either by path inte-
grals in physics [Witten 1989], or by the representation theory of quantum groups
[Reshetikhin and Turaev 1991; 1990]. These works lead to a unified understanding
of quantum group invariants of links.

The colored HOMFLY polynomials, which are associated to the special lin-
ear quantum groups, have been studied more carefully after physicists proposed
a conjectural relationship between Chern–Simons theory and Gromov–Witten in-
variants. The Mariño–Vafa formula and the topological vertex [Aganagic et al.
2005; Li et al. 2009; 2003; 2007] are examples illustrating this so-called string
duality. The Labastida–Mariño–Ooguri–Vafa conjecture [Labastida and Mariño
2002; Labastida et al. 2000; Ooguri and Vafa 2000] gave highly nontrivial relations
between colored HOMFLY polynomials. The first such relation is the classical
Lichorish–Millett theorem [1987]. The integers coefficients that appear in the

MSC2010: 57M27, 81R50.
Keywords: quantum invariant.

267



268 LIN CHEN AND QINGTAO CHEN

LMOV conjecture are called the BPS numbers in string theory, and also related
to the integrality in the Gopakumar–Vafa conjecture [1999] for Gromov–Witten
invariants [Peng 2007]. By using the cabling technique, Xiao-Song Lin and Hao
Zheng [2010] obtained a formula for colored HOMFLY polynomials of torus links
in terms of Littlewood–Richardson coefficients, and they were able to check certain
cases of the LMOV conjecture for a few (small) torus knots and links. The LMOV
conjecture was recently proved by Kefeng Liu and Pan Peng [2010], based on the
cabling technique and a careful degree analysis of the cut-join equations.

Actually the LMOV conjecture is part of a bigger picture, the large N duality,
proposed by ’t Hooft [1974] in the 1970s. Large N duality states that there is a
duality between Chern–Simons gauge theory of S3 and topological string theory
on the resolved conifold.

In mathematics, the LMOV conjecture predicts that the reformulated invariants
(some combination) of colored HOMFLY/Kauffman polynomials are in the ring
Z[t, t−1

][q − q−1
], where q is the quantum deformation number. In this way,

these reformulated invariants have an expression similar to the original HOM-
FLY/Kauffman polynomials, which have variables q−q−1, t and t−1 with integer
coefficients.

1.2. The orthogonal Labastida–Mariño–Ooguri–Vafa conjecture. The study of
colored Kauffman polynomials is more difficult. For instance, the definition of
the Chern–Simons partition function for the orthogonal quantum groups involves
representations of the Brauer centralizer algebras, which admit more complicated
orthogonal relations; see [Ram 1991; 1995; 1997]. The orthogonal analog of the
cut-join equation [Liu et al. 2003; Liu and Peng 2010] can be found in [Chen 2009].

In this paper, we propose a new conjecture, developed in collaboration with
Nicolai Reshetikhin, on the reformulated invariants; ours is the orthogonal quantum
group analog of the original LMOV conjecture. Let L be a link with L components
and let ZSO

CS (L, q, t) be the orthogonal Chern–Simons partition function defined in
Section 4. Expand the free energy

FSO(L, q, t)= log ZSO
CS (L, q, t)=

∑
Eµ 6=E0

FSO
Eµ pb Eµ(EzEz).

Then the reformulated invariants are defined by

g Eµ(q, t)=
∑
k| Eµ

µ(k)
k

FSO
Eµ/k(q

k, tk).

Conjecture 1.1 (orthogonal LMOV).

z Eµ(q − q−1)2 · [g Eµ(q, t)− gEµ(q,−t)]

2
∏L
α=1

∏`(µα)

i=1 (qµ
α
i − q−µ

α
i )

∈ Z[q − q−1
][t, t−1

].
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Conjecture 1.2 (degree). Let q = eu and valu(FSO
Eµ
) be the valuation of the vari-

able u and `( Eµ) be the sum of the lengths of the partition corresponding to each
component of the link L. Then

valu(FSO
Eµ )≥ `( Eµ)− 2.

This conjecture is a mathematical formulation of a conjecture of Bouchard, Flo-
rea and Mariño [Bouchard et al. 2005], and the integer coefficients on the right hand
side of the conjecture above are closely related to BPS numbers in string theory
[Bouchard et al. 2005]. More recent progress can be found in [Mariño 2010], which
is a refined version of [Bouchard et al. 2005]. The framing version can be found
in [Borhade and Ramadevi 2005; Paul et al. 2010]. Our formulation is still quite
different from that in [Bouchard et al. 2005; Mariño 2010], because their approach
uses representations of Hecke algebra, whereas ours is based on representations of
the Birman–Murakami–Wenzl algebra, and uses a type-B Schur function instead
of a type-A Schur function as the basis in the orthogonal Chern–Simons partition
function.

Theorems that partly answer the orthogonal LMOV conjecture proposed in this
paper are listed below. For more precise statements of these theorems, see Sections
5, 7, 8 and 9.

Theorem 1.3. The conjecture is true for all partitions when the link is trivial (when
it is a disjoint union of unlinked unknots).

Theorem 1.4. The conjecture is true for partitions of the shape

Eµ= ((1d1), (1d2), . . . , (1dL )),

where (1dα )= (1, 1, . . . , 1) ` dα for 1≤ α ≤ L.

Theorem 1.5. The conjecture is true if and only if it is true for partitions of the
shape Eµ= ((d1), (d2), . . . , (dL)).

Theorem 1.6. The conjecture asymptotically holds (for all partitions Eµ and all
knots/links) as q tends to 1.

Theorem 1.7. Examples of L for which the conjecture is true include the torus
knots/links T (2, k), where k is odd/even, and each component of the partition Eµ is
of the form (1), (1, 1) or (2); the two components torus link T (2, 2k) for partition
(3), (1); and the three components torus link T (3, 3k) for the partition (2), (1), (1).
These give evidence for the conjecture at nontrivial roots of unity.

Theorem 1.8. We have the degree estimate

valu(FSO
Eµ )≥ `( Eµ)− 2.
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In addition, we use the cabling technique developed in [Lin and Zheng 2010]
to calculate colored Kauffman polynomials for torus knots and links, which are
employed to test the orthogonal LMOV conjecture (Theorem 1.7).

This paper is organized as follows: In Section 2, we review some basic knowl-
edge of partitions, the Birman–Murakami–Wenzl (BMW) algebra and irreducible
representation of the Brauer algebra. In Section 3, we review the definition of
the quantum group invariants of links and use the cabling formula to simplify the
computation of these invariants. As an application of the cabling formula, we
obtain colored Kauffman polynomials of all torus knots and links for all partitions
(irreducible representations). In Section 4, we define the Chern–Simons partition
function for orthogonal quantum groups and the corresponding reformulated in-
variants. Also, we compute the orthogonal Chern–Simons partition function for
disjoint union of unknots (Theorem 1.3). In Section 5, we propose a new or-
thogonal LMOV conjecture and degree conjecture. Then we test torus knots and
links as supporting examples (Theorem 1.7), which can not be treated as special
cases of the proof in the following sections. In Section 6, we obtain formulas of
Lickorish–Millett type by using skein relations at the intersections of two different
link components. This trick is also widely used in Section 7. Anyway, this section
is quite independent and such Lickorish–Millett-type formulas can also be treated
as applications of the orthogonal LMOV conjecture, which is the starting point of
this paper. In Section 7, we prove the equivalence between the vanishing of the first
three coefficients of FEµ for trivial partitions Eµ (each component of partitions have
only one box), predicted by the degree conjecture, and the Lichorish–Millett type
formulas obtained in Section 6. We also prove the orthogonal LMOV conjecture for
column-like Young diagram (Theorem 1.4) as a generalization of such Lichorish–
Millett type formulas. In Sections 8 and 9, we prove that if the orthogonal LMOV
conjecture is valid for the case of rows, then the orthogonal LMOV is valid for all
partitions (Theorem 1.5). We also present there the proof of the degree conjecture
(Theorem 1.7), which implies that the orthogonal LMOV conjecture asymptotically
holds (for all partitions Eµ and all knots/links) as q tends to 1 (Theorem 1.6).

In Section 10 (the appendix), we first compute explicit expressions of the Chern–
Simon partition function for the unknot. We then review an alternative definition of
the colored Kauffman polynomial via the Markov trace (skein approach) and test
the Hopf link for the orthogonal LMOV conjecture by using this new definition.
We also give an explicit computation of the quantum trace for orthogonal quantum
groups directly from the universal R-matrix. Finally, we list the character table of
the Brauer algebra and type-B Schur functions, whose specialization gives colored
Kauffman polynomials of the unknot (quantum dimensions) for small partitions.
These tables are mainly used to compute colored Kauffman polynomial for torus
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knots and links. The tables of the integers coefficients predicted by the orthogonal
LMOV conjecture are also presented.

2. Young diagram and Birman–Murakami–Wenzl algebra

2.1. Partition and young diagram. A composition µ of n, denoted by µ |H n, is
a finite sequence of positive integers (µ1, µ2, . . . , µ`) such that

µ1+µ2+ · · ·+µ` = n.

The number of parts in µ is called the length of µ and denoted by ` = `(µ).
The size of composition µ is defined by

|µ| =

`(λ)∑
i=1

µi .

A partition λ is a composition such that

λ1 ≥ λ2 ≥ · · · ≥ λ` > 0.

Denote by P the set of all partitions. We identify a partition with its Young
diagram.

If |λ| = d, we say λ is a partition of d and denote this by λ ` d .
We use mi (λ) to denote the number of times that i appears in λ. Denote the

automorphism group of the partition λ by Aut(λ).
The order of Aut(λ) is given by

|Aut(λ)| =
∏

i

mi (λ)!

A partition λ can also be rewritten in the form

(1m1(λ)2m2(λ) · · · ).

For instance, we have (5, 3, 3, 2, 2, 2, 1)= (11233251)

Associate to a partition λ the numbers

zλ =
∏

i

imi (λ)mi (λ)! and κλ =

`(λ)∏
j=1

λ j (λ j − 2 j + 1).

2.2. Partitionable set and infinite series. We present here some basic facts about
partitionable sets, following the notation of [Liu and Peng 2010].

The concept of partition can be generalized as follows. set. A countable set
(S,+) is called a partitionable set if

(1) S is totally ordered;
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(2) S is an Abelian semigroup with summation “+”; and

(3) the minimum element 0 in S is the zero element of the semigroup, that is,

0+ a = a = a+ 0 for any a ∈ S.

For simplicity, we may briefly write S instead of (S,+).
The following sets are examples of partitionable sets:

(1) The set of all nonnegative integers Z≥0.

(2) The set of all partitions P. Let λ,µ ∈ P. The ordering on P can be defined
by saying λ≥µ if and only if |λ|> |µ|, or |λ| = |µ| and there exists a j such
that λi = µ j for i ≤ j − 1 and λ j > µ j . The summation is taken to be ∪ and
the zero element is (0).

(3) The set Pn . The order of Pn is defined similarly as before: Let EA, EB ∈Pn . We
say EA ≥ EB if and only if

∑n
i=1

∑
|Ai
|>

∑n
i=1|B

i
|, or

∑n
i=1|A

i
| =

∑n
i=1|B

i
|

and there is a j such that Ai
= Bi for i ≤ j − 1 and A j > B j .

Define
EA∪ EB = (A1

∪ B1, A2
∪ B2, . . . , An

∪ Bn).

The element ((0), (0), . . . , (0)) is the zero. Then Pn is a partitionable set.
Let S be a partitionable set. One can define partition with respect to S in a way

similarly to that of Z≥0, that is, by a finite sequence of nonincreasing nonminimum
elements in S. We will call it an S-partition, and (0) the zero S-partition. Denote
by P(S) the set of all S-partitions.

For an S-partition 3, we can define the automorphism group of 3 similarly to
that of a traditional partition. Given β ∈ S, denote by mβ(3) the number of times
that β occurs in the parts of 3. We then have

Aut3=
∏
β∈S

mβ(3)!.

Associate to 3 the definitions

u3 =
`(3)!

|Aut3|
and 23 =

(−1)`(3)−1

`(3)
u3.

The following lemma will be used in Section 4 to deduce the reformulated in-
variants.

Lemma 2.1 ([Liu and Peng 2010, Lemma 2.3]). Let S be a partitionable set. If
f (t)=

∑
n≥0 antn , then

f
( ∑
β∈S,β 6=0

Aβ pβ(x)
)
=

∑
3∈P(S)

a`(3)A3 p3(x)u3,
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where

p3(x)=
`(3)∏
j=1

p3 j and A3 =
`(3)∏
j=1

A3 j .

Proof. Note that ( ∑
β∈S,β 6=0

ηβ

)n
=

∑
3∈P(S),`(3)=n

η3u3. �

2.3. The Birman–Murakami–Wenzl algebra. The centralizer algebra

(2-1) EndUq (so(2N+1))(V⊗n)

= { f ∈ End(V⊗n) | f x = x f for all x ∈Uq(so(2N + 1))}

for the standard representation of Uq(so(2N + 1)) on V = C2N+1 is isomorphic,
when N > n, to the BMW algebra Cn .

Let C(t, q) be the field of rational functions with two variables. For each positive
integer n, the BMW algebra is defined to be an algebra Cn over C(t, q) as follows.
The algebra C1 is one dimensional and thus is identified with C(t, q). For n > 1,
Cn is generated over C(t, q) by the generators g1, g2, . . . , gn−1, e1, e2, . . . , en−1

and the relations

(A1) gi gi+1gi = gi+1gi gi+1 for 1≤ i ≤ n− 2,

(A2) gi g j = g j gi if |i − j |> 2,

(A3) ei gi = t−1ei ,

(A4) ei g±1
i−1ei = t±1ei , and

(A5) (q − q−1)(1− ei )= gi − g−1
i .

The first two properties are the braiding relations. The following two properties
are immediate from the definition above:

(P1) e2
i = xei for x = 1+ (t − t−1)/(q − q−1).

(P2) (gi − t−1)(gi + q−1)(gi − q)= 0.

When the variables q and t approach 1, with x = 1+ (t− t−1)/(q−q−1) fixed,
the BMW algebra above specializes to the Brauer algebra Brn , which is semisimple
and isomorphic to the centralizer algebra Endso(2N+1)(V⊗n) if N > n; see [Brauer
1937] and also [Weyl 1946]. The BMW algebras are semisimple except possibly
when q is a root of unity or t = qm for some integer m. Obviously, the BMW
algebra is the deformation of the Brauer algebra.
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2.4. Irreducible representations of Brauer algebras. For our purpose, we focus
the generic case when the BMW algebras Cn are semisimple. In this situation,
the description of the irreducible representations is similar to that of the Brauer
algebras Brn .

Being the centralizer algebra Endso(2N+1) V⊗n , Brn contains the group algebra
C[Sn] as a direct summand; thus all the irreducible representations of Sn are also
irreducible representations of Brn , labeled by partitions of the integer n. Indeed,
the set of irreducible representations of Brn are bijection with the set of partitions
of the integers n − 2k, where k = 0, 1, . . . , [n/2]; see [Ram 1995; Wenzl 1988].
Thus the semisimple algebra Brn can be decomposed into a direct sum of simple
algebras:

Brn ∼=

[
n
2 ]⊕

λ`n−2k

⊕
k=0

Mdλ×dλ(C).

Beliakova and Blanchet [2001] constructed an explicit basis of the decomposi-
tion above. An up-and-down tableau 3 = (λ1, λ2, . . . , λn) is a tube of n Young
diagrams such that λ1 = (1) and each λi is obtained by adding or removing one
box from λi−1. Let λ be a partition of n− 2k. We say |3| = λ if λn = λ, and we
say an up-and-down tableau 3 is of shape λ. There is a minimal path idempotent
p3 ∈ Brn associated to each 3. Then the minimal central idempotent πλ of Brn

corresponding to the irreducible representation labeled by λ is given by

πλ =
∑
|3|=λ

p3.

In particular, the dimension of the irreducible representations dλ is the number of
up-and-down tableaus of shape λ. More details can be found in [Beliakova and
Blanchet 2001; Wenzl 1988].

The characters table and the orthogonal relations can be found in [Ram 1991;
1995; 1997]. The values of a character of Brn are completely determined by its
values on the set of elements ek

⊗γλ, where e is the conjugacy class of e1, . . . , en−1

and γλ is the conjugacy class in Sn−2k labeled by the partition λ of n − 2k. The
notation ek

⊗ γλ stands for the tangle in the diagram

e0 e2 · · · e2k γλ

Гλ

2k n− 2k
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where 0λ is a diagram in the conjugacy class of Sn−2k labeled by a partition λ of
n− 2k.

Denote by χA the character of the irreducible representation of Brn labeled by a
partition A ` n−2k for some k, and denote by χ Sn

B the character of the irreducible
representation of Sn labeled by a partition B ` n. It is known that if A is a partition
of n, then χA(em

⊗ γλ) = 0 for all m > 0 and partitions λ ` n − 2m, and the
characters χA(γµ)= χ

Sn
A (γµ), for partitions µ ` n, coincide with the characters of

the permutation group Sn [Ram 1995].

2.5. Schur–Weyl duality. Both so(2N+1) and Brn act on the tensor product V⊗n

and their actions commute with each other. As a bimodule, V⊗n has the decom-
position

V⊗n
=

⊕
λ

Vλ⊗Uλ,

where λ runs through all the partitions of n, n−2, n−4, . . . , 0, and Vλ and Uλ are
the irreducible representations of so(2N + 1) and Brn , respectively, labeled by λ.
A similar decomposition holds for the pair Uq(so(2N + 1)) and Cn .

A power symmetric function of a sequence of variables z = (zi )i∈Z is defined
by

pbn(z)= (z0)
n
+

+∞∑
i=1

[(zi )
n
+ (z−i )

n
].

For a partition λ,

pbλ(z)=
`(λ)∏
j=1

pbλ j
(z).

Denote by B̂rn the set of all the characters of Brn . For each partition A, we
use sbA to denote the type-B Schur function associated to A with infinitely many
variables z0, z±1, z±2, . . . , which are completely determined inductively by the
system of equations

(2-2) xk pbλ =
∑

A∈B̂rn

χA(e⊗k
⊗ γλ) sbA .

The parameter x is the structure constant in the definition of the Brauer algebra
Brn . The type-B Schur functions are independent of this parameter x , as one
can see from the character formula of the Brauer algebra, given by [Ram 1995,
Theorem 5.1]. If A is a partition of n, then sbA is a symmetric polynomial of
degree n (not necessarily homogeneous).

Throughout this paper, we fix the following notations for partition set PL , where
L is the number of components of the link L.
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For Eµ= (µ1, µ2, . . . , µL) ∈ PL , let

(2-3) | Eµ| = (|µ1
|, |µ2
|, . . . , |µL

|) ∈ ZL

and define

(2-4) ‖ Eµ‖ =

L∑
α=1

|µα|.

Write

(2-5) `( Eµ)=

L∑
α=1

`(µα)

for the sum of the length of each partition.
We write pb Eµ(Ez)=

∏L
α=1 pbµα (zα), where zα = (zα,i )i∈Z.

Let B̂r | Eµ| denote the set B̂r |µ1|× · · · × B̂r |µL |. Then χ EA(γ Eµ)=
∏L
α=1 χAα (γµα )

for the character χAα of Br|µα | labeled by Aα, a partition of |µα| − 2kα, and the
conjugacy class γµα of Brdα labeled by µα.

3. Colored Kauffman polynomials and cabling formula

3.1. Colored Kauffman polynomials (orthogonal quantum group invariants) and
cabling technique. Let Bm be the braid group of m strands that is generated by
σ1, . . . , σm−1 with defining relations

(3-1)
{

σiσ j = σ jσi if |i − j | ≥ 2,
σiσ jσi = σ jσiσ j if |i − j | = 1.

Every link can be represented by the closure of some element in braid group
Bm . This kind of braid representation is not unique. We fix such a braid repre-
sentation, and then we define the quantum group invariants of link via this braid.
Finally we will see that such a definition is independent of the choice of the braid
representation.

Let g be a finite-dimensional complex simple Lie algebra and Uq(g) be the
corresponding quantized enveloping algebra.

The ribbon category structure associated with Uq(g) is given by the following
data:

(1) Associated to each pair of Uq(g)-modules V and W is an isomorphism

ŘV,W : V ⊗W →W ⊗ V

such that
ŘU⊗V,W = (ŘU,W ⊗ idV )(idU ⊗ ŘV,W ),

ŘU, V⊗W = (idV ⊗ ŘU,W )(ŘU, V ⊗ idW )
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for Uq(g)-modules U , V , W .
Given f ∈HomUq (g)(U, Ũ ) and g∈HomUq (g)(V, Ṽ ), one has the naturality

condition

(g⊗ f ) ◦ ŘU, V = ŘŨ , Ṽ ◦ ( f ⊗ g).

(2) There exists an element K2ρ ∈Uq(g), called the enhancement of Ř, such that

K2ρ(v⊗w)= K2ρ(v)⊗ K2ρ(w)

for any v ∈ V and w ∈W . Here ρ is the half-sum of all positive roots of g.
Moreover, for every z ∈ EndUq (g)(V,W ) with z=

∑
i xi⊗ yi , xi ∈ End(V )

and yi ∈ End(W ), one has the quantum trace

trW (z)=
∑

i

tr(yi K2ρ) · xi ∈ EndUq (g)(V )

(3) For any Uq(g)-module V , the ribbon structure θV : V → V associated to V
satisfies

θ±1
V = trV Ř±1

V,V .

The ribbon structure also satisfies the naturality condition

x · θV = θṼ · x

for any x ∈ HomUq (g)(V, Ṽ ).

Let L be a link with components Kα for α=1, . . . , L , represented by the closure
of β ∈ Bm . We associate each Kα an irreducible representation VAα of the quantized
universal enveloping algebra Uq(g) labeled by highest weight Aα. In the sense of
[Ram 1995], these irreducible representations can be labeled by partitions. Abusing
notation, we use the Aα to denote those partitions. Let i1, . . . , im be integers such
that ik = α if the k-th strand of β belongs to the α-th component of L.

Let U and V be two Uq(g)-modules labeling two outgoing strands of the cross-
ing. The braidings ŘU,V and Ř−1

V,U are assigned as in following figure.

ŘU,V Ř−1
V,U
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The assignment above will give a representation of Bm on Uq(g)-module VAi1⊗

· · ·⊗ VAim . Namely, for any generator σ j ∈ Bm , define

h(σ j )= idV
Ai1
⊗ · · ·⊗ ŘV

A
i j+1 ,VA

i j
⊗ · · ·⊗ idVAim

,

and

h(σ−1
j )= idV

Ai1
⊗ · · ·⊗ Ř−1

V
A

i j ,VA
i j+1
⊗ · · ·⊗ idVAim

,

Therefore, any link L will provide an isomorphism

h(β) ∈ EndUq (g)(VAi1 ⊗ · · ·⊗ VAim ).

The representation of the braid group Bn on V⊗n factors through the BMW
algebra Cn by sending σ j to g j ∈Cn . By abuse of notation, we still denote this via
g j = h(σ j ).

The quantum trace

trV
Ai1⊗···⊗VAim

h(β)

defines the framing-dependent link invariant of link L.
In order to eliminate the framing dependency, we make the refinement [Lin and

Zheng 2010]

W so(2N+1)
VA1 ,...,VAL

(L; q)= θ−w(K1)
VA1

· · · θ
−w(KL )
VAL

trV
Ai1⊗···⊗VAim

(h(β)),

where w(Kα) is the writhe number of Kα in β, that is, the number of positive
crossing minus the number of negative crossings.

The quantity above is invariant under the Markov moves, and hence is an in-
variant of the underlying link L.

Quantum group invariants of links can be defined over any complex simple Lie
algebra g. However, in this paper, we mainly consider the quantum group invariants
of links defined over so(2N + 1). More generally, one can also include the case
for so(2N ) and sp(2N ); however, we will not do so, since the quantum group
invariants associated to these Lie algebras all give the colored Kauffman poly-
nomials. To distinguish Uq(so(2N+1)) from the quantum group corresponding to
the spin group, we only consider those representations parametrized by the highest
weights in the root lattice of the Lie group SO(2N +1), instead of the spin group.
These highest weights are, similar to the case of slN , partitions of length at most
N , that is, {µ|µ1 > µ2 > · · ·> µN > 0}.

Let’s consider Uq(so(2N + 1)), the quantized universal enveloping algebra of
orthogonal Lie algebra so(2N + 1).

The ribbon category structure is defined by letting Ř = P12R for the universal
R-matrix above, and taking K2ρ to be q−ρ

∗

. The operator P12 : V ⊗W →W ⊗V
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switches the two components, and ρ∗ denotes the element in the Cartan subalgebra
h⊂ g corresponding to ρ.

The positive roots of so(2N + 1) are given by ϑi ± ϑ j for 1 6 i < j 6 N and
ϑ1, ϑ2, . . . , ϑN , where ϑi has eigenvalue xi when acting on the matrix element

diag{−xN ,−xN−1, . . . ,−x1, 0, x1, . . . , xN−1, xN }

in the Cartan subalgebra. The sum of the positive roots is given by

2ρ =
N∑

i=1

ϑi +
∑

16i< j6N

[(ϑi −ϑ j )+ (ϑi +ϑ j )] =

N∑
i=1

(2N + 1− 2i)ϑi ,

and

K2ρ = diag{q1−2N , q3−2N , . . . , q−3, q−1, 1, q, q3
· · · , q2N−3, q2N−1

}.

Alternatively, we can write

K2ρ(vi )=


q2i−1−2Nvi if 1≤ i ≤ N ,
vi if i = N + 1,
q2i−3−2Nvi if N + 2≤ i ≤ 2N + 1.

The natural representation of Uq(so(2N+1)) on V has universal matrix Ř acting
on V ⊗ V by [Turaev 1988]

Ř= q
∑

i 6=N+1

Ei,i ⊗ Ei,i + EN+1,N+1⊗ EN+1,N+1+
∑

j

∑
i 6= j,i 6=2N+2− j

E j,i ⊗ Ei, j

+ q−1
∑

i 6=N+1

E2N+2−i,i ⊗ Ei,2N+2−i + (q − q−1)
∑
i< j

Ei,i ⊗ E j, j

− (q − q−1)
∑
i< j

q i− j E2N+2− j,i ⊗ E j,2N+2−i ,

where Ei, j is the (2N + 1)× (2N + 1) matrix with

(Ei, j )kl =

{
1 if (k, l)= (i, j),
0 elsewhere

and i =


i + 1

2 if 1≤ i ≤ N ,
i if i = N + 1,
i − 1

2 if N + 2≤ i ≤ 2N + 1.

To compute the quantum invariants more explicitly, we will first introduce the
representation theory of the BMW algebra.

From now on, we only restrict ourselves in the case when the BMW algebra Cn is
semisimple and N is large. The representations of Cn can be described in the same
way as the Brauer algebra Brn . The semisimplicity implies that the representation
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V⊗n of Cn admits a direct sum decomposition

V⊗n
=

⊕
λ∈B̂rn

dλ · Vλ.

The multiplicities dλ are all positive integers. In particular, any irreducible repre-
sentation VA of Uq(so(2N + 1)) appears as a direct summand of V⊗r for integers
r = |A|, |A| + 2, |A| + 4, . . . . By Schur’s lemma,

Cn ∼= EndUq (so(2N+1)) V⊗n ∼=
⊕
λ∈B̂rn

Cλ,

where Cλ = EndUq (so(2N+1))(dλVλ) is isomorphic to the dλ × dλ matrix algebra,
labeled by the characters B̂rn of Brn as the decomposition of V⊗n .

A minimal idempotent p ∈Cn satisfies p2
= p and the action of Uq(so(2N+1))

on the subspace p ·V⊗n is an irreducible representation. Another description of p
is that there exist exactly one λ∈ B̂rn such that the restriction of p to Cλ is nonzero,
and it’s a diagonalizable matrix with exactly one eigenvalue 1 and all others 0.

Let y be an element in Cn , and denote by ζ λn (y) the normal (or say, nonquan-
tum) trace of its λ component via the isomorphism above. Since y and all the
idempotents are elements in Cn , they are finite linear combinations of products of
the generators gi and ei , which imply ζ λn (y) is, in general, a rational function of q
and t .

It is not hard to get the following identity from the Turaev’s [1988] construction
of universal matrix Ř (see Section 10 for details):

θV = q2N
· idV ,

where V is the standard representation of Uq(so(2N + 1)) on C2N+1.
More generally, we have the following lemma obtained by Reshetikhin [1987].

Lemma 3.1. For each partition λ ` n− 2 f with `(λ)≤ N , one has

θVλ = qκλ+2N (n−2 f )
· idVλ,

where κλ =
∏`(λ)

j=1 λ j (λ j − 2 j + 1).

This result can be understand in the following way. First we have θV =q2N
·idV .

A result of Aiston and Morton ([1998, Theorem 5.5], compare with [Lin and Zheng
2010, Theorem 4.1]) states that

θVλ = qκλ+nN−n2/N
· idVλ.

Lin and Zheng use a different normalization for universal Ř-matrices, and thus
have

q1/NθV = q N
· idV
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and also a different corresponding normalization for h : CBn → Cn(V ) factoring
through the Hecke algebra Hn(q) via

q1/Nσi 7→ gi 7→ q1/N hV (σi ).

Then we translate their normalization to ours, that is,

σi 7→ gi 7→ h(σi ),

θV = q N
· idV , θVλ = qκλ+nN

· idVλ.

Then it is quite easy to get θVλ = qκλ+2N (n−2 f )
· idVλ.

Now we can write down the explicit formula for the orthogonal quantum group
invariants as

(3-2) W SO
A1,...,AL (L; q)= q−

∑L
α=1 κAαw(Kα)−2N

∑L
α=1|A

α
|w(Kα) · trV

Ai1⊗···⊗VAim
(h(β))

for all sufficiently integers N . In particular, when the link is trivial with L compo-
nents, the quantum group invariant is this product of quantum dimensions:

(3-3) W SO
A1,...,AL (©

L
; q)=

L∏
α=1

dimq(VAα ).

The quantum dimension is computed in [Wenzl 1990], a calculation we quote
here. Let λ be a partition. We also identify it with the corresponding Young dia-
gram. For each pair of positive integers (i, j), define

h(i, j)= λi + λ
′

j − i − j + 1

to be the hook length, where λ′ is the transposed Young diagram of λ. Also define

d(i, j)=
{
λi + λ j − i − j + 1 if i ≤ j,
−λ′i − λ

′

j + i + j − 1 if i > j.

Theorem 3.2 [Wenzl 1990]. Let λ be a Young diagram with m rows and let Qλ(t, q)
be the rational function given by

(3-4) Qλ(t, q)=
∏

( j, j)∈λ

(
1+

tqλ j−λ
′

j − t−1qλ
′

j−λ j

[h( j, j)]q

) ∏
(i, j)∈λ

i 6= j

tqd(i, j)
− t−1q−d(i, j)

[h(i, j)]q
.

Then the quantum trace dimq Vλ of the representation of Uq(so(2N + 1)) corre-
sponding to λ is equal to Qλ(q2N , q) for all N > |λ|.

In the expression above, if we fix t and let q tends to 1, the pole order of Qλ(t, q)
is |λ|, the number of boxes in the Young diagram. The poles order at q = 1 of the
quantum group invariant of unknots in (3-3) is ‖ EA‖ =

∑L
α=1 |A

α
|.
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The special value

sbA(q1−2N , q3−2N , . . . , q−1, 1, q, . . . , q2N−3, q2N−1)= Qλ(q, q2N )

is the quantum dimension dimq(VA), denoted also by sbA(q, t). Here we only
evaluate the function in the variables

z−N , z1−N , . . . , z−1, z0, z1, . . . , zN−1, zN ,

and set all the remaining variables equal to zero.
The quantum dimension of small partitions can be found in Section 10, where

we use the symbol sbA(q, t) for the type-B Schur function.
Similar to the type-A Schur function, the type-B Schur function has the expan-

sion

sbλ(z−N , z1−N , . . . , z−1, z0, z1, . . . , zN−1, zN )

=

∑
µ|Hn,`(µ)≤2N+1

dim(pλV⊗n
∩Mµ) ·

N∏
i=−N

zµ(i+N+1)
i ,

where Mµ, called the permutation module, is defined by

Mµ
=
{
v ∈ V⊗n

| Hi (v)= qµi−µi+1v for i = 1, 2, . . . , N−1 and HN (v)= qµN v
}
,

and dim(pλV⊗n
∩Mµ) is called the Kostka number.

It is normally very hard to calculate these quantum group invariants. Anyway,
we can simplify the computation a lot with the help of the cabling technique.

The following lemma reduces the study of quantum group invariants of arbitrary
representations to the study of the links and minimal idempotents.

Lemma 3.3 [Lin and Zheng 2010, Lemma 3.3]. Let β ∈ Bm be a braid and let
pα ∈ Cdα for α = 1, . . . , L be L minimal idempotents corresponding to the irre-
ducible representations VA1, . . . , VAL , where Aα denotes the partition of |Aα| = dα
labeling VAα . Let Ed = (d1, . . . , dL) and let i1, . . . , im be integers such that ik = α

if the k-th strand of β belongs to the α-th component of L. Let β Ed be the cabling
braid of β, replacing the k-th strand of β by dik parallel ones. Then

(3-5) trV
Ai1⊗···⊗VAim

h(β)= trV⊗n [h(β Ed) · (pi1 ⊗ · · ·⊗ pim )],

where n = di1 + di2 + · · ·+ dim .

One immediately gets the following lemmas proved in [Lin and Zheng 2010]
and reformulated into the setting of the orthogonal group.
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Lemma 3.4. For any element y ∈ Cn ,

(3-6) trV⊗n y

=

[n/2]∑
k=0

∑
λ`n−2k

ζ λn (y)·sbλ(q1−2N , q3−2N , . . . , q−1, 1, q, . . . , q2N−3, q2N−1).

For any braid β ∈ Bm , take y = h(β Ed) · (pi1 ⊗ pi2 ⊗ · · · ⊗ pim ), where the closure
of β is the link L. The setting is same as that in Lemma 3.3, so that after replacing
q2N by t , we have

(3-7) W SO
EA
(L, q, t)= q−

∑L
α=1 κAαw(Kα)t−

∑L
α=1|A

α
|w(Kα)

·

[n/2]∑
k=0

∑
λ`n−2k

ζ λn (h(β Ed) · (pi1 ⊗ pi2 ⊗ · · ·⊗ pim )) ·Qλ(q, t),

where n = |Ai1 | + · · · + |Aim |.

If A1, . . . , AL are all the natural representations of so(2N + 1) on C2N+1, that
is, they are all equal to (1), the invariant becomes

W SO
A1,...,AL (L, q, t)= t2 lk(L)

(
1+ t−t−1

q−q−1

)
KL(q, t),

where lk(L) is the linking number of L for the Kauffman polynomial KL(q, t),
where we normalized the Kauffman polynomials such that K©(q, t)= 1. The or-
thogonal group invariants W SO

A1,...,AL (L; q, t) for general Aα are also called colored
Kauffman polynomials.

3.2. An explicit formula of colored Kauffman polynomials for torus links. The
coefficients ζ λn (h(β Ed) ·(pi1⊗ pi2⊗·· ·⊗ pim )) in (3-7) are usually hard to compute.
However, they are computable for torus links. The torus link T (r, k) is the closure
of (δr )

k
= (σ1 · · · σr−1)

k . It is a knot if and only if (r, k)= 1. For example, T (2, 3)
is the trefoil knot, and T (2, 2) is the Hopf link. We develop the method in this
subsection based on the work [Lin and Zheng 2010].

Lemma 3.5. For each partition λ ` (n−2 f ) where f = 0, 1, . . . , [n/2], we have

(3-8) h((δn)
n) · pλ = qκλ−4 f N

· pλ = qκλ t−2 f
· pλ.

Proof. Again write V for the standard representation of Uq(so(2N + 1)) on the
vector space C2N+1.

From Lemma 3.1, for each partition λ ` n− 2 f with `(λ)≤ N , one has

θVλ = qκλ+2N (n−2 f )
· idVλ .
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Substitute this into the formula

(θ⊗n
V · h((δn)

n) · pλ = θVλ · pλ

proved in [Lin and Zheng 2010, Lemma 3.2] and the result follows. �

In the following, we assume z0 = 1 and z−nzn = 1 for all positive integers
n = 1, 2, . . . , N , that is, the matrix diag(z−N , z1−N , . . . z−1, z0, z1, . . . , zN−1, zN )

is a generic element in the maximal torus of SO(2N + 1,C). Let the constants c̃λ
EA

be the rational number determined by the equations

(3-9)
L∏
α=1

sbAα (zr
−N , . . . , zr

−1, zr
0, zr

1, . . . , zr
N )

=

[rn/2]∑
f=0

∑
λ`rn−2 f

c̃λ
EA
· sbλ(z−N , . . . , z−1, z0, z1, . . . , zN ).

Theorem 3.6. Let L be the torus link T (r L , kL) with r and k relatively prime.
Suppose Aα is a partition of dα for each α= 1, 2, . . . , L and n= d1+d2+· · ·+dL .
Then

(3-10) W SO
EA
(L, q, t)= q−kr

∑L
α=1 κAα · t−k(r−1)n

·

[nr/2]∑
f=0

∑
λ`(rn−2 f )

c̃λ
EA
· qkκλ/r t−2 f k/r

· sbλ(q, t).

Theorem 3.6 gives an explicit formula for the orthogonal quantum group in-
variants (colored Kauffman polynomials) of torus links in terms of constants c̃λ

EA
.

Sebastien Stevan [2011] generalized this result to all classic gauge groups and cable
knots. In Section 5, we use this formula to verify certain cases of Conjecture 5.1.
The proof of Theorem 3.6 follows from the cabling formula (3-7), Lemma 3.5 and
the following lemma.

Lemma 3.7. Let n = ‖ EA‖, where Aα ` dα, and let r and k be two relatively prime
positive integers. Take β ∈ Brn to be the braid obtained by cabling the (i L + j)-th
strand of (δr L)

kL to |A j
| parallel ones. For each partition λ ` (rn − 2 f ), where

f = 0, 1, 2, . . . , [rn/2], we have

(3-11) ζ λrn(h(β) · (pA1 ⊗ · · ·⊗ pAL )⊗r )= c̃λ
EA
· q−k

∑L
α=1 κAα+kκλ/r t−2k f/r .

Proof. Write p EA = pA1 ⊗ · · · ⊗ pAL and let πλ be the unit of Cλ. Obviously πλ is
in the center of Crn . A slightly nonobvious fact is that h(β) commutes with p⊗n

EA
,

which follows from the naturality of Ř. Let

(3-12) xλ = πλ · h(β) · p⊗r
EA



ORTHOGONAL QUANTUM GROUP INVARIANTS OF LINKS 285

be a matrix in Cλ, whose trace is

(3-13) tr(xλ)= ζ λ(h(β) · p⊗r
EA
).

The cabling of torus link has the nice property

(3-14) h(βr )= h((δrn)
krn) · (h((δd1)

−kd1)⊗ · · ·⊗ h((δdL )
−kdL ))⊗r .

Lemma 3.5 then implies

(3-15) xr
λ = πλ · h(β

r ) · p⊗r
EA
= q−kr

∑L
α=1 κAα+kκλ t−2k f

·πλ · p⊗r
EA
.

Thus the eigenvalues of xλ are either 0 or q−kr
∑L
α=1 κAα+kκλ/r t−2k f/r times a r -th

root of unity. Together with the fact that tr(xλ) ∈Q(q, t), we see that

tr(xλ)= aλ · q−k
∑L
α=1 κAα+kκλ/r t−2k f/r

for some aλ ∈Q independent of q and t .
It remains to compute this rational number aλ. On passing to the limit q → 1

and t→ 1, the element h(β) reduces to a permutation τ ∈ Srn acting cyclically on
the V⊗n-factors of V⊗rn

= V⊗n
⊗ · · ·⊗ V⊗n:

[rn/2]∑
f=0

∑
λ`(rn−2 f )

aλ · sbλ(z−N , z1−N , . . . , z−1, z0, z1, . . . , zN−1, zN )

=

[rn/2]∑
f=0

∑
λ`(rn−2 f )

aλ
∑
µ|Hrn,

`(µ)≤2N+1

dim(pλV⊗rn
∩Mµ) ·

N∏
i=−N

zµ(i+N+1)
i

=

∑
µ|Hrn,

`(µ)≤2N+1

tr(τ |p⊗r
EA

V⊗rn∩Mµ) ·

N∏
i=−N

zµ(i+N+1)
i

=

∑
µ|Hn,

`(µ)≤2N+1

dim(p EAV⊗n
∩Mµ) ·

N∏
i=−N

zrµ(i+N+1)
i

=

L∏
α=1

[ ∑
`(µ)≤2N+1,

µ|Hnα

dim(pAαV⊗nα ∩Mµ) ·

N∏
i=−N

zrµ(i+N+1)
i

]

=

L∏
α=1

sbAα (zr
−N , zr

1−N , . . . , zr
−1, zr

0, zr
1, . . . , zr

N−1, zr
N ).

Compare with (3-9), we have aλ = c̃λ
EA
. �
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Remark 3.1. Similar computations starting with Uq(sp(2N )) and Uq(so(2N ))
lead to the same theorem for Kauffman polynomials. Thus, together with the
type-A analog proved in [Lin and Zheng 2010, Theorem 5.1], these computations
provide formulas of quantum group invariants of torus links associated to simple
Lie-algebras of type A, B, C and D.

4. Orthogonal Chern–Simons partition function

4.1. Partition function. The orthogonal Chern–Simons partition function of L is
defined by

(4-1) ZSO
CS (L; q, t)=

∑
Eµ∈PL

pb Eµ(Ez)

z Eµ
·

∑
EA∈B̂r

| Eµ|

χ EA(γ Eµ)W
SO
EA
(L; q, t).

This definition is motivated from physicists’ path integral approach [Borhade
and Ramadevi 2005], and it is different from the definition given by [Borhade
and Ramadevi 2005, Equation (4.10)]. Unlike the SU(N ) Chern–Simons partition
function, the ZSO

CS (L; q, t) above cannot be simplified to

(4-2) ZSO
CS (L; q, t)=

∑
EA∈PL

W SO
EA
(L; q, t) sb EA(Ez)

because orthogonality of type-A Schur functions fails in the type-B case [Ram
1991; 1995; 1997].

Define the free energy as

(4-3) FSO(L; q, t)= log ZSO
CS (L; q, t).

The partition function of unknots with L components can be computed explicitly
(See Proposition 10.2 for details.) In fact we have the following expression for the
free energy:

(4-4) FSO(©L
; q, t)=

+∞∑
n=1

1
n
·

(
1+

tn
− t−n

qn − q−n

)
·

L∑
α=1

pbn(zα).

4.2. Reformulated invariants. The reformulated link invariants are rational func-
tions g EA(q, t) ∈ C(q, t) determined by the expansion

(4-5) FSO(L; q, t)=
∞∑

d=1

∑
Eµ 6=E0

1
d

gEµ(qd , td)

L∏
α=1

pbµα ((zα)
d).

As in [Labastida and Mariño 2002], define the operator ψd by

(4-6) ψd ◦ F(q, t; pb(Ez))= F(qd , td
; pb(Ezd)).
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Then define the plethystic exponential [Getzler and Kapranov 1998]

(4-7) Exp(F)= exp
(+∞∑

k=1

ψk

k
◦ F

)
and its inverse

(4-8) Log(F)=
+∞∑
k=1

µ(k)
k

log(ψk ◦ F),

where µ(k) is the Möbius function. In terms of these operators, we can write

(4-9) ZSO
CS (L; q, t)= Exp

(∑
Eµ 6=E0

g Eµ(q, t)
L∏
α=1

pbµα (zα)
)
.

We expand the partition function as

(4-10) ZSO
CS (L; q, t)= 1+

∑
Eµ 6=E0

ZSO
Eµ pb Eµ(Ez),

where

ZSO
Eµ (L; q, t)=

∑
EA∈B̂r | Eµ|

χ EA(γ Eµ)

z Eµ
W SO
EA
(L; q, t),

and expand the free energy as

(4-11) FSO(L; q, t)=
∑
Eµ6=E0

FSO
Eµ pb Eµ(Ez).

From Lemma 2.1 (which is [Liu and Peng 2010, Lemma 2.3]), we have

(4-12) FSO
Eµ =

∑
3∈P(PL ),
|3|=Eµ

(−1)`(3)−1`(3)!

`(3)|Aut3|
ZSO
3 .

Clearly FSO
Eµ

is a rational function of q and t . The reformulated invariants then can
be defined by

g Eµ(q, t)=
∑
k| Eµ

µ(k)
k

FSO
Eµ/k(q

k, tk),

where µ(k) is the Möbius function.
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5. Orthogonal Labastida–Mariño–Ooguri–Vafa conjecture

5.1. Orthogonal LMOV conjecture. Now we can state the main conjecture of this
paper, which is the analog of LMOV conjecture for orthogonal Chern–Simons
theory.

Conjecture 5.1 (orthogonal LMOV). The rational function g Eµ(q, t) ∈Q(q, t) has
the property that

z Eµ(q − q−1)2 · [g Eµ(q, t)− gEµ(q,−t)]

2
∏L
α=1

∏`(µα)

i=1 (qµ
α
i − q−µ

α
i )

∈ Z[q − q−1
][t, t−1

].

We may write the (conjectured) polynomial above as

z Eµ(q − q−1)2 · [g Eµ(q, t)− gEµ(q,−t)]

2
∏L
α=1

`(µα)∏
i=1

(qµ
α
i − q−µ

α
i )

=

∑
g∈Z+/2

∑
β∈Z

N Eµ,g,β(q − q−1)2gtβ .

The integers N Eµ,g,β (or their linear combinations, depending on a choice of basis)
are explained as BPS numbers in string theory [Bouchard et al. 2005; Mariño
2010], and these numbers should coincide with the BPS numbers calculated by
Gromov–Witten theory; see for example [Pandharipande 2002; Peng 2007]. Physi-
cists predict that the Gromov–Witten theory of orientifolds is dual to the type-B
Chern–Simons theory [Bouchard et al. 2005], that is, the partition functions of
these two theories coincide up to some normalization. Thus the integers N Eµ,g,β
are conjecturally equal to some linear combinations of intersection numbers on the
moduli space of stable maps from curves into unoriented manifolds. However, a
mathematical construction of such moduli space is still lacking.

Remark 5.1. Actually the antisymmetrization 1
2(gEµ(q, t)−g Eµ(q,−t)) is not nec-

essary for some knots/links. Thus if we expand

z Eµ(q − q−1)2gEµ(q, t)∏L
α=1

`(µα)∏
i=1

(qµ
α
i − q−µ

α
i )

,

then we may get more integer coefficients. Readers may find that the proof of most
theorems except for some cases of Theorem 1.7 are still valid for this expansion.

Remark 5.2. Physicists Bouchard, Florea and Mariño [Bouchard et al. 2005] and
more recently Mariño [2010] have similar conjectures for a different partition func-
tions. It seems none of these definitions are equivalent to the definition given here.
However, it is pointed out by Mariño that the reformulated invariants may coincide
for some examples of torus knots. But we obtain different integer invariants for
torus links. Thus the relation between these conjectures are still unclear. It shows
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that antisymmetrization process is not necessary for some links and knots. Anyway,
in next subsection, we will leave the integer coefficient invariants of torus knots
and links before antisymmetrization for interested readers to investigate, together
with the relationship between the conjecture proposed in [Bouchard et al. 2005;
Mariño 2010] and ours.

To describe the behavior of the reformulated invariants near q = 1, let q = eu

and embed Q(q, t) into Q(t)((u)). Denote by valu(FSO
Eµ
) the valuation of FSO

Eµ
in

the valuation field Q(t)((u)). This valuation is the same as the zero order of the
rational function FSO

Eµ
at q = 1.

Conjecture 5.2 (degree). The valuation valu(FSO
Eµ
) is greater than or equal to

`( Eµ)− 2.

Conjecture 5.2 claims that all the coefficients of lower degree vanish. It is not
a consequence of Conjecture 5.1. We will see later that this vanishing is closely
related to formulas of Lickorish–Millett type. This kind of degree conjecture is
also an important part of [Liu and Peng 2010]. We will prove Conjecture 5.2 in
Sections 8 and 9.

5.2. Torus links as examples supporting the main conjecture. In this subsection,
we verify the orthogonal LMOV conjecture by testing torus links and knots for
small partitions.

Several examples of torus links and knots of type T (2, k) suggest that the anti-
symmetrization of the reformulated invariants g Eµ(q, t) in Conjecture 5.1 is neces-
sary. In the following, we will denote q−q−1 by z for simplicity. We compute the
colored Kauffman polynomials for these examples in Section 10 (the appendix).
For tables of integer coefficients N Eµ,g,β of these torus links and knots, please refer
to Section 10.

Example 1. Taking r = 1, the torus link T (2, 2k) has 2 components.

Case 1A. Consider the partition (1), (1) for link T (2, 2k)
Denote by W(n)(unknot) by W(n) in the following computations, where n ∈Z≥0.

It is easy to verify that

z(1),(1)g(1),(1) =W(1),(1)−W 2
(1)

= q2k sb(2)+q−2k sb(1,1)+t−2k
− sb2

(1)

=

(
q2k+1

+ q−2k−1

q1+ q−1 − 1
)

t2
+

(
q2k−1

+ q−2k+1

q + q−1 − 1
)

t−2

−

(
qk
− q−k

q − q−1

)2

+ t−2k .

Thus all the integer invariant numbers N Eµ,g,β equal 0.
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For the following cases, please see Section 10 for the table of integers N Eµ,g,β .

Case 1B. Consider the partition (1, 1), (1) for link T (2, 2k):

z(1,1),(1)g(1,1),(1)
=W(2),(1)+W(1,1),(1)+W(1)− 2W(1),(1)W(1)− (W(2)+W(1,1)+ 1)W(1)+ 2W 3

(1)

It is interesting that the rational function

(q − q−1)2

(q − q−1)3
z(1,1),(1)g(1,1),(1)(q, t)

is already in the ring Z[t, t−1
][q − q−1

], without antisymmetrization.
The conjectural prediction on g(1,1),(1) is also proved in Section 7. Next we

compute g(2),(1)(T (2, 2k)), which will not be covered by any proof in following
sections.

Case 1C. Consider the partition (2), (1) for link T (2, 2k):

z(2),(1)g(2),(1) = (W(2),(1)−W(1,1),(1)+W(1))−W(1)(W(2)−W(1,1)+ 1).

The rational function

(q − q−1)2

(q − q−1)(q2− q−2)
z(2),(1)g(2),(1)(q, t)

is also in the ring Z[t, t−1
][q − q−1

] without antisymmetrization.
Please see Section 10 for the table of integers N Eµ,g,β after antisymmetrization.
The behavior of g(2),(2)(T (2, 2k); q, t) is much different from the three examples

above. It is the first example that the multicover contribution must be taken into
account.

Case 1D. Consider the partition (2), (2) for link T (2, 2k):

z(2),(2)g(2),(2) =W(2),(2)− 2W(2),(1,1)+W(1,1),(1)−W 2
(2)−W 2

(1,1)+ 2W(2)W(1,1)

− 2W(1),(1)(q2, t2)+ 2W 2
(1)(q

2, t2).

The rational function

(q − q−1)2

(q2− q−2)2
z(2),(2)g(2),(2)(q, t)

is not in the ring Z[t, t−1
][q − q−1

] and antisymmetrization is necessary here.

Case 1E. Consider the partition (3), (1) for link T (2, 2k):

z(3),(1)g(3),(1)= (W(3),(1)−W(2,1),(1)+W(1,1,1),(1))−W(1)(W(3)−W(2,1)+W(1,1,1)).
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The rational function

(q − q−1)2

(q3− q−3)(q − q−1)
z(3),(1)g(3),(1)(q, t)

is not in the ring Z[t, t−1
][q − q−1

] and antisymmetrization is necessary.

Example 2. Consider the torus knots T (2, k), where k is an odd integer.

Case 2A. Consider the partition (1, 1) for link T (2, k)
The following calculation provides an example of the case proved in Section 7.

We have
z(1,1)g(1,1) =W(2)+W(1,1)−W 2

(1)(q, t)+ 1

The rational function

(q − q−1)2

(q − q−1)2
z(1,1)g(1,1)(q, t)

is already in the ring Z[t, t−1
][q − q−1

] without antisymmetrization.

Case 2B. Consider the partition (2) for link T (2, k). We have

z(2)g(2) =W(2)−W(1,1)−W(1)(q2, t2)+ 1.

The rational function
(q − q−1)2

(q2− q−2)
z(2)g(2)(q, t)

is not in the ring Z[t, t−1
][q−q−1

]. Please see Section 10 for the table of integers
N Eµ,g,β after antisymmetrization.

Example 3. Taking r = 1, the torus link T (3, 3k) has 3 components.
Consider the partition (2), (1), (1) for the link T (3, 3k).
Denote W(1),(1)(T (2, 2k)) simply by W(1),(1) in the following computations.
We have

z(2),(1),(1)g(2),(1),(1) =W(2),(1),(1)−W(1,1),(1),(1)−W(1),(1)W(2)+W(1),(1)W(1,1)

− 2W(2),(1)W(1)+ 2W(1,1),(1)W(1)+ 2W(2)W 2
(1)− 2W(1,1)W 2

(1)

and rational function

(q − q−1)2

(q2− q−2)(q − q−1)2
z(2),(1),(1)g(2),(1),(1)(q, t)

is in the ring Z[t, t−1
][q − q−1

].
Until now, we have seen the orthogonal LMOV conjecture is valid for the knots

T (2, k) and T (3, 3k) when k is small.
In fact, we can prove it for arbitrary k ∈ Z>0.
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For instance, we investigate torus knot T (2, k) for odd integer number k with
partition (2). We can express

z(2)(g(2)(q, t)− g(2)(q,−t))/2

in terms of pb polynomials instead of sb polynomials. After simplification, we
have
z(2)(g(2)(q, t)−g(2)(q,−t))

2

= t−2k t−t−1

q−q−1

(
(q2k
−q−2k)

(q−q−1)(q3−q−3)

(
−(t2
+t−2)(q2k

+q−2k
−q2
−q−2)

+(q4
+q−4)(q2k

+q−2k)−q4
−2−q−4)

+
t−k(q4k

−q−4k)

q2−q−2 (−t (qk+1
−q−k−1)+t−1(qk−1

−q−k+1))

)
,

By a tedious discussion on the residue of k modulo 6, one can see that the rational
function

(q − q−1)2

2(q2− q−2)
(g(2)(q, t)− g(2)(q,−t))

is in the ring Z[t, t−1
][q−q−1

]. Actually, all these examples can be proved in this
way.

6. Formulas of Lickorish–Millett type

The Skein relations of Kauffman polynomials are

(1) 〈L+〉 − 〈L−〉 = z(〈L||〉 − 〈L=〉), where L+, L−, L|| and L= stand for posi-
tive crossing, negative crossing, vertical resolution and horizontal resolution
respectively,

(2) 〈L+kink
〉 = t〈L〉 and 〈L−kink

〉 = t−1
〈L〉.

The variable z is our q − q−1 in previous sections, and the Kauffman brackets
are given by

KL(z, t)= t−w(L)〈L〉,

where the writhe number of link w(L)=2 lk(L)+
∑L

α=1w(Kα), with the normal-
ization K©(z, t)= 1 for the unknot©. In terms of quantum group invariants, we
have

W SO
(1)L (L)= (1+ (t − t−1)/z)t−

∑L
α=1 w(Kα)〈L〉.

The Kauffman polynomials admit the expansions

KL(z, t)=
∑
g≥0

p̃L
g+1−L(t)z

g+1−L and 〈L〉 =
∑
g≥0

pL
g+1−L(t)z

g+1−L
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with respect to variable z. The classical Lickorish–Millett formula [1987] reads

p̃L
1−L(t)= t−2 lk(L)(t − t−1)L−1

L∏
α=1

p̃Kα

0 (t)

and so

pL
1−L(t)= (t − t−1)L−1

L∏
α=1

pKα

0 (t),

which gives a concrete description of p̃L
1−L(t), the coefficient of the lowest degree

terms of KL(z, t), in terms of invariants of the subknots K1,K2, . . . ,KL of L.
In the following theorem, we provide explicit formulas for pL

2−L(t) and pL
3−L(t),

which are regarded as higher Lickorish–Millett relations. These formulas can be
proved purely by skein relations. Through resolving intersections at different link
components, it is not hard to prove the following. Also, these formulas can be
directly deduced from Conjecture 5.2 (see Section 7). Kanenobu [2006] got some
relationships (nonexplicit) between these terms.

Theorem 6.1. Let L1,2 be the sublink of L which composed of components K1 and
K2. The coefficients pL

2−L(t) and pL
3−L(t) are given by the formulas

pL
2−L(t)= (L − 1)(t − t−1)L−2 pK1

0 (t) · · · pKL
0 (t)

+ (t − t−1)L−1(pK1
1 (t)pK2

0 (t) · · · pKL
0 (t)+ perm);

pL
3−L(t)=

(L−1
2

)
(t − t−1)L−3 pK1

0 (t) · · · pKL
0 (t)

+ (t − t−1)L−2(pL1,2
1 (t)pK3

0 (t) · · · pKL
0 (t)+ perm)

− (L − 2)(t − t−1)L−1(pK1
2 (t)pK2

0 (t) · · · pKL
0 (t)+ perm).

Proof. The formulas in the theorem are obvious when L = 1, and the formula for
pL

3−L(t) is also valid for L = 2. We proceed by induction. Let L be a link with
L+1 components. The main idea is to use skein relations at the intersection points
of different components of the L until the component KL+1 splits from the link.

First we apply the skein relation at the crossings between K1 and KL+1 un-
til there is no intersection between them. We need to apply the skein relation
(n+1,L+1 + n−1,L+1)/2 times, where n+1,L+1 and n−1,L+1 denote the number of posi-
tive and negative crossings between K1 and KL+1, respectively. Thus the linking
number between K1 and KL+1 is lk(L1,L+1)= (n+1,L+1− n−1,L+1)/2.

From the calculation, one can see that using the skein relation at a positive
crossing will lead similar result. Thus without loss of generality, we can assume
n−1,L+1 > 0 and apply the skein relation at a negative crossing first:

〈L+〉− 〈L−〉 = z(〈L(1‖L+1),2,...,L〉− 〈L(1=L+1),2,...,L〉),
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where L− is the original link L, (1 ‖ L + 1) (respectively (1 = L + 1)) is the
new knot component derived from K1 and KL+1 by taking vertical (respectively
horizontal) lines as its resolution at the intersection of K1 and KL+1 in the new links
L(1‖L+1),2,...,L (respectively L(1=L+1),2,...,L ). Both new links have L components,
while L+ is the link obtained simply by changing the sign of the chosen crossing,
and thus has the same L + 1 components as the original link L= L−.

Taking a few leading terms in the skein relation formula, we get

(pL+
−L(t)z

−L
+ pL+

1−L(t)z
1−L
+ pL+

2−L(t)z
2−L)

− (pL
−L(t)z

−L
+ pL

1−L(t)z
1−L
+ pL

2−L(t)z
2−L)

= z(pL(1||L+1),2,...,L
1−L (t)z1−L

− pL(1=L+1),2,...,L
1−L (t)z1−L)

and comparing the coefficients, we find

(1) pL+
−L(t)= pL

−L(t) (this one gives the formula for pL
1−L , which we don’t use),

(2) pL+
1−L(t)= pL

1−L(t),

(3) pL+
2−L(t)− pL

2−L(t)= pL(1‖L+1),2,...,L
1−L − pL(1=L+1),2,...,L

1−L .

By the Lickorish–Millett formula,

pL(1||L+1),2,...,L
1−L = (t − t−1)L−1 pK2

0 (t) · · · pKL
0 (t)pK(1‖L+1)

0 (t),

pL(1=L+1),2,...,L
1−L = (t − t−1)L−1 pK2

0 (t) · · · pKL
0 (t)pK(1=L+1)

0 (t),

where K(1||L+1) (respectively K(1=L+1)) is the knot derived from the sublink L1,L+1

by taking vertical (respectively horizontal) lines as its resolution at the chosen
crossing. Thus

(6-1) pL+
2−L − pL

2−L = (t − t−1)L−1 pK2
0 · · · p

KL
0 (pK(1||L+1)

0 − pK(1=L+1)
0 ).

We play a trick here to find the expression for pK(1||L+1)
0 and pK(1=L+1)

0 . Consider
the sublink L1,L+1 of L, which has only two components K1 and KL+1. Then use
the skein relation at exactly the same crossing as we did in the original link L. The
same argument leads to

p(L1,L+1)+
1 − pL1,L+1

1 = pK(1‖L+1)
0 − pK(1=L+1)

0 ,

which substituted back gives

(6-2) pL+
2−L − pL

2−L = (t − t−1)L−1 pK2
0 · · · p

KL
0 (p(L1,L+1)+

1 − pL1,L+1
1 ).

In the equation above, pL
2−L is expressed in terms of invariants of L+ and some

simple terms. Then we apply the skein relations L+ at other intersection points
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between K1 and KL+1 until these two components become unlinked. We cancel
all the middle states in this procedure, and finally we reach

(6-3) pL(1)

2−L − pL
2−L = (t − t−1)L−1 pK2

0 · · · p
KL
0 (p

L(1)
1,L+1

1 − pL1,L+1
1 ).

Here L(1) is the final state of L, in which K1 and KL+1 are unlinked, and L(1)
1,L+1 is

the corresponding final state of L1,L+1 under the same procedure of skein relations.
In L(1)

1,L+1, the two components K1 and KL+1 are unlinked too, that is, L(1)
1,L+1 is

the disjoint union of two knots K1 and KL+1:

W SO
(1),(1)(L

(1)
1,L+1)=W SO

(1) (K1)W SO
(1) (KL+1).

By the definition of Kauffman polynomials,

W SO(L)=
(

1+ t−t−1

z

)
t−

∑L
α=1 w(Kα)〈L〉,

so for all links L, we have

〈L(1)
1,L+1〉 =

(
1+ t−t−1

z

)
〈K1〉〈KL+1〉.

Up to the third leading terms, we have

p
L(1)

1,L+1
−1 z−1

+ p
L(1)

1,L+1
0 + p

L(1)
1,L+1

1 z

=

(
1+ t−t−1

z

)
(pK1

0 + pK1
1 z+ pK1

2 z2)(pKL+1
0 + pKL+1

1 z+ pKL+1
2 z2)

and comparing the coefficients, we have

p
L(1)

1,L+1
−1 = (t − t−1)pK1

0 pKL+1
0 ,

p
L(1)

1,L+1
0 = pK1

0 pKL+1
0 + (t − t−1)(pK1

0 pKL+1
1 + pK1

1 pKL+1
0 ),

p
L(1)

1,L+1
1 = pK1

0 pKL+1
1 + pK1

1 pKL+1
0 + (t − t−1)(pK1

0 pKL+1
2 + pK1

1 pKL+1
1 + pK1

2 pKL+1
0 ).

In summary, we now have

pL(1)

2−L − pL
2−L

= (t − t−1)L−1 pK1
0 · · · p

KL
0 pKL+1

1 + (t − t−1)L−1 pK1
1 pK2

0 · · · p
KL
0 pKL+1

0

+(t − t−1)L pK1
0 · · · p

KL
0 pKL+1

2 + (t − t−1)L pK1
1 pK2

0 · · · p
KL
0 pKL+1

1

+ (t − t−1)L pK1
2 pK2

0 · · · p
KL
0 pKL+1

0 − (t − t−1)L−1 pL1,L+1
1 pK2

0 · · · p
KL
0 .

Next perform all the procedures above for the link L(1) to obtain the final state
L(1)(2) in which the components K2 and KL+1 are unlinked.
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Repeat this process totally L times until KL+1 is not linked to the sublink L1,...,L

of L; the result is given by

pL(1)···(L)

2−L − pL
2−L

= L(t − t−1)L−1 pK1
0 · · · p

KL
0 pKL+1

1 + (t − t−1)L−1(pK1
1 pK2

0 · · · p
KL
0 + perm)pKL+1

0

+L(t − t−1)L pK1
0 · · · p

KL
0 pKL+1

2 + (t − t−1)L(pK1
1 pK2

0 · · · p
KL
0 + perm)pKL+1

1

+ (t − t−1)L(pK1
2 pK2

0 · · · p
KL
0 + perm)pKL+1

0 − (t − t−1)L−1(p
L1,L+1
1 pK2

0 · · · p
KL
0 + perm).

Since the link L(1)···(L) is the disjoint union of the sublink L1,...,L of L and the
knot KL+1,

W SO
(1)L+1(L

(1)···(L))=W SO
(1)L (L1,...,L)W SO

(1) (KL+1).

Again, this can be rewritten in the form

〈L(1)···(L)
〉 =

(
1+ t−t−1

z

)
〈L1,...,L〉〈KL+1〉.

Up to third leading terms, we have

pL(1)···(L)

−L z−L
+ pL(1)···(L)

−L z1−L
+ pL(1)···(L)

2−L z2−L

=

(
1+ t−t−1

z

)
(p

L1,...,L
1−L z1−L

+ p
L1,...,L
2−L z2−L

+ p
L1,...,L
3−L z3−L)(pKL+1

0 + pKL+1
1 z+ pKL+1

2 z2).

Comparing the coefficients, we have

pL(1)···(L)

−L = (t − t−1)pL1,...,L
1−L pKL+1

0 ,

pL(1)···(L)

1−L = pL1,...,L
1−L pKL+1

0 + (t − t−1)(pL1,...,L
1−L pKL+1

1 + pL1,...,L
2−L pKL+1

0 ),

pL(1)···(L)

2−L = pL1,...,L
1−L pKL+1

1 + pL1,...,L
2−L pKL+1

0

+ (t − t−1)(pL1,...,L
1−L pKL+1

2 + pL1,...,L
2−L pKL+1

1 + pL1,...,L
3−L pKL+1

0 ).

We now can finish the proof by induction. Be careful that our link L has L + 1
components. The sublink L1,...,L has L components, and by induction

pL1,...,L
2−L = (L − 1)(t − t−1)L−1 pK1

0 · · · p
KL
0 + (t − t−1)L(pK1

1 pK2
0 · · · p

KL
0 + perm),

so

pL
2−(L+1)(t)= pL(1)···(L)

1−L

= pL1,...,L
1−L pKL+1

0 + (t − t−1)(pL1,...,L
1−L pKL+1

1 + pL1,...,L
2−L pKL+1

0 )

= L(t − t−1)L−1 pK1
0 · · · p

KL
0 pKL+1

0 + (t − t−1)L(pK1
1 · · · p

KL
0 pKL+1

0 + perm).

This finishes the proof of the first part of the theorem.
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Now we have enough results to prove the second part. We have seen that

pL(1)···(L)

2−L = p
L1,...,L
1−L pKL+1

1 + p
L1,...,L
2−L pKL+1

0

+ (t − t−1)(p
L1,...,L
1−L pKL+1

2 + p
L1,...,L
2−L pKL+1

1 + p
L1,...,L
3−L pKL+1

0 )

= L(t − t−1)L−1 pK1
0 · · · p

KL
0 pKL+1

1 + (L − 1)(t − t−1)L−2 pK1
0 · · · p

KL
0 pKL+1

0

+ (t − t−1)L−1(pK1
1 · · · p

KL
0 + perm)pKL+1

0 + (t − t−1)L pK1
0 · · · p

KL
0 pKL+1

2

+ (t − t−1)L(pK1
1 · · · p

KL
0 + perm)pKL+1

1 + (t − t−1)p
L1,...,L
3−L pKL+1

0 .

Combined with the expression of pL(1)···(L)

2−L − pL
2−L , we get an expression for pL

2−L
in terms of sublinks:

pL
2−L = (L−1)(t−t−1)L−2 pK1

0 · · · p
KL
0 pKL+1

0 −(L−1)(t−t−1)L pK1
0 · · · p

KL
0 pKL+1

2

− (t − t−1)L(pK1
2 pK2

0 · · · p
KL
0 + perm)pKL+1

0

+ (t − t−1)L−1(pL1,L+1
1 pK2

0 · · · p
KL
0 + perm)+ (t − t−1)pL1,...,L

3−L pKL+1
0 .

Since the sublink L1,...,L of L contains L components, by induction we have

pL1,...,L
3−L (t)=

(L−1
2

)
(t − t−1)L−3 pK1

0 (t) · · · pKL
0 (t)

+ (t − t−1)L−2(pL1,2
1 (t)pK3

0 (t) · · · pKL
0 (t)+ perm)

− (L − 2)(t − t−1)L−1(pK1
2 (t)pK2

0 (t) · · · pKL
0 (a)+ perm).

Here the permutation only involves the first L components. Later, when computing
the invariants of L, the permutations will also include the (L + 1)-st component.
Since the content is self-evident, we will not mention this issue again. Substituting
the induction above formula into the expression for L finishes the proof of the
second part of the theorem:

pL
2−L =

(L
2

)
(t − t−1)L−2 pK1

0 · · · p
KL+1
0

+ (t − t−1)L−1(pL1,2
1 pK3

0 · · · p
KL+1
0 + perm)

− (L − 1)(t − t−1)L(pK1
2 pK2

0 · · · p
KL+1
0 + perm). �

7. The proof of the conjecture for the column diagram

In the last section, we provide two formulas of Lickorish–Millett type. In general,
similar computations lead to expressions for pL

n (t) in terms of invariants of sublinks
of L. Each additional component of L gives rise to two such relations; thus we
expect that there should be 2L − 2 such relations, that is, we should be able to
describe pL

n (t) for 1− L ≤ n ≤ L by sublinks of L.
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When the index n increases, the expression become messy. To give a unified
treatment, we formulate the problem in terms of the partition function ZSO

CS (L; q, t)
and free energy FSO(L; q, t). Recall that we write

ZSO
CS (L; q, t)= 1+

∑
Eµ 6=E0

ZSO
Eµ pb Eµ and FSO(L; q, t)=

∑
Eµ6=E0

FSO
Eµ pb Eµ,

where Eµ = (µ1, . . . , µL) for partitions µ1, . . . , µL . In this section, we mainly
focus on the situation when all the µi are columnlike partitions. We first look at
the first situation in which all the µi are partitions 1. We may simply denote such Eµ
by (1)L

= (1), . . . , (1) since the partition of 1 is unique and there is no ambiguity.
The coefficients ZSO

(1)L =W SO
(1)L .

Let 1 be a subset of the set [L] := {1, . . . , L}. Write L1 for the sublink of L

comprising only the components with labels in 1. For example, when 1= {1, 2},
L1 is the link L1,2 discussed in the previous section. We also denote by 1 the
partition Eµ = (µ1, . . . , µL) such that µi

= (1) if i ∈ 1, and 0 otherwise. The
convention in the definition of quantum group invariants is W SO

1 (L) :=W SO
(1)|1|(L1).

The formula (4-12) then can be written as

(7-1) FSO
(1)L (L)=

L∑
r=1

(−1)r−1

r

∑
11,...,1r

r∏
i=1

W SO
1i
(L),

where the second sum is over all nonempty subsets11, . . . ,1r that form a partition
of the set [L]. We have seen that FSO

(1)L (L) ∈ Q(t)((z)) for z = q − q−1 has an
expansion

FSO
(1)L (L)=

∑
i≥−L

ai (t)zi .

Conjecture 5.2 predicts that valz FSO
(1)L (L)≥ L − 2, that is, a−L = a1−L = · · · =

aL−3=0. We now prove a−L =a1−L =a2−L =0 by the classical Lichorish–Millett
theorem and the two formulas derived in last section.

Theorem 7.1. Expand FSO
(1)L (L) as above. Then we have the vanishing result

a−L = a1−L = a2−L = 0 if L ≥ 3. In other words,

valu(FSO
(1)L (L))= valz(FSO

(1)L (L))≥ 3− L .

In the case L = 2, the second formula in Theorem 6.1 is empty; thus we only have
a−2 = a−1 = 0 and valz(FSO

(1)2(L))≥ 0.
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Proof. We prove the theorem for a1−L when L> 2 by calculating (7-1). The proofs
for a−L and a2−L are similar and we leave them to the reader.

W SO
1 (L)∼=

(
1+

t − t−1

z

)
t−

∑
α∈1 w(Kα)

· (pL1

1−|1|z
1−|1|
+ pL1

2−|1|z
2−|1|
+ pL1

3−|1|z
3−|1|) (mod z3−|1|).

Denote by [zn
] f the coefficient of zn in f ∈Q(t)((z)).

a1−L = t−
∑L
α=1 w(Kα)

L∑
r=1

(−1)r−1

r

∑
11,...,1r

[z1−L
]

(
1+

t − t−1

z

)r r∏
i=1

〈L1i 〉.

For each possible collection 11, . . . ,1r ,

[z1−L
]

(
1+ t−t−1

z

)r r∏
i=1

〈L1i 〉

= r(t−t−1)r−1
r∏

i=1

p
L1i
1−|1i |

+(t−t−1)r
r∑

i=1

p
L11
1−|11|

· · ·
̂
p

L1i
1−|1i |

· · · pL1r
1−|1r |

·p
L1i
2−|1i |

= L(t−t−1)L−1
L∏
α=1

pKα

0 (t)+(t−t−1)L
L∑

j=1

pK j
1

L∏
i=1
i 6= j

pKi
0

has the same contribution. We need to count the number of these collections. Let
3 be a partition of L of length r . The number of collections {11, . . . ,1r } with
{|11|, . . . , |1r |} equal to the partition 3 is given by r !

|Aut3| ·
L!

31!···3r !
; hence

a1−L = t−
∑L
α=1 w(Kα)

(
L(t − t−1)L−1

L∏
α=1

pKα

0 (t)+ (t − t−1)L
L∑

j=1

pK j
1

L∏
i=1,
i 6= j

pKi
0

)

·

∑
3`L

(−1)`(3)−1`(3)!

`(3)|Aut3|
·

L!
3!

which is zero by the following Lemma 7.2 since L ≥ 2. �

Lemma 7.2. Assume dα ≥ 1 for α = 1, 2, . . . , L and the sum d = d1+ · · ·+ dL is
strictly greater than 1 (that is, if all di = 1, then we assume L > 1). Then

(7-2)
∑
Eλ`Ed

(−1)`(Eλ)−1`(Eλ)!

`(Eλ)|Aut Eλ|
∏L
α=1

∏`(λα)
j=1 λ

α
j !
= 0.
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Proof. Let Et = (t1, . . . , tL) and |Et | = t1+ · · ·+ tL in the trivial equality

|Et | = log(exp(|Et |))= log
(

1+
+∞∑
n=1

|Et |n/n!
)
,

so we have

t1+ · · ·+ tL = log
(

1+
∑

Eβ∈ZL
≥0,
Eβ 6=0

Et Eβ/ Eβ!
)
,

where we have adopted the notation Et Eβ =
∏L
α=1 tβαα and Eβ! =

∏L
α=1 βα!. Expand

the logarithm as

t1+ · · ·+ tL =
∑
Eβ∈ZL

≥0

Et Eβ
∑
Eλ` Eβ

(−1)`(Eλ)−1

`(Eλ)|Aut Eλ|
∏L
α=1 λ

α!
.

Comparing the coefficients of the term td1
1 · · · t

dL
L gives the vanishing formula. �

We remark that the vanishing of a1−L and a2−L also imply the formulas for pL
2−L

and pL
3−L proved in last section. The approach in the previous section has the merit

that it produces explicit expressions, while the statement in terms of free energy
can give a uniform treatment containing all the relations of Lickorish–Millett type,
as in the following theorem.

Theorem 7.3. Under the same notation as above, we have the vanishing result
a−L = a1−L = · · · = aL−3 = 0. In other words, valz(FSO

(1)L (L))≥ L−2. Indeed, we
have

(q − q−1)2−L FSO
(1)L (L) ∈ Z[t, t−1

][q − q−1
].

As a corollary, Conjecture 5.1 is true for partitions Eµ= (1, 1, . . . , 1).

Proof. We prove the theorem by induction. When L = 1, L is a knot, and

FSO
(1)1(L)=W SO

(1) (L)=
(

1+ t−t−1

z

)
t−w(L)〈L〉 =

(
1+ t−t−1

z

)
KL

since the Kauffman polynomial of L obviously has z-valuation equal to−1= L−2.
The theorem thus holds for knots.

Now assume L is a link with L > 1 components K1, . . . ,KL . We first deal with
the simple case when L is the disjoint union of the Kα. Then for any partition
11, . . . ,1r of the set [L], the product

∏r
i=1 W SO

1i
(L) =

∏L
α=1 W SO

(1) (Kα) is inde-
pendent of the partition. Again let 3 be a partition of L of length r . The number
of collections {11, . . . ,1r } with {|11|, . . . , |1r |} equal to the partition 3 is given
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by r !
|Aut3| ·

L!
31!···3r !

; hence

FSO
(1)L (L)=

L∏
α=1

W SO
(1) (Kα) ·

∑
3`L

(−1)`(3)−1`(3)!L!
`(3)|Aut3|3!

= 0.

There is another way to see this directly. If the link L is the disjoint union of
the Kα, then the free energy FSO(L, pb(z1), . . . , pb(zL)) is the sum of the free
energies FSO(Kα; pb(zα)). The expansion of such a sum FSO(L) with respect to
pb Eµ does not contain terms of the form

∏L
α=1 p1(zα). Thus the theorem is true for

links that are disjoint unions of knot components.
Finally, consider the Skein relation

〈L+〉− 〈L−〉 = z(〈L||〉− 〈L=〉),

where 〈L+〉 and 〈L−〉 are two links that coincide everywhere except at one crossing
P between two different components Ka and Kb of the link L for 1≤ a < b ≤ L .
The link 〈L||〉 (respectively 〈L=〉) is the link by replacing the crossing P by two
parallel vertical (respectively horizontal) lines. Both 〈L||〉 and 〈L=〉 have L − 1
components. Let’s compute the difference

FSO
(1)L (L+)− FSO

(1)L (L−)=

L∑
r=1

(−1)r−1

r

∑
11,...,1r

( r∏
i=1

W SO
1i
(L+)−

r∏
i=1

W SO
1i
(L−)

)
.

The summation is again over all partitions11, . . . ,1r of the set [L]. An important
observation is that

∏r
i=1 W SO

1i
(L+)−

∏r
i=1 W SO

1i
(L−)= 0 if a and b are not in the

same set 1i for some i , because in this situation the sublinks L+,1i coincide with
the sublinks L−,1i . In particular, this is the case if r = L . The difference above
can be simplified as

FSO
(1)L (L+)− FSO

(1)L (L−)

=

L−1∑
r=1

(−1)r−1

r

r∑
i=1

∑
11,...,1r ;a,b∈1i

(W SO
1i
(L+)−W SO

1i
(L−))

r∏
j=1, j 6=i

W SO
1 j
(L+)

= t2 lk(Ka,Kb)−1
L−1∑
r=1

(−1)r−1

r

r∑
i=1

∑
11,...,1r ,

a,b∈1i

z · (W SO
1i
(L||)−W SO

1i
(L=))

·

r∏
j=1, j 6=i

W SO
1 j
(L+)

= zt2 lk(Ka,Kb)−1
· (FSO

(1)L−1(L||)− FSO
(1)L−1(L=)).

By induction, both

z2−(L−1)
· FSO

(1)L−1(L||) and z3−L
· FSO

(1)L−1(L=)
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are in the ring Z[t, t−1
][z]. Thus if the theorem is true for the link L+ if and only

if it is true for the link L−.
For a general link L not necessarily a disjoint union, onc can change crossings

between different components of L until it becomes a disjoint union of L knots.
Since the theorem is true for disjoint unions, it is true for L. �

The results of Section 6 can be viewed as applications of Theorem 7.3 combined
with some combinatorial identities like Lemma 7.2.

To study the cases of partitions with more boxes, we first develop the cabling
technique. Let β be a braid of which the closure is the link L. For each Ed ∈ ZL

+
,

denote by β Ed the braid obtained by cabling the k-th strand of β to dα parallel ones
if it is in the α-th component of L. The partition function of L and the Kauffman
polynomials are related by the following lemma.

Lemma 7.4. Assume β is of writhe zero on every component. Then the partition
function of L is related to the Kauffman polynomial of the cabling link by

W SO
(1)d (β Ed)=

∑
EA∈B̂r Ed

χ EA(id)W
SO
EA
(L; q, t)= Ed! · ZSO

((1d1 ),...,(1dL ))
(L),

where d =
∑L

α=1 dα and Ed! = z((1d1 ),...,(1dL )) = d1! · · · dL !.

Proof. Take β to be the link of zero writhe on every component. Then the cabling
link β Ed is also of zero writhe on every component, and the quantum group invariants
W EA are equal to the trace of

(7-3) β Ed · (pA1 ⊗ · · ·⊗ pAL )

in the Birman–Murakami–Wenzl algebra CM for M = d1r1+· · ·+ dLrL , and pAα

is the minimal idempotent in Cdα corresponding to the irreducible representation
numbered by the partition Aα. Apparently, each pAα should appear ri times in
the tensor above. However, the naturality of the universal R-matrices plus the
trace property will move all pAα to the same strand, and thus one pAα for each
α = 1, 2, . . . , L is enough.

The expansion coefficients ZSO
(1d1 ,...,1dL )

(L) of the partition function can be cal-
culated directly:

Ed! · ZSO
(1d1 ,...,1dL )

(L)=
∑
EA∈B̂r Ed

χ EA(id)W
SO
EA
(L; q, t)

=

∑
EA∈B̂r Ed

χ EA(id) trV M (β Ed · (pA1 ⊗ · · ·⊗ pAL ))

= trV M (β Ed)=W SO
(1)d (β Ed; q, t).
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We have used that for a semisimple algebra, the dimension of an irreducible rep-
resentation χAi (id) is the same as the multiplicity of Ai in the semisimple decom-
position of the algebra. So∑

EA∈B̂r Ed

χ EA(id)(pA1 ⊗ · · ·⊗ pAL )= id

in the third equality. �

Remark 7.1. A similar formula holds for the HOMFLY polynomials and can be
proved in the same way.

Theorem 7.5. Suppose Eµ = (µ1, . . . , µL) ∈ PL is a partition such that µα =
(1, 1, . . . , 1) ` dα for each α = 1, . . . , L. Then

Ed!(q − q−1)2−d
· FEµ(L, q, t) ∈ Z[t, t−1

][q − q−1
].

In particular, the Conjecture 5.1 (the orthogonal LMOV conjecture) is valid for
such columnlike partitions.

Proof. We will use the symbol (1) Ed to denote the partition Eµ in the theorem. Let
β be a braid whose closure is the link L with zero writhe. Let β Ed be the cabling
braid as in Section 3. The calculation in Lemma 7.4 in fact shows that

ZSO
(1) Ed
(L)=

1
Ed!

W SO
(1)d (β Ed),

which reduces the situation back to the Kauffman case. A more careful observation
is the cabling equality

FSO
(1) Ed
(L)=

1
Ed!

FSO
(1)d (β Ed),

which, together with Theorem 7.3, finishes the proof.
We now prove the cabling equality by comparing both sides. The left side is

d∑
r=1

(−1)r−1

r

∑
EA1,..., EAr

ZSO
EA1
(L) · · · ZSO

EAr
(L)

=

d∑
r=1

(−1)r−1

r

∑
EA1,..., EAr

W SO
(1)‖ EA1‖

(β
| EA1|
) · · ·W SO

(1)‖ EAr ‖
(β
| EAr |
)

EA1! · · · EAr !
,

where the summation is over all partitions ( EA1, . . . , EAr ) sharing length with the par-
tition (1) Ed . As EAi must be of the form ((1a1

i ), (1a2
i ), . . . , (1aL

i )), with
∑r

i=1 aαi =dα
for every α = 1, 2, . . . , L , we have

| EAi | = (a1
i , a2

i , . . . , aL
i ), ‖

EAi‖ = a1
i + a2

i + · · ·+ aL
i ,

EAi ! = a1
i !a

2
i ! · · · a

L
i !
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as in the introduction. Again β is the braid with zero writhe on every component
representing the link L, and β

| EAi |
is the cabling link.

The right side is

1
Ed!

d∑
r=1

(−1)r−1

r

∑
11,...,1r

r∏
i=1

W SO
1i
(β Ed),

where 11, . . . ,1r are nonempty sets that form a partition of the set [d]. Each 1i

can be further decomposed into a partition 41
i , 4

2
i , . . . , 4

L
i , such that elements in

4αi labeling the components in β Ed arise from the cabling of the α-th component
of L. Write aαi = |4

α
i | for the number of elements in 4αi , which can be zero. Then

the vectors EAi defined by

EAi = ((1a1
i ), (1a2

i ), . . . , (1aL
i ))

become one term in the summation on the left side. Furthermore, for each fixed
such EAi , there are

∏L
α=1

dα !
aα1 !···a

α
r !

possible partition sets 4αi . The equality holds. �

8. The case of rows implies the conjecture

In this section, we discuss the case for a general partition Eµ, and reduce it to the
case of rectangular ones.

We first define an equivalence relation on the BMW algebra Cn: Two elements
x, y∈Cn are equivalent, denoted by x∼ y, if tr(xz)= tr(yz) for all central elements
z ∈ Cn . Obviously, if two elements x and y are conjugate, say if there exists an
invertible element g ∈ Cn such that gxg−1

= y, then x ∼ y. Since the algebra Cn

is semisimple, two idempotents p1 and p2 are equivalent if and only if they give
isomorphic representations of Cn .

Let pλ be a minimal path idempotent in Cn . Write mµ =
∑

λ χλ(γµ)pλ, and
also regard this as an element in the Grothendieck group of representations of the
BMW algebra. The branching rule [Beliakova and Blanchet 2001] for the BMW
algebra is

pλ⊗ 1=
∑
λ′

pλ′,

where the summation is over all partitions λ′ that either add one box to λ or remove
one box from λ. Since the characters χA(γµ) of the Brauer algebra are all integers,
repeated use of the branching rule leads to a decomposition of the tensor product
of minimal idempotents:

(8-1) m(µ1)⊗m(µ2)⊗ · · ·⊗m(µ`) ∼

∑
A

bA pA,
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where the sum is over all possible partitions A and the multiplicities bA are all
integers. Furthermore, the integers bA are uniquely determined by this equivalence
relation, by multiplying both sides by the minimal central idempotents πA of Cn .

Lemma 8.1. The integers bA satisfy bA = χA(γµ) for the characters of Brauer
algebras.

Proof. Since the BMW algebras are deformations of the Brauer algebras, they
share the same branching rules. Specialize (8-1) to the Brauer algebras by fixing
x = 1+ (t − t−1)/(q − q−1) and let t and q go to 1. Then using the isomorphism
Brn ∼= Endso(2N+1)(V⊗n) for x = 2N + 1, we get

(8-2) m̃(µ1)⊗ m̃(µ2)⊗ · · ·⊗ m̃(µ`) ∼

∑
A

bA p̃A,

where

m̃(µi ) =

∑
A∈B̂rµi

χA(γ(µi )) p̃A

and p̃A is a minimal idempotent in Endso(2N+1)(V⊗n). Regard (8-2) as an equality
in the Grothendieck group of (finite dimensional representations) of the Lie group
SO(2N + 1). The character is given by

∏̀
i=1

([µi/2]∑
h=0

∑
λ`µi−2h

χλ(γ(µi )) sbλ(z−N , z1−N , . . . , z−1, z0, z1, . . . , zN−1, zN )
)

=

∏̀
i=1

pµi (z−N , z1−N , . . . , z−1, z0, z1, . . . , zN−1, zN )

= pµ(z−N , z1−N , . . . , z−1, z0, z1, . . . , zN−1, zN )

=

[|µ|/2]∑
h=0

∑
λ`|µ|−2h

χλ(γµ) sbλ(z−N , z1−N , . . . , z−1, z0, z1, . . . , zN−1, zN ).

Thus the two elements m̃(µ1) ⊗ m̃(µ2) ⊗ · · · ⊗ m̃µ` and m̃µ are equal in the
Grothendieck group of SO(2N + 1), which determines the integers bA = χA(γµ),
that is, we have

m(µ1)⊗m(µ2)⊗ · · ·⊗m(µ`) ∼ mµ. �
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Let È = (`1, . . . , `L), and let L È be closure of the cabling braid β È, which is
obtained by cabling the α-th component of β into `α parallel ones. Then we have

z Eµ · Z Eµ(L)=
∑
EA

χ EA(γ Eµ) tr(β È · p EA)

= tr(β È ·m Eµ)= tr
(
β È ·

L⊗
α=1

(m(µα1 )
⊗ · · ·⊗m(µα`α )

)
)

=

( L∏
α=1

`α∏
i=1

µαi

)
· Z(µ1

1),(µ
1
2),...,(µ

1
`1
)(µ2

1),(µ
2
2),...,(µ

2
`2
),...,(µL

1 ),(µ
L
2 ),...,(µ

L
`L
)(L È)

and

(8-3) z Eµ · FEµ(L)

=

( L∏
α=1

`α∏
i=1

µαi

)
· F(µ1

1),(µ
1
2),...,(µ

1
`1
),(µ2

1),(µ
2
2),...,(µ

2
`2
),...,(µL

1 ),(µ
L
2 ),...,(µ

L
`L
)(L È).

The partition (µ1
1), (µ

1
2), . . . , (µ

1
`1
), (µ2

1), (µ
2
2), . . . , (µ

2
`2
), . . . , (µL

1 ), (µ
L
2 ), . . . ,

(µL
`L
)∈P|`( Eµ)| has the property that each component is of length one. In particular,

it is rectangular, and we have the following theorem.

Theorem 8.2. Conjecture 5.1 is true for all partitions Eµ if and only if it is true for
rectangular one Eµ, if and only if it is true for Eµ = (µ1, . . . , µL) such that each
µα = (dα) is of length one.

Equation (8-3) together with Proposition 9.2 implies Conjecture 5.2 (the degree
conjecture), that is, the degree estimate at q = 1 is valid for all partitions Eµ.

Theorem 8.3. Conjecture 5.2 is true for all links and all partitions.

Theorem 8.3 implies that Conjecture 5.1 is “true at q = 1” (Theorem 1.6), that
is, the left hand side of Conjecture 5.1 is regular at q − 1. The situation at other
roots of unity seems to be more difficult. Some torus knots and links examples
are verified in Section 5, which can be treated as the conjecture at roots of unity
besides 1.

9. Estimation of degree

Call a partition λ ` n rectangular if the Young diagram of λ = (λ1, λ2, . . . , λ`) is
rectangular, that is, λ1 = λ2 = · · · = λ`. A rectangular partition is determined by
its length ` and its size n.

Let δn = σ1σ2 · · · σn−1 be a braid in Bn . Let ` be an integer dividing n and
write a = n/`. Then the braid (δn)

` is associated to the rectangular partition λ =
(a, a, . . . , a) ` n. It is easy to see that h((δn)

n) is in the center of Cn . Let A be a
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partition of n−2 f for some integer f , and let πA be a minimal central idempotent
in Cn , and let pA be a minimal idempotent such that pAπA = pA. Under the
isomorphism

Cn ∼=
⊕

A∈B̂rn

MdA×dA(C),

the product h((δn)
n) · πA is a scalar matrix at the block corresponding to A, and

zero at other places. From Section 3, we know that h((δn)
n) · πA = qκA t−2 f πA,

which implies that the eigenvalues of h((δn)
`) · πA are either 0 or qκA/at−2 f/a

times n-th roots of unity. We conclude that tr(h((δn)
`) · pA)= bA ·qκA/at−2 f/a for

some rational number bA. Taking the specialization q, t→ 1, we obtain the value
bA = χA(γλ) for the character χA of Brauer algebra.

Now we compute ZEλ(L, q, t) for rectangular partition Eλ. Write Eλ= (λ1, . . . , λL)

such that λα = (aα, . . . , aα) = (aα`α ) for each α = 1, 2, . . . , L . Our goal in this
section is to estimate the u degree of FEλ(L; , q, t) for u = log q and a rectangular
partition Eλ.

Definition 9.1. Let Eτ = (τ1, . . . , τL) ∈ CL be a vector. We define the framing
dependent link invariants

W EA(L, q, t, Eτ) :=W EA(L, q, t)q
∑L
α=1 κAα τα t

∑L
α=1|A

α
|τα ,

and the framing-dependent partition function by

(9-1) ZSO
CS (L; q, t, Eτ)=

∑
Eµ∈PL

pb Eµ
z Eµ
·

∑
EA∈B̂r | Eµ|

χ EA(γ Eµ)W
SO
EA
(L; q, t, Eτ).

Similarly we define the free energy FSO(L; q, t, Eτ) = log ZSO
CS (L; q, t, Eτ) and

the coefficients FSO
Eµ
(L; q, t, Eτ) and W SO

Eµ
(L; q, t, Eτ) as before, replacing the link

invariants by the framing dependent invariants. The specialization Eτ = 0 gives the
framing independent invariants.

We compute the partition functions at the special values τα = wα + 1/aα for
wα ∈Z by taking a braid β( Ew)with writhe numberwα on each component Kα of L.
Let Ltwist

En, Ew be the closure of the product of the cabling braid βEn( Ew) of β( Ew) and the
braid (ωλ1⊗· · ·⊗ωλL ), where nα = aα`α and ωλα = (δnα )

`α . The diagrams below
provide an example that illustrates the twisted cabling process in the case a = 2,
`= 1 and n= a`= 2. Suppose L is a braid in Figure 1(a), which represents a knot
with writhe number w = 4. Figure 1(b), is obtained by cabling each component
into two strands. The twist ωλ is then as in the bottom of Figure 1(c), which adds
a crossing to Figure 1(b). The final twisted cabling link Ltwist

En, Ew is the closure of the
braid in Figure 1(d).
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(a) (b)

(c) (d)

Figure 1

The link Ltwist
En, Ew has `(Eλ) = `1 + `2 + · · · + `L components, and there are `i

components of writhe wαa2
α + aα − 1. We have

ZSO
Eλ
(L; q, t, Eτ)= 1

zEλ
·

∑
EA∈B̂r

|Eλ|

χ EA(γEλ)W
SO
EA
(L; q, t, Eτ)

=
1
zEλ
· tr
(
βEn( Ew) ·

∑
EA∈B̂r

|Eλ|

χ EA(γEλ)q
∑L
α=1

κAα
aα t

∑L
α=1

|Aα |
aα · p EA

)

=
t
∑L
α=1 `α

zEλ
· tr(βEn( Ew) · (ωλ1 ⊗ · · ·⊗ωλL ))

=
t
∑L
α=1 aα`α(wαaα+1)

zEλ
·W

(1)`(Eλ)(L
twist
En, Ew , q, t).

As in the proof of Theorem 7.5, we get

(9-2) FSO
Eλ
(L; q, t, Eτ)=

t
∑L
α=1 aα`α(wαaα+1)∏L
α=1 `α!a

`α
α

· FSO
(1)`(Eλ)

(Ltwist
En, Ew ; q, t).

In particular, we get the following proposition.
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Proposition 9.1. For a rectangular partition Eλ such that µα= (aα`α ), and any tube
of integers Ew = (w1, . . . , wL), we have

(q − q−1)2−`(
Eλ)
· FSO
Eλ
(L; q, t, Eτ) ∈Q[q − q−1

][t, t−1
]

for Eτ = (w1+ 1/a1, w2+ 1/a2, . . . , wL + 1/aL).

Consider the embedding Q(q)[t, t−1
] ↪→Q[[T ]]((u)) via the change of variables

q=eu and t=eT , we can expand the rational function FSO
Eλ
(L; q, t, Eτ) into a formal

power series in variables u and T as

FSO
Eλ
(L; eu, eT , Eτ)=

∞∑
k=0

∑
i≥−‖Eλ‖

Pk,i (Eτ)T kui

with coefficients Pk,i ∈Q[τ 1, . . . , τ L
].

The proposition above implies that the coefficients Pk,i (Eτ) for i < `(Eλ) − 2
vanish when each τk − 1/ak takes arbitrary integer values, which is possible only
when the polynomials Pk,i (Eτ) for i < `(Eλ)− 2 are zero polynomials (a lattice is
Zariski dense). Now specializing to the framing τ1 = τ2 = · · · = τL = 0 leads to
the following theorem.

Proposition 9.2. Let Eλ be a rectangular partition. Then the formal power se-
ries FSO

Eλ
(L; eu, t) and gEλ(L; e

u, t) in the valuation field Q(t)((u)) has u-valuation
greater or equal to `(Eλ)− 2.

10. Appendix

10.1. The case of the unknot. In this appendix, we calculate FSO(©L
; q, t). We

only deal with the case of unknot, that is, L = 1, since the general case L ≥ 1 can
be done exactly the same way, except that the notation will be more complicated.

Proposition 10.1.
∑

A∈B̂r |µ|

χA(γµ)W SO
A (©; q, t))=

`(µ)∏
i=1

[
1+ tµi−t−µi

qµi−q−µi

]
.

Proof. Let t = q2N and compare with the quantum group definition of the colored
Kauffman polynomials,∑

A∈B̂r |µ|

χA(γµ)W SO
A (©; q, q2N ))=

∑
A∈B̂r |µ|

χA(γµ) trVA(K2ρ)

= pbµ(q
1−2N , q3−2N , . . . , q−1, 1, q, . . . , q2N−3, q2N−1)

=

`(µ)∏
i=1

[
1+ tµi−t−µi

qµi−q−µi

]
.
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Since both sides of the equation in the proposition are rational functions in t , and
they agree for arbitrary sufficiently large N , they must coincide. �

Proposition 10.2.

(10-1) ZSO
CS (©; q, t)= exp

(+∞∑
k=1

1
k

(
1+ tk

−t−k

qk−q−k

)
pbk

)
.

Proof. ZSO
CS (©; q, t)=

∑
λ∈P

1
zλ
·

`(λ)∏
i=1

[
1+ tλi−t−λi

qλi−q−λi

]
· pbλ

=

+∞∑
n=1

+∞∑
λ1,...,λn=1

1
n!

n∏
i=1

1
λi

n∏
i=1

[
1+ tλi−t−λi

qλi−q−λi

]
· pbλ

=

+∞∑
n=1

1
n!

[+∞∑
k=1

1
k

(
1+ tk

−t−k

qk−q−k

)
pbk

]n
,

which equals the stated result. �

So we get the free energy expressed as

FSO(©; q, t)=
+∞∑
k=1

1
k

(
1+ tk

−t−k

qk−q−k

)
pbk .

Remark 10.1. This expression appeared in [Borhade and Ramadevi 2005], where
it was computed from the path integral definition of the Chern–Simons partition
function. Our derivation is based on our mathematical definition in terms of quan-
tum group invariants and representations of the Brauer algebra.

10.2. An alternative definition of colored Kauffman polynomials via Markov
trace and Hopf link. The quantum group approach to the knot/link theory has pro-
duce a lot of invariants via the representation theory. However, the calculations are
usually very complicated. Fortunately, only quantum traces are essentially used.
This enable us to find a combinatorial method instead of the quantum group one.
Birman and Wenzl [1989] and Wenzl [1988] introduced a Markov trace definition.
We will briefly introduce their construction here.

There is a well-defined Markov trace tr on the union of BMW algebra Cn with
the following properties.

(1) tr(h(α1)h(α2))= tr(h(α2)h(α1)) for any αi ∈ Bn .

(2) tr(h(β)g±1
n )= (t±1/x) tr(h(β)) for any β ∈ Bn .

(3) tr(1)= 1.
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(4) tr(h(β)) = x1−n
〈β̂〉 = x1−ntw(β̂)K (β̂, q, t), where β̂ is the link obtained by

closing the braid β ∈ Bn and K (L, q, t) is the classical Kauffman polynomial
of the link L.

First normalize the trace by setting

Tr(ξ)= xn
· tr(ξ) for ξ ∈ Cn.

Let L be a link with L components Kα for α = 1, . . . , L , represented by the
closure of β ∈ Bm . We associate to each Kα an irreducible representation VAα

of the quantized universal enveloping algebra Uq(so(2N + 1)). Let pα ∈ Cdα for
α= 1, . . . , L be L minimal idempotents corresponding to the irreducible represen-
tations VA1, . . . , VAL , where Aα denotes the partition of |Aα| = dα labeling VAα .
Let Ed = (d1, . . . , dL) and let i1, . . . , im be integers such that ik = α if the k-th
strand of β belongs to the α-th component of L. Let β Ed be the cabling braid of β,
replacing the k-th strand of β by dik parallel ones. Then

(10-2) W SO
EA
(L; q, t)

= q−
∑L
α=1 κAαw(Kα)t−

∑L
α=1|A

α
|w(Kα) ·Tr(h(β Ed) · (pi1 ⊗ · · ·⊗ pim )).

Now we look at a concrete example to illustrate this method.
Let L be the Hopf link, represented by the braid β = g2

1 . Set z = q − q−1. It’s
easy to get

W SO
(1),(1)(L)= x((t − t−1)/z+ 1+ z(t − t−1)).

Let µ be a partition of 2, and let A be a partition of 2 or 0 labeling the irreducible
representations of Brauer algebra Br2. The character table reads χ(1,1)(γ(2))=−1
and χ(2)(γ(2)) = χ(1,1)(γ(1,1)) = χ(1,1)(γ(1,1)) = 1. The representation labeled by
A = (2) is the trivial representation.

We want to compute W SO
(1),(2)(L). The minimal idempotents (studied by [Beli-

akova and Blanchet 2001]) in C2 are

p(2) =
(q−1

+ g2

q + q−1

)
(1− x−1e2), p(1)2 =

( q − g2

q + q−1

)
(1− x−1e2), pφ = x−1e2,

where φ is the empty partition.
Denote the cabling of β by β1,2, which is given by h(β1,2)= g1g2

2g1.
By using the definition of BMW algebras Cn and the properties of Markov trace.

We have the following formulas for the twisted cabling braids

tr(h(β1,2)·g2)= tr(g1g2
2g1g2)

=
t

x2

( t−t−1

z
+1+(3t−2t−1

−t−3)z+(1−t−2)z2
+(t−t−1)z3

)
,
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where we used property (P2) of the BMW algebra Cn as well as the classic Kauff-
man polynomial of the trefoil knot and the Hopf link.

Similarly, we have

tr(h(β1,2))=
(x + zt − zt−1)2

x2 and tr(h(β1,2) · e2)=
1
x
,

where h(β1,2)·e2 is actually the image of a link of the disjoint union of two unknots.
Since

p(2)− p(1)2 + pφ =
−z

q + q−1 +
2g

q + q−1 +
(z+ q + q−1

− 2t−1)e2

x(q + q−1)
,

we have

2Z(1),(2)(L; q, t)=W(1),(2)(L; q, t)−W(1),(1,1)(L; q, t)+W(1),(0)(L; q, t)

= x3 tr
(
h(β1,2) · (p(1)⊗ (p(2)− p(1)2 + pφ))

)
=

x
q+q−1

( t2
−t−2

z
+ (q + q−1)+ (t2

− t−2)(z3
+ 4z)

)
and

2Z(1)(©)Z(2)(©)=
x

q+q−1

(
q + q−1

+
t2
− t−2

z

)
,

Thus we have

2F(1),(2)(L, q, t)= 2Z(1),(2)(L)− 2Z(1)(©)Z(2)(©)

= (q + q−1)(t2
− t−2)[z+ (t − t−1)]

and
2(q − q−1)2 F(1),(2)
(q − q−1)(q2− q−2)

= (t2
− t−2)[(t − t−1)+ z] ∈ Z[z][t, t−1

]

as predicted in the Conjecture 5.1. Actually this example has already been dis-
cussed in Case 1C in Section 5.

10.3. Character tables of Brauer algebras and type-B Schur functions. Here are
some character tables for Brauer algebras. Write pbλ =

∑
A∈B̂r |λ| χA(γλ) sbA, and

we compute the character table by the following formula, which is [Ram 1995,
Theorem 5.1]:

χλ(γµ)=
∑
ν`,|µ|
ν⊃λ

(∑
β even

cνλβ
)
χ

S|µ|
ν (γµ).

where the cνλβ are called the Littlewood–Richardson coefficients and defined via
type-A Schur functions as

sαsβ =
∑

|γ |=|α|+|β|

cγαβsγ
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Combining the formulas above, we obtain the expressions

pb(1) = sb(1),

pb(2) = sb(2)− sb(1,1)+1,

pb(1,1) = sb(2)+ sb(1,1)+1,

pb(3) = sb(3)− sb(2,1)+ sb(1,1,1),

pb(2,1) = sb(3)− sb(1,1,1)+ sb(1),

pb(1,1,1) = sb(3)+2 sb(2,1)+ sb(1,1,1)+3 sb(1),

and conversely we can also express functions sb in terms of pb.

10.4. Colored Kauffman polynomials of torus links/knots and tables of integer
coefficients NEµ,g,β . The torus link L= T (r L , kL) has L components if (r, k)=1.
We compute the orthogonal quantum group invariants by the following formula
proved in Theorem 3.6:

(10-3) W SO
A (L; q, t)= q−kr

∑L
α=1 κAα t−k(r−1)n

[rn/2]∑
f=0

∑
λ`rn−2 f

c̃λ
EA
q

kκλ
r t−

2 f k
r sbλ(q, t)

The explicit formula for these type-B Schur functions sbλ(q, t) are computed in
the subsection above.

Recall the definition of the constants c̃λ
EA

by the formula

L∏
α=1

sbAα (zr )=

[rn/2]∑
f=0

∑
λ`rn−2 f

c̃λ
EA

sbλ(z).

For example, in the case r = 2 and L = 1, we have

c̃ (0) (2) (1, 1) (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

(1) 1 1 −1 × × × × ×

(2) 1 1 −1 1 −1 1 0 0
(1, 1) 1 1 −1 0 0 1 −1 1

In this subsection, we provide tables for the values of the integers N Eµ,g,β in the
formula

z Eµ(q − q−1)2 · [g Eµ(q, t)− gEµ(q,−t)]

2
∏L
α=1

`(µα)∏
i=1

(qµ
α
i − q−µ

α
i )

=

∑
g∈Z+/2

∑
β∈Z

N Eµ,g,βz2gtβ .

Example 4. Taking r = 1, the torus link T (2, 2k) has 2 components. By (10-3),
we have the following results expressed in the tables.
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Case 4A. For T (2, 2k) with partitions (1), (1), we have N Eµ,g,β = 0.

Case 4B. For T (2, 2k) with partitions (1, 1), (1), we have

k = 1 β =−3 −1 1 3
g = 0 −1 3 −3 1

and

k = 2 β =−5 −3 −1 1 3
g = 0 −4 4 12 −20 8

1 −1 1 3 −9 6
2 0 0 0 −1 1

Case 4C. For T (2, 2k) with partitions (2), (1), we have

k = 1 β =−3 −1 1 3
g = 0 1 −1 −1 1

and

k = 2 β =−5 −3 −1 1 3
g = 0 2 −2 2 −6 4

1 1 −1 1 −5 4
2 0 0 0 −1 1

Case 4D. For T (2, 2k) with partitions (2), (2), we have

k = 1 β =−3 −1 1 3
g = 1/2 −2 2 −2 2

3/2 −1 1 −1 1
and

k = 2 β =−5 −3 −1 1 3
g = 1/2 −8 4 20 −36 20

3/2 −24 20 40 −96 60
5/2 −22 21 29 −97 69
7/2 −8 8 9 −47 38
9/2 −1 1 1 −11 10

11/2 0 0 0 −1 1

Case 4E. For T (2, 2k) with partitions (3), (1), we have

k = 1 β =−3 −1 1 3
g = 1/2 −1 0 0 1

and

k = 2 β =−5 −3 −1 1 3
g = 1/2 −4 4 0 −8 8

3/2 −5 5 0 −14 14
5/2 −1 1 0 −7 7
7/2 0 0 0 −1 1

Example 5. The torus knots T (2, k), where k is an odd integer. Again we compute
the following tables by (10-3).

Case 5A. For T (2, k) with partition (1, 1), we have

k = 3 β =−11 −9 −7 −5 −3
g = 1/2 36 −132 180 −108 24

3/2 105 −377 453 −207 26
5/2 112 −450 494 −165 9
7/2 54 −275 286 −66 1
9/2 12 −90 91 −13 0

11/2 1 −15 15 −1 0
13/2 0 −1 1 0 0
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Case 5B. For T (2, k) with partition (2), we have

k = 3 β =−11 −9 −7 −5 −3
g = 1/2 −6 26 −42 30 −8

3/2 −35 125 −161 85 −14
5/2 −56 210 −238 91 −7
7/2 −36 165 −174 46 −1
9/2 −10 66 −67 11 0

11/2 −1 13 −13 1 0
13/2 0 1 −1 0 0

Example 6. Taking r =1, the torus link T (3, 3k) has 3 components. By (10-3), we
have the following tables for the torus link T (3, 3k) with partitions (2), (1), (1):

k = 1 β =−3 −1 1 3
g = 1/2 2 −2 −10 10

3/2 0 0 −6 6
5/2 0 0 −1 1

and

k = 2 β =−5 −3 −1 1 3
g = 1/2 16 −48 176 −336 192

3/2 12 −68 452 −1036 640
5/2 2 −38 494 −1406 948
7/2 0 −10 286 −1056 780
9/2 0 −1 91 −467 377

11/2 0 0 15 −121 106
13/2 0 0 1 −17 16
15/2 0 0 0 −1 1
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