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This paper introduces the notion of squeezing functions on bounded do-
mains and studies some of their properties. The relation to geometric and
analytic structures of bounded domains will be investigated. Existence of re-
lated extremal maps and continuity of squeezing functions are proved. Holo-
morphic homogeneous regular domains introduced by Liu, Sun and Yau
are exactly domains whose squeezing functions have positive lower bounds.
Completeness of certain intrinsic metrics and pseudoconvexity of holomor-
phic homogeneous regular domains are proved by alternative method. In
the dimension one case, we get a neat description of boundary behavior
of squeezing functions of finitely connected planar domains. This leads to
necessary and sufficient conditions for a finitely connected planar domain
to be a holomorphic homogeneous regular domain. Consequently, we can
recover some important results in complex analysis. For annuli, we obtain
some interesting properties of their squeezing functions. Finally, we present
some examples of bounded domains whose squeezing functions can be given
explicitly.

1. Introduction

Bounded domains are elementary objects of study in complex analysis. To study
complex and geometric structures of bounded domains, one may consider holomor-
phic maps from bounded domains to some standard domains such as balls and vice
versa. The basic idea goes back to Carathéodory, and a typical example is the def-
initions of the Carathéodory metric and the Kobayashi metric. Holomorphic maps
from bounded domains to the unit ball with certain extremal properties are called
Carathéodory maps, which can be explicitly given for some special domains such
as bounded symmetric domains [Kubota 1981; 1982a; 1982b; 1983] and ellipsoids
[Ma 1997]. Recently, by considering embeddings of general bounded domains
into the unit ball, a new concept of holomorphic homogeneous regular domains
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was introduced [Liu et al. 2004; Liu et al. 2005]. Holomorphic homogeneous
regular domains are generalizations of Teichmüller spaces, and they admit some
nice geometric and analytic properties [Liu et al. 2004; Liu et al. 2005; Yeung
2009].

Motivated by the above works, especially [Liu et al. 2004; Liu et al. 2005], we
introduce the notion of squeezing functions defined on general bounded domains
as follows:

Definition 1.1. Let D be a bounded domain in Cn . For p ∈ D and an (open)
holomorphic embedding f : D→ Bn with f (p)= 0, we define

sD(p, f )= sup{r | Bn(0, r)⊂ f (D)},

and the squeezing number sD(p) of D at p is defined as

sD(p)= sup
f
{sD(p, f )},

where the supremum is taken over all holomorphic embeddings f : D→ Bn with
f (p)= 0, Bn representing the unit ball in Cn , and Bn(0, r) representing the ball
in Cn with center 0 and radius r . We call sD the squeezing function on D.

By definition, it is clear that squeezing functions are invariant under biholomor-
phic transformations, so a squeezing function can be viewed as a kind of holo-
morphic invariant of a bounded domain. The main purpose of the present paper
is to investigate some properties of squeezing functions and their relations with
geometric and analytic structures of bounded domains.

Squeezing functions are always positive and bounded above by 1. It is interest-
ing to estimate their lower and upper bounds, which are numerical holomorphic
invariants of bounded domains, by the holomorphic invariance of squeezing func-
tions. Holomorphic homogeneous regular domains defined in [Liu et al. 2004;
Liu et al. 2005] are exactly bounded domains whose squeezing functions admit
positive lower bounds. They contain some interesting objects such as bounded
homogeneous domains, Teichmüller spaces, bounded domains covering compact
Kähler manifolds, and strictly convex domains with C2-boundary [Yeung 2009].

It is easy to see that the squeezing function of the unit ball Bn is constant with
value 1. A natural question is whether the squeezing function of a bounded domain
D can attain the value 1 at some point x in D if D is not holomorphic equivalent
to Bn . This question is related to the existence of an extremal map which realizes
the supremum sD(x). In other words, the existence of a holomorphic embedding
f : D → Bn such that f (x) = 0 and Bn(0, sD(x)) ⊂ f (D). We will prove the
existence of extremal maps by using a higher dimensional generalization of the
Hurwitz theorem which we will also prove. As a consequence, SD attains the
value 1 in D if and only if D is holomorphic equivalent to the unit ball. On the
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other hand, as we will see, there exist domains whose squeezing functions have
supremum 1, but are not holomorphic equivalent to the unit ball.

An elementary property of regularity of squeezing functions is their continu-
ity. This can be proved by using the decreasing property of Kobayashi metrics.
From the continuity property, one can see that a bounded domain is a holomorphic
homogeneous regular domain if it covers a compact complex manifold.

Properties of squeezing functions are able to reflect some geometric and analytic
properties of bounded domains. The boundary behavior of squeezing functions
implies a certain boundary estimate of the Carathéodory metric, which implies
completeness of the metric in some special cases. For a bounded domain whose
squeezing function admits a positive lower bound, that is, a holomorphic homo-
geneous regular domain, it is known that the intrinsic metrics — the Carathéodory
metric, the Kobayashi metric, and the Bergman metric — on it are equivalent [Liu
et al. 2004; Liu et al. 2005], and they are all complete [Yeung 2009]. We will prove
the completeness of these metrics by an alternative method based on Look’s result
[1958] on comparing the Bergman metric and the Carathéodory metric. A result
in several complex variables states that completeness of the Carathéodory metric
of a domain implies its pseudoconvexity [Jarnicki and Pflug 1993], and hence a
holomorphic homogeneous regular domain must be a pseudoconvex domain.

Squeezing functions of planar domains have nice properties. For finitely con-
nected planar domains, we get a neat description of the boundary behavior of their
squeezing functions. As a result, we get the necessary and sufficient condition for
such a domain to be a holomorphic homogeneous regular domain. Surprisingly,
the squeezing function sD of a bounded planar domain D with smooth boundary
admits the boundary behavior

(1) lim
z→∂D

sD(z)= 1.

By the continuity of squeezing functions, equality (1) implies that all smoothly
bounded planar domains are holomorphic homogeneous regular domains. As a re-
sult, we can recover some important results about planar domains. For example, the
three intrinsic metrics mentioned above on a bounded planar domain with smooth
boundary are all complete, and they are equivalent. Also, a smoothly bounded
planar domain must be hyperconvex, that is, it admits a bounded exhaustive sub-
harmonic function. In particular, equality (1) also implies that sD can be extended
continuously to D for a planar domain D with smooth boundary. We don’t know
whether this is true in the general case, that is, whether sD can be extended contin-
uously to D for all bounded domains D ⊂ Cn with smooth boundary.

It is clear that the product of two holomorphic homogeneous regular domains
is still a holomorphic homogeneous regular domain, so smoothly bounded planar
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domains and their products provide a class of holomorphic homogeneous regular
domains which are generally not contained in the list of holomorphic homoge-
neous regular domains mentioned above. As remarked in [Liu et al. 2004; Liu
et al. 2005], it may be interesting to investigate whether the Kobayashi metric
and the Carathéodory metric on a Teichmüller space coincide or not; on the other
hand, the Kobayashi metric and the Carathéodory metric on general holomorphic
homogeneous regular domains constructed here don’t coincide.

The simplest nontrivial smoothly bounded planar domains are annuli. However,
even in this special case, squeezing functions admit nontrivial properties. With
some investigation, we conjecture that the conformal structure of an annulus is
characterized by the exact lower bound of its squeezing function.

The squeezing functions can be given explicitly for classical bounded symmetric
domains. In this special case, we see that the extremal maps for squeezing functions
defined as above can be given by the Carathéodory maps (see Section 7 for exact
definition). However, this does not hold for general domains such as annuli. In
fact, the Carathéodory maps (often called Ahlfors maps for planar domains) of
a bounded planar domain can not even be injective if the domain is not simply
connected [Fisher 1983]. It seems that the obstruction for the coincidence of the
two types of extremal maps comes from topology. Therefore, we conjecture that
the extremal maps of a contractible domain are given by Carathéodory maps.

The rest of this article is organized as follows. In Section 2, we generalize
the Hurwitz theorem from one complex variable analysis to several complex vari-
ables, and use this generalization to establish the existence of extremal maps that
are defined as above. In Section 3, we prove the continuity of squeezing func-
tions of general bounded domains. In Section 4, we give a boundary estimate of
Carathéodory metrics in term of boundary behavior of squeezing functions, and
prove the completeness of certain intrinsic metrics on holomorphic homogeneous
regular domains. As a corollary, we get the pseudoconvexity of these domains. In
Section 5, we study squeezing functions on planar domains and prove equality (1)
of smoothly bounded planar domains. We also construct a class of planar holomor-
phic homogeneous regular domains which are infinitely connected. In Section 6,
we focus on squeezing functions on annuli, and in Section 7, we give some exam-
ples of bounded domains whose squeezing functions can be given explicitly.

2. Generalized Hurwitz theorem and the existence of extremal functions

The main aim of this section is to establish the existence of extremal maps related
to squeezing functions.

Theorem 2.1. Let D be a bounded domain in Cn . Then for any x ∈ D, there exists a
holomorphic embedding f : D→ Bn such that f (x)= 0 and Bn(0, sD(x))⊂ f (D).
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By definition we have sD(z) ≤ 1 for all z ∈ D. By Theorem 2.1, we see that
sD(z)= 1 for some z ∈ D if and only if D is holomorphically equivalent to Bn .

To prove Theorem 2.1, we need to generalize Hurwitz’s theorem in classical
complex analysis to several complex variables. Hurwitz’s theorem in one complex
variable says that the limit of a sequence of univalent functions on a planar domain
is univalent unless it is constant [Remmert 1998]. Of course there is no direct
generalization of this result in higher dimensions. However, a modified version
described in the following theorem still holds.

Theorem 2.2. Let D be a bounded domain in Cn and x ∈ D. Let fi be a sequence
of injective holomorphic maps from D to Cn such that fi (x) = 0 ∈ Cn for all i .
Suppose fi converges to a map f : D→ Cn uniformly on compact subsets of D. If
there exists a neighborhood U of 0 in Cn such that U ⊂ fi (D) for all i , then f is
injective.

To prove Theorem 2.2, we need two lemmas.

Lemma 2.3. Let D be a domain in Cn and ϕi a sequence of holomorphic functions
which is convergent to ϕ : D→ C uniformly on compact subsets of D. If all ϕi

have no zero in D, then ϕ has no zero in D unless it is identically zero.

Proof. By the identity theorem of holomorphic functions, we may assume D is a
ball. Assume there exists x ∈ D such that ϕ(x)= 0. For any point z ∈ D, consider
the intersection of D and the complex line containing x and z. Then a version
of the classical Hurwitz theorem [Remmert 1998, Corollary, pg. 162] implies that
ϕ(z)= 0, so ϕ is identically zero on D. �

The second lemma we need in the proof of Theorem 2.2 is the generalized
Rouché’s theorem in higher dimensions, whose proof relies on the mapping degree
theory in differential topology.

Lemma 2.4 [Lloyd 1979, Theorem 3]. Let D be a bounded domain in Cn . Suppose
f and g are two holomorphic maps from D to Cn such that

‖g(z)‖< ‖ f (z)‖, z ∈ ∂D.

Then f and f + g have the same number of zeros in D, counting multiplicities,
where ‖ · ‖ is the standard norm in Cn .

Proof of Theorem 2.2. Let gi = f −1
i |U . By Montel’s theorem, the sequence {gi }

is convergent to a holomorphic map g : U → Cn uniformly on compact subsets
of U . Noting that g(0) = x is an interior point of D, we can assume g(U ) ⊂ D
by taking U small enough. It is clear that fi gi = IdU for all i . Letting i tend to
∞, we get f g = IdU . This implies that the Jacobian determinant det J f (x) of f at
x is not zero. Since the fi are all injective, det J fi (z) 6= 0 for all i and all z ∈ D
[Fritzsche and Grauert 2002, Theorem 8.5]. Note that det J fi converges to det J f
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uniformly on compact subsets of D. By Lemma 2.3, we see that det J f (z) 6= 0
for all z ∈ D. We prove f is injective. If it is not the case, there exist z1, z2 ∈ D,
z1 6= z2, such that f (z1)= f (z2). Since det J f 6= 0, we can choose a neighborhood
� ⊂⊂ D of z1 such that f |� is injective and z2 6∈ �. Set f̃i = fi − fi (z2) and
f̃ = f − f (z2). Then f̃i converges to f̃ uniformly on �. Note that f̃ has a zero
in � and f̃ −1(0)∩ ∂�=∅. By Lemma 2.4, f̃i has a zero in � for i large enough,
which contradicts the fact that the fi are all injective on D. �

Remark 2.5. The assumptions in Theorem 2.2 that D is bounded and all fi (D)
contain a fixed neighborhood of 0 ∈ Cn are necessary. In fact, without either as-
sumption, the result in Theorem 2.2 does not hold. For example, taking

fi (z1, z2)= (z1, z2/ i)

as a sequence of holomorphic maps from D = C2 to itself, the limit map f : D→
C2 is given by f (z1, z2) = (z1, 0). It is not injective even if the fi are injective
and C2

⊂ fi (D) for all i ; the restrictions on fi |B2 give a sequence of injective
holomorphic maps from B2 to C2 with limit map f |B2 , which is not injective since
not all fi (B2) contain a fixed neighborhood of 0 ∈ C2. On the other hand, by
a result in [Hahn 1976], the two assumptions can be replaced by assuming that
| det J fi (x)| have a positive lower bound.

Proof of Theorem 2.1. By the definition of squeezing functions, there exist a se-
quence of holomorphic embeddings fi : D→ Bn with fi (x)= 0, and a sequence
of increasing positive numbers ri convergent to sD(x) such that Bn(0, ri )⊂ fi (D).
By Montel’s theorem, there exists a subsequence { fik } of fi which converges to
a homomorphic map f : D → Cn uniformly on compact subsets of D. Since
Bn(0, r1) ⊂ fi (D) for all i , by Theorem 2.2, f is injective. In particular it is an
open map. Hence f (D)⊂ Bn . Then we get a holomorphic embedding f : D→ Bn

with f (x)= 0.
To prove Bn(0, sD(x))⊂ f (D), it suffices to prove Bn(0, r j )⊂ f (D) for each

fixed integer j . By assumption, Bn(0, r j ) ⊂ fi (D) for all i > j . Let gi =

f −1
i |Bn(0,r j ). Then we have fik gik = IdBn(0,r j ) for ik > j . By Montel’s theo-

rem, we may assume that the sequence {gik } converges to a holomorphic map
g : Bn(0, r j )→ Cn uniformly on compact subsets of Bn(0, r j ). We want to prove
that g(Bn(0, r j ))⊂ D. Note that g(0)= x . Hence there exists a neighborhood U
of 0 in Bn(0, r j ) such that g(U ) ⊂ D. This implies f · g|U is defined, and it is
clearly equal to the identity map IdU , so det Jg(0) 6= 0. Since det Jgi 6= 0 for all
i > i0, by Lemma 2.3, we have det J f 6= 0 and hence g is an open map, which
implies that g(Bn(0, r j )) ⊂ D. Therefore f g : Bn(0, r j )→ Bn(0, r j ) is a well
defined map. It is clear that f g = IdBn(0,r j ), so we have Bn(0, r j )⊂ f (D). �



SOME PROPERTIES OF SQUEEZING FUNCTIONS ON BOUNDED DOMAINS 325

3. Continuity of squeezing functions

In this section, we will prove that the squeezing function on any bounded domain is
continuous. As a consequence, a bounded domain is a holomorphic homogeneous
regular domain if it covers a compact complex manifold.

Theorem 3.1. The squeezing function sD of any bounded domain D in Cn is con-
tinuous.

Proof. Since D is a bounded domain, the Kobayashi metric on D is nondegenerate.
Let a be an arbitrary point in D, {zk} a sequence in D convergent to a, and ε an

arbitrary positive number. By Theorem 2.1, there exists a holomorphic embedding
f : D→ Bn such that f (a)= 0 and Bn(0, sD(a))⊂ f (D). Since f is continuous,
there exists an integer N such that ‖ f (zk)‖< ε for k > N . Define fk : D→ Cn as

fk(z)=
f (z)− f (zk)

1+ ε

for k > N . Then fk(D)⊂ Bn , fk(zk)= 0, and

Bn
(

0,
sD(a)− ε

1+ ε

)
⊂ fk(D).

This implies that sD(zk)≥ (sD(a)− ε)/(1+ ε). Letting ε tend to 0, we get

lim inf
k→∞

sD(zk)≥ sD(a).

Let K D(·, ·) be the Kobayashi distance on D. It is known that K D is continuous on
D×D [Kobayashi 1998]. So we have K D(zk, a)→ 0 as k→∞. By Theorem 2.1,
for each k, there exists a holomorphic embedding fk : D→ Bn such that fk(zk)= 0
and Bn(0, sD(zk)) ⊂ fk(D). By the decreasing property of Kobayashi distances
[Kobayashi 1998], we have

K Bn ( fk(zk), fk(a))= K Bn (0, fk(a))≤ K D(zk, a)

for all k. So K Bn (0, fk(a))→ 0, which implies that fk(a) tends to 0 in the ordinary
topology [Barth 1972]. So, for any positive number ε, there exists an integer M
such that ‖ fk(a)‖< ε for k > M . This implies

sD(a)≥
sD(zk)− ε

1+ ε
, .

so we have

sD(a)≥ lim sup
k→∞

sD(zk)− ε

1+ ε
.

Letting ε tend to 0, we get

sD(a)≥ lim sup
k→∞

sD(zk).
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So limk→∞ sD(zk)= sD(a), that is, sD is continuous at a. Note that a is arbitrary,
so sD is continuous on D. �

For r ∈ [0, 1), we define

σ(r)= log 1+r
1−r

.

It is clear that σ(c) is strictly increasing for 0≤ c < 1, and its inverse is given by
σ−1(w) = tanh(w/2). For a point z ∈ Bn , the Kobayashi distance from 0 to z is
σ(|z|). For two nonnegative numbers u and v, it is not difficult to prove that

σ−1(u+ v)≤ σ−1(u)+ σ−1(v).

Let D be a bounded domain in Cn . We define a function T (·, ·) on D× D as

T (x, y)= σ−1(K D(x, y)).

Then the above properties of σ imply that T (·, ·) is a metric on D. Since K D

induces the ordinary topology of D, so does T . From the proof of Theorem 3.1,
one can directly get the following:

Theorem 3.2. The squeezing function sD of D is Lipschitz continuous with respect
to the metric T . In fact, we have

|sD(x)− sD(y)| ≤ 2T (x, y), x, y ∈ D.

Remark 3.3. The same result as in the above theorem still holds if we replace
Kobayashi distance in the definition of T (·, ·) by Carathéodory distance.

By Theorem 3.1, we directly get the following result, proved in [Yeung 2009]:

Corollary 3.4. Let D be a bounded domain that covers a compact complex mani-
fold. Then D is a holomorphic homogeneous regular domain.

Proof. Let X be a compact complex manifold that is covered by D. By the holo-
morphic invariance of squeezing functions, sD(z) can be pushed down to a function
on X . By Theorem 3.1, sD(z) is continuous. Note that sD(z) is also positive, and
it must attain a positive lower bound on X , and hence on D. �

4. Relations between intrinsic metrics and squeezing functions

The main purpose of this section is to investigate relations between squeezing
functions and some intrinsic metrics on bounded domains. We give a boundary
estimate of the Carathéodory metric of a bounded planar domain in term of bound-
ary behavior of its squeezing function. In fact, a similar but weaker form of this
result still holds in a higher dimensional case. We then focus on bounded holomor-
phic homogeneous regular domains, and prove that the Carathéodory metric, the
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Kobayashi metric, and the Bergman metric on these domains are complete. As a
result, a holomorphic homogeneous regular domain must be pseudoconvex.

We first need the following lemma, which is known as the Koebe quarter theorem
in classical complex analysis.

Lemma 4.1 [Ahlfors 1973]. Let 1 ⊂ C be the unit disc. Let g be a univalent
holomorphic function on 1 such that g(0)= 0 and g′(0)= 1. Then

1 1
4
:= {z ∈ C; |z|< 1

4} ⊂ g(1).

With this lemma, we now prove the following:

Theorem 4.2. Let D be a bounded domain in C, x ∈ D. Then the Carathéodory
pseudonorm of ∂/∂z at x is not less than sD(x)/4δ(x), where z is the standard
coordinate on C and ∂/∂z is viewed as a vector in the tangent space Tx D of D
at x.

Proof. By Theorem 2.1, there exists a univalent map f : D→1 such that f (x)= 0
and 1sD(x) ⊂ f (D), where 1sD(x) is the disc in C with center 0 and radius sD(x).
We want to estimate the module | f ′(x)| of the derivative of f at x . Let

g = f −1
|1sD (x)

.

This is a univalent map from 1sD(x) to D such that g(0)= x .
Now we define a univalent map ϕ :1→ C by setting

ϕ(z)=
g(sD(x) · z)− x

sD(x) · g′(0)
.

Then it is clear that ϕ(0)= 0 and ϕ′(0)= 1. By Lemma 4.1, we have 11/4 ⊂ ϕ(1).
This implies that

1

(
x,

sD(x)|g′(0)|
4

)
⊂ g(1sD(x))⊂ D,

where, for a ∈ C and r > 0, we set 1(a, r) the disc in C with center a and radius
r . In particular, we have

δ(x)≥
sD(x)|g′(0)|

4
.

Noting that f ′(x)= 1/g′(0), we get

| f ′(x)| ≥
sD(x)
4δ(x)

.

This means that the Carathéodory pseudonorm of ∂/∂z at x is not less than

sD(x)
4δ(x)

. �
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Remark 4.3. Using a similar argument as in the proof of Theorem 4.2, one can
prove a weaker form of Theorem 4.2 in higher dimensional cases. In fact, for a
bounded domain D ⊂Cn , one can prove that the Carathéodory pseudonorm ‖X‖CD

on D of X ∈ Tx D = Cn admits the estimate

‖X‖CD ≥
sD(x)‖X‖
4δ(x, X)

,

where δ(x, X) is the boundary distance of x with respect to the direction X , and
‖X‖ is the Euclidean norm of X .

A corollary of Theorem 4.2 is the following:

Theorem 4.4. Let D be a bounded domain in C satisfying

sD(x) >
C

log(1/δ(x))

for some positive constant C and all x ∈ D with δ(x) < 1. Then the Carathéodory
metric on D is complete.

Proof. By Theorem 4.2, we see that the Carathéodory pseudonorm of ∂/∂z at
x is not less than −C/(δ(x) log δ(x)), which implies the completeness of the
Carathéodory metric on D. �

We focus on holomorphic homogeneous regular domains in the rest of this sec-
tion. We first prove the completeness of the Carathéodory metric of a holomorphic
homogeneous regular domain.

Theorem 4.5. Let D be a holomorphic homogeneous regular domain in Cn . Then
the Carathéodory metric on D is complete.

Proof. Since D is a bounded domain, the Carathéodory metric on D is nondegen-
erate. Denote by CD(·, ·) the Carathéodory distance on D.

Let c > 0 be a positive lower bound of the squeezing function sD of D. We first
prove that, for any x0 ∈ D, the set

A(x0) :=
{

x ∈ D
∣∣∣ CD(x, x0) < log 1+c/2

1−c/2

}
is relatively compact in D. By Theorem 2.1, there exists an open holomorphic
embedding fx0 : D→ Bn such that fx0(x0) = 0 and Bn(0, c) ⊂ fx0(D). By the
decreasing property of Carathéodory metrics, we have

f ∗x0
CBn ≤ CD.

This implies that

fx0(A(x0))⊂
{

z ∈ Bn
∣∣∣ CBn (z, 0) < log 1+c/2

1−c/2

}
.
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Note that the set{
z ∈ Bn

∣∣∣ CBn (z, 0) < log 1+c/2
1−c/2

}
=

{
z ∈ Bn

∣∣∣ ‖z‖< c
2

}
is relatively compact in Bn(0, c), so A(x0) is relatively compact in D.

For bounded domains, it is known that the topology induced by the Carathéodory
metric coincides with the ordinary topology [Jarnicki and Pflug 1993]. In particular,
a compact set of D with the ordinary topology is also compact with respect to the
topology induced by the Carathéodory metric. By the above result, we see that the
Carathéodory metric on D is complete. �

It is known that a domain whose Carathéodory metric is complete must be pseudo-
convex [Jarnicki and Pflug 1993]; therefore Theorem 4.5, yields the following
result, which was proved [Yeung 2009] by a different method:

Corollary 4.6. A holomorphic homogeneous regular domain must be pseudocon-
vex.

For any complex manifold, it is well known that its Carathéodory pseudomet-
ric is always dominated by its Kobayashi pseudometric [Kobayashi 1998]. For
bounded domains, a famous result of Look [1958] says that the Carathéodory met-
ric is always dominated by the Bergman metric. Note also that, for a bounded
domain D, any one of the three intrinsic metrics — the Carathéodory metric, the
Kobayashi metric, and the Bergman metric — induces the same topology as the
ordinary one. Therefore, as a consequence of Theorem 4.5, we have the following.

Theorem 4.7. Let D be a holomorphic homogeneous regular domain. Then the
Kobayashi metric and the Bergman metric on it are complete.

5. Squeezing functions on planar domains

In this section, we will consider squeezing functions on planar domains. For finitely
connected planar domains, we get a neat description of the boundary behavior of
their squeezing functions. As a result, we get the necessary and sufficient condition
for such a domain to be a holomorphic homogeneous regular domain. If D has
smooth boundary,

lim
z→∂D

sD(z)= 1.

By continuity of sD , this implies D is a holomorphic homogeneous regular domain.
As a consequence, we can recover some important results about planar domains.
For example, the three intrinsic metrics — the Carathéodory metric, the Kobayashi
metric, and the Bergman metric — on a bounded planar domain with smooth bound-
ary are all complete, and they are equivalent; all smoothly bounded planar domains
are hyperconvex, that is, they admit bounded exhaustive subharmonic functions.
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We also give a class of holomorphic homogeneous regular domains which are
infinitely connected.

It is clear that the squeezing function of the unit disc is the constant function
with value 1. By the Riemann mapping theorem and holomorphic invariance of
squeezing functions, the squeezing function of any simply connected bounded pla-
nar domain is also constant with value 1.

Now we consider squeezing functions on 2-connected planar domains. Define

Ar = {z ∈ C | r < |z|< 1}

for 0 ≤ r < 1. When r > 0, we call Ar an annulus. It is well-known that a
2-connected domain in C which is not conformal equivalent to C∗ must be holo-
morphic equivalent to a unique Ar [Ahlfors 1978]. When r = 0, A0 is just the
punctured disc 1∗, a case we will consider it in the last section. For Ar with r > 0,
we have the following.

Theorem 5.1. For r > 0, the squeezing function sAr (z) tends to 1 as z→ ∂Ar . In
particular, Ar is a holomorphic homogeneous regular domain.

Proof. For c ∈ [0, 1), we define

σ(c)= log 1+c
1−c

.

It is clear that σ(c) is strictly increasing for 0≤ c < 1, and its inverse is given by
σ−1(w)= tanh(w/2). For a point z ∈1, the Poincaré distance from 0 to z is σ(|z|).

Now let z ∈ Ar . With respect to the Poincaré metric on 1, the distance from z to
the cycle {w; |w|= r} is σ(|z|)−σ(r). Denote by P(z, σ (|z|)−σ(r)) the disc (with
respect to the Poincaré metric on 1) with center z and radius σ(|z|)− σ(r). Then
we have P(z, σ (|z|)− σ(r))⊂ Ar . Choose a conformal map f :1→1 such that
f (z)= 0. Since f preserves the Poincaré metric on 1, it maps P(z, σ (|z|)−σ(r))
onto the disc (with respect to the Poincaré metric on 1) with center f (z)= 0 and
radius σ(|z|)− σ(r), which is just the Euclidean disc with center 0 and radius
σ−1(σ (|z|)− σ(r)). This implies that

(2) sAr (z)≥ σ
−1(σ (|z|)− σ(r)).

Note that σ−1(σ (|z|) − σ(r)) → 1 as |z| → 1, so sAr (z) tends to 1 as |z| →
1. Consider the holomorphic automorphism of Ar given by z 7→ r/z. By the
conformal invariance of sAr , we also get sAr (z) tends to 1 as |z| → r .

By Theorem 3.1, sAr is continuous and hence has a positive lower bound, so Ar

is a holomorphic homogeneous regular domain. �

By a similar argument, Theorem 5.1 can be generalized to finitely connected
planar domains as follows:



SOME PROPERTIES OF SQUEEZING FUNCTIONS ON BOUNDED DOMAINS 331

Theorem 5.2. Let D be a domain in C. Assume that C − D has finitely many
connected components such that each connected component is not a single point.
Then we have

lim
z→∂D

sD(z)= 1.

In particular, D is a holomorphic homogeneous regular domain.

Proof. We define the function σ as in the proof of Theorem 5.1. Let E1, . . . , En

be connected components of C− D. Then D1 := C− E1 is simply connected and
D ⊂ D1. Since E1 is not a single point, by Riemann mapping theorem, there is a
conformal map ϕ1 from D1 to 1. It is clear that ϕ1(D) is a domain in 1 obtained
by deleting n− 1 connected compact subsets, say L2, . . . , Ln , from 1.

Let z ∈ D and let lz = P1(z,∪n
i=2L i ) be the distance from z to ∪n

i=2L i with
respect to the Poincaré distance of 1. Choose a conformal map f :1→1 such
that f (z)= 0. Then the Euclidean disc with center 0 and radius σ−1(lz) is contained
in f (ϕ(D)), which implies that sϕ(D)(z)≥ σ−1(lz). If |z| tends to 1, then lz tends to
∞ and σ−1(lz) tends to 1. Hence sϕ(D)(z) tends to 1. By holomorphic invariance
of squeezing functions, we see that

lim
z→E1

sD(z)= 1.

Similarly, for Ei with 2≤ i ≤ n, we have

lim
z→Ei

sD(z)= 1.

Hence
lim

z→∂D
sD(z)= 1.

By continuity of sD, a positive lower bound is admitted on D, so D is a holo-
morphic homogeneous regular domain. �

Using the Riemann mapping theorem, one can prove that the domains consid-
ered in the above theorem are holomorphic equivalent to bounded domains with
smooth boundary [Ahlfors 1978]. Hence an equivalent version of the above theo-
rem is the following:

Theorem 5.3. Let D be a bounded domain in C with smooth boundary. We have

lim
z→∂D

sD(z)= 1

In particular, D is a holomorphic homogeneous regular domain.

Remark 5.4. As a consequence of Theorem 5.3, for a bounded planar domain D
with smooth boundary, sD can be extended continuously to D. It may be interesting
to investigate whether the same result holds in higher dimensions.
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In Section 3, we have shown that the Carathéodory metric, the Kobayashi metric,
and the Bergman metric on a holomorphic homogeneous regular domain are com-
plete. As mentioned in the introduction, these intrinsic metrics on a holomorphic
homogeneous regular domain are equivalent [Liu et al. 2004; Liu et al. 2005]. It
also turns out that any holomorphic homogeneous regular domain is hyperconvex
[Yeung 2009], so, as a result of Theorem 5.3, we can recover the following results
in complex analysis:

Theorem 5.5. Let D be a planar domain with smooth boundary. Then

(1) the Carathéodory metric, the Kobayashi metric and the Bergman metric on D
are complete;

(2) The Carathéodory metric, the Kobayashi metric and the Bergman metric on
D are equivalent;

(3) D is hyperconvex.

By definition, it is clear that the product of two holomorphic homogeneous reg-
ular domains is again a holomorphic homogeneous regular domain. So we get the
following.

Corollary 5.6. Let D be a bounded domain in Cn which is holomorphic equivalent
to the product of bounded planar domains with smooth boundary. Then D is a
holomorphic homogeneous regular domain.

As mentioned in the introduction, the list of known holomorphic homogeneous
regular domains contains bounded homogeneous domains, Teichmüller spaces,
bounded domains covering compact Kähler manifolds, and strictly convex domains
with C2-boundary. Many examples of holomorphic homogeneous regular domains
given by Corollary 5.6 are not in the list. More precisely, we have the following.

Proposition 5.7. Let D1, . . . , Dk be bounded planar domains with smooth bound-
aries which are mutually not conformal equivalent. If there exists a Di which is
not conformal equivalent to the unit disc 1, the domain D := Dr1

1 × · · · × Drk
k is

a holomorphic homogeneous regular domain which is not holomorphic equivalent
to any of the domains in the above list, where r1, . . . , rk are positive integers and
Dri

i = Di × · · ·× Di is the ri -power of Di .

Proof. Denote by Aut(D) the holomorphic automorphism group of D. By the
proposition in [Royden 1974] and [Urata 1981, Theorem 1], we have

Aut(D)= Aut(Dr1
1 )× · · ·×Aut(Drk

k ),

and, for each i , the following sequence is exact:

1→ (Aut(Di ))
ri → Aut(Dri

i )→ Sri → 1,
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where Sri is the symmetry group of degree ri which acts on Dri
i by permutation. The

decomposition of Aut(D) implies that D is homogeneous if and only if each factor
Di is homogeneous, and D can cover a compact complex manifold if and only if
each Di does so too. Note that a smoothly bounded planar domain is homogeneous
or can cover a compact complex manifold if and only if it is isomorphic to 1.
Hence D can not be homogeneous or cover a compact complex manifold.

It is clear that D can not be holomorphic equivalent to any convex domain since
the fundamental group of D is nontrivial. By the same reasoning, D is not holomor-
phic equivalent to any Teichmüller space since it is well known that all Teichmüller
spaces are contractible. �

For general finitely connected planar domains, the boundary behavior of their
squeezing functions can be described as follows:

Theorem 5.8. Let D be a finitely connected planar domain, and E a connected
component of C− D.

(1) if E is not a single point,

lim
D3z→E

sD(z)= 1.

(2) if E = {p} contains a single point,

sD(z)≤ σ−1(K D̃(z, p)), z ∈ D,

where σ is defined as in the proof of Theorem 5.1 and K D̃(·, ·) is the Kobayashi
distance on the domain D̃ := D ∪ {p}. In particular,

lim
D3z→p

sD(z)= 0.

Proof. The proof of (1) is similar to the proof of Theorem 5.2 and we will not repeat
it here. Now we give the proof of (2). Let z ∈ D, and fz : D→1 be a holomorphic
embedding such that fz(z)= 0. Note that D̃ is a domain. By Riemann’s removable
singularity theorem, fz can be extended as a holomorphic map f̃z from D̃ to 1. It
is clear that f̃z(p) 6∈ f (D). By the decreasing property of Kobayashi distances, we
have K1(0, f̃z(p))≤ K D̃(z, p). Hence sD(z)≤ σ−1(K D̃(z, p)). �

Remark 5.9. Theorem 5.8 implies that a finitely connected planar domain is a
holomorphic homogeneous regular domain if and only if each connected compo-
nent of its complement in C is not a single point.

The examples of planar holomorphic homogeneous regular domains given by
Theorem 5.2 are all finitely connected, that is, their complement in C have finitely
many connected components. We can also construct a class of planar holomorphic
homogeneous regular domains which are infinitely connected.
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Let Aut(1) be the holomorphic automorphism group of1, and denote by1r the
disc in C with center 0, radius r , and 1r its closure. We first prove the following.

Lemma 5.10. For any positive numbers u, v, and w with u < v < w < 1, there
exists a positive number c(u, v, w) such that for an arbitrary positive number r
with u < r < v, letting D ⊂ Ar be a domain containing 1w \1r , we have sD(z)≥
c(u, v, w) for z ∈1v \1r .

Proof. Consider the reflection R : D→1 given by

z 7→ r
z
.

It is clear that z ∈ R(D), provided r/w < |z|< 1. For z ∈1v \1r , we have

r/v < |R(z)|< 1.

Hence the disc (with respect to the Poincaré metric) with center z and radius
σ(r/v)− σ(r/w) is contained in R(D). So we see that

sR(D)(R(z)) < σ−1
(
σ
( r
v

)
− σ

( r
w

))
for z ∈1v \1r . By the biholomorphic invariance of squeezing functions, we get

sD(z)≥ σ−1
(
σ
( r
v

)
− σ

( r
w

))
for z ∈1v \1r . Take

c(u, v, w)= inf
u≤r≤v

{
σ−1

(
σ
( r
v

)
− σ

( r
w

))}
.

it is clear that c(u, v, w) > 0 and it satisfies the condition of the lemma. �

By the above lemma, we can prove the following

Theorem 5.11. Let u, v, and w be positive numbers with u < v < w < 1. Let rk ,
k = 1, 2, . . ., be a sequence of positive numbers satisfying u < rk < v. Let fk be a
sequence in Aut(1) such that the fk(1w) are pairwise disjoint. Then the domain

D =1 \ (∪∞k=1 fk(1rk ))

is a holomorphic homogeneous regular domain.

Proof. Let c(u, v, w) be the same as in Lemma 5.10. Denote c(u, (v+w)/2, w)
by c. By the above lemma and biholomorphic invariance of squeezing functions,
we have sD(z)≥ c for

z ∈ D′ := D ∩ (∪∞k=1 fk(1(v+w)/2)).
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For z ∈ D \ D′, the distance from z to ∂D with respect to the Poincaré distance on
1 is greater than σ((v+w)/2)−σ(v). Taking a conformal map f ∈ Aut(1) such
that f (z)= 0, we see that

sD(z)≥ σ−1
(
σ
(
v+w

2

)
− σ(v)

)
.

So sD has a positive lower bound, and hence D is a holomorphic homogeneous
regular domain. �

As a consequence, the Carathéodory metrics, the Kobayashi metrics, and the
Bergman metrics on domains that are constructed in Theorem 5.11 are complete
and equivalent. An explicit example can be constructed as follows: let f ∈ Aut(1)
be defined by

f (z)= z+1/2
1+z/2

,

and let D=1\(∪∞k=−∞ f k(11/4)). Then D is a holomorphic homogeneous regular
domain, and the Carathéodory metric, the Kobayashi metric, and the Bergman
metric on D are complete and equivalent. The special domain D was constructed in
[Krantz 1990] to show that a bounded planar domain may have an infinite discrete
automorphism group.

6. Squeezing functions on annuli

In the above section, we have studied some properties of squeezing functions of
annuli. In this section, we want to further investigate their properties.

We have seen that all annuli are holomorphic homogeneous regular domains,
and their squeezing functions tend to 1 at the boundary. An interesting but difficult
problem is to give an exact expression of sAr . Another relatively simple problem
is to determine the minimum of sAr for r > 0, which are conformal invariants.

By the conformal invariance of sAr , sAr (z) depends only on |z|, so sAr is reduced
to a function defined on (r, 1). Be the reflection z 7→ r/z, it can be further reduced
to a function on [

√
r , 1). We show that sAr (x) is strictly increasing on [

√
r , 1). To

prove this result, we first prove two propositions, which are also interesting in their
own right.

Let D⊂C be a bounded domain with smooth boundary, denote by HD the set of
univalent maps f from D to 1 such that 1 \ f (D) is a compact set. For bounded
planar domain D, we always denote by PD(·, ·) the Poincaré distance of D.

Proposition 6.1. Let D ⊂ C be a bounded domain with smooth boundary. Then,
for any p ∈ D, we have

sD(p)= sup{r |1r ⊂ f (D) for some f ∈ HD with f (p)= 0}.
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Proof. Let f : D→1 be a univalent map with f (p)= 0. Assume 1r ⊂ f (D). Let
D′ be the union of f (D) and the compact connected components of1\ f (D). Then
D′ is simply connected. By the Riemann mapping theorem, there is a conformal
map g : D′→1 with g(0)= 0.

Note that
1r = {z ∈1 | P1(z, 0) < σ(r)}.

By the decreasing property of the Poincaré metrics on planar domains, we have
P1(z, w)≤ PD′(z, w) for all z, w ∈ D′, so

{z ∈ D′ | PD′(z, 0) < σ(r)} ⊂1r .

Note that g is an isometry from (D′, PD′) to (1, P1). Hence

1r = {z ∈1 | P1(z, 0) < σ(r)} = g({z ∈ D′ | PD′(z, 0) < σ(r)})⊂ g( f (D)).

Now we get a univalent map g ◦ f : D→1 with g ◦ f ∈ HD, g ◦ f (p)= 0, and
1r ⊂ g ◦ f (D). Since f is arbitrary, we see that

sD(p)= sup{r |1r ⊂ h(D) for some h ∈ HD with h(p)= 0}. �

For two subsets A and B of 1, we denote by P1(A, B) the distance between A
and B with respect to the Poincaré distance of 1.

Proposition 6.2. Let D ⊂ C be a bounded domain with smooth boundary. For
p ∈ D, let

u(p)= sup{P1( f (p),1 \ f (D)) | f ∈ HD}.

Then we have sD(p)= σ−1(u(p)).

Proof. For p ∈ D and f ∈ HD , let

u = P1( f (p),1 \ f (D)).

Then the P1-disc with center f (p) and radius u is contained in f (D). Take a
conformal map g :1→1 such that g( f (p)) = 0. Then 1σ−1(u) ⊂ g ◦ f (D), so
we have sD(p)≥ σ−1(u). Since f ∈ HD is arbitrary, we have sD(p)≥ σ−1(u(p)).

On the other hand, for an arbitrary f ∈ HD with f (p)= 0, let r be the positive
number such that 1r ∈ f (D) but 1r+ε * f (D) for any ε > 0. It is clear that

r = σ−1(P1( f (p),1 \ f (D))
)
≤ σ−1(u(p)).

Since f ∈ HD is arbitrary, by the above proposition, we have

sD(p)≤ σ−1(u(p)). �

Theorem 6.3. Viewed as a function on [
√

r , 1), the squeezing function sAr (z) of
Ar is strictly increasing on [

√
r , 1); in particular, it attains its minimum at

√
r .
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Proof. For simplicity, let s = sAr . For x ∈ [
√

r , 1), by Theorem 2.1, there is a
univalent map f : D→1 such that f (x)= 0 and1s(x)⊂ f (D). By Proposition 6.1,
we may assume f ∈ HD . By Proposition 6.2, we have

s(x)= σ−1(P1( f (x),1 \ f (D))
)
.

By Proposition 6.2 and the conformal invariance of s, we have the identity

P1( f (x),1 \ f (D))= sup{P1( f (z),1 \ f (D)) | z ∈ D, |z| = x}.

Note that the curve f (|z| =
√

r) separates C into two connected parts. Let U
and V be the bounded and unbounded connected components of C \ f (|z| =

√
r),

respectively.
If x >

√
r , then f (|z| = x) ⊂ V . In fact, if it is not the case, then composing

f with the reflection z 7→ r/z will lead to a contradiction to the extremal property
assumption on f .

Now let x ′ ∈ [
√

r , 1) with x ′ > x . Then it is clear that f (|z| = x ′) lies in the
unbounded component of C \ f (|z| = x), so we have

sup{P1( f (z),1\ f (D)) | z∈D, |z|= x ′}>sup{P1( f (z),1\ f (D)) | z∈D, |z|= x}.

By Proposition 6.2, there is a point z ∈ Ar with |z| = x ′ and sAr (z) > s(x). Note
that sAr (z)= s(|z|)= s(x ′). Hence s(x ′) > s(x). �

Theorem 6.3 and its proof lead us to conjecture that, for ρ ∈ [
√

r , 1), sAr (ρ) is
given by

sAr (ρ)= σ
−1(σ (ρ)− σ(r))= σ−1

(
log (1+ρ)(1−r)

(1−ρ)(1+r)

)
,

where the function σ is defined as in the proof of Theorem 5.1. Provided this
conjecture, Theorem 6.3 implies that sAr (ρ) attains its minimum

sAr (
√

r)= tanh log
1+
√

r
√

1+ r

at ρ =
√

r , which characterizes the conformal structure of Ar .

7. Explicit form of squeezing functions on some special domains

In this section, we give the explicit form of squeezing functions on some special
domains. Namely, punctured balls and classical bounded symmetric domains.

We first consider domains constructed by deleting analytic subsets from other
domains.
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Theorem 7.1. Let D′ ⊂ Cn be a bounded domain and A ⊂ D′ be a proper analytic
subset. Then, for the domain D = D′ \ A, we have

sD(z)≤ σ−1(K D′(z, A)), z ∈ D,

where σ is defined as in the proof of Theorem 5.1 and K D′(·, ·) is the Kobayashi
distance on D′; in particular, we have limz→A sD(z)= 0.

Proof. Let z ∈ D, and fz : D → Bn be a holomorphic open embedding such
that fz(z)= 0. By Riemann’s removable singularity theorem, fz can be extended
to a holomorphic map f̃z from D′ to Bn . It is clear that f̃z(D) ∩ f̃z(A) = ∅.
By the decreasing property of the Kobayashi distance, we have K Bn (0, f̃z(A))≤
K D′(z, A). Hence sD(z)≤ σ−1(K D′(z, A)), z ∈ D. �

Remark 7.2. The domains D constructed in the above theorem are not holomor-
phic homogeneous regular domains. The conclusion can also be derived from
Corollary 4.6, since D is not hyperconvex, or Theorem 4.5, since the Carathéodory
metric on D, which is just the restriction of the Carathéodory metric of D′, is not
complete.

For the special case of punctured balls, Theorem 7.1 implies the following.

Corollary 7.3. The squeezing function sBn\{0} on the n dimensional punctured ball
Bn
\ {0} is given by

sBn\{0}(z)= ‖z‖,

where ‖z‖ is the Euclidean norm of z.

Proof. By Theorem 7.1, we have sBn\{0}(z) ≤ ‖z‖. On the other hand, it is clear
that sBn\{0}(z)≥ ‖z‖. Hence sBn\{0}(z)= ‖z‖. �

Other examples of bounded domains whose squeezing functions can be given
explicitly are classical symmetric bounded domains. Recall that a classical sym-
metric domain is a domain of one of the following four types:

DI(r,s)={Z=(z jk): I−Z Z ′>0,where Z is an r×s matrix} (r≤s),

DII(p)={Z=(z jk): I−Z Z ′>0,where Z is a symmetric matrix of order p},

DIII(q)={Z=(z jk): I−Z Z ′>0,where Z is a skew-symmetric matrix of order q},

DIV(n)={z=(z1,...,zn)∈Cn
:1+|zz′|2−2zz′>0, 1−|zz′|>0}.

Here I is the identity matrix of proper order, Z denotes the conjugate matrix of Z ,
and Z ′ denotes the transposed matrix of Z . The complex dimensions of these four
domains are rs, p(p+ 1)/2, q(q − 1)/2, and n, respectively.

Given a bounded homogeneous domain D, by the holomorphic invariance of
squeezing functions, sD is a constant function on D, and we denote this constant by
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s(D). By a theorem of Kubota based on [Alexander 1978], the squeezing functions
on the above four types of domains can be given explicitly as follows:

Theorem 7.4 [Kubota 1982c, Theorem 1].

s(DI (r, s))= r−
1
2 ,

s(DI I (p))= p−
1
2 ,

s(DI I I (q))=
[q

2

]− 1
2
,

s(DI V (n))= 2−
1
2 ,

where [q/2] denotes the integral part of q/2.

For products of classical symmetric domains, we have the following:

Theorem 7.5 [Kubota 1982c, Theorem 2]. If D1, . . . , Dm are classical symmetric
domains, then

s(D1× · · ·× Dm)= (s(D1)
−2
+ · · ·+ s(Dm)

−2)−
1
2 .

Remark 7.6. Kubota [1981; 1982a; 1982b; 1982c; 1983] considered the following
Carathéodory extremal problem:

(3) M(z0, D)= sup
F∈F(D)

|JF (z0)|, (z0 ∈ D),

where D is a bounded domain in the complex Euclidean space Cn and F(D) con-
sists of all holomorphic mappings from D into the unit ball Bn in Cn , and JF is
the Jacobian of F .

He proved that the extremal mapping of the extremal problem (3) is unique up to
a unitary linear transformation when D is a bounded symmetric domain (including
two exceptional cases) [Kubota 1983]. We observe that the extremal mappings are
exactly the extremal embedding from bounded symmetric domains into the unit
ball. Take DI (r, s) here for example, we can find from Kubota’s proof that the
extremal mapping is f (z) = z/

√
r , z = (z11, . . . , z1s, z21, . . . , zrs) ∈ Crs , which

is exactly an extremal embedding for the squeezing function s(DI (r, s))= r−1/2,
since one knows Bn ⊂ DI (r, s)⊂

√
r Bn, (n = rs).

Ma [1997] considered the extremal problem (3) when D is a complex ellipsoid
in Cn , that is,

D = D(k1, . . . , kn)=

{
z ∈ Cn

∣∣ n∑
j=1

|z j |
k j < 1

}
,

where k j ( j = 1, 2, . . . , n) are positive real numbers. It is proved that the extremal
mapping is again linear, and we conjecture that it is likely the extremal embed-
ding for squeezing function sD(z) in this case. Therefore, it will be interesting to
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consider relations in general between squeezing function sD on a bounded domain
D and the Carathéodory maps from D into the unit ball, especially when D is
homeomorphic to a cell.
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