
Pacific
Journal of
Mathematics

REPRESENTATIONS OF LITTLE q-SCHUR ALGEBRAS

JIE DU, QIANG FU AND JIAN-PAN WANG

Volume 257 No. 2 June 2012



PACIFIC JOURNAL OF MATHEMATICS
Vol. 257, No. 2, 2012

REPRESENTATIONS OF LITTLE q-SCHUR ALGEBRAS

JIE DU, QIANG FU AND JIAN-PAN WANG

In previous work by the authors, little q-Schur algebras were introduced
as homomorphic images of the infinitesimal quantum groups. Here we
investigate representations of these algebras. We classify simple modules
for little q-Schur algebras and classify semisimple little q-Schur algebras.
Through the classification of the blocks of little q-Schur algebras for n = 2,
we determine little q-Schur algebras of finite representation type in the odd
roots of unity case.

1. Introduction

The q-Schur algebras are certain finite-dimensional algebras used by Jimbo in the
establishment of the quantum Schur–Weyl reciprocity [Jimbo 1986, Proposition 3];
they were introduced by Dipper and James [1989; 1991] in the study the repre-
sentations of Hecke algebras and finite general linear groups. Using a geometric
setting for q-Schur algebras, Beilinson, Lusztig and MacPherson [Beilinson et al.
1990] reconstructed (or realized) the quantum enveloping algebra U(n) of gln as a
limit of q-Schur algebras over Q(υ). This results in an explicit description of the
epimorphism ζr from U(n) to the q-Schur algebra U(n, r) for all r ≥ 0. Restriction
induces an epimorphism from the Lusztig form UZ(n) over Z= Z[υ, υ−1

] to the
integral q-Schur algebra UZ(n, r) [Du 1995a] and, in particular, an epimorphism
from Uk(n) to Uk(n, r) by specializing the parameter to any root of unity in a field
k. The little q-Schur algebras ũk(n, r) are defined as the homomorphic images of
the finite-dimensional Hopf subalgebra ũk(n) of Uk(n) under ζr . The structure of
these algebras was investigated by the authors in [Du et al. 2005; Fu 2007]. For
example, through a BLM type realization for ũk(n), various bases for ũk(n, r) were
constructed and dimension formulas were given. Here we continue the work done
in the two papers just cited.
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Through the coordinate algebra approach, Doty, Nakano and Peters in [Doty
et al. 1996] defined infinitesimal Schur algebras, closely related to the Frobenius
kernels of an algebraic group over a field of positive characteristic. A theory
for the quantum version of the infinitesimal Schur algebras was studied by Cox
[1997; 2000]. The relation between the algebra structures of little and infinitesimal
q-Schur algebras was investigated in [Fu 2005]; it turns out to be similar to that
between the h-th Frobenius kernel Gh and the corresponding Jantzen subgroup
GhT . However, there is a subtle difference between infinitesimal q-Schur algebras
and little q-Schur a1gebras.

Suppose ε is an l ′-th root of 1 in a field k and define l = l ′ if l ′ is odd, l = l ′/2
if l ′ is even. The parameter involved for defining Gh , GhT and the infinitesimal q-
Schur algebras is q = ε2, which is always an l-th root of 1. So their representations
are independent of l ′ (see [Donkin 1998, 3.1] or Theorem 4.3 below). However, the
parameter used for defining little q-Schur algebras is ε, which is a square root of q .1

The structures and representations of ũk(n) and little q-Schur algebras do depend
on l ′ and are quite different (see [Lusztig 1990, 5.11] or Theorem 5.2 below). In
fact, the interesting case is the even case, where simple representations of ũk(n)
are indexed by (Zl ′)

n and not every simple module can be obtained as a restriction
of a simple module of Uk(n) with an l-restricted highest weight. In contrast with
the algebraic group case, this is a kind of “quantum phenomenon”. It should be
noted that the representation theory of quantum enveloping algebras at the even
roots of unity has found some new applications in the conformal field theory (or
the theory of vertex operator algebras) [Gainutdinov et al. 2006; Kondo and Saito
2011].

We will show that every simple module of ũk(n) is a restriction of a simple
G1T -module. To achieve this, we first classify simple ũk(n, r)-modules through
the “sandwich” relation uk(n, r)1 ⊆ ũk(n, r)⊆ sk(n, r)1 given in (4.1.2). By intro-
ducing the baby transfer map [Lusztig 2000], we will see that a simple ũk(n, r)-
module for n ≥ r and l ′ odd is either an inflation of a simple ũk(n, r − l ′) via
the baby transfer map or a lifting of a simple module of the Hecke algebra via
the q-Schur functor. Main results of the paper also include the classifications of
semisimple little q-Schur algebras and, when l ′ is odd, the finite representation
type of little q-Schur algebras.

We organize the paper as follows. We recall the definition for the infinitesimal
quantum groups ũk(g) associated with a simple Lie algebra g of a simply-laced
type and ũk(n) associated with gln in Section 2. In Section 3, we study the baby
Weyl module for infinitesimal quantum group ũk(g). We prove in Theorem 3.2
that, for a restricted weight, the corresponding baby Weyl module is equal to the

1For this reason, little q-Schur algebras should probably be more accurately renamed as little
√

q-Schur algebras.
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Weyl module, recovering a well-known fact. Furthermore, using this result we
can give another proof of [Lusztig 1989, 7.1(c)(d)]. In Section 4, we recall some
results about the little and the infinitesimal q-Schur algebra and establish the sand-
wich relation mentioned above. Moreover, classifications of simple Gh- and GhT -
modules from [Donkin 1998; Cox 1997; 2000] will be mentioned. In Section 5, we
study the baby Weyl module for the infinitesimal quantum group ũk(n) and give
the classification of simple module for the little q-Schur algebra ũk(n, r). The baby
transfer maps are discussed in Section 6. In Section 7, we classify semisimple little
q-Schur algebras, while in Section 8 we classify the finite representation type of
little q-Schur algebras at odd roots of unity through the classification of the blocks
of little q-Schur algebras for n = 2. Finally, in an Appendix, we show that the
epimorphism from UZ(n) onto UZ(n, r) remains surjective when restricted to the
Lusztig form UZ(sln) of the quantum sln . Thus, the results developed in Section 3
for sln can be directly used in Section 5.

Throughout, let υ be an indeterminate and let Z= Z[υ, υ−1
]. Let k be a field

containing a primitive l ′th root ε of 1 with l ′ ≥ 3. Let l > 1 be defined by

l =
{

l ′ if l ′ is odd,
l ′/2 if l ′ is even.

Thus, ε2 is always a primitive l-th root of 1. Specializing υ to ε, k will be viewed
as a Z-module.

For a finite-dimensional algebra A over k, let Mod(A) be the category of finite-
dimensional left A-modules. If B is a quotient algebra of A, then the inflation
functor embeds Mod(B) into Mod(A) as a full subcategory.

2. Lusztig’s infinitesimal quantum enveloping algebras

In this section, following [Lusztig 1990], we recall the definition for the infinitesi-
mal quantum group.

Let g be a semisimple complex Lie algebra associated with an indecomposable
positive definite symmetric Cartan matrix C = (ai j )1≤i, j≤n .

Definition 2.1. The quantum enveloping algebra of g is the algebra U(g) over
Q(υ) generated by the elements

Ei , Fi , Ki , K−1
i for 1≤ i ≤ n

subject to the following relations:

QG1: KiK j = K jKi and KiK
−1
i = 1.

QG2: Ki E j = υ
ai j E jKi and Ki F j = υ

−ai j F jKi .

QG3: Ei F j − F j Ei = δi j
Ki −K−1

i

υ − υ−1 .
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QG4: Ei E j = E j Ei and Fi F j = F j Fi if ai j = 0.

QG5: E2
i E j − (υ + υ

−1)Ei E j Ei + E j E2
i = 0 if ai j =−1.

QG6: F2
i F j − (υ + υ

−1)Fi F j Fi + F j F2
i = 0 if ai j =−1.

Definition 2.1 implies immediately the following result:

Lemma 2.2. There is a unique Q(υ)-algebra automorphism σ on U(g) satisfying

σ(Ei )= Fi , σ (Fi )= Ei , σ (Ki )= K−1
i .

For any integers c, t with t ≥ 1, let

[c]=
υc
− υ−c

υ − υ−1 ∈ Z, [t]! = [1][2] . . . [t], and

[c
t

]
=

t∏
s=1

υc−s+1
− υ−c+s−1

υs − υ−s ∈ Z.

If we put [0]! = 1=
[ c

0

]
, then[c

t

]
=

[c]!
[t]![c− t]!

for c ≥ t ≥ 0 and
[c

t

]
= 0 for t > c ≥ 0.

Let UZ(g) (respectively, U+Z (g) and U−Z (g)) be the Z-subalgebra of U(g) generated
by the elements

E (N )i =
E N

i

[N ]!
, F (N )i =

F N
i

[N ]!
, and K±1

j

for 1≤ i ≤ n−1, 1≤ j ≤ n and N ≥ 0 (respectively, by the E (N )i and by the F (N )i ).
Let U0

Z(g) be the Z-subalgebra of U(g) generated by all

K±1
i and

[
Ki ; 0

t

]
,

where, for t ∈ N and c ∈ Z,[
Ki ; c

t

]
=

t∏
s=1

Kiυ
c−s+1

−K−1
i υ−c+s−1

υs − υ−s .

Proposition 2.3. The following identities hold in UZ(g):

F (N )i F (M)j =

∑
N−M≤s≤N

(−1)s+N−M
[

s−1
N−M−1

]
F (N−s)

i F (M)j F (s)i ,(2.3.1)

F (M)j F (N )i =

∑
N−M≤s≤N

(−1)s+N−M
[

s−1
N−M−1

]
F (s)i F (M)j F (N−s)

i ,(2.3.2)

where N > M ≥ 0 and ai j =−1.
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Proof. Applying the algebra automorphism σ given in Lemma 2.2 to [Lusztig 1990,
2.5(a), (b)], we get the desired formulas. �

Regarding the field k as a Z-algebra by specializing υ to ε, we will write [t]ε
and

[ c
t

]
ε

for the images of [t] and
[ c

t

]
in k, and define, following [Lusztig 1990],

the k-algebras U+k (g), U−k (g), U 0
k (g), and Uk(g) by applying the functor ( )⊗Z k

to U+Z (g), U−Z (g), U 0
Z(g), and UZ(g). We will denote the images of Ei , Fi , etc. in

Uk(g) by the same letters.
Let ũ+k (g), ũ−k (g), ũ0

k(g), and ũk(g) be the k-subalgebras of Uk(g) generated
respectively by the Ei , by the Fi , by the K±1

i , and by the Ei , Fi , K±1
i , all for

1 ≤ i ≤ n. By a proof similar to [Du et al. 2005, Theorem 2.5], ũk(g) can be
presented by generators Ei , Fi , K±1

i (1 ≤ i ≤ n) and the relations (QG1)–(QG6)
together with

E l
i = 0= F l

i , K2l
i = 1.

The algebra ũk(g) is called the infinitesimal quantum group associated with g.
When l ′ = l is odd, we will also call the algebra

uk(g)= ũk(g)/〈K
l
1− 1, . . . ,Kl

n − 1〉,

considered in [Lusztig 1990], an infinitesimal quantum group.
For the reductive complex Lie algebra g= gln , we now modify the definitions

above to introduce infinitesimal quantum gln which will be used to define little
q-Schur algebras in Section 4.

Let U(n)=U(gln) be the quantum enveloping algebra of gln , which is a slightly
modified version of that in [Jimbo 1986]; see [Takeuchi 1992, 3.2]. It is generated
by the elements Ei , Fi for 1 ≤ i ≤ n − 1, and K±1

i for 1 ≤ i ≤ n, subject to the
relations given in [Du et al. 2005, Def. 2.1].

Let K̃i = Ki K−1
i+1 for 1≤ i ≤ n−1. Then the subalgebra ′U(n) of U(n) generated

by the Ei , Fi and K̃i for 1 ≤ i ≤ n− 1 is isomorphic to the quantum enveloping
algebra U(sln). By identifying K̃i with Ki , we will identify ′U(n) with U(sln).

Following [Takeuchi 1992], let UZ(n) (respectively, U+Z (n) and U−Z (n)) be the
Z-subalgebra of U(n) generated by all

E (m)i , F (m)i , Ki and
[Ki ; 0

t

]
(respectively, by all E (m)i and by all F (m)i ). Let U 0

Z(n) be the Z-subalgebra of U(n)
generated by all

Ki and
[Ki ; 0

t

]
.

Replacing Ki by K̃i , we may defined integral forms ′UZ(n), which is identified
with UZ(sln), and define ′U 0

Z(n) and ′U±Z (n)=U±Z (n) similarly.



348 JIE DU, QIANG FU AND JIAN-PAN WANG

Let Uk(n)=UZ(n)⊗Z k and ′Uk(n)= ′UZ(n)⊗Z k. Since ′UZ(n) is a pure Z-
submodule of UZ(n) [Du 1995a, Proposition 2.6], ′Uk(n) is a subalgebra of Uk(n)
identified with Uk(sln).

Following [Lusztig 1990], let ũk(n) be the k-subalgebra of Uk(n) generated
by the elements Ei , Fi , K±1

i for 1 ≤ i ≤ n. Let ũ+k (n), ũ0
k(n), ũ−k (n) be the k-

subalgebra of ũk(n) generated respectively by the elements Ei for 1 ≤ i ≤ n− 1,
K±1

j for 1≤ j ≤ n, and Fi for 1≤ i ≤ n− 1. We shall denote the images of Ei , Fi ,
etc. in Uk(n), ũk(n) by the same letters. In the case of l ′ being an odd number, let

uk(n)= ũk(n)/〈K l
1− 1, . . . , K l

n − 1〉.

Similarly, we can define ′ũk(n) etc. as subalgebras of ′Uk(n), which are identi-
fied with ũk(sln) etc.

3. Baby Weyl modules

Following [Jantzen 1996, 5.15], for d= (d1, . . . , dn)∈Nn the U(g)-module V (d)=
U(g)/I (d) is irreducible, where

I (d)=
∑

1≤i≤n

(
U(g)Ei +U(g)Fdi+1

i +U(g)(Ki − υ
di )
)
.

Let x0 = 1+ I (d) ∈ L(d). Let VZ(d) be the UZ(g)-submodule of V (d) generated
by x0. Let Vk(d) = VZ(d)⊗Z k. This is the Weyl module of Uk(g) with highest
weight d. For convenience, we shall denote the image of x0 in Vk(d) by the same
letter. We call the ũk(g)-module V ′k(d) := ũk(g)x0 the baby Weyl module of Uk(g)

(or the Weyl module of ũk(g)).

Lemma 3.1. Let N ≥ 0 be an integer.

(1) If Y ∈ ũk(g) is a monomial in the Fi , then

F (N )i Y =
∑
s≥0

Xs F (s)i for some Xs ∈ ũ−k (g).

(2) If Y ∈ ũk(g) is a monomial in the Ei ’s, then

Y E (N )i =

∑
s≥0

E (s)i Xs for some Xs ∈ ũ+k (g).

Proof. We only prove (1). The proof of (2) is similar.
Assume Y = F (M1)

j1 F (M2)
j2 . . . F (Mt )

jt where 0 ≤ Mi < l for all i . We proceed by
induction on t .

Suppose t = 1 and M < l. If N ≤ M , then F (N )i F (M)j ∈ ũ−k (g), where j = j1.
Hence the result follows by putting X0 = F (N )i F (M)j . We now assume 0≤ M < N .
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If ai j = 0, then F (N )i F (M)j = F (M)j F (N )i by the Definition 2.1. If ai j =−1, then, by
(2.3.1),

F (N )i F (M)j =

∑
N−M≤s≤N

(−1)s+N−M
[ s−1

N−M−1

]
F (N−s)

i F (M)j F (s)i

=

∑
N−M≤s≤N

Xs F (s)i ,

where

Xs = (−1)s+N−M
[ s−1

N−M−1

]
F (N−s)

i F (M)j for N −M ≤ s ≤ N .

Note that, if N −M ≤ s with M < l, then N − s < l. Hence, Xs ∈ ũ−k (g).
Assume now that t > 1. Let

Y ′ = F (M1)
j1 F (M2)

j2 . . . F (Mt−1)

jt−1
.

By induction we have
F (N )i Y ′ =

∑
s≥0

Xs F (s)i ,

where Xs ∈ ũ−k (g). The previous argument shows that, for each s ≥ 0, we have

F (s)i F (Mt )
jt =

∑
m≥0

Ys,m F (m)i for some Ys,m ∈ ũ−k (g).

Let X ′m =
∑

s≥0 XsYs,m ∈ ũ−k (g) for m ≥ 0. Then,

F (N )i Y =
∑
m≥0

X ′m F (m)i ,

as required. �

Theorem 3.2. For d = (d1, . . . , dn)∈Nn with 0≤ di < l for all i , we have V ′k(d)=
Vk(d).

Proof. By the definition of Vk(d) and V ′k(d), we have Vk(d) = U−k (g)x0 and
V ′k(d) = ũ−k (g)x0. Since U−k (g) is generated by the elements F (N )i for 1 ≤ i ≤ n
and N ≥ 0, it is enough to prove that F (N )i ũ−k (g)x0 ⊆ ũ−k (g)x0 for all 1 ≤ i ≤ n
with N ≥ 0. For a monomial Y of Fi in ũk(g), by Lemma 3.1(1), we have

(3.2.1) F (N )i Y x0 =
∑
s≥0

Xs F (s)i x0,

where Xs ∈ ũ−k (g) and N ≥ 0. Since 0 ≤ di < l and F (di+1)
i x0 = 0 for all i , we

have F (s)i x0 = 0 for s ≥ l. By (3.2.1), we have

F (N )i Y x0 =
∑

0≤s<l

Xs F (s)i x0 ⊆ ũ−k (g)x0.

The result follows. �
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Following [Lusztig 1989, 4.6], we say that a Uk(g)-module V has type 1 if

V =
{
v ∈ V

∣∣ Kl
iv = v for i = 1, . . . , n

}
.

Let V be a Uk(g)-module of type 1. For any z = (z1, . . . , zn) ∈ Zn , following
[Lusztig 1989, 5.2], we define the z-weight space

Vz =
{

x ∈ V
∣∣∣ Ki x = εzi x,

[
Ki ; 0

l

]
x =

[ zi
l

]
ε
x for i = 1, . . . , n

}
.

Lemma 3.3 [Lusztig 1989, 4.2]. Let V be a Uk(g)-module and let x ∈ V be such
that Ki x = εm x for some m ∈ Z. Then, for any c and c′ ∈ Z, we have[

Ki ; c
l

]
x −

[
Ki ; c′

l

]
x =

( [m+c
l

]
ε
−

[m+c′

l

]
ε

)
x ∈ Zx .

Using Lemma 3.3, we see that[
Ki ; c

l

]
x =

[ zi+c
l

]
ε
x,

for x ∈ Vz and c ∈ Z. Let α(i) = (a1i , a2i , . . . , ani ) ∈ Zn for 1 ≤ i ≤ n. We
define a partial order on Zn by z ≤ z′ if and only if z′− z =

∑n
i=1 ciα(i) for some

c1, . . . , cn ∈ N. This is a partial order on Zn . The next lemma is clear:

Lemma 3.4. Let V be a Uk(g)-module of type 1, and let N > 0. Then:

(1) E (N )i Vz ⊆ Vz+Nα(i),

(2) F (N )i Vz ⊆ Vz−Nα(i).

By [Lusztig 1989, 6.2], for d = (d1, . . . , dn) ∈Nn , Vk(d) has a unique maximal
Uk(g)-submodule Wk(d). Let Lk(d) = Vk(d)/Wk(d). Then Lk(d) is a simple
Uk(g)-module. Similarly, the ũk(g)-module V ′k(d) has a unique maximal ũk(g)

submodule W ′k(d) by the proof of [Lusztig 1990, 5.11]. Let L ′k(d)= V ′k(d)/W ′k(d).
Then L ′k(d) is a simple ũk(g)-module.

Let I− be the ideal in ũ−k (g) spanned as a k-vector space by the nonempty words
in Fi , 1≤ i ≤ n.

Lemma 3.5. Assume d ∈ Nn with di < l for all i . If x0 is the highest weight vector
of V (d), then

I−x0 =
∑
z<d

Vk(d)z.

Proof. It is clear that I−x0 ⊆
∑

z<d Vk(d)z. Since

Vk(d)= kx0⊕
∑
z<d

Vk(d)z and V ′k(d)= kx0⊕ I−x0,

by Theorem 3.2 we have

kx0⊕
∑
z<d

Vk(d)z = kx0⊕ I−x0.
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Hence, dim
∑

z<d Vk(d)z = dim I−x0, and the result follows. �

Lemma 3.6. Assume d ∈ Nn with di < l for all i . Let x0 be the highest weight
vector of V (d). Then, E (N )i I−x0 ⊆ I−x0 whenever N ≥ l.

Proof. Let Y = F M1
j1 F M2

j2 . . . F Ms
js where 0< M j < l for all j . If E (N )i Y x0 6∈ I−x0,

then by Lemma 3.5 we have E (N )i Y x0 ∈ Vk(d)d . By Lemma 3.4, we have

Nα(i)= M1α( j1)+ · · ·+Msα( js).

Since α(1), . . . , α(n) are linearly independent, we have N = M1+ · · · +Ms and
j1 = · · · = js = i . So Y = F N

i . Since F l
i = [l]ε! F

(l)
i = 0 and N ≥ l, we have Y = 0.

This is a contradiction. �

The following result is given in [Lusztig 1989, 7.1(c)(d)] when l ′ is odd.

Theorem 3.7. Assume that d = (d1, . . . , dn) ∈ Nn with 0 ≤ di < l for all i . Then
Lk(d)= L ′k(d).

Proof. By Theorem 3.2, it is enough to prove that Wk(d) = W ′k(d). Also, by
Theorem 3.2, the restriction of Wk(d) to ũk(g) is a submodule of Vk(d)= V ′k(d).
Hence, by the maximality of W ′k(d), we have Wk(d)⊆W ′k(d). On the other hand,
we consider the Uk(g)-submodule V of Vk(d) generated by W ′k(d). We shall prove
that V ⊆

∑
z<d Vk(d)z. Since W ′k(d) is a ũk(g)-module, by Lemma 3.1(2),

U+k (g)W
′

k(d)⊆ span
{

E (N1)
i1

. . . E (Ns)
is

W ′k(d)
∣∣ s ≥ 0, Ni ≥ l for all i

}
⊆
{

E (N1)
i1

. . . E (Ns)
is

I−x0
∣∣ s ≥ 0, Ni ≥ l for all i

}
⊆ I−x0 (by Lemma 3.6).

Hence, by Lemmas 3.5 and 3.4,

V = U−k (g)U
+

k (g)W
′

k(d) ⊆ U−k (g)I
−x0 = U−k (g)

∑
z<d

Vk(d)z =
∑
z<d

Vk(d)z.

By the maximality of Wk(d), we have W ′k(d)⊆ V ⊆Wk(d). The result follows. �

Remark 3.8. Note that, if l ′ is odd and d ∈ Nn with di < l for all i , then L ′k(d)=
Lk(d) is also a uk(g)-module. So, by [Lusztig 1990, 6.6], the uk(g)-modules Lk(d)
(with d ∈ Nn and 0≤ di < l for all i) give all simple uk(g)-modules.

4. The infinitesimal and little q-Schur algebras

In this section, we shall recall the definitions of the infinitesimal q-Schur algebra
defined in [Cox 1997; 2000] and the little q-Schur algebra defined in [Du et al.
2005; Fu 2007].

For the moment, we assume that R is a ring and q1/2
∈ R.
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Following [Dipper and Donkin 1991], let Aq(n) be the R-algebra generated by
the n2 indeterminates ci j , with 1≤ i, j ≤ n, subject to the relations

ci j cil = cilci j for all i, j, l,

ci j crs = qcrsci j for i > r and j ≤ s,

ci j crs = (q − 1)cr j cis + crsci j for i > r and j > s.

The algebra Aq(n) has a bialgebra structure such that the coalgebra structure is
given by

1(ci j )=

n∑
t=1

ci t ⊗ ct j and ε(ci j )= δi j .

Let Aq(n, r) denote the subspace of elements in Aq(n) of degree r . Then Aq(n, r)
are in fact subcoalgebras of Aq(n) for all r , and hence UR(n, r) := Aq(n, r)∗ is an
R-algebra, which is call a q-Schur algebra.

Let 4(n) be the set of all n×n matrices over N. Let σ : 4(n)→ N be the
map sending a matrix to the sum of its entries. Then, for r ∈ N, the inverse image
4(n, r) := σ−1(r) is the set of n×n matrices in 4(n) whose entries sum to r .

For A ∈4(n), let

cA
= ca1,1

1,1 ca2,1
2,1 . . . c

an,1
n,1 ca1,2

1,2 ca2,2
2,2 . . . c

an,2
n,2 . . . c

a1,n
1,n ca2,n

2,n . . . c
an,n
n,n ∈ Aq(n).

Then, by [Dipper and Donkin 1991] (see also [Takeuchi 1990]), the set {cA
| A ∈

4(n, r)} forms an R-basis for Aq(n, r). Putting ξA := (cA)∗, we obtain the dual
basis {ξA | A ∈4(n, r)} for the q-Schur algebra UR(n, r).

For A ∈4(n, r), let

[A] = q−dA/2 ξA where dA =−
∑

i<s, j>t

ai, j as,t +
∑
j>t

ai, j ai,t .

Then, {[A]}A∈4(n,r) forms also a basis for UR(n, r).
We now introduce the infinitesimal q-Schur algebras. Thus, we assume R = k

is a field of characteristic p > 0 and q = ε2
∈ k. Since ε is a primitive l ′-th root of

unity, q is always a primitive l-th root of unity.
Consider the following ideals in Aq(n):

Ih =
〈
clph−1

i j , clph−1

i i − 1
∣∣ 1≤ i 6= j ≤ n

〉
,

Ĩh =
〈
clph−1

i j , cl ′ph−1

i i − 1
∣∣ 1≤ i 6= j ≤ n

〉
,

Jh =
〈
clph−1

i j

∣∣ 1≤ i 6= j ≤ n
〉
.

Clearly, Jh ⊆ Ĩh ⊆ Ih . Note that Jh is a graded ideal and, if l ′ is odd, then l = l ′

and Ih = Ĩh .
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Lemma 4.1. The ideals Ih , Ĩh and Jh are all coideals of Aq(n).

Proof. The assertion for Jh and Ih is well known, using [Du et al. 1991, (3.4)].
More precisely, we have

1(clph−1

i, j )=
∑

1≤k≤n

clph−1

i,k ⊗ clph−1

k, j ∈ Jh ⊗ Aq(n)+ Aq(n)⊗ Jh when i 6= j,

1(clph−1

i,i − 1)=
∑
k 6=i

clph−1

i,k ⊗ clph−1

k,i + (c
lph−1

i,i − 1)⊗ clph−1

i,i + 1⊗ (clph−1

i,i − 1)

∈ Ih ⊗ Aq(n)+ Aq(n)⊗ Ih .

If l ′ is odd, then Ĩh = Ih is the coideal of Aq(n). Now we assume l ′ is even. Then

1(cl ′ ph−1

i,i − 1)=
(
1(clph−1

i,i )
)2
− 1⊗ 1

=

( ∑
1≤k≤n

clph−1

i,k ⊗ clph−1

k,i

)2
− 1⊗ 1

=

∑
j 6=k

clph−1

i, j clph−1

i,k ⊗ clph−1

j,i clph−1

k,i +
∑

1≤k≤n

cl ′ ph−1

i,k ⊗ cl ′ ph−1

k,i − 1⊗ 1

=

∑
j 6=k

clph−1

i, j clph−1

i,k ⊗ clph−1

j,i clph−1

k,i +
∑
k 6=i

cl ′ ph−1

i,k ⊗ cl ′ ph−1

k,i

+ (cl ′ ph−1

i,i − 1)⊗ cl ′ ph−1

i,i + 1⊗ (cl ′ ph−1

i,i − 1)

∈ Ĩh ⊗ Aq(n)+ Aq(n)⊗ Ĩh .

Thus, Ĩh is a coideal of Aq(n). �

Now, by the above lemma, Aq(n)/Jh , Aq(n)/Ih and Aq(n)/ Ĩh are all bialgebras,
and Aq(n)/Jh is graded. Let Aq(n, r)h be the subspace of Aq(n)/Jh consisting of
the homogeneous polynomials of degree r in the ci j . Since Aq(n, r)h is a finite-
dimensional subcoalgebra of Aq(n)/Jh , its dual

sk(n, r)h = Aq(n, r)∗h

is a finite-dimensional algebra, which is called an infinitesimal q-Schur algebra in
[Cox 1997; 2000] (compare [Doty et al. 1996]). There are two canonical maps

(4.1.1) π : Aq(n)/Jh � Aq(n)/Ih and π̃ : Aq(n)/Jh � Aq(n)/ Ĩh .

Since π(Aq(n, r)h) and π̃(Aq(n, r)h) are all coalgebras, we may define the alge-
bras

uk(n, r)h = (π(Aq(n, r)h))∗ and ũk(n, r)h = (π̃(Aq(n, r)h))∗.
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By definition, we see easily that

(4.1.2) uk(n, r)h ⊆ ũk(n, r)h ⊆ sk(n, r)h .

In the case of l ′ being an odd number, we have uk(n, r)h = ũk(n, r)h . In general,
we will use these inclusions together with results on simple modules of uk(n, r)1
and sk(n, r)1, which is stated in the next theorem, to determine all simple ũk(n, r)1-
modules in Section 5.

Remark 4.2. When l ′ is even, the coideal Ĩh was not introduced in the literature,
say, [Dipper and Donkin 1991] or [Cox 1997; 2000]. The definitions of uk(n, r)h
and sk(n, r)h are independent of l ′, while that of ũk(n, r) depends on l ′. We will
establish below in Corollary 4.9 a connection between ũk(n, r)1 and the little q-
Schur algebra ũk(n, r).

Let Dq =
∑

π∈Sn
(−1)`(π)c1,1πc2,2π . . . cn,nπ ∈ Aq(n) be the quantum determi-

nant, where Sn is the symmetric group and `(π) is the length of π . Then the
localization Aq(n)Dq is a Hopf algebra. Let G = Gq(n) be the quantum linear
group whose coordinate algebra is k[G] := Aq(n)Dq . Following [Donkin 1998,
§3.1,§3.2] (see also [Cox 1997, 1.3; 2000]), let Gh be the h-th Frobenius kernel
and GhT , where T = Tq(n) be the torus of G, be the corresponding “Jantzen
subgroups”. Then

(4.2.1) k[Gh] := Aq(n)Dq/〈Ih〉 ∼= Aq(n)/Ih and k[GhT ] := Aq(n)Dq/〈Jh〉,

and Aq(n)/Jh is the polynomial part of k[GhT ].2

Denote the character group of T by

X := Zn ∼= X (T ).

For each λ ∈ X, by [Donkin 1998, 3.1(13)(i)] (see also [Cox 1997, 1.7; 2000]),
there is a simple object Lh(λ) in the category Mod(Gh) of Gh-modules and a
simple object L̂h(λ) in the category Mod(GhT ) of GhT -modules. Let

Xh := Xh(T )=
{
λ ∈ X= Zn

∣∣ 0≤ λi − λi+1 ≤ lph−1
− 1, 1≤ i ≤ n

}
,

where we set λn+1 = 0. In particular, X1 = {λ ∈ Zn
| 0≤ λi −λi+1 < l, 1≤ i ≤ n}.

Theorem 4.3 [Donkin 1998, 3.1(13),(18)]. The set {Lh(λ) | λ ∈ Xh} is a full set of
nonisomorphic simple Gh-modules, and {L̂h(λ) | λ ∈ X} is a full set of nonsiomor-
phic simple GhT -modules. Moreover, for all λ ∈ X, we have L̂h(λ)|Gh

∼= Lh(λ).

2If one introduces the quantum matrix semigroup M , its ‘torus’ D, and the hth Frobenoius kernel
Mh , then Aq (n), Aq (n)/Ih , and Aq (n)/Jh are respectively the coordinate algebras of M , Mh , and
Mh D.
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By [Cox 1997; 2000] (compare [Doty et al. 1996]), every polynomial GhT -
module — equivalently, every Aq(n)/Jh-comodule — V has a direct sum decom-
position V =

⊕
r≥0Vr , where Vr is the r-th homogeneous component (that is, is

an sk(n, r)h-module). In particular, if |λ| = r , then L̂h(λ) is an sk(n, r)h-module.
Note that a Gh-module does not have such a direct sum decomposition, since the
decomposition Aq(n)/Ih =

∑
r≥0 π(Aq(n, r)h) is not a direct sum. However, if

|λ| = r , then Lh(λ) is a uk(n, r)h-module.
We now relate the q-Schur algebras to the quantum enveloping algebra of gln

as given in [Beilinson et al. 1990], and define little q-Schur algebras.
Let 4±(n) be the set of all A ∈ 4(n) whose diagonal entries are zero. Given

r > 0, A ∈4±(n) and j = ( j1, j2, . . . , jn) ∈ Zn , we define

A( j , r)=
∑

D∈40(n)
σ (A+D)=r

υ
∑

i di ji [A+ D] ∈ U(n, r) :=UQ(υ)(n, r).

where 40(n) is the subset of diagonal matrices in 4(n) and D = diag(d1, . . . , dn).
The following result follows from [Beilinson et al. 1990, 5.5,5.7] (see also [Du

et al. 1991, (5.7); Du 1992, A.1; 1996, 3.4]). For 1≤ i, j ≤ n, let Ei, j ∈4(n) be
the matrix unit (ak,l) with ak,l = δi,kδ j,l .

Theorem 4.4. There is an algebra epimorphism ζr : U(n)� U(n, r) satisfying

Eh 7→ Eh,h+1(0, r), K j1
1 K j2

2 . . . K jn
n 7→ 0(j, r), Fh 7→ Eh+1,h(0, r).

Moreover, ζr (UZ(n))=UZ(n, r) [Du 1995a].

For t = (t1, . . . , tn) ∈ Nn , let[ki ; c
ti

]
= ζr

([Ki ; c
ti

])
and kt =

n∏
i=1

[ki ; 0
ti

]
.

Let

ei = ζr (Ei ), fi = ζr (Fi ), k j = ζr (K j ) for 1≤ i ≤ n− 1 and 1≤ j ≤ n.

Let U+Z (n, r), U−Z (n, r) and U 0
Z(n, r) be the Z-subalgebras of UZ(n, r) generated

respectively by the e(m)i , the f(m)i and the kλ, where 1≤ i ≤ n−1 and λ∈3(n, r)=
{λ ∈ Nn

| σ(λ)= r}. Here, σ(λ)= λ1+ · · ·+ λn .

Lemma 4.5 [Doty and Giaquinto 2002; Du and Parshall 2003].

(1) The set {kλ | λ∈3(n, r)} is a complete set of primitive orthogonal idempotents
(hence a basis) for U 0

Z(n, r). In particular, 1=
∑

λ∈3(n,r) kλ.

(2) Let λ ∈3(n, r), then ki kλ = υλi kλ for 1≤ i ≤ n.
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Since Uk(n, r)∼=UZ(n, r)⊗Z k, ζr naturally induces a surjective homomorphism
ζr⊗1 :Uk(n)� Uk(n, r). For convenience, we shall denote ζr⊗1 by ζr . Similarly,
we denote ei ⊗ 1, fi ⊗ 1 and k j ⊗ 1 by ei , fi and k j .

The algebra ũk(n, r) := ζr (ũk(n)) is called a little q-Schur algebra in [Du et al.
2005; Fu 2007] and is generated by the ei , fi , k j . Putting ũ+k (n, r) = ζr (ũ+k (n)),
ũ−k (n, r)= ζr (ũ−k (n)) and ũ0

k(n, r)= ζr (ũ0
k(n)), we have

ũk(n, r)= ũ−k (n, r) ũ
0
k(n, r) ũ

+

k (n, r).

Let
sk(n, r)= ũ−k (n, r)U

0
k (n, r) ũ

+

k (n, r).

This is the subalgebra of Uk(n, r) generated by the elements ei , fi , k j and
[k j ; 0t

]
for 1≤ i ≤ n−1, 1≤ j ≤ n and t ∈N. We shall see below that sk(n, r) is isomorphic
to the infinitesimal q-Schur algebra sk(n, r)1.

Remark 4.6. When l ′ = l is odd, the restriction ζr : ũk(n) → ũk(n, r) factors
through the quotient algebra uk(n), the infinitesimal quantum gln , defined at the end
of Section 2. Thus, in this case, ũk(n, r) is the same algebra as uk(n, r) considered
in [Du et al. 2005].

For a positive integer m, let Zm = Z/mZ. Let

( )m : Z
n
→ (Zm)

n

be the map defined by ( j1, j2, . . . , jn)= ( j1, j2, . . . , jn). For a subset Y of Zn , we
use the notation Y m = {ȳ ∈ (Zm)

n
| y ∈ Y }.

For λ ∈ (Zl ′)
n , define

pλ =


∑

µ∈3(n,r)
µ=λ

kµ if λ ∈3(n, r)l ′ ,

0 otherwise.

Lemma 4.7 [Du et al. 2005; Fu 2007]. The set {pλ | λ ∈3(n, r)l ′} forms a k-basis
of ũ0

k(n, r).

Let 4(n)h be the set of all A = (ai j ) ∈4(n) such that ai j < lph−1 for all i 6= j ,
and set

4(n)±h = {A ∈4(n)h | ai,i = 0 for all i}.

Let 4′(n)h be the set of all n× n matrices A = (ai j ) with ai j ∈ N, ai j < lph−1 for
all i 6= j , and ai i ∈ Zl ′ ph−1 for all i . We have an obvious map pr :4(n)h→4′(n)h
defined by reducing the diagonal entries modulo l ′ ph−1. We introduce the sets

4(n, r)h :=
{

A ∈4(n)h | σ(A)= r
}

and 4(n, r)±h =4(n, r)h ∩4(n)
±

h .
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Clearly, by regarding sk(n, r)h as a subalgebra of the q-Schur algebra Uk(n, r),
the set

{[A] | A ∈4(n, r)h}

forms a k-basis for sk(n, r)h .
Assume A ∈4(n)±h with σ(A)≤ r . Given λ ∈3(n, r − σ(A))l ′ ph−1 , let

(4.7.1) [[A+ diag(λ), r ]]h =
∑

µ∈3(n,r−σ(A))
µ=λ

[A+ diag(µ)].

Lemma 4.8. The set{
[[A+ diag(λ), r ]]h

∣∣ A ∈4(n, r)±h , λ ∈3(n, r − σ(A))l ′ ph−1
}

forms a k-basis for ũk(n, r)h . Thus dimk ũk(n, r)h = # pr(4(n, r)h). Similarly, the
set { ∑

µ∈3(n,r−σ(A))
µ=λ

ξA+diag(µ)

∣∣∣∣ A ∈4(n, r)±h , λ ∈3(n, r − σ(A))lph−1

}

forms a k-basis for uk(n, r)h .

Proof. By [Fu 2005, 4.2.4], the set

(4.8.1)
{
cA+diag(λ)

+ Ĩh
∣∣ A ∈4(n, r)±h , λ ∈3(n, r − σ(A))l ′ ph−1

}
forms a k-basis for π̃(Aq(n, r)h). Similar to [Fu 2005, 5.5.3],3 we have

(4.8.2) (cA+diag(λ)
+ Ĩh)

∗
=

∑
µ∈3(n,r−σ(A))

µ=λ

ξA+diag(µ) = ε
dA+diag(λ) [[A+ diag(λ), r ]]h .

Here the bar on µ means it’s relative to l ′ ph−1. The first assertion follows. Re-
placing l ′ ph−1 by lph−1 in the bar map, the first quality of (4.8.2) gives the second
assertion. �

The proof above gives immediately the next result. This result, in terms of two
parameter quantum linear groups, is the (1, q)-version of [Fu 2005, 5.5] which is
the (q, 1)-version; see footnote 3.

Corollary 4.9. We have algebra isomorphisms

ũk(n, r)1 ∼= ũk(n, r) and sk(n, r)1 ∼= sk(n, r).

Note that uk(n, r) (see Remark 4.6) is not defined when l ′ is even. However,
uk(n, r)1 is always defined, regardless of whether l ′ is odd or even.

3The argument given in [Fu 2005] is for the quantum coordinate algebra Aq,1(n), while Aq (n)
considered here is A1,q (n). Here Aα,β (n) is the two parameter version defined in [Takeuchi 1990].
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5. The classification of simple modules of little q-Schur algebras

In this section, we shall give the classification of simple modules for the little
q-Schur algebra ũk(n, r).

For λ ∈ (Zl ′)
n , let Mk(λ)= ũk(n)/Ik(λ), where

Ik(λ)=
∑

1≤i≤n−1

ũk(n)Ei +
∑

1≤i≤n

ũk(n)(Ki − ε
λi ).

Then Mk(λ) has a unique irreducible quotient, which will be denoted by Lk(λ)

(see the proof of [Lusztig 1990, 5.11]). If l ′ is odd, then K l ′
i is central in ũk(n),

and hence Lk(λ) can be regarded as a uk(n)-module.
Let 3+(n, r)= {λ ∈3(n, r) | λ1 ≥ λ2 ≥ · · · ≥ λn} and

3+(n)=
⋃
r≥0

3+(n, r).

For λ∈3+(n, r), let V (λ) be the simple U(n, r)-module with highest weight λ. Let
xλ be the highest weight vector of V (λ). Let VZ(λ)=UZ(n, r)xλ. Since UZ(n, r)
is a homomorphic image UZ(sln) by Theorem 9.3, we have VZ(λ) = UZ(sln)xλ.
We denote VZ(λ)⊗Z k by Vk(λ) and let Lk(λ) be the unique irreducible quotient
of Vk(λ). For convenience, we shall denote the image of xλ in Vk(λ) and Lk(λ)

by the same letter. Let V ′k(λ)= ũk(n)xλ. We call V ′k(λ) the baby Weyl module of
ũk(n). Then Lk(λ) is the unique irreducible quotient of V ′k(λ).

If λ ∈ X1, then, by Theorem 3.2 and Theorem 3.7, ũk(sln)xλ = Vk(λ) and
Lk(λ)|ũk(sln) is irreducible. This, together with ũk(sln)⊆ ũk(gln)⊆Uk(n) implies
the following.

Lemma 5.1. For any λ ∈ X1, we have V ′k(λ)= Vk(λ), and restriction gives ũk(n)-
module isomorphisms Lk(λ)|ũk(n)

∼= Lk(λ).

Note further that (X1)l ′ ⊆3
+(n)l ′ = (Zl ′)

n and

(5.1.1) (X1)l ′ =3
+(n)l ′ = (Zl ′)

n if l ′ is odd.

Theorem 5.2 [Lusztig 1990, 5.11, 6.6].
(1) If l ′ is odd, then l ′ = l and the set {Lk(ν) | ν ∈ (Zl)

n
} forms a complete set of

nonisomorphic simple uk(n)-modules.

(2) If l ′ is even, then l ′ = 2l and the set {Lk(ν) | ν ∈ (Z2l)
n
} forms a complete set

of nonisomorphic simple ũk(n)-modules.

Note that, unlike the classification for simple G1-modules given in Theorem 4.3,
this classification depends on l ′. We will make a comparison in Corollary 5.7.

By Lemma 5.1 and (5.1.1), if l ′ is odd, then every simple ũk(n)-module on
which all K l

i act as the identity is a uk(n)-module and is also a restriction of a
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simple Uk(n)-module with a restricted highest weight. However, when l ′ is even,
there are simple ũk(n)-modules which cannot be realized in this way.

Example 5.3. Assume l ′ = 4. Then l = 2. Let V (2, 0)= U(2)/I (2, 0), where

I (2, 0)= U(2)E1+U(2)F3
1 +U(2)(K1− υ

2)+U(2)(K2− 1).

Let x0 = 1+ I (2, 0) ∈ V (2, 0). Let VZ(2, 0) be the UZ(2)-submodule of V (2, 0)
generated by x0. Let Vk(2, 0) = VZ(2, 0)⊗Z k. Let V ′k(2, 0) = ũk(2)x0. The set
{x0, F1x0, F (2)1 x0} forms a k-basis for Vk(2, 0). Since F2

1 = 0 ∈Uk(2), V ′k(2, 0)=
spank{x0, F1x0}. Thus V ′k(2, 0) 6= Vk(2, 0). Since E1(F1x0)= 0, spank{F1x0} is a
submodule of V ′k(2, 0) and also of Vk(2, 0). Hence, L ′k(2, 0) is one-dimensional,
while dim Lk(2, 0)= 2.

By regarding L ′k(2, 0) as the ũk(sl2)-module L ′k(2), we see that there is no sim-
ple Uk(sl2)-module Lk(m) such that Lk(m)|ũk(sl2)

∼= L ′k(2).

We are now ready to classify simple ũk(n, r)-modules.

Lemma 5.4. Let L be a ũk(n, r)-module. Assume x0 6= 0 ∈ L satisfies ki x0 = ε
λi x0

for some λi ∈ N with 1≤ i ≤ n. Then, λ= (λ1, . . . , λn) ∈3(n, r)l ′ .

Proof. By Lemmas 4.5 and 4.7, we have 1=
∑

α∈3(n,r)l′
pα and pα ∈ ũk(n, r). It

follows that x0 =
∑

α∈3(n,r)l′
(pαx0) and hence, there exist β ∈3(n, r)l ′ such that

pβx0 6= 0. By Lemma 4.5,

ελi x0 = ki x0 = ki

∑
α∈3(n,r)l′

pαx0 =
∑

α∈3(n,r)l′

εαi pαx0 for 1≤ i ≤ n.

Hence,

ελi pβx0 = pβ(ελi x0)= pβ
∑

α∈3(n,r)l′

εαi pαx0 = ε
βi pβx0 for 1≤ i ≤ n.

Since pβx0 6= 0, we have ελi = εβi for 1≤ i ≤ n and hence, λ= β ∈3(n, r)l ′ . �

Let Xh(l) = Xh + lNn and Xh(l, r) = {λ ∈ Xh(l) | σ(λ) = r}. For h = 1 and
λ∈X1(l, r), the irreducible (polynomial) G1T -module L̂1(λ) given in Theorem 4.3
is in fact an irreducible Aq(n, r)1-comodule. Hence, L̂1(λ) has a natural sk(n, r)1-
module structure.

Theorem 5.5. For λ ∈ X1(l, r) we have L̂1(λ)|ũk(n,r)
∼= Lk(λ). Moreover the set

{Lk(λ) | λ ∈ X1(l, r)l ′} forms a complete set of nonisomorphic simple ũk(n, r)-
modules.

Proof. By [Cox 1997; 2000] (cf. Theorem 4.3), the set {L̂1(λ) | λ ∈ X1(l, r)} is
a complete set of nonisomorphic simple sk(n, r)1-modules. Thus, it is enough to
prove that for each λ ∈ X1(l, r), L̂1(λ)|ũk(n,r) is irreducible, and every irreducible
ũk(n, r)-module is isomorphic to Lk(µ) for some µ ∈ X1(l, r)l ′
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By Theorem 4.3, for λ ∈ X1(l, r), we see that L̂1(λ)|G1 is a simple G1-module
at level r . Hence, by (4.2.1), L̂1(λ)|uk(n,r)1 is a simple uk(n, r)1-module. Now
the inclusions uk(n, r)1 ⊆ ũk(n, r) ⊆ sk(n, r)1 = sk(n, r) given in (4.1.2) force
that L̂1(λ)|ũk(n,r) is a simple ũk(n, r)-module. Hence, inflation gives a simple
ũk(n)-module. Since L̂1(λ) is a highest weight sk(n, r)-module, by [Lusztig 1990,
5.10(b)], there exists x0 ∈ L̂1(λ) such that Ei x0= 0 and Ki x0= ε

λi x0 for all i . Now,
the argument in [ibid., 5.11] implies that L̂1(λ)|ũk(n,r) is isomorphic to Lk(λ).

On the other hand, let L be a simple ũk(n, r)-module. Then, by inflation, L is
a simple ũk(n)-module. (If l ′ is an odd number, L is also a simple uk(n)-module.)
Hence, there is some nonzero x0 ∈ L such that Ei x0 = 0 and k j x0 = ε

λ j x0 for
1≤ i ≤ n−1 and 1≤ j ≤ n, where λ= (λ1, . . . , λn)∈Nn . By Lemma 5.4, λ̄ lies in
3(n, r)l ′ . So, without loss, we may choose λ ∈3(n, r). We consider the sk(n, r)-
module sk(n, r)⊗ũk(n,r) L . Let V be the sk(n, r)-submodule of sk(n, r)⊗ũk(n,r) L
generated by kλ ⊗ x0. Then V = sk(n, r)(kλ ⊗ x0) = ũ−k (n, r)(kλ ⊗ x0). It is
clear that the kλ⊗ x0 are the highest weight vector of V . Hence there is a unique
maximal sk(n, r)-submodule of V , say Vmax. Let L ′ = V/Vmax. Then L ′ is a
simple sk(n, r)-module and hence L ′ ∼= L̂1(λ) by the opening sentence of the proof.
Since ei .(kλ⊗ x0)= 0 and k j .(kλ⊗ x0)= ε

λ j (kλ⊗ x0), by Theorem 5.2 we have
L ∼= L̂1(λ)|ũk(n,r)

∼= Lk(λ). The proof is complete. �

Corollary 5.6. Every simple uk(n)-module when l ′ = l is odd (respectively, every
simple ũk(n)-module when l ′ is even) is an inflation of a simple ũk(n, r)-module
for some r.

Proof. Since Zn
= X1(T )+ lZn , it follows that⋃

r≥0

X1(l, r)l ′ = X1(l)l ′ = (X1)l ′ + (lNn)l ′ = (X1)l ′ + (lZn)l ′ = Zn
l ′ .

Thus, by Theorem 5.5, inflation via epimorphisms ũk(n)→ ũk(n, r) gives simple
ũk(n)-modules indexed by Zn

l ′ . Now the assertion follows from Theorem 5.2. �

We remark that restricted simple Uk(n)-modules Lk(λ) with λ ∈ X1 does not
cover all simple ũk(n)-module when l ′ is even. The above result shows that simple
G1T -modules does cover all simple ũk(n)-module.

Corollary 5.7. We have, for λ ∈ X1 with σ(λ) = r , L1(λ) ∼= Lk(λ)|uk(n,r)1 where
λ ∈ (X1)l ′ . In other words, {Lk(ν) | ν ∈ (X1)l ′} is a complete set of all simple
G1-modules.

Note that this classification is the same as the one given in Theorem 4.3 since
the set (X1)l ′ can be identified with X1 via the map X1 → (X1)l ′ : λ 7→ λ. Thus,
for the example L ′k(2, 0) constructed in Example 5.3, its restriction to G1 is again
irreducible and isomorphic to L1(0, 0).
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Remarks 5.8. (1) If λ ∈ X1, Lemma 5.1 and Theorem 5.5 imply that restriction
induces isomorphisms Lk(λ)∼= L̂1(λ), L̂1(λ)∼= Lk(λ) and Lk(λ)∼= L1(λ).

(2) When l ′ = l is odd, we established in [Du et al. 2005] that a basis for ũk(n, r)
is indexed by 4(n, r)l , while a basis for Uk(n, r) is indexed by 4(n, r). Sim-
ilarly, since 3+(n, r)l = X1(l, r)l , simple ũk(n, r)-modules are indexed by
3+(n, r)l , while simple Uk(n, r)-modules are indexed by 3+(n, r). Thus,
barring the index sets gives the counterparts for little q-Schur algebras. How-
ever, if l ′ is even, then 3+(n, r)l ′ is not even a subset of X1(l, r)l ′ and the
classification is quite different.

(3) The fact that {L̂1(λ) | λ ∈ X1(l, r)} is a complete set of nonisomorphic simple
sk(n, r)1-modules shows that the classification for the infinitesimal q-Schur
algebra is independent of l ′.

6. The baby transfer map

There is an epimorphism ψr+n,r :Uk(n, r+n)�Uk(n, r), called the transfer map in
[Lusztig 2000, Section 2]. This map can be geometrically constructed [Grojnowski
1992; Lusztig 2000, Section 2] and algebraically constructed by quantum coordi-
nate algebras and quantum determinant [Du 1995b, 5.4]. Since ψr+n,r satisfies

ζr+n(Ei ) 7→ ζr (Ei ), ζr+n(Fi ) 7→ ζr (Fi ), ζr+n(Ki ) 7→ εζr (Ki ),

its restriction induces an epimorphism

(6.0.1) ψr+n,r : ũk(n, r + n)� ũk(n, r).

In this section, we introduce the baby transfer map

ρr+l ′,r : ũk(n, r + l ′)→ ũk(n, r)

and use it to prove that, up to isomorphism, there only finitely many little q-Schur
algebras. By these maps, we will understand the classification of simple modules
for the little q-Schur algebras from a different angle.

Proposition 6.1. There is an algebra epimorphism ρr+l ′,r : ũk(n, r+ l ′)� ũk(n, r)
satisfying

e′i 7→ ei , f′i 7→ fi , k′j 7→ k j ,

where e′i , f
′

i , k
′

i are the corresponding ei , fi , ki for ũk(n, r + l ′). Moreover, for
A ∈4±(n)1 and λ ∈3(n, r + l ′− σ(A))l ′ ,

(6.1.1) ρr+l ′,r ([[A+ diag(λ), r + l ′]])

=

{
[[A+ diag(λ), r ]] if λ ∈3(n, r − σ(A))l ′ ,
0 otherwise.



362 JIE DU, QIANG FU AND JIAN-PAN WANG

Proof. Consider the epimorphism π̃ : Aq(n)/J1→ Aq(n)/ Ĩ1 given in (4.1.1). Since
every monomial m in Aq(n, r)1 has the same homomorphic image as the monomial
cl ′

11m ∈ Aq(n, r+l ′)1, it follows that π̃(Aq(n, r)1)⊆ π̃(Aq(n, r + l ′)1) and the basis{
cA+diag(λ)

+ Ĩ1
∣∣ A ∈4±(n)1, λ ∈3(n, r − σ(A))l ′

}
for π̃(Aq(n, r)1) given in (4.8.1) extends to a basis for π̃(Aq(n, r+l ′)1). By taking
the dual and Corollary 4.9, there is an algebra epimorphism ρr+l ′,r : ũk(n, r+ l ′)→
ũk(n, r).

Let {
(cA+diag(λ)

+ Ĩ1)
∗
∣∣ A ∈4±(n)1, λ ∈3(n, r ′− σ(A))l ′

}
be the dual basis for ũk(n, r ′). It is now clear that, for A ∈ 4±(n)1 and λ ∈
3(n, r + l ′− σ(A))l ′ ,

ρr+l ′,r ((cA+diag(λ)
+ Ĩ1)

∗)=

{
(cA+diag(λ)

+ Ĩ1)
∗ if λ ∈3(n, r − σ(A))l ′ ,

0 otherwise.

This together with (4.8.2) implies (6.1.1), since ε is a primitive l ′-th root of unity.
Since pλ = [[diag(λ), r ]], we have for λ ∈3(n, r + l ′)l ′

ρr+l ′,r (pλ)=
{

pλ if λ ∈3(n, r)l ′ ,
0 otherwise.

Hence,
ρr+l ′,r (k′i )= ρr+l ′,r

( ∑
λ∈3(n,r+l ′)l′

ελi pλ
)
=

∑
λ∈3(n,r)l′

ελi pλ = ki .

Similarly, we can prove ρr+l ′,r (e′i )= ei and ρr+l ′,r (f′i )= fi . �

Observe that, if r ≥ (n− 1)(l ′− 1), then, for λ ∈3(n, r + l ′),∑
1≤i≤n

λi = r + l ′ ≥ n(l ′− 1)+ 1.

Thus, λi ≥ l ′ for some i . Consequently, λ = (λ1, . . . , λi − l ′, . . . , λn) ∈3(n, r)l ′ .
We see that

(6.1.2) 3(n, r)l ′ =3(n, r + l ′)l ′ whenever r ≥ (n− 1)(l ′− 1).

Corollary 6.2. We have

ũk(n, r)∼= ũk(n, r + l ′) for r ≥ (l − 1)(n2
− n)+ (n− 1)(l ′− 1).

Hence, up to isomorphism, there are only finitely many little q-Schur algebras.

Proof. By Proposition 6.1, there exists an algebra epimorphism from ũk(n, r + l ′)
to ũk(n, r). Thus, it is enough to prove that dimk ũk(n, r + l ′)= dimk ũk(n, r) for
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r ≥ (l − 1)(n2
− n)+ (n− 1)(l ′− 1). By [Du et al. 2005, 8.2; Fu 2007, 6.8], we

have

(6.2.1) dimk ũk(n, r)=
∣∣{(A, λ) | A ∈4±(n)1, λ ∈3(n, r − σ(A))l ′}

∣∣.
If r ≥ (l − 1)(n2

− n)+ (n− 1)(l ′− 1), then, for any A ∈4±(n)1,

r − σ(A)≥ r − (n2
− n)(l − 1)≥ (n− 1)(l ′− 1).

Thus, by (6.1.2), 3(n, r − σ(A))l ′ =3(n, r − σ(A)+ l ′)l ′ . Consequently, (6.2.1),
implies dimk ũk(n, r + l ′) = dimk ũk(n, r) whenever r ≥ (l − 1)(n2

− n)+ (n −
1)(l ′− 1). This completes the proof. �

We now look at the second application of the baby transfer map. If l ′ is odd,
then l ′ = l by definition and the index set of the classification given in Theorem 5.5
becomes

X1(l, r)l = {λ | λ ∈ X1, σ (λ)≤ r, σ (λ)= r̄}(6.2.2)

= X1(l, r − l)l ∪ {λ | λ ∈ X1, σ (λ)= r}.

This indicates, by Theorem 5.5 and Proposition 6.1, that the simple ũk(n, r)-modules
can be divided into two classes, one consists of the simple ũk(n, r)-modules which
can be obtained by restriction from the simple Uk(n, r)-modules with restricted
highest weights and the other consists of the simple ũk(n, r)-module which are
inflations of the simple ũk(n, r − l)-module via the map ρr,r−l . The disjointness of
the two classes can be seen as follows.

Suppose n ≥ r . Let ω = (1r ) ∈ 3(n, r). Then kω = pω ∈ ũk(n, r). By [Fu
2005, 7.1] we have kω ũk(n, r)kω is isomorphic to the Hecke algebra Hr =H(Sr ).
We will identify kω ũk(n, r)kω with Hr . Thus, we may define the “baby” Schur
functor Fr as follows:

Fr :Mod(ũk(n, r))→Mod(Hr ), V 7→ kωV .

The functor Fr induces a group homomorphism over the Grothendieck groups,

Fr : K (ũk(n, r))→ K (Hr ).

Here K (A) denotes the Grothendieck group of Mod(A).
By Proposition 6.1 the category Mod(ũk(n, r − l ′)) can be regarded as a full

subcategory of Mod(ũk(n, r)) via ρr+l ′,r and hence we may view K (ũk(n, r − l ′))
as a subgroup of K (ũk(n, r)).

Proposition 6.3. Assume l ′ is odd and n ≥ r . Then Fr is surjective and

ker(Fr )= K (ũk(n, r − l)).
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Proof. By Lemma 5.1 and [Donkin 1998, 4.4(2)], the set

{Fr (Lk(λ)) | λ ∈ X1, σ (λ)= r}

forms a complete set of nonisomorphic simple Hr -modules. Thus, by [Green 2007,
6.2(g)] and (6.2.2), we conclude that Fr (Lk(λ)) = 0 for λ ∈ X1(l, r − l)l . The
assertion follows. �

7. Semisimple little q-Schur algebras

We now determine semisimple little q-Schur algebras. This can be easily done by
the semisimplicity of the infinitesimal q-Schur algebra sk(n, r)= sk(n, r)1 and the
following.

Lemma 7.1. Let V be an sk(n, r)-module. Then socsk(n,r)V = socũk(n,r)V .

Proof. It is easy to check that socsk(n,r)1 V = socG1T V and socuk(n,r)1 V = socG1 V .
By [Donkin 1998, 3.1(18)(iii)] we have socG1T V = socG1 V . It follows that

socsk(n,r)1 V = socuk(n,r)1 V .

Since uk(n, r)1 ⊆ ũk(n, r)⊆ sk(n, r)1 the assertion follows from Theorems 4.3 and
5.5. �

Theorem 7.2. The little q-Schur algebra ũk(n, r) is semisimple if and only if either
l > r or l = n = 2 and r ≥ 3 is odd.

Proof. By [Fu 2008b, 1.2], the infinitesimal q-Schur algebra sk(n, r) is semisimple
if and only if either l > r or n = 2, l = 2 and r ≥ 3 is odd. Thus, it is enough to
prove that the infinitesimal q-Schur algebra sk(n, r) is semisimple if and only if
the little q-Schur algebra ũk(n, r) is semisimple.

Let W be an indecomposable projective ũk(n, r)-module. Suppose the algebra
sk(n, r) is semisimple; then the sk(n, r)-module sk(n, r)⊗ũk(n,r) W is semisimple,
and, by Theorem 5.5, (sk(n, r)⊗ũk(n,r) W )|ũk(n,r) is a semisimple ũk(n, r)-module.
Since W is a projective ũk(n, r)-module, W is a flat ũk(n, r)-module. It follows
that the natural ũk(n, r)-module homomorphism from W ∼= ũk(n, r)⊗ũk(n,r) W to
sk(n, r)⊗ũk(n,r) W is injective, and hence W is a semisimple ũk(n, r)-module. So
the algebra ũk(n, r) is semisimple.

Now we suppose the algebra sk(n, r) is not semisimple. Then there exist λ,µ in
X1(l, r) such that Extsk(n,r)(L̂1(λ), L̂1(µ)) 6= 0; thus there is an sk(n, r)-module V
such that socsk(n,r)V = L̂1(µ)with top L̂1(λ). By Lemma 7.1 we have socũk(n,r)V =
L̂1(µ) and hence ũk(n, r) is not semisimple. �

We will see in the next section (at least when l ′ is odd) that the semisimplicity
of ũk(n, r) depends only on r and l, while the infinitesimal quantum group ũk(n)
is never semisimple (for all n and l ′ = l).
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8. Little q-Schur algebras of finite representation type

In this section, we will assume k is an algebraically closed field and l ′ is odd. Thus,
l ′ = l ≥ 3 and X1(l, r)l =3+(n, r)l (see Remarks 5.8(2)). By Theorems 4.3 and
5.5, L1(λ) = Lk(λ) for all λ ∈ X1(l, r). We will classify little q-Schur algebras
of finite representation type in this case. The even case is much more complicated
and will be treated elsewhere.

We first determine the blocks of ũk(2, r). Using it, we then establish that ũk(2, r)
has finite representation type if and only if it is semisimple. We then generalize
this from n = 2 to an arbitrary n.

Blocks of q-Schur algebras were classified in [Cox 1997; 1998] (compare [Donkin
1994]). Moreover, blocks of infinitesimal q-Schur algebras were classified in [Cox
1997; 2000] for n = 2. Now we first classify blocks of little q-Schur algebras
ũk(2, r) and use this to determine their finite representation type.

Let 8= {ei − e j | 1≤ i 6= j ≤ n} be the set of roots of type An−1, where

ei = (0, . . . , 0, 1, 0 . . . , 0) ∈ Zn,

with the 1 in the i-th position. Let 8+ = {ei − e j | 1 ≤ i < j ≤ n} be the set of
positive roots. There is a Z-bilinear form 〈− ,−〉 on X = Zn satisfying 〈ei , e j 〉 =

δi j for 1 ≤ i, j ≤ n. The symmetric group Sn acts on X by place-permutation.
The “dot” action of Sn on X is defined by w.λ = w(λ + ρ) − ρ, where ρ =
(n−1, n−2, . . . , 1, 0). For λ ∈3+(n, r), let m(λ) be the least positive integer m
such that there exists an α ∈8+ with 〈λ+ ρ, α〉 6∈ lpmZ.

Proposition 8.1 [Cox 1997; 1998]. For λ ∈3+(n, r), let Bn,r (λ) be the block of
q-Schur algebras Uk(n, r) containing Lk(λ). Then, we have

Bn,r (λ)=
(
Sn.λ+ lpm(λ)Z8

)
∩3+(n, r).

We will denote the block of Gh containing Lh(λ) by Bn
h(λ) for λ ∈ Xh and

denote the block of infinitesimal q-Schur algebras sk(n, r)h containing L̂1(λ) by
Bn,r

h (λ) for λ ∈ Xh(l, r).

Proposition 8.2 [Cox 1997; 2000]. Assume n = 2. For λ ∈ Xh , we have

B2
h(λ)=

(
S2.λ+ lpm(λ)Z8+ lph−1X

)
∩Xh .

For λ ∈ Xh(l, r) we have

B2,r
h (λ)=

{(
S2.λ+ lpm(λ)Z8

)
∩Xh(l, r) if m(λ)+ 1≤ h,

{λ} if m(λ)+ 1> h.

For λ̄ ∈3+(n, r)l , the block of little q-Schur algebras ũk(n, r) containing Lk(λ)

will be denoted by bn,r (λ). We now determine b2,r (λ).



366 JIE DU, QIANG FU AND JIAN-PAN WANG

Lemma 8.3. For any λ,µ ∈ X1(l, r)l , we have

Ext1ũk(n,r)(Lk(λ),Lk(µ)) ∼= Ext1ũk(n,r)(Lk(µ),Lk(λ)).

Proof. By [Beilinson et al. 1990, 3.10], there is an antiautomorphism τ on the
q-Schur algebra Uk(n, r) by sending [A] to [ tA] for all A ∈ 4(n, r), where tA is
the transpose of A. Since the set {[[A, r ]]1 | A ∈ 4(n, r)l} (see (4.7.1)) forms a
k-basis of ũk(n, r) by [Du et al. 2005], we conclude that τ(ũk(n, r)) = ũk(n, r).
Using τ , we may construct, for any (finite-dimensional) ũk(n, r)-module M , its
contravariant dual module τM . Thus, as a vector space, τM is the dual space M∗

of M and the action is defined by x . f = f τ(x) for all x ∈ ũk(n, r) and f ∈ M∗.
Since τ(Lk(λ)) ∼= Lk(λ) for any λ ∈ X1(l, r)l and 0→ L → M → N → 0 is an
exact sequence of ũk(n, r)-modules if and only if so is 0→ τN → τM→ τL→ 0,
the result follows easily (see [Jantzen 1987, II, 2.12(4)] for a similar result). �

Proposition 8.4. For λ ∈ 3+(2, r)l(= X1(l, r)l) with λ ∈ 3+(2, r), if b2,r (λ) de-
notes the block containing Lk(λ) for the little q-Schur algebra ũk(2, r), then

b2,r (λ)= (S2.λ)l ∩3
+(2, r)l =B2,r (λ)l =B2,r

1 (λ)l .

Proof. If µ ∈ X1(l, r) and Ext1sk(2,r)1(L̂1(λ), L̂1(µ)) 6= 0, then, by Lemma 7.1,
Ext1ũk(2,r)(Lk(λ),Lk(µ)) 6= 0. This proves

B2,r
1 (λ)l ⊆ b2,r (λ).

Hence, Proposition 8.2 implies (S2.λ)l ∩3
+(2, r)l ⊆ b2,r (λ).

On the other hand, if µ∈ b2,r (λ) with µ ∈ X1(l,r) and Ext1ũk(2,r)(Lk(λ),Lk(µ))

does not vanish, there is a ũk(2, r)-module N (and hence a G1-module) such that
socũk(2,r)N = Lk(µ) and topũk(2,r)N = Lk(λ). Equivalently, as a G1-module,

socG1 N = socuk(2,r)1 N = L1(µ)

and hence topG1
N = L1(λ). So Ext1G1

(L1(λ), L1(µ)) 6= 0. Thus, the first assertion
in Proposition 8.2 implies

µ ∈
(
S2.λ+ lpm(λ)Z8+ lX

)
∩X1.

Since X1(l, r)l =3+(2, r)l , it follows from Theorem 5.5 that

b2,r (λ)⊆ (S2.λ)l ∩3
+(2, r)l .

Hence, b2,r (λ) = (S2.λ)l ∩ 3
+(2, r)l , and consequently, b2,r (λ) = B2,r (λ)l =

B2,r
1 (λ)l , by Propositions 8.1 and 8.2. �

We are now going to establish the fact that any nonsemisimple ũk(2, r) has
infinite representation type. We need the following three simple lemmas.
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Lemma 8.5. Let V be an sk(n, r)-module. Then, V is an indecomposable sk(n, r)-
module if and only if V is an indecomposable ũk(n, r)-module.

Proof. It is clear that V is an indecomposable sk(n, r)1-module (respectively,
uk(n, r)1-module) if and only if V is an indecomposable G1T -module (respec-
tively, G1-module). By [Donkin 1998, 3.1(18)], V is an indecomposable G1T -
module if and only if V is an indecomposable G1-module. The assertion now
follows from (4.1.2). �

Lemma 8.6 [Fu 2008a, 3.4(2)]. Let N be an Uk(n, r)-module with two composi-
tion factors Lk(λ) and Lk(µ), where λ ∈ Xh and µ ∈3+(n, r) with socUk(n,r)N ∼=
Lk(λ). Assume that

Lk(µ)=

s⊕
j=1

L̂h(µ j )

is the decomposition of Lk(µ) into irreducible sk(n, r)h-modules. If L̂h(λ) �
L̂h(µ j ) as Gh-modules for all j , then socsk(n,r)h N ∼= Lk(λ)∼= L̂h(λ).

Lemma 8.7. Let A be finite-dimensional k-algebra and let e be an idempotent
element in A. Assume {L i | i ∈ I } is a complete set of nonisomorphic irreducible
A-modules. Then we have

Ae ∼=
⊕
i∈I

dimk(eL i )P(L i ),

where P(L i ) is the projective cover of L i . In particular, if l is odd and A=Uk(2, r)
with r = l or l + 1, then

Uk(2, l)k(l−1,1) ∼= P(l−1, 1),

Uk(2, l)k(l,0) ∼= Uk(2, l)k(0,l) ∼= P(l, 0),

Uk(2, l+1)k(l−1,2) ∼= P(l−1, 2)⊕ P(l, 1),

Uk(2, l+1)k(l+1,0)⊕Uk(2, l+1)k(1,l) ∼= 2P(l+1, 0)⊕ P(l, 1).

Proof. Since e is an idempotent element in A, Ae is projective and hence we may
write

Ae ∼=
⊕
i∈I

di P(L i ),

where di ∈ N. Then, for i ∈ I ,

dimk(eL i )= dimk HomA(Ae, L i )=
∑
j∈I

d j dimk HomA(Pj , L i )= di .

The last statement follows from the following facts: If A = Uk(2, l), then there
are (l−1)/2 + 1 simple modules, Lk(l−i, i) for 0 ≤ i ≤ (l−1)/2. For each
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1 ≤ i ≤ (l−1)/2, the module Lk(l−i, i) has dimension l−2i+1 and weights
(l−i− j, i+ j) with 0 ≤ j ≤ l−2i , while Lk(l, 0) has dimension 2 and weights
(l, 0) and (0, l) by the tensor product theorem. If A = Uk(2, l+1), then there
are (l+1)/2+ 1 simple modules, Lk(l+1−i, i) for 0 ≤ i ≤ (l+1)/2. For each
1≤ i ≤ (l+1)/2, the module Lk(l+1−i, i) has dimension l−2i+2 and weights
(l+1−i− j, i+ j) with 0≤ j ≤ l−2i+1, while Lk(l+1, 0) has dimension 4 and
weights (l+1, 0), (l, 1), (1, l) and (0, l+1). �

For λ∈3+(n, r) let P(λ) be the projective cover of Lk(λ) as a Uk(n, r)-module.
For λ ∈3+(n, r) let p(λ̄) be the projective cover of Lk(λ) as a ũk(n, r)-module.

Proposition 8.8. The algebra ũk(2, l) has infinite representation type.

Proof. Let λ = (l, 0) and µ = (l − 1, 1). By [Thams 1994], the standard module
1(λ) has two composition factors with socle Lk(µ). Since Uk(2, r) is semisimple
for l > r (see, for example, [Erdmann and Nakano 2001]), we have, for any ν =
(ν1, ν2) ∈3

+(2, l) with ν 6= λ,

1(ν) ∼= 1(ν1− ν2, 0)⊗ detν2
q
∼= Lk(ν1− ν2, 0)⊗ detν2

q
∼= Lk(ν).

Hence, by Brauer–Humphreys reciprocity, P(µ) = 1(µ)
1(λ)

and P(λ) = 1(λ) are
uniserial modules with composition series

(8.8.1) P(µ) : Lk(µ) P(λ) : Lk(λ) P(ν) : Lk(ν)

Lk(λ) Lk(µ)

Lk(µ)

where ν 6= λ,µ. By Proposition 8.4, we have b2,r (λ) = {λ,µ} and b2,r (ν̄) = {ν}

for ν 6= λ,µ. Using Lemma 8.7, we see that ũk(2, l)pµ = Uk(2, l)kµ ∼= P(µ).
Hence, P(µ)|ũk(2,l) is a projective ũk(2, l)-module. By Lemma 8.6, we first have
socsk(2,l)1(λ) = L̂1(µ). Applying Lemma 8.6 again to the contravariant dual
of P(µ)/Lk(µ) (see the proof of Lemma 8.3) yields socsk(2,l)(P(µ)/Lk(µ)) =

L̂1(λ). Hence, socsk(2,l)P(µ) is irreducible and so P(µ)|sk(2,l) is indecomposable.
This together with Lemma 8.5 implies that P(µ)|ũk(2,l) is indecomposable. Thus,
P(µ)|ũk(2,l)

∼= p(µ̄) has the following structure:

p(µ̄) : Lk(µ̄)

2Lk(λ̄)

Lk(µ̄)

Here 2Lk(λ̄) means Lk(λ̄)⊕Lk(λ̄). (Note that Lk(λ̄)∼= Lk(0, 0).)
Now let us determine the structure of p(λ̄). By Lemma 8.7 we have

(8.8.2) Uk(2, l)kλ ∼=Uk(2, l)kδ ∼= P(λ)
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where δ = (0, l). Let

W1 = span
{[(

a1,1 0
a2,1 0

)] ∣∣∣∣ 1≤ a1,1, a2,1 ≤ l−1, a1,1+ a2,1 = l
}
,

W2 = span
{[(

0 a1,2

0 a2,2

)] ∣∣∣∣ 1≤ a1,2, a2,2 ≤ l−1, a1,2+ a2,2 = l
}
.

Then, there are vector space decompositions

(8.8.3)
Uk(2, l)kλ =W1⊕ span

{[( l
0

0
0

)]
,
[(0

l
0
0

)]}
,

Uk(2, l)kδ =W2⊕ span
{[(0

0
l
0

)]
,
[(0

0
0
l

)]}
,

Clearly, dimk Lk(λ)= 2 and Lk(λ) has only two weights (l, 0) and (0, l). Thus, by
(8.8.1), (8.8.2) and (8.8.3),

(8.8.4) W1 ∼=W2 ∼= Lk(µ).

Now, as a vector space, ũk(2, l)pλ = W1 ⊕ W2 ⊕ span{pλ}. Furthermore, by
Lemma 8.7, p(λ̄)∼= ũk(2, l)pλ. Thus, by (8.8.4),

socũk(2,l) ũk(2, l)pλ =W1⊕W2 ∼= 2Lk(µ̄)

and ũk(2, l)pλ/(W1⊕W2)∼= Lk(λ̄). So p(λ̄)∼= ũk(2, l)pλ has the following struc-
ture:

p(λ̄) : Lk(λ̄)

2Lk(µ̄).

Let B be the basic algebra of the block b2,r (λ) of ũk(2, l). Let v0 = Lk(λ̄) and
v1 = Lk(µ̄). The Ext quiver for B is given by Figure 1, with relations β1α1 = β2α2

and β2α1 = β1α2 = αiβ j = 0 for all i, j ∈ {0, 1}. Since p(µ̄) is also an injective
module and p(µ̄) is the only indecomposable projective modules of radical length
greater than 2, by [Drozd and Kirichenko 1980, 9.2] the algebra B has infinite
representation type if and only if B/J 2 has infinite representation type, where J is
the radical of B. Thus, by applying [Pierce 1982, 11.8] to this quiver, we conclude
that the algebra B has infinite representation type. Hence, the algebra ũk(2, l) has
infinite representation type. �

•v0 •v1

α1

α2

β2

β1

Figure 1. Ext quiver of the basic algebra B of the block b2,r (λ) of ũk(2, l).
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Proposition 8.9. The algebra ũk(2, l + 1) has infinite representation type.

Proof. Let λ = (l + 1, 0), µ = (l − 1, 2) and δ = (1, l). By the argument similar
to the proof of Proposition 8.8 we have P(λ) and P(µ) are uniserial modules with
composition factors given by

P(µ) : Lk(µ) P(λ) : Lk(λ) P(ν) : Lk(ν)

Lk(λ) Lk(µ)

Lk(µ)

where ν 6= λ,µ. By Proposition 8.4, we have b2,r (λ) = {λ,µ} and b2,r (ν̄) = {ν}

for ν 6= λ,µ. Applying Lemma 8.7 yields

ũk(2, l + 1)pµ =Uk(2, l + 1)kµ ∼= P(µ)⊕ P(δ+) where δ+ = (l, 1).

So P(µ)|ũk(2,l+1) is projective. A similar argument with Lemma 8.6 as in the proof
of Proposition 8.8 shows that socsk(2,l+1)P(µ) is irreducible. Hence, P(µ)|sk(2,l+1)

is indecomposable. Thus, by Lemma 8.5, P(µ)|ũk(2,l+1) is an indecomposable
ũk(2, l + 1)-module. So, P(µ)|ũk(2,l+1) ∼= p(µ̄). Now, by Lemmas 7.1 and 8.6,
p(µ̄) has the following structure:

p(µ̄) : Lk(µ̄)

2Lk(λ̄)

Lk(µ̄)

We now determine the structure of V := ũk(2, l + 1)pλ. Let

W =Uk(2, l + 1)kλ⊕Uk(2, l + 1)kδ.

By Lemma 8.7, noting that Lk(δ
+) is the Steinberg module,

(8.9.1) p(λ̄)⊕Lk(δ̄
+)∼= V ⊆W ∼= 2P(λ)⊕ Lk(δ

+)

So, by Lemmas 7.1 and 8.6,

socũk(2,l+1)W ∼= 2Lk(µ̄)⊕Lk(δ̄
+) and W/socũk(2,l+1)W ∼= 4Lk(λ̄).

Thus there exist ũk(2, l + 1)-submodules W1,W2,W3 of W such that

socũk(2,l+1)W =W1⊕W2⊕W3, W1 ∼=W2 ∼= Lk(µ̄) and W3 ∼= Lk(δ̄
+).

Since [[diag(µ̄), r ]]1 = [diag(µ)], with the notation

Vµ = [[diag(µ̄), r ]]1V = [diag(µ)]V ⊆ [diag(µ)]W =Wµ,

one computes dimk Vµ = dimk Wµ = dimk(socũk(2,l+1)W )µ = 3. Thus,

Vµ =Wµ = (socũk(2,l+1)W )µ = (W1)µ⊕ (W2)µ⊕ (W3)µ.
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This implies

socũk(2,l+1)W = ũk(2, l+1)(W1)µ⊕ ũk(2, l+1)(W2)µ⊕ ũk(2, l+1)(W3)µ ⊆ V .

Hence, socũk(2,l+1)V = socũk(2,l+1)W ∼= 2Lk(µ̄)⊕Lk(δ̄
+). Since V/socũk(2,l+1)V

and Lk(λ̄) both have dimension 2 over k, and since

V/socũk(2,l+1)V ⊆W/socũk(2,l+1)W ∼= 4Lk(λ̄),

we have V/socũk(2,l+1)V ∼= Lk(λ̄). Thus, by (8.9.1), p(λ̄) has three composition
factors with socle 2Lk(µ̄).

If B denotes the basic algebra of the block b2,r (λ) of ũk(2, l), then the computa-
tion above implies that the Ext quiver for B is the same as given in Figure 1 above
with relations β1α1 = β2α2 and all other products are zero. Hence, B has infinite
representation type and, consequently, ũk(2, l + 1) has infinite representation type.

�

We now can establish the following classification of finite representation type
for little q-Schur algebras.

Theorem 8.10. Assume l ′ = l ≥ 3 is odd. The little q-Schur algebra ũk(n, r) =
uk(n, r) has finite representation type if and only if l > r .

Proof. Recall from [Du et al. 2005, 8.2(2), 8.3] that uk(n, r) has a basis

{[[A, r ]]}A∈4(n,r)l .

If n > 2, then
e =

∑
λ∈3(2,r)l

[[diag(λ), r ]] ∈ ũk(n, r)

is an idempotent, and eũk(n, r)e ∼= ũk(2, r). Thus, if ũk(2, r) has infinite represen-
tation type, then so does ũk(n, r) (see [Bongartz 1980] or [Erdmann 1990, I.4.7]
for such a general fact). So it reduces to prove the result for n = 2.

If r < l, then ũk(n, r)=Uk(n, r) is semisimple by [Erdmann and Nakano 2001].
It remains to prove that ũk(2, r) has infinite representation type for all r ≥ l. By the
transfer map (6.0.1), we see that either ũk(2, l) or ũk(2, l + 1) is a homomorphic
image of ũk(2, r). Since both ũk(2, l) and ũk(2, l + 1) have infinite representation
type by Propositions 8.8 and 8.9, it follows that the algebra ũk(2, r), and hence
ũk(n, r), has infinite representation type for all r ≥ l. �

A byproduct of this result is the following determination of finite representation
type of infinitesimal quantum gln .

Corollary 8.11. The infinitesimal quantum group uk(n) has infinite representation
type for any n and l. In particular, uk(n) is never semisimple.
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Proof. By Theorem 8.10 the algebra ũk(n, l) has infinite representation type. This
implies that uk(n) has infinite representation type since ũk(n, l) is the homomor-
phic image of uk(n). �

9. Appendix

It is well-known that ζr (U(sln)) is equal to U(n, r). In this section, we shall prove
that this is also true over Z, that is, ζr (UZ(sln))=UZ(n, r).

Let
X i :=

{
µ ∈3(n, r)

∣∣max{µ j −µ j+1 | 1≤ j ≤ n−1} = i
}
.

Then we have 3(n, r)=
⋃

−r≤i≤r
X i (disjoint union). The definition of U(n) implies:

Lemma 9.1. There is a unique Q(υ)-algebra automorphism σ on U(n) satisfying

σ(Ei )= Fi , σ (Fi )= Ei , σ (K j )= K−1
j .

It is clear that
σ
([ K̃i ; c

t

])
=

[ K̃−1
i ; c
t

]
.

By definition, the Z-algebra UZ(sln) is generated by the elements E (N )i , F (N )i and
K̃±1

i for 1≤ i ≤ n and N ≥ 0. Since[ K̃i ; c
t

]
∈UZ(sln) and σ(UZ(sln))=UZ(sln),

we have [ K̃−1
i ; c
t

]
∈UZ(sln).

By Lemma 4.5(2), the following lemma holds in U(n, r).

Lemma 9.2. Let λ ∈3(n, r). Then we have[ k̃i ; c
t

]
kλ =

[
λi−λi+1+c

t

]
kλ.

Theorem 9.3. The image of UZ(sln) under the homomorphism ζr is equal to the
algebra UZ(n, r). Hence, for any field k which is a Z-algebra, base change induces
an epimorphism ζr = ζr ⊗ 1 :Uk(sln)→Uk(n, r).

Proof. Let U ′r = ζr (UZ(sln)). By [Du 1995a], ζr (UZ(n)) = UZ(n, r). Hence it is
enough to prove that kλ ∈U ′r for any λ ∈3(n, r). We shall prove kµ ∈U ′r for any
µ ∈ X i by a downward induction on i .

Let λi := (0, . . . , 0, r, 0 . . . , 0), where the r is in the i-th position. It is clear that

Xr = {λi | 1≤ i ≤ n− 1}

and X−r = {λn := (0, . . . , 0, r)}. By Lemmas 4.5(1) and 9.2, for 1≤ i ≤ n− 1 we
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have [ k̃i ; r
2r

]
= kλi +

∑
µ∈3(n,r)
µ 6=λi

[
µi−µi+1+r

2r

]
kµ.

If 1 ≤ i ≤ n − 1, then 0 ≤ µi −µi+1 + r < 2r for any µ ∈ 3(n, r) with µ 6= λi .
Hence, [

µi−µi+1+r
2r

]
= 0 and

[ k̃i ; r
2r

]
= kλi ∈U ′r

for 1≤ i ≤ n− 1. Similarly, we can prove that
[ k̃−1

n−1; r
2r

]
= kλn ∈U ′r . Hence, for

any µ ∈ Xr ∪ X−r , we have kµ ∈U ′r .
Now we assume that for any µ ∈ X j with j > k we have kµ ∈U ′r . Let λ ∈ Xk .

Then there exists some i0 such that λi0 − λi0+1 = k. We now prove kλ ∈U ′r .
By Lemmas 4.5(1) and 9.2, we have[ k̃i0; r

k+r

]
=

∑
µ∈X j

j 6=k

[
µi0−µi0+1+r

k+r

]
kµ+

∑
ν∈Xk

[
νi0−νi0+1+r

k+r

]
kν .

Note that for j < k with µ ∈ X j , we have 0 ≤ µi0 −µi0+1 + r ≤ j + r < k + r.
Since 0 ≤ νi0 − νi0+1+ r ≤ k+ r for ν ∈ Xk , we have 0 ≤ νi0 − νi0+1+ r < k+ r
where ν ∈ Xk such that νi0 − νi0+1 6= k. It follows that[ k̃i0; r

k+r

]
=

∑
ν∈Xk

νi0−νi0+1=k

kν +
∑
µ∈X j
j>k

[
µi0−µi0+1+1

k+1

]
kµ.

Let Z := {ν ∈ Xk | νi0 − νi0+1 = k}. Then by induction we have

(9.3.1)
∑
ν∈Z

kν ∈U ′r .

For any i 6= i0 and −r ≤ s ≤ k, let Ys,i := {ν ∈ Z | νi − νi+1 = s}. Then for any
fixed i 6= i0, we have Z =

⋃
−r≤s≤k Ys,i (disjoint union). Now for fixed i 6= i0, we

prove
∑

ν∈Ys,i
kν ∈U ′r by induction on s.

For fixed i 6= i0, let m :=max{s | Ys,i 6=∅ for − r ≤ s ≤ k}. By Lemmas 4.5(1)
and 9.2, we have[ k̃i ; r

m+r

]
=

∑
µ∈3(n,r)

[
µi−µi+1+r

m+r

]
kµ

=

∑
ν∈Ym,i

kν +
∑

ν∈Ys,i 6=∅
−r≤s<m

[ s+r
m+r

]
kν +

∑
ν 6∈Z

[
νi−νi+1+r

m+r

]
kν

=

∑
ν∈Ym,i

kν +
∑
ν 6∈Z

[
νi−νi+1+r

m+r

]
kν
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(since 0 ≤ s + r < m + r for −r ≤ s < m). Hence, multiplying both sides by∑
ν∈Z kν , (9.3.1) implies ∑

ν∈Ym,i

kν =
∑
ν∈Z

kν
[ k̃i ; r

m+ r

]
∈U ′r .

Now we assume Ys,i 6= ∅ and for any s ′ such that s ′ > s and Ys′,i 6= ∅ we have∑
ν∈Ys′,i

kν ∈U ′r . We prove
∑

ν∈Ys,i
kν ∈U ′r .

By Lemmas 4.5(1) and 9.2, we have[ k̃i ; r
s+r

]
=

∑
µ∈3(n,r)

[
µi−µi+1+r

s+r

]
kµ

=

∑
ν∈Ys,i

kν +
∑

ν∈Ys′,i 6=∅
s<s′≤m

[s ′+r
s+r

]
kν +

∑
ν∈Ys′,i 6=∅
−r≤s′<s

[s ′+r
s+r

]
kν +

∑
ν 6∈Z

[
νi−νi+1+r

s+r

]
kν

=

∑
ν∈Ys,i

kν +
∑

ν∈Ys′,i 6=∅
s<s′≤m

[s ′+r
s+r

]
kν +

∑
ν 6∈Z

[
νi−νi+1+r

s+r

]
kν .

By induction we have∑
ν∈Ys′,i 6=∅
s<s′≤m

[s ′+r
s+r

]
kν =

∑
s<s′≤m

[s ′+r
s+r

] ∑
ν∈Ys′,i 6=∅

kν ∈U ′r .

It follows that∑
ν∈Ys,i

kν +
∑
ν 6∈Z

[
νi−νi+1+r

s+r

]
kν =

[ k̃i ; r
s+r

]
−

∑
ν∈Ys′,i 6=∅
s<s′≤m

[s ′+r
s+r

]
kν ∈ U ′r .

Hence, by (9.3.1) we have∑
ν∈Ys,i

kν =
(∑
ν∈Z

kν
)
·

(∑
ν∈Ys,i

kν +
∑
ν 6∈Z

[
νi−νi+1+r

s+r

]
kν
)
∈ U ′r .

Now we have proved that
∑

ν∈Ys,i 6=∅ kν ∈ U ′r for i 6= i0 with −r ≤ s ≤ k. It is
clear that⋂

i 6=i0
1≤i≤n−1

Yλi−λi+1,i = {ν ∈ Z | νi − νi+1 = λi − λi+1, 1≤ i ≤ n−1, i 6= i0}

= {ν ∈ Xk | νi − νi+1 = λi − λi+1, 1≤ i ≤ n−1} = {λ}.

It follows that ∏
i 6=i0

1≤i≤n−1

∑
ν∈Yλi−λi+1,i

kν =
∑

ν ∈
⋂

i 6=i0
1≤i≤n−1

Yλi−λi+1,i

kν = kλ ∈ U ′r .



REPRESENTATIONS OF LITTLE q -SCHUR ALGEBRAS 375

Hence, the result follows. �

Note that by the proof of the above theorem that we have in fact proved

ζr (U 0
Z(sln))=U 0

Z(n, r).

It is natural to ask what is the image of ũk(sln) under the map ζr . The following
theorem answer the question.

Theorem 9.4. If (n, l ′)= 1, that is, the integers n and l ′ are relatively prime, then
ζr (ũ0

k(sln))= ũ0
k(n, r). In particular, the homomorphism ζr : ũk(sln)→ ũk(n, r) is

surjective.

Proof. Let s= ζr (ũk(sln)), s+= ζr (ũ+k (sln)), s−= ζr (ũ−k (sln)) and s0
= ζr (ũ0

k(sln)).
Then ũ+k (n, r) = s+ and ũ−k (n, r) = s−. Hence, it is enough to prove ki ∈ s0 for
all i . Since k1k2 . . . kn = ε

r by [Doty and Giaquinto 2002, 2.1], we have

kn
1 = ε

r k̃n−1
1 k̃n−2

2 . . . k̃2
n−2k̃n−1 ∈ s0.

Since (n, l ′) = 1, there are some integers a, b such that na + bl ′ = 1. So k1 =

kna+bl ′
1 = kna

1 ∈ s0. Then k−1
1 = kl ′−1

1 ∈ s0. Hence

k−1
i+1 = k−1

1 k̃1k̃2 . . . k̃i ∈ s0

for all i . It follows ki+1 = k−(l
′
−1)

i+1 ∈ s0 for all i . The result follows. �

Remark 9.5. Note that if (n, l ′) 6= 1, the above theorem may be not true. For
example, suppose n = l ′ = 3= l and r ≥ 4. Then

k̃2 = k2k−1
3 = ε

−r k1k2
2

since k1k2k3 = ε
r . Since k3

2 = kl
2 = 1, we have k̃1 = k1k−1

2 = k1k2
2. Hence

k̃2 = ε
−r k̃1. It follows that

ζr (ũk(sln)
0)= span{1, k̃1, k̃2

1}.

So dim ζr (ũ0
k(sln))≤ 3. But, by [Du et al. 2005, 9.2], dim ũ0

k(n, r)= 9. Hence, in
general, ζr (ũ0

k(sln)) 6= ũ0
k(n, r). Thus, it is very likely that ζr : ũk(sln)→ ũk(n, r)

is not surjective.
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