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We give a notion of renormalized weighted volume in the setting of con-
formal geometry following the ideas of Fefferman and Graham. Indeed,
it is a precise term in the asymptotic expansion near the boundary for a
weighted volume related to the conformal fractional Laplacian operator and
fractional-order Q-curvature.

1. Introduction

The relation between Poincaré–Einstein metrics and conformal objects on the
boundary has aroused a lot of interest, in some sense motivated by what is called
in physics the anti-de Sitter/conformal field theory correspondence, or AdS/CFT
correspondence. Since the appearance of the work now published as [Fefferman and
Graham 2012], there has been a great deal of literature on the ambient and Poincaré
metrics. In particular, the notions of renormalized volume and area introduced in
the physics literature are now important objects of study in the area of geometrical
analysis and conformal geometry.

On the other hand, for γ ∈ (0, n/2) one can consider the conformal fractional
Laplacian (Paneitz) operator Pγ defined on the boundary of a conformally compact
Einstein manifold Xn+1, as introduced in [Graham and Zworski 2003; Mazzeo and
Melrose 1987] coming from scattering theory. In the Euclidean case, Pγ is just
the standard fractional Laplacian (−1Rn )γ , but in the general case it is a nonlocal
conformally covariant operator of fractional order.

When γ is an integer, say γ = k, the Pk are the conformally invariant powers of
the Laplacian constructed by Graham, Jenne, Mason and Sparling [Graham et al.
1992]; they are local operators. In particular, when k = 1 we have the well-known
conformal Laplacian,

P1 =−1+
n− 2

4(n− 1)
R,
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and when k = 2, the Paneitz operator [Paneitz 2008]

P2 = (−1)
2
+ δ (an Rg+ bnRic) d + n−4

2
Q2.

As pointed out in [Chang and González 2011], the conformal fractional Laplacian
can be characterized as the Dirichlet-to-Neumann operator for a divergence-type,
second-order degenerate elliptic equation with a weight in the Muckenhoupt class
A2. This characterization allows one to study nonlocal operators by using the
available tools for elliptic equations.

The associated fractional-order curvature Qγ defined on the boundary of a
conformally compact Einstein manifold can be introduced as Qγ = Pγ 1, and it
satisfies an important conformally covariant property. Q1 is just the scalar curvature.
However, for noninteger powers γ , the geometrical properties of Qγ are not yet
well understood. See the related works [Qing and Raske 2006; González et al. 2012;
González and Qing 2010; Guillarmou and Qing 2010], for instance.

The notion of renormalized volume was first investigated by the physicists in
relation to the AdS/CFT correspondence. It was considered in [Fefferman and
Graham 2002] (see also [Graham 2000; Chang et al. 2007] for good surveys with
many explicit examples). Given an asymptotically hyperbolic manifold Xn+1 with
boundary Mn and defining function ρ, one may compute the asymptotic expansion
of the volume of the region {ρ > ε}. The renormalized volume is defined as one
very specific term in this asymptotic expansion. When the dimension n is odd, the
renormalized volume is a conformal invariant of the conformally compact structure,
and it can be calculated as the conformal primitive of the Q-curvature coming from
the scattering operator (this is the case γ = n/2). In that case that n is even, the
picture is more complex, and one can show the that the renormalized volume is one
term of the Chern–Gauss–Bonnet formula in higher dimensions; see [Chang et al.
2006].

The aim of this note is to give a weighted version for the renormalized volume,
and to find its relation to the fractional curvature Qγ , for values γ ∈ (0, 1). The
volume in this case is computed with respect to a very specific weight function ρ∗

that will be introduced later in Lemma 2.2. This weight function is adapted to each
fractional-order problem, and it is interpreted as the defining function that in some
sense straightens out the coordinates of M × (0, δ). We show:

Theorem 1.1. Let (Xn+1, g+) be a conformally compact Einstein manifold, and
ρ a defining function for Mn

= ∂X , such that in a neighborhood M × (0, δ) the
metric is written in normal form

g+ = ρ−2(dρ2
+ gρ),
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with gρ = ĥ + O(ρ2), for some ĥ in the conformal infinity. Then we have the
following asymptotic expansion for the weighted volume when ε→ 0:

(1) volg+,γ ({ρ > ε}) :=

∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+

=
(n

2+γ
)−1 vol(M) ε−

n
2−γ +Vγ ε−

n
2+γ +O(ε−

n
2−γ+2),

where the weight ρ∗ is the special defining function found in Lemma 2.2. Moreover,
the term Vγ := Vγ [g+, ĥ] can be precisely computed as

(2) Vγ =
1

dγ
( n

2 − γ
) ∫

M
Qγ [g+, ĥ] dvolĥ .

Remark. We define Vγ as the renormalized weighted volume. Contrary to the usual
definition of renormalized volume, Vγ is not a conformal invariant in the class [ĥ];
however, it is interesting to set up a fractional-order Yamabe type problem for (2),
and this problem has been partially solved in [González and Qing 2010]. For the
critical power γ = n/2, the renormalized weighted volume will correspond to the
standard notion of renormalized volume.

Remark. Equation (1) can be interpreted as a first variation formula for Qγ , which
can shed some light on the geometrical interpretation for a fractional-order nonlocal
curvature Qγ .

For integer values of γ , the renormalized volume for the Paneitz operator Pk was
already considered by Chang and Fang [2008], who studied a class of variational
functionals, which in locally conformally flat manifolds is deeply related to the
symmetric functions of the eigenvalues of the Schouten tensor.

Another interesting connection, pointed out by T. Rivière, has to do with the
renormalized area for a complete minimal surface in H3, considered in [Alexakis
and Mazzeo 2010]. This notion is equivalent to the classical Willmore energy of
the surface. In some sense, this corresponds, in our case, to the values n = 1 and
γ = 1

2 , which are critical for the problem.
From another point of view, given a smooth manifold compact manifold Xn+1

with boundary M , endowed with a smooth metric ḡ, one can ask if there exists
an analogous construction. In [Chang and González 2011] it was shown that for
exponents γ ∈

(
0, 1

2

)
it is possible to construct a fractional-order operator Pγ on M

through an extension problem with respect to the metric ḡ, while for γ ∈
(
0, 1

2

)
,

nonvanishing mean curvature is an obstruction to the existence of such an operator.
The same picture appears when computing the renormalized weighted volume.

For the case γ ∈
(
0, 1

2

)
we have the analogue of Theorem 1.1, while for γ ∈

( 1
2 , 1

)
nonvanishing mean curvature would create a different term in the asymptotic
expansion (1). These results are summarized in Theorem 4.2 in the last section.
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The inspiration for these results came from an apparently unrelated problem.
Caffarelli and Souganidis [2010] study some Bence–Merriman–Osher-type algo-
rithms (originating in [Merriman et al. 1994]) corresponding to the fractional
Laplacian (−1Rn )γ . They show convergence to moving fronts, with two different
behaviors depending on the value of γ : when 0< γ < 1

2 , the normal velocity of
the interface depends on a fractional-order mean curvature Hγ , but in the case
1
2 <γ < 1, the resulting interface moves simply by (suitable scaled) mean curvature
flow. We try to obtain a similar result in a geometric setting: the moving fronts of
Caffarelli and Souganidis are replaced in our case by the level sets of a weight ρ∗

that measures the distance to the boundary, and we get the same dichotomy.
The fractional mean curvature Hγ is a nonlocal, fractional-order curvature for

the boundary of a compact set in Euclidean space, defined by means of a singular
integral. It was been considered in [Caffarelli et al. 2010; Caffarelli and Valdinoci
2011], for instance, but so far there has not been a clear picture of its geometrical
meaning. Of course, the natural question is to find the relation between the curvatures
Hγ and Qγ , at least when γ ∈

(
0, 1

2

)
.

These types of results indicate that, when γ < 1
2 , the operator presents very

strong nonlocal behavior, and does not depend as much on the local geometry.

Structure of the paper. In Section 2 we review the necessary concepts of scattering
theory, the construction of the fractional Paneitz operator through an extension
problem and the notion of renormalized volume. In Section 3 we consider the
renormalized weighted volume in the conformally compact Einstein setting in order
to give the proof of Theorem 1.1. Finally, in Section 4 we extend this notion to any
compact manifold with smooth boundary and give the proof of Theorem 4.2.

2. Background on the conformal fractional Laplacian

We review the definition of the conformal fractional Laplacian as the scattering
operator in a conformally compact Einstein manifold. For an introduction, see for
instance the first sections of [Chang and González 2011], and the references therein;
here we give a brief summary.

Let M be a compact manifold of dimension n with a metric ĥ. Let Xn+1 be a
smooth manifold of dimension n+ 1 with boundary M . A function ρ is a defining
function of ∂X in X if ρ > 0 in X , ρ = 0 on ∂X , and dρ 6= 0 on ∂X . We say
that g+ is a conformally compact metric on X with conformal infinity (M, [ĥ])
if there exists a defining function ρ such that the manifold (X̄ , ḡ) is compact for
ḡ = ρ2g+, and ḡ|M ∈ [ĥ]. If, in addition (Xn+1, g+) is a conformally compact
manifold and Ric[g+] = −ng+, then we call (Xn+1, g+) a conformally compact
Einstein manifold.
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Given a conformally compact, asymptotically hyperbolic manifold (Xn+1, g+)
and a representative ĥ in [ĥ] on the conformal infinity M , there is a uniquely defining
function ρ such that, on M × (0, δ) in X , g+ has the normal form

(3) g+ = ρ−2(dρ2
+ gρ),

where gρ is a one-parameter family of metrics on M satisfying gρ |M = ĥ. Moreover,
gρ has an asymptotic expansion containing only even powers of ρ, at least up to
degree n. For the rest of the paper, we assume that the metric g+ is written in this
normal form.

It is known [Graham and Zworski 2003; Mazzeo and Melrose 1987] that, given
f ∈ C∞(M) and s ∈ C, the eigenvalue problem

(4) −1g+u− s(n− s)u = 0 in X,

has a solution of the form

(5) u = Fρn−s
+Gρs, F,G ∈ C∞(X), F |ρ=0 = f,

for all s ∈ C unless s(n − s) belongs to the pure point spectrum of −1g+ . The
scattering operator on M is defined as S(s) f = G|M ; it is a meromorphic family
of pseudodifferential operators in the half-plane Re s > n/2. The values s =
n/2, n/2+1, n/2+2, . . . are simple poles of finite rank, known as the trivial poles;
S(s) may have other poles, but for the rest of the paper we will always assume that
we are not in those exceptional cases.

Given a conformally compact Einstein manifold (X, g+) with conformal infinity
(M, [ĥ]), we define the conformally covariant fractional powers of the Laplacian
on M as follows: for s = n

2 + γ , γ ∈
(
0, n

2

)
, γ 6∈ N, we set

(6) P ĥ
γ := Pγ [g+, ĥ] = dγ S

(n
2
+ γ

)
, dγ = 22γ 0(γ )

0(−γ )
.

With this choice of multiplicative factor, the principal symbol of Pγ is exactly the
principal symbol of the fractional Laplacian (−1ĥ)

γ .
The operators Pγ [g+, ĥ] satisfy an important conformal covariance property.

Indeed, for a conformal change of metric

(7) ĥw = w
4

n−2γ ĥ, w > 0,

we have

Pγ [g+, ĥw]ϕ = w
−

n+2γ
n−2γ Pγ [g+, ĥ] (wϕ) ,

for all smooth ϕ on M .
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We define the Qγ -curvature of the metric associated to the functional Pγ to be

(8) Q ĥ
γ := Qγ [g+, ĥ] = Pγ [g+, ĥ](1).

In particular, for a change of metric as (7), we obtain the equation for the Qγ -
curvature:

P ĥ
γ (w)= w

n+2γ
n−2γ Q ĥw

γ .

Next, we consider the characterization of the fractional Paneitz operator Pγ on a
manifold M through an extension problem for a degenerate elliptic equation, in the
spirit of Caffarelli and Silvestre [2007]. Indeed, we have:

Theorem 2.1 [Chang and González 2011]. Let (X, g+) be any conformally compact
Einstein manifold, and let M be its boundary, with defining function ρ satisfying (3).
Then, given f ∈ C∞(M) and γ ∈ (0, 1), the Poisson problem (4)–(5) for s = n

2 + γ

is equivalent to the extension problem

(9)
− div(ρa

∇U )+ E(ρ)U = 0 in (X, ḡ),

U = f on M,

where
ḡ = ρ2g+, U = ρs−nu, a = 1− 2γ, s = n

2
+ γ,

and the derivatives in (9) are taken with respect to the metric ḡ. The low-order term
is given by

(10) E(ρ)=−1ḡ
(
ρ

a
2
)
ρ

a
2 +

(
γ 2
−

1
4

)
ρ−2+a

+
n−1
4n

Rḡρ
a.

We have the following expression for the fractional conformal Laplacian (6):

Pγ [g+, ĥ] f =
dγ
2γ

lim
ρ→0

(
ρa∂ρU

)
.

Before we continue, we remind the reader of how to compute the Qγ [g+, ĥ]-
curvature, as defined in (8), for γ ∈

(
0, n

2

)
\N, s = n

2 + γ . We set f ≡ 1, and find
the solution to the Poisson problem

(11)

{
−1g+v− s(n− s)v = 0 inX,

v = Fρn−s
+Gρs, F = 1+ O(ρ2),G = h+ O(ρ2).

Then
Qγ [g+, ĥ] = dγ h.

Next, we construct the special defining function ρ∗ that will be needed in the
definition of weighed volume. From the results in [Chang and González 2011;
González and Qing 2010], one can see that it is possible to find some ρ∗ satisfying
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that the zero-order term E(ρ∗) in Equation (9) vanishes so that the extension
problem is a pure divergence equation. More precisely,

Lemma 2.2. Let (X, g+) be a conformally compact Einstein manifold with confor-
mal infinity (M, [ĥ]). For each γ ∈ (0, 1), there exists another defining function ρ∗

on X , satisfying ρ∗ = ρ+ O(ρ2γ+1), and such that for the term E defined in (10)
we have

E(ρ∗)≡ 0.

The metric g∗ = (ρ∗)2g+ satisfies g∗|ρ=0 = ĥ and has asymptotic expansion

g∗ = (dρ∗)2
[
1+ O((ρ∗)2γ )

]
+ ĥ

[
1+ O((ρ∗)2γ )

]
.

In addition, if U is a solution of

− div
(
(ρ∗)a∇U

)
= 0 in (X, g∗),

U = f on M,

then

Pγ [g+, ĥ] f =
dγ
2γ

lim
ρ∗→0

(ρ∗)a∂ρ∗U + f Qγ [g+, ĥ],

This defining function ρ∗ is related to the eigenfunctions of −1g+ , and is
constructed as follows: given γ ∈ (0, 1), solve the Poisson problem (11). Then we
simply set

(12) ρ∗ := v
1

n−s .

3. A notion of renormalized weighted volume

Before we give the proof of Theorem 1.1, we recall the original notion of renormal-
ized volume, for n odd, as introduced by Fefferman and Graham [2002]. Given a
conformally compact Einstein manifold (X, g+) with defining function ρ, we can
write the expansion

volg+ ({ρ > ε})= c0ε
−n
+ c2ε

−n+2
+ . . .+ cn−1ε

−1
+ V + o(1).

We call the constant term V := Vn/2[X, g+] the renormalized volume for (X, g+).
It is independent of the choice of ĥ in the class [ĥ]. It can be computed as follows:
for each s ∈ C, consider the solution us of (4) with boundary data f ≡ 1. Set

v =−
d
ds

∣∣∣∣
s=n

us .

Then v solves
−1g+v = n in X,
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and has the asymptotic behavior

v = log ρ+ A+ Bρn

in a neighborhood of M , where A, B are functions even in ρ, and A|ρ=0 = 0.
If n is odd, then B|M is determined by the choice of a Poincaré metric g+ and a

representative metric ĥ. Moreover,

B|M =−
d
ds

S(s)1
∣∣∣∣
s=n
.

The Qn/2-curvature is defined as

Qn/2 = Qn/2[g+, ĥ] = dn/2 B|M =−dn/2
d
ds

S(s)1
∣∣∣∣
s=n
,

where the constant dn/2 is written as in (6). This quantity is globally determined
and depends in general on the extension X .

If ĥw = e2wĥ, then Qn/2 satisfies the transformation law

enwQn/2[g+, ĥw] = Qn/2[g+, ĥ] + dn/2S(n)w.

Moreover,

Vn/2[X, g+] =
1

dn/2

∫
M

Qn/2[g+, ĥ] dvĥ .

Now we are ready for the proof of Theorem 1.1. Let (Xn+1, g+) be a conformally
compact Einstein manifold with conformal infinity (Mn, [ĥ]). We write the metric
in normal form, i.e., g+ = ḡ/ρ2, for ḡ = dρ2

+ gρ , at least in a neighborhood
M× (0, δ). Fix γ ∈ (0, 1) and s = n/2+γ . Let v be the solution of the eigenvalue
problem (11). By construction, v has the precise asymptotic behavior

(13) v = ρn−s(1+ O(ρ2))+ ρs(h+ O(ρ2)), h = (dγ )−1 Qγ [g+, ĥ].

On the one hand, we integrate by parts,

(14) I1 := −

∫
{ρ>ε}

1g+v dvolg+ = ε
1−n

∫
{ρ=ε}

∂ρv dvolgε

= (n−s)ε−s
∫
{ρ=ε}

(
1+O(ε2)

)
dvolgε+ sε−n+s

∫
{ρ=ε}

(
h+O(ε2)

)
dvolgε ,

where we have used the asymptotic expansion for v given in (13).
Now we check that the expansion for the volume element is just

dvolgε = dvolĥ +O(ε2),
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because gρ = ĥ+ O(ρ2), and use that

Qγ = Pγ 1= dγ h, s = n
2
+ γ,

to arrive at

I1 =
( n

2 − γ
)
ε−

n
2−γ vol(M)+ 1

dγ

( n
2 + γ

)
ε−

n
2+γ

∫
M

Qγ dvolĥ +O(ε−
n
2−γ+2).

On the other hand, we recall the definition of the special defining function ρ∗

from (12). Then

I2 :=

∫
{ρ>ε}

v dvolg+ =

∫
{ρ>ε}

(ρ∗)n−s dvolg+ .

We remind the reader that v is a solution of (11), so that

(15) −1g+v− s(n− s)v = 0.

From (15), putting together I1 and I2, we obtain∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+

=
( n

2 + γ
)−1

ε−
n
2−γ vol(M)+ 1

dγ

( n
2 − γ

)−1
ε−

n
2+γ

∫
M

Qγ dvolĥ +O(ε−
n
2−γ+2),

as desired.

4. Weighted normalized volume in a general setting

In this section we change our point of view and consider a more general problem.
Given any smooth compact manifold X with boundary and a metric ḡ, it is possible
to give a notion of the conformal Paneitz operator Pγ with respect to the metric
ḡ and its associated curvature in this setting. We have (see also [Guillarmou and
Guillopé 2007] for the case γ = 1

2 ):

Proposition 4.1 [Chang and González 2011]. Let (Xn+1, ḡ) be a compact smooth
manifold with boundary. Fix γ ∈ (0, 1) and suppose that U is the solution to the
boundary value problem (9). Then one can construct the conformal fractional
Laplacian as follows:

• For γ ∈ (0, 1
2),

(16) Pγ [g+, ĥ] f =−d∗γ lim
ρ→0

ρa∂ρU,

where

d∗γ =
22γ−10(γ )

γ0(−γ )
.
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• For γ = 1
2 ,

P1/2[g+, ĥ] f =− lim
ρ→0

∂ρU + n−1
2

H f,

where H := 1
2n Trĥ(h

(1)) is the mean curvature of M.

• For γ ∈
( 1

2 , 1
)
, (16) still holds if H = 0.

We review this construction: Let (X̄ , ḡ) be a compact smooth manifold of
dimension n+ 1 with boundary M of dimension n. Let X be the interior of X̄ . Let
ρ be a geodesic defining function for M and ĥ := ḡ|M . It is possible to find a solution
for the singular Yamabe problem to produce an asymptotically hyperbolic metric g+

in X , conformal to ḡ, of negative constant scalar curvature Rg+ =−n(n+ 1), and
with a very precise polyhomogeneous expansion. Classical references are [Aviles
and McOwen 1988; Mazzeo 1991; Andersson et al. 1992]. More precisely, if write
the metric in X as ḡ = dρ2

+ ḡρ , where gρ is a one-parameter family of metrics on
M satisfying gρ |ρ=0 = ĥ, then

(17) g+ =
ḡ(1+ ρα+ ρnβ)

ρ2 ,

where α ∈ C∞(X̄), β ∈ C∞(X) and β has a polyhomogeneous expansion

(18) β(ρ, x)=
∞∑

i=0

Ni∑
j=0

βi jρ
i (log ρ) j

near the boundary, Ni ∈N∪{0} and βi j ∈ C∞(X̄). Here we note that the log terms
do not appear in the first terms of the expansion, so, for our purposes and because
γ ∈ (0, 1), they can be ignored. We define

(19)
1
ρ̂2 :=

1+ ρα+ ρnβ

ρ2 ,

so that (17) is rewritten as

g+ =
ḡ
ρ̂2 ,

On the other hand, note that ḡρ may not have only even terms in its expansion.
However, once the boundary metric ĥ := ḡρ |ρ=0 = ḡ|M is fixed, we can find a
boundary-defining function y = ρ+ O(ρ2) such that

g+ =
dy2
+ gy

y2

near M , where gy is a one-parameter family of metrics on M such that gy|y=0 = ĥ,
with the regularity of ρα+ ρnβ. The main property of gy is that, if we make the
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expansion gy = g(0)+ g(1)y+ O(y2), then g(0) = ĥ and traceg(0)g(1) = 0. We set
g̃ = dy2

+ gy , so

g+ =
g̃
y2 .

The scattering operator can be solved on any smooth asymptotically hyperbolic
manifold (X, g+). First, solve the Poisson equation

(20) −1g+u− s(n− s)u = 0.

For each f ∈ C∞(M), there exists a solution of the form

u = yn−s F + ys G, F = f + O(y2), G = h+ O(y).

Then, for s = n
2 + γ , we define the conformal fractional Laplacian in this setting as

Pγ [g+, ĥ] f = dγ h

and the fractional-order curvature

(21) Qγ [g+, ĥ] := Pγ [g+, ĥ]1.

In our case, we do have some log terms in the expansion (18). However, they appear
at order n, and consequently, they do not change the first terms in the asymptotic
expansion for u.

Let H be the mean curvature of ∂X as a boundary of the (n+1)-manifold (X̄ , ḡ).
If we make the expansion ḡρ = ḡ(0)+ ḡ(1)y+ O(y2), ḡ(0) = ĥ, it is easy to check
that

(22) H :=
1

2n
traceĥ(ḡ

(1)).

It was shown in [Chang and González 2011] that ρ̂, ρ and y are related by

(23) ρ̂ = y(1− H y+ O(y2)), ρ = y
[
1+

(
−H + α

2

)
y+ O(y2)

]
.

Let v be the solution of the eigenvalue problem (20) with Dirichlet data f ≡ 1.
Then v has an asymptotic expansion

(24) v = yn−s
[1+ O(y2)] + ys

[h+ O(y)]

where Qγ = dγ h. As in (12), we set ρ∗ = v1/(n−s). This is the weight we will be
considering.

We are ready to define a weighted version of volume for a compact manifold
(X̄ , ḡ) with respect to a defining function ρ. Let γ ∈ (0, 1). For each ε > 0, we set

(25) volg+,γ ({ρ > ε}) :=

∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+ .
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Our main result is the study of its asymptotic behavior when ε→ 0:

Theorem 4.2. Let (X, ḡ) be a compact (n+ 1)-dimensional smooth manifold with
boundary, and let ĥ be the restriction of the metric ḡ to the boundary M := ∂X. Let
g+ be the asymptotically hyperbolic metric on X and ρ be the geodesic boundary
defining function constructed in (17). Let H be the mean curvature of M as defined
in (22), and Qγ the fractional order curvature given by (21). Then the weighted
volume (25) has an asymptotic expansion in ε given by

• If γ < 1
2 , or if γ > 1

2 but
∫

M 9 = 0, then

volg+,γ ({ρ > ε})= ε
−

n
2−γ

[( n
2 + γ

)−1 vol(M)+ ε2γ Vγ + higher-order terms
]

where

Vγ [g+, ĥ] :=
1

dγ

1
n
2 − γ

∫
M

Qγ [g+, ĥ] dvolĥ .

• However, if γ > 1
2 , and

∫
M 9 = 0, then

volg+,γ ({ρ > ε})= ε
−

n
2−γ

[(n
2 + γ

)−1 vol(M)+ εW0+ higher-order terms
]

for

W0 :=
( n

2 + γ
)−1

∫
M
9 dvolĥ .

The quantity 9 is defined in (26) and appears naturally in the proof.

Proof. Let v be the solution of the eigenvalue equation (20) with Dirichlet data
f ≡ 1, and integrate this relation in the set {ρ > ε}. First, we know that g+ = ḡ/ρ̂2

and that ḡ = dρ2
+ ḡρ . Then, integration by parts gives that

I1 := −

∫
{ρ>ε}

1g+v dvolg+ =

∫
{ρ=ε}

ρ̂1−n∂ρv dvolḡε .

Now we check that the Taylor expansion for the volume element. Write the Taylor
expansion of the metric ḡ in coordinates y:

ḡρ = ĥ+ ḡ(1)y+ O(y2).

Then

det(ḡρ)= det(ĥ)
(
1+ y traceĥ ḡ(1)+ O(y2)

)
= det(ĥ)

(
1+ y2nH + O(y2)

)
,

where we have used (22) for the last equality. Next, if ρ = ε, then y = ε(1+O(ε)),
so

dvolḡρ |ρ=ε = dvolĥ
(
1+ nHε+ O(ε2)

)
.
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Now we write the expansion of v from (24) in the variable ρ, using the second
equation in (23):

v = ρn−s
[
1+ (n− s)

(
H − α

2

)
ρ+ O(ρ2)

]
+ ρs [h+ O(ρ)] .

Moreover, from (19),

ρ̂1−n
= ρ1−n

[
1+ (n− 1)α

2
ρ+ O(ρ2)

]
.

Then, substituting all the terms in I1 when ρ = ε,

I1 = ε
−s(n− s) vol(M)

+ (n− s)ε−s+1
∫

M

[
(2n− s+ 1)H + (s− 2)α

2

]
dvolĥ +O(ε−s+2)

+ sεs−n
∫

M
h dvolĥ +O(εs−n+1).

We would like to find an asymptotic expansion for I1. As in (14), the main
order in the expansion will be ε−s , s = n

2 + γ . However, for the next order in the
expansion will come from a competition between ε−n+s , −n+ s = − n

2 + γ and
ε−s+1, −s+ 1=− n

2 − γ + 1, which gives the dichotomy γ > 1
2 or γ < 1

2 .
Use that

Qγ = Pγ 1= dγ h, s = n
2
+ γ,

to arrive at

I1 =
( n

2 − γ
)
ε−

n
2−γ vol(M)+

(n
2 − γ

)
ε−

n
2−γ+1

∫
M
9 dvolĥ

+
1

dγ

( n
2 + γ

)
ε−

n
2+γ

∫
M

Qγ dvolĥ,

where we write

(26) 9 :=
[
(2n− s+ 1)H + (s− 2)α

2

]
,

plus some higher-order terms in ε that we do not care to write.
On the other hand, we use the explicit formula for the special defining function

ρ∗, i.e., ρ∗ = v1/(n−s), so we get

I2 :=

∫
{ρ>ε}

v dvolg+ =

∫
{ρ>ε}

(ρ∗)n−s dvolg+

From (20), putting together I1 and I2, we obtain∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+ =

( n
2 + γ

)−1
ε−

n
2−γ vol M+

( n
2 + γ

)−1
ε−

n
2−γ+1

∫
M
9 dvolĥ

+
1

dγ

( n
2 − γ

)−1
ε−

n
2+γ

∫
M

Qγ dvolĥ + h.o.t.
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Now look at the expansion: the first-order term is clear. However, the next order
term depends on the value of γ . If γ < 1

2 , then this term is just

Vγ :=
1

dγ

1
n
2 − γ

∫
M

Qγ dvolĥ,

and the same happens if
∫

M 9 dvolĥ = 0. In this case we can write∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+ = ε

−
n
2−γ

[( n
2 + γ

)−1 vol M + ε2γ Vγ + h.o.t.
]
.

However, if γ > 1
2 , and

∫
M 9 dvolĥ 6= 0, then the coefficient of the second-order

term is

W0 :=
( n

2 + γ
)−1

∫
M
9 dvolĥ

and we write∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+ = ε

−
n
2−γ

[( n
2 + γ

)−1 vol(M)+ εW0+ h.o.t.
]
. �

Remark. When the starting point is an asymptotically hyperbolic manifold (X, g+)
with defining function ρ̂ in the case γ > 1

2 we simply have

W0 =
( n

2 + γ
)−1

(2n− s+ 1)
∫

M
H,

which is just the integral of the mean curvature. This is perhaps the most natural
setting for the problem.
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