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THE L4 NORM OF LITTLEWOOD POLYNOMIALS DERIVED
FROM THE JACOBI SYMBOL

JONATHAN JEDWAB AND KAI-UWE SCHMIDT

Littlewood raised the question of how slowly the L4 norm ‖ f ‖4 of a Little-
wood polynomial f (having all coefficients in {−1,+1}) of degree n− 1 can
grow with n. We consider such polynomials for odd square-free n, where
φ(n) coefficients are determined by the Jacobi symbol, but the remain-
ing coefficients can be freely chosen. When n is prime, these polynomials
have the smallest published asymptotic value of the normalized L4 norm
‖ f ‖4/‖ f ‖2 among all Littlewood polynomials, namely (7/6)1/4. When n
is not prime, our results show that the normalized L4 norm varies consid-
erably according to the free choices of the coefficients and can even grow
without bound. However, by suitably choosing these coefficients, the limit
of the normalized L4 norm can be made as small as the best published value
(7/6)1/4.

1. Introduction

For real α ≥ 1, the Lα norm of a polynomial A ∈ C[z] on the unit circle is given
by

‖A‖α :=
(

1
2π

∫ 2π

0
|A(eiθ )|αdθ

)1/α

.

The polynomial

A(z)=
n−1∑
j=0

a j z j

is called a Littlewood polynomial if a j ∈ {−1,+1} for each j . Littlewood [1966,
Section 6] raised the question of how slowly the L4 norm of a Littlewood polyno-
mial of degree n−1 can grow with n. An equivalent question was posed by Turyn
[1968, page 199] in a different context. Littlewood’s question is closely related
to other classical problems involving norms of Littlewood polynomials [Newman
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1960; Erdős 1962; Littlewood 1968; Newman and Byrnes 1990; Beck 1991; Bor-
wein 2002].

For a polynomial A ∈C[z], a small L4 norm corresponds to a large merit factor,
defined as

F(A) :=
‖A‖42

‖A‖44−‖A‖42
,

provided that the denominator is nonzero. This normalized measure appears natural
since it often attains an integer value when the polynomial degree tends to infinity.
Littlewood’s question concerns the growth rate of F(A), since

‖A‖42 = n2

for every Littlewood polynomial of degree n−1. The determination of the largest
possible merit factor of Littlewood polynomials of large degree is also of impor-
tance in the theory of communications, where Littlewood polynomials with large
merit factor correspond to signals whose energy is very evenly distributed over fre-
quency [Beenker et al. 1985], and in theoretical physics, where Littlewood polyno-
mials with the largest merit factors correspond to the ground states of Bernasconi’s
Ising spin model [Bernasconi 1987].

If A is drawn uniformly from the set of Littlewood polynomials of degree n−1,
then F(A)→ 1 in probability as n→∞ [Borwein and Lockhart 2001]. Littlewood
[1968] constructed a sequence of Littlewood polynomials with asymptotic merit
factor 3. Since then, Littlewood’s question has been attacked by mathematicians,
engineers, and physicists (see [Jedwab 2005] for a survey of results and historical
developments).

Given a polynomial A ∈ C[z] of degree n− 1 and real r , define the rotation Ar

of A by

(1-1) Ar (z) := z−bnrcA(z) mod (zn
− 1).

For odd n, let ( · | n) be the Jacobi symbol (see [Apostol 1976], for example), and
call

J (z) :=
n−1∑
j=1

( j | n)z j

the character polynomial of degree n−1. For prime n, this polynomial is known as
the Fekete polynomial, which has been studied extensively and whose asymptotic
merit factor has been determined for all rotations [Montgomery 1980; Høholdt and
Jensen 1988; Conrey et al. 2000; Borwein et al. 2001; Borwein and Choi 2002].
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Indeed, defining

(1-2) f (r) :=


1

1
6+8(|r |− 1

4)
2

for − 1
2 < r ≤ 1

2 ,

f (r + 1) otherwise,

the following result is known.

Theorem 1.1 [Høholdt and Jensen 1988]. Let p take values in an infinite set of
odd primes, and let r be real. Let X = J + 1, where J is the character polynomial
of degree p− 1. Then

lim
p→∞

F(Xr )= f (r).

Borwein and Choi [2002] also calculated the exact, rather than the asymptotic,
values of F(X) and F(X1/4) by refining the proof of Theorem 1.1. The largest
asymptotic merit factor occurring in Theorem 1.1 is 6. The polynomial X of degree
p−1 in Theorem 1.1 has been used to construct Littlewood polynomials of degree
2p − 1 [Xiong and Hall 2008] and 4p − 1 [Schmidt et al. 2009] that also have
asymptotic merit factor 6, and the value 6 remains the largest published asymp-
totic merit factor for all sequences of Littlewood polynomials. Høholdt and Jensen
[1988] conjectured that no larger value is possible, although there are various con-
tradicting opinions [Littlewood 1968, page 29; Golay 1982; Borwein et al. 2004].
In contrast, there are sequences of polynomials, not all of whose coefficients lie in
{−1,+1}, for which the merit factor grows without bound as the degree increases
[Littlewood 1966, Section 6].

In this paper we study the case when n is square-free but not prime. The char-
acter polynomial J of degree n−1 has φ(n) nonzero coefficients since ( j | n)= 0
exactly when gcd( j, n) > 1. Define

Vn :=

{n−1∑
j=0

v j z j
: v j ∈ {0,−1,+1} and v j = 0⇔ gcd( j, n)= 1

}
.

The polynomial J + V is then a Littlewood polynomial for each V ∈ Vn , and we
call J + V a Littlewood completion of J . We wish to determine the choice of
V ∈ Vn for each n and the choice of r that maximizes the asymptotic merit factor
of Jr + Vr . In the case when n is prime, there are only two possible Littlewood
completions of J , namely J + 1 and J − 1. Theorem 1.1 deals with J + 1, and it
is readily seen that the same result holds for J − 1. However, for general n there
are 2n−φ(n) possible Littlewood completions of J . The choice of the Littlewood
completion and rotation that maximizes the asymptotic merit factor is then by no
means obvious, and the analysis is considerably more difficult.
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2. Results

Throughout this paper, we will use the following notation. For integer n > 1, we
define pn to be the smallest prime factor of n and, as usual, ω(n) denotes the
number of distinct prime factors of n.

As a starting point we establish the asymptotic merit factor of the character
polynomial J itself at all rotations.

Theorem 2.1. Let n take values only in an infinite set of odd square-free integers
greater than 1, where

(2-1) (log n)3

pn
→ 0

as n→∞, and let r be real. Let J be the character polynomial of degree n − 1.
Then

lim
n→∞

F(Jr )= f (r).

We next examine the special Littlewood completion J + V of J in which each
nonzero coefficient of V is chosen to be +1.

Theorem 2.2. Let n take values only in an infinite set of odd square-free integers
greater than 1, and let r be real. Let J be the character polynomial of degree n−1
and define

V (z)=
n−1∑
j=0

gcd( j,n)>1

z j .

Then

(2-2) lim inf
n→∞

1
F(Jr+Vr )

≥ lim inf
n→∞

1
F(Jr )

+ lim inf
n→∞

n
2p3

n
.

Hence, if pn/n1/3 is bounded (which occurs, for example, if ω(n) ≥ 3 for all
sufficiently large n), then

lim sup
n→∞

F(Jr + Vr ) < lim sup
n→∞

F(Jr ),

and if pn/n1/3
→ 0 (which occurs, for example if, ω(n) ≥ 4 for all sufficiently

large n), then
lim

n→∞
F(Jr + Vr )= 0.

Subject to the condition (2-1), we may replace lim infn→∞ 1/F(Jr ) in Theorem 2.2
by 1/ f (r). Theorem 2.2 therefore shows that the asymptotic merit factor of Jr+Vr

can be strictly less than f (r) for all r . This prompts us to question whether there is
a choice of V for which the asymptotic merit factor of Jr+Vr is greater than f (r)



L4 NORM OF LITTLEWOOD POLYNOMIALS AND JACOBI SYMBOL 399

for some r . However, we show that, subject to a mild condition on the growth rate
of pn relative to n, there is no such V .

Theorem 2.3. Let n take values only in an infinite set of odd square-free integers
greater than 1, where

(2-3) (log n)7

pn
→ 0

as n→∞, and let r be real. Let J be the character polynomial of degree n − 1.
Then

lim sup
n→∞

max
V∈Vn

F(Jr + Vr )≤ f (r).

We then ask whether the deterioration in asymptotic merit factor obtained in
Theorem 2.2 for a specific choice of V is typical of Littlewood completions of J .
We show it is not: subject to the same condition (2-3) as in Theorem 2.3, we have
F(Jr + Vr )∼ f (r) for almost all choices of V .

Theorem 2.4. Let n take values only in an infinite set of odd square-free integers
greater than 1, where

(2-4) (log n)7

pn
→ 0

as n→∞, and let r be real. Let J be the character polynomial of degree n − 1
and let V be drawn uniformly from Vn . Then, as n→∞,

F(Jr + Vr )→ f (r)
in probability.

In view of Theorem 2.4, we wish to exhibit polynomials V ∈ Vn satisfying
limn→∞ F(Jr + Vr ) = f (r) under suitable conditions on the growth rate of pn

relative to n. We present two such choices of polynomials V . The first choice is
given in the following theorem.

Theorem 2.5. Let n take values only in an infinite set of odd square-free integers
greater than 1, where

(2-5) (log n)7

pn
→ 0

as n→∞, and let r be real. Let J be the character polynomial of degree n − 1,
and define

(2-6) V (z)=
n−1∑
j=0

gcd( j,n)>1

(
j | n

gcd( j, n)

)
z j .

Then
lim

n→∞
F(Jr + Vr )= f (r).



400 JONATHAN JEDWAB AND KAI-UWE SCHMIDT

The special case of Theorem 2.5 when ω(n)= 1 for all n gives Theorem 1.1.
The second choice of polynomials V ∈ Vn satisfying limn→∞ F(Jr + Vr ) =

f (r) uses a more restrictive condition than (2-5) in Theorem 2.5, but applies to all
Littlewood completions.

Theorem 2.6. Let n take values only in an infinite set of odd square-free integers
greater than 1, where

(2-7) n1/3

pn
→ 0

as n→∞, and let r be real. Let J be the character polynomial of degree n − 1.
Then

lim
n→∞

max
V∈Vn

F(Jr + Vr )= lim
n→∞

min
V∈Vn

F(Jr + Vr )= f (r).

The condition (2-7) is essentially the least restrictive condition under which
Theorem 2.6 holds: if lim infn→∞ n1/3/pn>0, then by Theorem 2.2 the conclusion
of Theorem 2.6 fails for at least one Littlewood completion J + V , but otherwise
lim infn→∞ n1/3/pn = 0, and then the infinite set in which n takes values contains
a subset satisfying the condition (2-7).

We shall prove Theorems 2.1–2.6 in Sections 4–9, respectively. Our results
provide a comprehensive analysis of the 2n−φ(n) Littlewood completions of the
character polynomial J of degree n−1, and significantly enlarge the set of explic-
itly defined sequences of Littlewood polynomials whose asymptotic merit factor
equals the current best known value 6.

We close this section with a brief review of related work. Jensen, Jensen, and
Høholdt [Jensen et al. 1991] gave the asymptotic merit factor of two Littlewood
completions J + V of J in the case that ω(n) = 2 for all n. For one of these
completions, the polynomial V coincides with (2-6); for the other, writing n = pq
for primes p, q satisfying p > q , the polynomial V is given by

V (z)=
p−1∑
j=0

z jq
−

q−1∑
j=1

z j p.

The results of [Jensen et al. 1991] for both of these Littlewood completions are
special cases of Theorem 2.6. Jensen et al. [1991] also stated that the conclusion
of Theorem 2.5 holds when ω(n) is fixed, but did not give a proof or specify
conditions on the growth rate of pn .

Motivated by the results of [Jensen et al. 1991], Borwein and Choi [2001] proved
a result that gives the same conclusion as Theorem 2.1 under the more restrictive
condition nε/pn → 0 for some fixed ε > 0. Borwein and Choi remarked that the
merit factors of the polynomials J1/4 as n→∞ “approach 6 which is conjectured
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by some” (referring to [Golay 1983]) “to be best possible”. They also say that their
result

“should be compared with the results of T. Høholdt, H. Jensen and J. Jensen
[who, in [Jensen et al. 1991]] showed that the same asymptotic formula but
a weaker error term O

(
((p+q)5 log4 N )/N 3

)
for the special case N = pq .

So we generalize their result to N = p1 p2 . . . pr and also improve the error
term.”

However, Borwein and Choi did not take into account the crucial distinction be-
tween the polynomial J of degree n − 1 and its 2n−φ(n) Littlewood completions.
Indeed, Theorem 2.2 shows that there is a sequence of Littlewood completions
of J whose asymptotic merit factor at every rotation r drops to zero. Therefore
the result of [Borwein and Choi 2001] cannot be considered a generalization of
those of [Jensen et al. 1991], and the comparison given by Borwein and Choi with
the conjecture of [Golay 1983] (which applies only to Littlewood polynomials) is
misplaced.

T. Xiong and J. I. Hall have kindly supplied us with two preprints of their recent
independent work. In the first preprint, now published as [Xiong and Hall 2011],
they obtained the same asymptotic form as in Theorem 2.6, subject to the more
restrictive condition that (n log n)2/5/pn → 0. In the second preprint [Xiong and
Hall 2010], they show that a previously unspecified Littlewood completion satisfies
limn→∞ F(Jr + Vr )= f (r) when ω(n) is fixed.

3. Preliminary results

We now introduce some notation and give some auxiliary results. Throughout the
paper, ζm denotes the primitive m-th root of unity

ζm := e2π i/m .

We next derive some elementary bounds on the functions ω(n) and φ(n). The
number of distinct prime factors ω(n) of n can be trivially bounded by

(3-1) ω(n)≤ log n

for n > 2 and n 6= 6. Since φ(n)/n =
∏

p|n(1− 1/p), where the product is over
the prime factors of n, the totient function φ(n) then satisfies

φ(n)
n
≥

(
1− 1

pn

)ω(n)
≥ 1− ω(n)

pn
≥ 1− log n

pn

for n > 2 and n 6= 6, so we can estimate its growth rate as

(3-2) φ(n)= n(1+ O(p−1
n log n))
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as n→∞. For convenience, we define the cototient function to be

ψ(n) := n−φ(n).

It follows that
ψ(n)

n
≤
ω(n)

pn
(3-3)

≤
log n

pn
(3-4)

for n > 2 and n 6= 6, and therefore

(3-5) ψ(n)= O(p−1
n n log n)

as n→∞. We shall need the following evaluation of Ramanujan’s sum [Hardy
and Wright 1954, Theorem 272].

Lemma 3.1. For integer u and positive square-free integer n, we have

n−1∑
j=0

gcd( j,n)=1

ζ ju
n = µ

( n
gcd(u, n)

)
φ(gcd(u, n)),

where µ is the Möbius function.

We also require the following evaluation of a Gauss sum involving the Jacobi
symbol.

Lemma 3.2. Let m be a positive odd square-free integer. Then, for integer j ,

m−1∑
`=0

(` | m)ζ j`
m = i (m−1)2/4( j | m)m1/2.

The case gcd( j,m) = 1 of Lemma 3.2 is given, for example, by [Berndt et al.
1998, Theorem 1.5.2 and Chapter 1, Problem 24]. The case gcd( j,m) > 1 then
follows by application of Parseval’s identity.

Now let n be an odd square-free integer and let J be the character polynomial
of degree n− 1. Lemma 3.2 with m = n implies that, for integer j ,

(3-6) J (ζ j
n )= i (n−1)2/4( j | n)n1/2.

Given a polynomial A of degree n− 1, by the definition (1-1) of the rotation Ar ,
we have, for integer j ,

(3-7) Ar (ζ
j

n )= ζ
− jbnrc
n A(ζ j

n ),

and therefore

(3-8) Jr (ζ
j

n )= i (n−1)2/4ζ− jbnrc
n ( j | n)n1/2.
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We shall need the following bound for the magnitude of a polynomial of degree
n− 1 over C on the unit circle in terms of its values at the n-th roots of unity.

Lemma 3.3. Let A ∈ C[z] have degree at most n− 1 for n > 2. Then

max
|z|=1
|A(z)| ≤ (2 log n) max

0≤k<n
|A(ζ k

n )|.

Proof. By bounding the coefficients that occur in the Lagrange interpolation of A
from its evaluations at the n-th roots of unity, it can be shown that

max
|z|=1
|A(z)| ≤ c(n) max

0≤k<n
|A(ζ k

n )|,

where c(n) = 1 + (1/n)
∑n−1

j=1 1/ sin(π j/(2n)); see [Paterson and Tarokh 2000,
Appendix]. Since c(n) < 1+

∑n−1
j=1 1/j and

∑n−1
j=2 1/j < log n, the lemma holds

for n > 7. By direct verification we also have c(n)≤ 2 log n for 3≤ n ≤ 7. �

Using (3-8), Lemma 3.3 gives

(3-9) max
|z|=1
|Jr (z)| ≤ 2n1/2 log n.

We next prove our main tool for comparing the asymptotic merit factor of J
with that of a Littlewood completion J + V .

Proposition 3.4. Let n > 1 be an odd square-free integer, and let r be real. Then
all Littlewood completions J + V of the character polynomial J of degree n − 1
satisfy∣∣∣∣ 1

F(Jr+Vr )
−

(
φ(n)

n

)2
1

F(Jr )
−
‖Vr‖

4
4

n2

∣∣∣∣
< 8p−1/2

n n−1(log n)3/2‖Vr‖
2
4+ 58p−1/2

n (log n)7/2.

In the application of Proposition 3.4 it is sometimes useful to further bound
‖Vr‖

4
4 as

(3-10) ‖Vr‖
4
4 ≤ [ψ(n)]

3,

which follows from ‖Vr‖
2
2 = ψ(n) and the simple inequality

(3-11) ‖A‖44 ≤ ‖A‖22 max
|z|=1
|A(z)|2

for all A ∈ C[z].

Proof of Proposition 3.4. Let V ∈ Vn and let

β(n) :=
∣∣∣∣ 1

F(Jr+Vr )
−

(
φ(n)

n

)2
1

F(Jr )
−
‖Vr‖

4
4

n2

∣∣∣∣.
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Since ‖Jr‖
2
2 = φ(n) and ‖Jr + Vr‖

2
2 = n, by the definition of the merit factor,

(3-12) β(n)=
∣∣∣∣ 1
n2 (‖Jr + Vr‖

4
4−‖Jr‖

4
4−‖Vr‖

4
4)+

(
φ(n)

n

)2

− 1
∣∣∣∣.

Since ∣∣∣∣(φ(n)n

)2

− 1
∣∣∣∣= 1

n2 |(φ(n)+ n)(φ(n)− n)|<
2ψ(n)

n

by the trivial inequality φ(n)+ n < 2n, it follows from (3-12) that

(3-13) β(n) <
∣∣∣ 1
n2 (‖Jr + Vr‖

4
4−‖Jr‖

4
4−‖Vr‖

4
4)

∣∣∣+ 2ψ(n)
n

.

Now for a, b ∈ C, by expanding |a+ b|4, we get the inequality

||a+ b|4− |a|4− |b|4| ≤ 4|a|3 · |b| + 6|a|2 · |b|2+ 4|a| · |b|3.

Using (3-9) and the definition of the Lα norm, we conclude from (3-13) that

(3-14) β(n) <
32(log n)3

n1/2 ‖Vr‖1+
24(log n)2

n
‖Vr‖

2
2+

8 log n
n3/2 ‖Vr‖

3
3+

2ψ(n)
n

.

We have ‖Vr‖
2
2 = ψ(n). By the Cauchy–Schwarz inequality,

‖Vr‖
m+1
m+1 ≤ ‖Vr‖2

(
1

2π

∫ 2π

0
|Vr (eiθ )|2mdθ

)1/2

.

Hence ‖Vr‖1≤[ψ(n)]1/2 and ‖Vr‖
3
3≤[ψ(n)]

1/2
‖Vr‖

2
4, by taking m=0 and m=2,

respectively. Therefore, using (3-4) to bound ψ(n), we find from (3-14) that

β(n)<32p−1/2
n (logn)7/2+24p−1

n (logn)3+8p−1/2
n n−1(logn)3/2‖Vr‖

2
4+2p−1

n logn

<8p−1/2
n n−1(logn)3/2‖Vr‖

2
4+(32+24+2)p−1/2

n (logn)7/2

since n > 2. �

4. Proof of Theorem 2.1

In this section we determine the asymptotic merit factor of the character polynomial
J of degree n− 1 at all rotations, proving Theorem 2.1.

We need the following evaluation of a character sum.

Lemma 4.1. Let n be a positive odd square-free integer. Then, for integer u,

n−1∑
j=0

( j | n)( j + u | n)= µ
( n

gcd(u, n)

)
φ(gcd(u, n)).
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Proof. Given a polynomial A(z) =
n−1∑
j=0

a j z j with real-valued coefficients, it is
readily verified that

n−1∑
j=0

a j a( j+u) mod n =
1
n

n−1∑
j=0

|A(ζ j
n )|

2ζ ju
n .

Applying this relation to the character polynomial J of degree n−1 and using (3-6)
then gives

n−1∑
j=0

( j | n)( j + u | n)=
n−1∑
j=0

gcd( j,n)=1

ζ ju
n ,

which is Ramanujan’s sum. The result now follows from Lemma 3.1. �

Høholdt and Jensen [1988] introduced a method for calculating the merit factor
of a polynomial of even degree. The following result summarizes their method
(and occurs as a special case of the slightly more general result of [Schmidt et al.
2009, Lemma 10]).

Lemma 4.2. Let A ∈ R[z] be a polynomial of even degree n− 1. Define

(4-1) 3A( j, k, `) :=
n−1∑
a=0

A(ζ a
n )A(ζ

a+ j
n )A(ζ a+k

n )A(ζ a+`
n )

for integers j , k, `. Then

(4-2)
‖A‖44

n2 =
2n2
+1

3n5 3A(0, 0, 0)+ B+C + D,

where

B =
2
n5

n−1∑
k=1

3A(0, 0, k)+ ζ k
n3A(0, 0, k)

(1− ζ k
n )

2 · (1+ ζ k
n ),

C =−
2
n5

∑
1≤k,`<n

k 6=`

4ζ k
n3A(0, k, `)+3A(k, 0, `)+ ζ k

n ζ
`
n3A(k, 0, `)

(1− ζ k
n )(1− ζ `n )

,

D =
4
n5

n−1∑
k=1

23A(0, k, k)+ ζ−k
n 3A(k, 0, k)

|1− ζ k
n |

2 .

We are now ready to calculate the asymptotic merit factor of the character poly-
nomial at all rotations.
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Proof of Theorem 2.1. Without loss of generality, we may assume that−1
2 < r ≤ 1

2 .
Since ‖Jr‖

2
2 = φ(n), we have, by the definition of the merit factor,

1
F(Jr )

=

( n
φ(n)

)2
(
‖Jr‖

4
4

n2

)
− 1.

We claim that

(4-3)
‖Jr‖

4
4

n2 = 1+
1

f (r)
+ O(p−1

n (log n)3),

which then implies the desired result using the condition (2-1) and the growth
rate (3-2) of φ(n).

It remains to prove the claim (4-3). Write R := bnrc. We apply Lemma 4.2
to the polynomial Jr to give an expression for ‖Jr‖

4
4/n2. We find the asymptotic

form of this expression, evaluating the term involving 3Jr (0, 0, 0) and the sum D,
and bounding the sums B and C .

Using (3-8) and (4-1), we have

(4-4) 3Jr ( j, k, `)= ζ R( j−k+`)
n · n2

n−1∑
a=0

(a | n)(a+ j | n)(a+ k | n)(a+ ` | n).

The term involving 3Jr (0, 0, 0). By (4-4) we have

(4-5) 2n2
+1

3n5 3Jr (0, 0, 0)= 2n2
+1

3n5 n2φ(n)

=
2
3 + O(p−1

n log n)

from the growth rate (3-2) of φ(n).

The sum D. By (4-4), for each k we have

φ(n)−ψ(n)≤ 1
n23Jr (0, k, k)≤ φ(n).

From the growth rate (3-2) of φ(n) and the growth rate (3-5) of ψ(n) we then get

3Jr (0, k, k)= n3
[1+ O(p−1

n log n)]

and, similarly,
3Jr (k, 0, k)= ζ 2Rk

n · n3
[1+ O(p−1

n log n)].

The sum D then becomes

(4-6) D = 4
n2

(
1+ O(p−1

n log n)
) n−1∑

k=1

2+ ζ (2R−1)k
n

|1− ζ k
n |

2 .
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We will evaluate the summation in (4-6) by using the identity

(4-7)
n−1∑
k=1

ζ
jk

n

|1− ζ k
n |

2 =
n2

2

(
| j |
n
−

1
2

)2

−
n2
+2

24

for integer j satisfying | j | ≤ n; see [Jensen et al. 1991, page 621], for example.
The assumption −1

2 < r ≤ 1
2 implies that −n< 2R−1< n for all sufficiently large

n. We can therefore use (4-7) to evaluate the summation in (4-6) for all sufficiently
large n, so that we have

D = 4
n2 [1+ O(p−1

n log n)]
[n2

2

(
|2R−1|

n
−

1
2

)2
+

n2
−2
8

]
.

By the definition of R, we have R = nr + O(1). We then find that

(4-8) D = 1
2 + 8(|r | − 1

4)
2
+ O(p−1

n log n).

The sum B. We bound the sum B via

(4-9) |B| ≤ 2
n5

n−1∑
k=1

4|3Jr (0, 0, k)|
|1− ζ k

n |
2

=
8
n5

n−1∑
k=1

n2

|1−ζ k
n |

2

∣∣∣∣ n−1∑
a=0

(a | n)(a+ k | n)
∣∣∣∣

by (4-4). But from Lemma 4.1 we know that

(4-10)
∣∣∣∣ n−1∑

a=0

(a | n)(a+ k | n)
∣∣∣∣≤ φ(p−1

n n) < n
pn

for k 6≡ 0 (mod n). Substitution in (4-9) gives

|B|<
8

n2 pn

n−1∑
k=1

1
|1− ζ k

n |
2 =

2(n2
− 1)

3n2 pn

from (4-7). Hence,

(4-11) B = O(p−1
n ).

The sum C. Since |3Jr (0, k, `)|= |3Jr (k, 0, `)| by (4-4), we can bound the sum C
via

(4-12) |C | ≤ 2
n5

∑
1≤k,`<n

k 6=`

6|3Jr (0, k, `)|
|1− ζ k

n | · |1− ζ `n |
.
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Now, from (4-4), we have

1
n2 |3Jr (0, k, `)| =

∣∣∣∣ n−1∑
a=0

(a+ k | n)(a+ ` | n)−
n−1∑
a=0

gcd(a,n)>1

(a+ k | n)(a+ ` | n)
∣∣∣∣

≤

∣∣∣∣ n−1∑
a=0

(a | n)(a+ `− k | n)
∣∣∣∣+ψ(n)

<
n
pn
+ψ(n)

for k 6≡ ` (mod n), by (4-10). Substitution in (4-12) then gives

|C |< 12
n3

( n
pn
+ψ(n)

) ∑
1≤k,`<n

k 6=`

1
|1−ζ k

n |·|1−ζ `n |

<
12
n3

( n
pn
+ψ(n)

)(n−1∑
k=1

1
|1−ζ k

n |

)2

≤
12(log n)2

n

( n
pn
+ψ(n)

)
since

∑n−1
k=1 1/|1− ζ k

n | ≤ n log n (see [Høholdt and Jensen 1988, page 163], for
example). Then from the growth rate (3-5) of ψ(n) we obtain

(4-13) C = O(p−1
n (log n)3).

The claim (4-3) now follows by substituting the asymptotic forms (4-5), (4-8),
(4-11), and (4-13) in (4-2), and then using the definition (1-2) of f . �

5. Proof of Theorem 2.2

Proof. By Proposition 3.4, we have

1
F(Jr+Vr )

>

(
φ(n)

n

)2
1

F(Jr )
+ δ(n),

where

(5-1) δ(n)= 1
n2 ‖Vr‖

4
4− 8p−1/2

n n−1(log n)3/2‖Vr‖
2
4− 58p−1/2

n (log n)7/2

=
1
n2 ‖Vr‖

4
4+ O(p−2

n n1/2(log n)3)+ O(p−1/2
n (log n)7/2),

using the upper bound (3-10) for ‖Vr‖
4
4 and the upper bound (3-4) for ψ(n). Thus

(5-2) lim inf
n→∞

1
F(Jr+Vr )

≥ lim inf
n→∞

[(
φ(n)

n

)2
1

F(Jr )

]
+ lim inf

n→∞
δ(n).
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We next derive a lower bound for the term ‖Vr‖
4
4/n2 in (5-1), giving an asymptotic

lower bound for δ(n). For a polynomial A ∈C[z] of degree at most n−1, we have
the identity

‖A‖44 =
1

2n

(n−1∑
j=0

|A(ζ j
n )|

4
+

n−1∑
j=0

|A(−ζ j
n )|

4
)

(see [Høholdt and Jensen 1988], for example), which gives the inequality

1
n2 ‖Vr‖

4
4 ≥

1
2n3

n−1∑
j=0

|Vr (ζ
j

n )|
4.

Restrict the summation to the set U = {n/pn, 2n/pn, . . . , (pn − 1)n/pn} and
use (3-7) to obtain

(5-3) 1
n2 ‖Vr‖

4
4 ≥

1
2n3

∑
u∈U

|V (ζ u
n )|

4.

Now let u ∈U . From the definition of V we have

V (ζ u
n )=

n−1∑
j=0

gcd( j,n)>1

ζ ju
n =

n−1∑
j=0

ζ ju
n −

n−1∑
j=0

gcd( j,n)=1

ζ ju
n .

The first sum evaluates to 0 because ζ u
n 6= 1. The second sum is Ramanujan’s sum,

and using gcd(u, n)= p−1
n n in Lemma 3.1, we get

V (ζ u
n )= φ(p

−1
n n)=

φ(n)
pn − 1

.

Substitution in (5-3) then gives the desired lower bound

1
n2 ‖Vr‖

4
4 ≥

1
2n3 (pn − 1)

(
φ(n)
pn − 1

)4

>
n

2p3
n

(
φ(n)

n

)4

.

By substituting this lower bound in (5-1), we find that

(5-4) δ(n) > n
2p3

n

(
φ(n)

n

)4

+ O(p−2
n n1/2(log n)3)+ O(p−1/2

n (log n)7/2),

or, equivalently,

(5-5) δ(n) > n
2p3

n

[(
φ(n)

n

)4

+ O(pnn−1/2(log n)3)+ O(p5/2
n n−1(log n)7/2)

]
.
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To complete the proof, partition the infinite set N , in which n takes values, into
subsets N1, N2 defined by

n ∈
{

N1 if pn ≤ n2/7,

N2 if pn > n2/7,

at least one of which is infinite. First suppose that N1 is infinite and let n take
values only in N1. Then

pnn−1/2(log n)3 ≤ n−3/14(log n)3→ 0

and

p5/2
n n−1(log n)7/2 ≤ n−2/7(log n)7/2→ 0,

so that by (5-5) we obtain

lim inf
n→∞

δ(n)≥ lim inf
n→∞

[
n

2p3
n

(
φ(n)

n

)4]
.

Choose some ε satisfying 0<ε<1/28. Since φ(n)/n1−ε
→∞ [Hardy and Wright

1954, Theorem 327], we have

lim inf
n→∞

δ(n)≥ lim inf
n→∞

n1−4ε

2p3
n
≥

1
2 lim inf

n→∞
n1/7−4ε

=∞,

so that by (5-2),

lim inf
n→∞

1
F(Jr+Vr )

=∞.

This verifies the claim (2-2) of the theorem when n ∈ N1 since pn ≤ n2/7 for all
n ∈ N1.

Now suppose that N2 is infinite and let n take values only in N2. Then

p−2
n n1/2(log n)3 < n−1/14(log n)3→ 0

and

p−1/2
n (log n)7/2 < n−1/7(log n)7/2→ 0,

so that by (5-4) we obtain

lim inf
n→∞

δ(n)≥ lim inf
n→∞

[
n

2p3
n

(
φ(n)

n

)4]
.

From the growth rate (3-2) of φ(n) and (5-2) we then conclude that the claim (2-2)
of the theorem holds when n ∈ N2. Therefore it holds when n ∈ N1 ∪ N2 = N ,
which completes the proof. �
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6. Proof of Theorem 2.3

Proof. The structure of the proof is broadly similar to that of Theorem 2.2, ex-
cept that we now use the condition (2-3) to control the term ‖Vr‖

4
4 for V ∈ Vn .

Application of Proposition 3.4 gives, for each V ∈ Vn ,

1
F(Jr+Vr )

>

(
φ(n)

n

)2
1

F(Jr )
+ δ(n),

where

(6-1) δ(n)= 1
n2 ‖Vr‖

4
4− 8p−1/2

n n−1(log n)3/2‖Vr‖
2
4− 58p−1/2

n (log n)7/2.

We then find from the growth rate (3-2) of φ(n), using the condition (2-3), that

(6-2) lim inf
n→∞

min
V∈Vn

1
F(Jr+Vr )

≥ lim inf
n→∞

1
F(Jr )

+ lim inf
n→∞

δ(n).

We claim that

(6-3) lim inf
n→∞

δ(n)= lim inf
n→∞

1
n2 ‖Vr‖

4
4,

and then, since ‖Vr‖
4
4 ≥ 0, we have from (6-2)

lim sup
n→∞

max
V∈Vn

F(Jr + Vr )≤ lim sup
n→∞

F(Jr ).

Now using Theorem 2.1 and the condition (2-3), we replace lim supn→∞ F(Jr )

by f (r), proving the theorem.
It remains to prove the claim (6-3). By the condition (2-3), from (6-1) we obtain

lim inf
n→∞

δ(n)= lim inf
n→∞

[ 1
n2 ‖Vr‖

4
4− 8p−1/2

n n−1(log n)3/2‖Vr‖
2
4

]
(6-4)

= lim inf
n→∞

[
1
n2 ‖Vr‖

4
4

(
1−

8p−1/2
n n(log n)3/2

‖Vr‖
2
4

)]
.(6-5)

Partition the infinite set N , in which n takes values, into subsets N1, N2 defined by

n ∈
{

N1 if ‖Vr‖
4
4 > p−1

n n2(log n)5,

N2 if ‖Vr‖
4
4 ≤ p−1

n n2(log n)5,

at least one of which is infinite. If N1 is infinite, then for n ∈ N1 we have

8p−1/2
n n(log n)3/2

‖Vr‖
2
4

<
8

log n
→ 0,

so that by (6-5), the claim (6-3) holds when n takes values only in N1. On the other
hand, if N2 is infinite, then for n ∈ N2 we have

8p−1/2
n n−1(log n)3/2‖Vr‖

2
4 ≤ 8p−1

n (log n)4,
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so that by using the condition (2-3) and substituting in (6-4), we conclude that (6-3)
holds when n takes values only in N2. Since n ∈ N1∪N2= N , we have established
the claim (6-3). �

7. Proof of Theorem 2.4

The method of the proof is to apply Proposition 3.4 and bound ‖Vr‖4 for almost
all choices V ∈Vn , for which we require the following large deviation result [Alon
and Spencer 2008, Theorem A.1.16].

Lemma 7.1. Let X1, X2, . . . , Xm be mutually independent random variables sat-
isfying E(X j )= 0 and |X j | ≤ 1 for 1≤ j ≤ m. Then, for real a ≥ 0,

Pr
(∣∣∣∣ m∑

j=1

X j

∣∣∣∣2 ≥ a
)
≤ 2e−a/(2m).

We next use Lemma 7.1 to give an upper bound for ‖Vr‖4 for almost all V ∈Vn .

Lemma 7.2. Let V be drawn uniformly from Vn and let r be real. Then, as n→∞,

Pr(‖Vr‖
4
4 < 288[ψ(n)]2 log n)→ 1.

Proof. Given a polynomial A ∈ C[z] of degree at most n− 1, it is a simple conse-
quence of Bernstein’s inequality that

max
|z|=1
|A(z)| ≤ 6 max

0≤ j<4n
|A(ζ j

4n)|

(see [Spencer 1985, page 691]). Therefore, by (3-11),

‖Vr‖
4
4 ≤ 36ψ(n) max

0≤ j<4n
|Vr (ζ

j
4n)|

2.

Hence, it is sufficient to show that

(7-1) Pr( max
0≤ j<4n

|Vr (ζ
j

4n)|
2 < 8ψ(n) log n)→ 1.

Write a(n)= 8ψ(n) log n. A crude estimate gives

(7-2) Pr( max
0≤ j<4n

|Vr (ζ
j

4n)|
2
≥ a(n))≤

4n−1∑
j=0

Pr(|Vr (ζ
j

4n)|
2
≥ a(n))

≤

4n−1∑
j=0

[
Pr
(
|Re(Vr (ζ

j
4n))|

2
≥

1
2a(n)

)
+Pr

(
|Im(Vr (ζ

j
4n))|

2
≥

1
2a(n)

)]
.

Write V ∈Vn as V (z)=
n−1∑
k=0

vkzk , and note that vk = 0 if and only if gcd(k, n)= 1.
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Then, by the definition of the rotation Vr ,

Vr (z)=
n−1∑
`=0

gcd(`,n)>1

v`zk(`),

where k(`)= (`−bnrc) mod n. Let λ ∈ C be such that |λ| ≤ 1. Then

Pr(|Re(Vr (λ))|
2
≥

1
2a(n))= Pr

(∣∣∣∣ n−1∑
`=0

gcd(`,n)>1

v`Re(λk(`))

∣∣∣∣2 ≥ 1
2a(n)

)

≤ 2e−(1/(2ψ(n)))·(a(n)/2)

by application of Lemma 7.1. By the definition of a(n) we then obtain

Pr
(
|Re(Vr (λ))|

2
≥

1
2a(n)

)
≤ 2n−2,

and, by similar reasoning,

Pr
(
|Im(Vr (λ))|

2
≥

1
2a(n)

)
≤ 2n−2.

Substitution in (7-2) then gives

Pr
(

max
0≤ j<4n

|Vr (ζ
j

4n)|
2
≥ a(n)

)
≤ 16n−1,

which implies (7-1), as required. �

We now use Lemma 7.2 to prove Theorem 2.4.

Proof of Theorem 2.4. Define a subset Un of Vn by

(7-3) Un := {V ∈ Vn : ‖Vr‖
4
4 < 288p−2

n n2(log n)3}.

Using the upper bound (3-4) for ψ(n), Lemma 7.2 implies that

(7-4)
|Un|

|Vn|
→ 1.

By the triangle inequality,

(7-5)
∣∣∣ 1

F(Jr+Vr )
−

1
f (r)

∣∣∣
≤

∣∣∣∣ 1
F(Jr+Vr )

−

(
φ(n)

n

)2
1

F(Jr )

∣∣∣∣+ ∣∣∣∣(φ(n)n

)2
1

F(Jr )
−

1
f (r)

∣∣∣∣.
Using the condition (2-4) and the growth rate (3-2) of φ(n), from Theorem 2.1, we
find that

(7-6)
∣∣∣∣(φ(n)n

)2
1

F(Jr )
−

1
f (r)

∣∣∣∣→ 0.
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From Proposition 3.4 we have

(7-7)
∣∣∣∣ 1

F(Jr+Vr )
−

(
φ(n)

n

)2
1

F(Jr )

∣∣∣∣< γ (n)
for V ∈Un , where

γ (n)= max
V∈Un

( 1
n2 ‖Vr‖

4
4+ 8p−1/2

n n−1(log n)3/2‖Vr‖
2
4+ 58p−1/2

n (log n)7/2
)

< 8p−2
n (log n)3+

√
512p−3/2

n (log n)3+ 58p−1/2
n (log n)7/2,

by the definition (7-3) of Un . Using the condition (2-4), we have γ (n)→ 0. Since
Un forms a set of measure 1 within Vn by (7-4), we find, by substitution of (7-6)
and (7-7) into (7-5), that ∣∣∣ 1

F(Jr+Vr )
−

1
f (r)

∣∣∣→ 0

in probability. Since f (r) takes values only in a finite interval bounded away
from 0, we then have

|F(Jr + Vr )− f (r)| → 0

in probability, which completes the proof. �

8. Proof of Theorem 2.5

Proof. From Proposition 3.4 we have

(8-1)
∣∣∣∣ 1

F(Jr+Vr )
−

(
φ(n)

n

)2
1

F(Jr )

∣∣∣∣< γ (n),
where

(8-2) γ (n)= 1
n2 ‖Vr‖

4
4+ 8p−1/2

n n−1(log n)3/2‖Vr‖
2
4+ 58p−1/2

n (log n)7/2.

From (3-11), Lemma 3.3, (3-7), and the upper bound (3-4) for ψ(n), we also have

(8-3) ‖Vr‖
4
4 ≤ (2 log n)2( max

0≤k<n
|V (ζ k

n )|
2)p−1

n n log n.

We now bound the term |V (ζ k
n )|. By the definition of V we have, for integer k,

V (ζ k
n )=

n−1∑
j=0

gcd( j,n)>1

(
j |

n
gcd( j, n)

)
ζ k j

n =
∑

0<m<n
m|n

m−1∑
`=0

gcd(`,m)=1

(`n
m
| m
)
ζ k`

m

by putting m = n/ gcd( j, n), so that we must have j = `n/m, where, since n is
square-free, 0≤`<m and gcd(`,m)=1. Since the Jacobi symbol is multiplicative
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and (` | m)= 0 for gcd(`,m) > 1, we then have

V (ζ k
n )=

∑
0<m<n

m|n

( n
m
| m
)m−1∑
`=0

(` | m)ζ k`
m ,

and therefore

|V (ζ k
n )| ≤

∑
0<m<n

m|n

∣∣∣∣ m−1∑
`=0

(` | m)ζ k`
m

∣∣∣∣≤ ∑
0<m<n

m|n

m1/2

by Lemma 3.2. Hence

|V (ζ k
n )| ≤

ω(n)∑
j=1

(
ω(n)

j

)( n
p j

n

)1/2
< n1/2(1+ p−1/2

n )ω(n) ≤ n1/2(1+ (log n)−7/2)log n

for all sufficiently large n, by (2-5) and (3-1). Hence |V (ζ k
n )|=O(n1/2). Substitute

in (8-3) to give
‖Vr‖

4
4 = O(p−1

n n2(log n)3),

and then substitute in (8-2) to show that

γ (n)= O(p−1
n (log n)3)+ O(p−1

n (log n)3)+ O(p−1/2
n (log n)7/2)→ 0,

by the condition (2-5). The desired result then follows from (8-1) and Theorem 2.1,
using the growth rate (3-2) of φ(n) and the condition (2-5). �

9. Proof of Theorem 2.6

Proof. Let V ∈ Vn . From Proposition 3.4 we have

(9-1)
∣∣∣∣ 1

F(Jr+Vr )
−

(
φ(n)

n

)2
1

F(Jr )

∣∣∣∣< γ (n),
where

γ (n)= 1
n2 ‖Vr‖

4
4+ 8p−1/2

n n−1(log n)3/2‖Vr‖
2
4+ 58p−1/2

n (log n)7/2.

From the upper bound (3-10) for ‖Vr‖
4
4 and the upper bound (3-3) for ψ(n), we

have ‖Vr‖
4
4 ≤ (2n/pn)

3 for all sufficiently large n, since the condition (2-7) forces
ω(n)≤ 2 for all sufficiently large n. Hence

γ (n)= O(p−3
n n)+ O(p−2

n n1/2(log n)3/2)+ O(p−1/2
n (log n)7/2).

By the condition (2-7) we have γ (n)→ 0, and the desired result follows from (9-1)
and Theorem 2.1, using the growth rate (3-2) of φ(n) and the condition (2-7). �
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[Erdős 1962] P. Erdős, “An inequality for the maximum of trigonometric polynomials”, Ann. Polon.
Math. 12 (1962), 151–154. MR 25 #5330 Zbl 0106.27702

[Golay 1982] M. J. E. Golay, “The merit factor of long low autocorrelation binary sequences”, IEEE
Trans. Inform. Theory 28:3 (1982), 543–549.

[Golay 1983] M. J. E. Golay, “The merit factor of Legendre sequences”, IEEE Trans. Inform. Theory
29:6 (1983), 934–936. Zbl 0537.94009

[Hardy and Wright 1954] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,
3rd ed., Clarendon, Oxford, 1954. MR 16,673c Zbl 0058.03301

[Høholdt and Jensen 1988] T. Høholdt and H. E. Jensen, “Determination of the merit factor of Le-
gendre sequences”, IEEE Trans. Inform. Theory 34:1 (1988), 161–164. Zbl 0652.40006

[Jedwab 2005] J. Jedwab, “A survey of the merit factor problem for binary sequences”, pp. 30–55
in Sequences and their applications – SETA 2004, edited by T. Helleseth et al., Lecture Notes in
Computer Science 3486, Springer, New York, 2005. Zbl 1145.94419

http://dx.doi.org/10.1002/9780470277331
http://www.ams.org/mathscinet-getitem?mr=2009j:60004
http://www.zentralblatt-math.org/zmath/en/search/?an=1148.05001
http://www.ams.org/mathscinet-getitem?mr=55:7892
http://www.zentralblatt-math.org/zmath/en/search/?an=0335.10001
http://dx.doi.org/10.1112/blms/23.3.269
http://www.ams.org/mathscinet-getitem?mr=93b:42002
http://www.zentralblatt-math.org/zmath/en/search/?an=0748.30006
http://www.emis.de/cgi-bin/MATH-item?0573.94005
http://www.emis.de/cgi-bin/MATH-item?0573.94005
http://dx.doi.org/10.1051/jphys:01987004804055900
http://dx.doi.org/10.1051/jphys:01987004804055900
http://www.ams.org/mathscinet-getitem?mr=99d:11092
http://www.zentralblatt-math.org/zmath/en/search/?an=0906.11001
http://www.ams.org/mathscinet-getitem?mr=2003m:11045
http://www.zentralblatt-math.org/zmath/en/search/?an=1020.12001
http://dx.doi.org/10.4153/CJM-2001-002-6
http://dx.doi.org/10.4153/CJM-2001-002-6
http://www.ams.org/mathscinet-getitem?mr=2002k:11114
http://www.zentralblatt-math.org/zmath/en/search/?an=0964.11020
http://dx.doi.org/10.1090/S0002-9947-01-02859-8
http://dx.doi.org/10.1090/S0002-9947-01-02859-8
http://www.ams.org/mathscinet-getitem?mr=2002i:11065
http://www.emis.de/cgi-bin/MATH-item?1010.11017
http://www.emis.de/cgi-bin/MATH-item?1010.11017
http://dx.doi.org/10.1090/S0002-9939-00-05690-2
http://dx.doi.org/10.1090/S0002-9939-00-05690-2
http://www.ams.org/mathscinet-getitem?mr=2001m:60124
http://www.zentralblatt-math.org/zmath/en/search/?an=0999.30004
http://dx.doi.org/10.1090/S0002-9939-00-05798-1
http://dx.doi.org/10.1090/S0002-9939-00-05798-1
http://www.ams.org/mathscinet-getitem?mr=2001j:11061
http://www.zentralblatt-math.org/zmath/en/search/?an=0987.11010
http://dx.doi.org/10.1109/TIT.2004.838341
http://dx.doi.org/10.1109/TIT.2004.838341
http://www.ams.org/mathscinet-getitem?mr=2103494
http://dx.doi.org/10.5802/aif.1776
http://dx.doi.org/10.5802/aif.1776
http://www.ams.org/mathscinet-getitem?mr=2001h:11108
http://www.emis.de/cgi-bin/MATH-item?1007.11053
http://www.emis.de/cgi-bin/MATH-item?1007.11053
http://www.renyi.hu/~p_erdos/1962-01.pdf
http://www.ams.org/mathscinet-getitem?mr=25:5330
http://www.zentralblatt-math.org/zmath/en/search/?an=0106.27702
http://dx.doi.org/10.1109/TIT.1982.1056505
http://dx.doi.org/10.1109/TIT.1983.1056744
http://www.zentralblatt-math.org/zmath/en/search/?an=0537.94009
http://www.ams.org/mathscinet-getitem?mr=16,673c
http://www.zentralblatt-math.org/zmath/en/search/?an=0058.03301
http://dx.doi.org/10.1109/18.2620
http://dx.doi.org/10.1109/18.2620
http://www.zentralblatt-math.org/zmath/en/search/?an=0652.40006
http://dx.doi.org/10.1007/11423461_2
http://www.zentralblatt-math.org/zmath/en/search/?an=1145.94419


L4 NORM OF LITTLEWOOD POLYNOMIALS AND JACOBI SYMBOL 417

[Jensen et al. 1991] J. M. Jensen, H. E. Jensen, and T. Høholdt, “The merit factor of binary sequences
related to difference sets”, IEEE Trans. Inform. Theory 37:3, part 1 (1991), 617–626. MR 92j:94009
Zbl 0731.94011

[Littlewood 1966] J. E. Littlewood, “On polynomials
∑n
±zm ,

∑n eαm i zm , z = eθi ”, J. London
Math. Soc. 41 (1966), 367–376. MR 33 #4237 Zbl 0142.32603

[Littlewood 1968] J. E. Littlewood, Some problems in real and complex analysis, D. C. Heath, Lex-
ington, MA, 1968. MR 39 #5777 Zbl 0185.11502

[Montgomery 1980] H. L. Montgomery, “An exponential polynomial formed with the Legendre
symbol”, Acta Arith. 37 (1980), 375–380. MR 82a:10041 Zbl 0369.10024

[Newman 1960] D. J. Newman, “Norms of polynomials”, Amer. Math. Monthly 67 (1960), 778–779.
MR 23 #A2510 Zbl 0102.05904

[Newman and Byrnes 1990] D. J. Newman and J. S. Byrnes, “The L4 norm of a polynomial with
coefficients ±1”, Amer. Math. Monthly 97:1 (1990), 42–45. MR 91d:30006

[Paterson and Tarokh 2000] K. G. Paterson and V. Tarokh, “On the existence and construction of
good codes with low peak-to-average power ratios”, IEEE Trans. Inform. Theory 46:6 (2000), 1974–
1987. MR 2001j:94012 Zbl 0998.94006

[Schmidt et al. 2009] K.-U. Schmidt, J. Jedwab, and M. G. Parker, “Two binary sequence families
with large merit factor”, Adv. Math. Commun. 3:2 (2009), 135–156. MR 2010b:94036 Zbl 1191.
94083

[Spencer 1985] J. Spencer, “Six standard deviations suffice”, Trans. Amer. Math. Soc. 289:2 (1985),
679–706. MR 86k:05004 Zbl 0577.05018

[Turyn 1968] R. Turyn, “Sequences with small correlation”, pp. 195–228 in Error correcting codes
(Madison, WI, 1968), edited by H. B. Mann, Wiley, New York, 1968. MR 39 #3897 Zbl 0169.51002

[Xiong and Hall 2008] T. Xiong and J. I. Hall, “Construction of even length binary sequences with
asymptotic merit factor 6”, IEEE Trans. Inform. Theory 54:2 (2008), 931–935. MR 2010e:94183

[Xiong and Hall 2010] T. Xiong and J. I. Hall, “Modifications on character sequences and construc-
tion of large even length binary sequences”, preprint, 2010.

[Xiong and Hall 2011] T. Xiong and J. I. Hall, “Modifications of modified Jacobi sequences”, IEEE
Trans. Inform. Theory 57:1 (2011), 493–504. MR 2012a:94145

Received August 4, 2011.

JONATHAN JEDWAB

DEPARTMENT OF MATHEMATICS

SIMON FRASER UNIVERSITY

8888 UNIVERSITY DRIVE

BURNABY, BC V5A 1S6
CANADA

jed@sfu.ca

KAI-UWE SCHMIDT

DEPARTMENT OF MATHEMATICS

SIMON FRASER UNIVERSITY

8888 UNIVERSITY DRIVE

BURNABY, BC V5A 1S6
CANADA

http://dx.doi.org/10.1109/18.79917
http://dx.doi.org/10.1109/18.79917
http://www.ams.org/mathscinet-getitem?mr=92j:94009
http://www.zentralblatt-math.org/zmath/en/search/?an=0731.94011
http://dx.doi.org/10.1112/jlms/s1-41.1.367
http://www.ams.org/mathscinet-getitem?mr=33:4237
http://www.zentralblatt-math.org/zmath/en/search/?an=0142.32603
http://www.ams.org/mathscinet-getitem?mr=39:5777
http://www.zentralblatt-math.org/zmath/en/search/?an=0185.11502
http://pldml.icm.edu.pl/mathbwn/element/bwmeta1.element.bwnjournal-article-aav37i1p375bwm
http://pldml.icm.edu.pl/mathbwn/element/bwmeta1.element.bwnjournal-article-aav37i1p375bwm
http://www.ams.org/mathscinet-getitem?mr=82a:10041
http://www.zentralblatt-math.org/zmath/en/search/?an=0369.10024
http://dx.doi.org/10.2307/2308661
http://www.ams.org/mathscinet-getitem?mr=23:A2510
http://www.zentralblatt-math.org/zmath/en/search/?an=0102.05904
http://dx.doi.org/10.2307/2324003
http://dx.doi.org/10.2307/2324003
http://www.ams.org/mathscinet-getitem?mr=91d:30006
http://dx.doi.org/10.1109/18.868473
http://dx.doi.org/10.1109/18.868473
http://www.ams.org/mathscinet-getitem?mr=2001j:94012
http://www.zentralblatt-math.org/zmath/en/search/?an=0998.94006
http://dx.doi.org/10.3934/amc.2009.3.135
http://dx.doi.org/10.3934/amc.2009.3.135
http://www.ams.org/mathscinet-getitem?mr=2010b:94036
http://www.emis.de/cgi-bin/MATH-item?1191.94083
http://www.emis.de/cgi-bin/MATH-item?1191.94083
http://dx.doi.org/10.2307/2000258
http://www.ams.org/mathscinet-getitem?mr=86k:05004
http://www.zentralblatt-math.org/zmath/en/search/?an=0577.05018
http://www.ams.org/mathscinet-getitem?mr=39:3897
http://www.zentralblatt-math.org/zmath/en/search/?an=0169.51002
http://dx.doi.org/10.1109/TIT.2007.913421
http://dx.doi.org/10.1109/TIT.2007.913421
http://www.ams.org/mathscinet-getitem?mr=2010e:94183
http://dx.doi.org/10.1109/TIT.2010.2090271
http://www.ams.org/mathscinet-getitem?mr=2012a:94145
mailto:jed@sfu.ca


418 JONATHAN JEDWAB AND KAI-UWE SCHMIDT

Current address:
FACULTY OF MATHEMATICS

OTTO-VON-GUERICKE UNIVERSITY

UNIVERSITÄTSPLATZ 2
39106 MAGDEBURG

GERMANY

kaiuwe.schmidt@ovgu.de

mailto:kaiuwe.schmidt@ovgu.de


PACIFIC JOURNAL OF MATHEMATICS
http://pacificmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.

The subscription price for 2012 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2012 by Pacific Journal of Mathematics

http://pacificmath.org/
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://pacificmath.org/
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 257 No. 2 June 2012

257Extending triangulations of the 2-sphere to the 3-disk preserving a
4-coloring

RUI PEDRO CARPENTIER

267Orthogonal quantum group invariants of links
LIN CHEN and QINGTAO CHEN

319Some properties of squeezing functions on bounded domains
FUSHENG DENG, QIAN GUAN and LIYOU ZHANG

343Representations of little q-Schur algebras
JIE DU, QIANG FU and JIAN-PAN WANG

379Renormalized weighted volume and conformal fractional Laplacians
MARÍA DEL MAR GONZÁLEZ

395The L4 norm of Littlewood polynomials derived from the Jacobi symbol
JONATHAN JEDWAB and KAI-UWE SCHMIDT

419On a conjecture of Kaneko and Ohno
ZHONG-HUA LI

431Categories of unitary representations of Banach–Lie supergroups and
restriction functors

STÉPHANE MERIGON, KARL-HERMANN NEEB and HADI

SALMASIAN

471Odd Hamiltonian superalgebras and special odd Hamiltonian
superalgebras of formal vector fields

LI REN, QIANG MU and YONGZHENG ZHANG

491Interior derivative estimates for the Kähler–Ricci flow
MORGAN SHERMAN and BEN WEINKOVE

503Two-dimensional disjoint minimal graphs
LINFENG ZHOU

Pacific
JournalofM

athem
atics

2012
Vol.257,N

o.2


	1. Introduction
	2. Results
	3. Preliminary results
	4. Proof of 0=theorem.61=Theorem 2.1
	5. Proof of 0=theorem.81=Theorem 2.2
	6. Proof of 0=theorem.101=Theorem 2.3
	7. Proof of 0=theorem.121=Theorem 2.4
	8. Proof of 0=theorem.141=Theorem 2.5
	9. Proof of 0=theorem.171=Theorem 2.6
	References
	
	

