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We prove two results which show that the categories of smooth and analytic
unitary representations of a Banach–Lie supergroup are well-behaved. The
first result states that the restriction functor corresponding to any homo-
morphism of Banach–Lie supergroups is well-defined. The second result
shows that the category of analytic representations is isomorphic to a sub-
category of the category of smooth representations. These facts are needed
as a crucial first step to a rigorous treatment of the analytic theory of unitary
representations of Banach–Lie supergroups. They extend the known results
for finite-dimensional Lie supergroups. In the infinite-dimensional case the
proofs require several new ideas. As an application, we give an analytic
realization of the oscillator representation of the restricted orthosymplectic
Banach–Lie supergroup.

1. Introduction

In the last two decades, unitary representations of finite and infinite-dimensional
Lie supergroups and Lie superalgebras have received growing interest from both
mathematicians and physicists. These unitary representations appear in the classi-
fication of free relativistic superparticles in SUSY quantum mechanics (for exam-
ple, see [Ferrara et al. 1981] and [Salam and Strathdee 1974]) which relies on the
little supergroup method, an idea originating from the classical works of Mackey
and Wigner. Unitary representations of the N = 1 super Virasoro algebras were
classified by Friedan, Qiu and Shenker [Friedan et al. 1985], Goddard, Kent and
Olive [Goddard et al. 1986], and Sauvageot [1989]. For the N = 2 super Virasoro
algebras, the results are due to Boucher, Friedan, Kent [Boucher et al. 1986] and
Iohara [2010]. Kac and Todorov [1985] classified unitary representations of su-
perconformal current algebras. Using an analogue of the Sugawara construction,
Jarvis and Zhang [1988] constructed unitary representations of untwisted affine Lie
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superalgebras. Unitary highest weight modules of affine Lie superalgebras were
also studied by Jakobsen and Kac [1989].

Much of the research done on unitary representations is algebraic, that is, studies
them as unitarizable modules over Lie superalgebras. A mathematically rigorous
investigation of analytic aspects of unitary representations is more recent [Alldridge
et al. 2011; Carmeli et al. 2006; Salmasian 2010].

Carmeli et al. [2006] propose an approach to harmonic analysis on Lie super-
groups. One key idea in their work is to use the equivalence between the category
of Lie supergroups and the category of Harish-Chandra pairs1 (G, g) [Deligne
and Morgan 1999, Section 3.8; Kostant 1977, Section 3.2]. The advantage of
using this equivalence is that for Harish-Chandra pairs the definition of a unitary
representation is more concrete. Roughly speaking, a Harish-Chandra pair is an
ordered pair (G, g), where G is a Lie group, g = g0 ⊕ g1 is a Lie superalgebra,
g0 = Lie(G), and there is an action of G on g which is compatible with the adjoint
action of g. (For a precise definition, see Definition 2.1.) A unitary representation
of (G, g) is a triple (π,H, ρπ ), where (π,H) is a unitary representation of the Lie
group G (in the sense of [Varadarajan 1999, Section 1.2]) and ρπ is a representation
of the Lie superalgebra g, realized on a dense subspace of H (consisting of smooth
vectors) which is compatible with π on g0 (see Definition 4.1).

An important observation in [Carmeli et al. 2006] is that if x ∈ g1 then

ρπ (x)2 = 1
2ρ

π ([x, x])= 1
2dπ([x, x]),

which suggests that ρπ (x) should be an unbounded operator on H, that is, it can
only be densely defined. Therefore one needs to fix a common domain for the
operators ρπ (x). For instance, one can choose the common domain to be H∞

or Hω, the subspaces of smooth or analytic vectors of the unitary representation
(π,H), which lead to categories Rep∞(G, g) and Repω(G, g) of smooth and ana-
lytic representations of (G, g). With any choice of such a common domain, we are
led to the following two questions.

(i) What is the relation between the categories of unitary representations of (G, g)
when the common domain for the realization of ρπ varies? For instance, what
is the relation between Rep∞(G, g) and Repω(G, g)?

Here the issue is that if (π, ρπ ,H) is an object of Repω(G, g), then the
action of g1 is defined on Hω. In general Hω ( H∞ and therefore a priori it
is not obvious why (π, ρπ ,H) is also an object of Rep∞(G, g).

1Because of the equivalence between the categories of Lie supergroups and Harish-Chandra pairs,
it will be harmless (and simpler for our presentation) to refer to a Harish-Chandra pair as a Lie
supergroup. When the Harish-Chandra pair is modeled on a Banach space, we will call it a Banach–
Lie supergroup (see Definition 2.1).
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(ii) Given a homomorphism of Banach–Lie supergroups (φ, ϕ) : (H, h)→ (G, g),
are there well-defined restriction functors

Res∞ : Rep∞(G, g) 7→ Rep∞(H, h)

and

Resω : Repω(G, g) 7→ Repω(H, h)?

Here the issue is the following. Let (π, ρπ ,H) be a unitary representation
of (G, g). Denote the subspace of smooth vectors of (π,H) (respectively,
(π ◦ φ,H)) by H∞G (respectively, H∞H ). A priori the operators ρπ ◦ ϕ(x),
where x ∈ h1, are only defined on H∞G . In general H∞G ( H∞H , and restricting
the actions naively does not lead to an object of the category Rep∞(H, h).

The answers to the above questions are crucial to obtaining well-behaved categories
of unitary representations for Harish-Chandra pairs. For (finite-dimensional) Lie
supergroups they are addressed in [Carmeli et al. 2006].

The main goal of this article is to answer the above questions for Harish-Chandra
pairs associated to Banach–Lie supergroups. Molotkov’s work (which is extended
in Sachse’s Ph.D. thesis) develops a functorial theory of Banach–Lie supermani-
folds which specializes to the (finite-dimensional) Berezin–Leites–Kostant theory
and the (possibly infinite-dimensional) DeWitt–Tuynman theory [Alldridge and
Laubinger 2012]. In the functorial approach one can associate Harish-Chandra
pairs to Banach–Lie supergroups as well. We believe that the success of the Harish-
Chandra pair approach in the finite-dimensional case justifies their use in studying
harmonic analysis on Banach–Lie supergroups.

The direction we choose for the formulation and proofs of our results is similar
in spirit to [Carmeli et al. 2006]. However, some of the arguments used in that
source, in particular the proofs of its Propositions 1 and 2, depend crucially on
finiteness of dimension. In this article we present new arguments which generalize
to the Banach–Lie case. One of our tools is the theory of analytic maps between
Banach spaces. Of the multitude of existing variations of this theory, the most
relevant to this article is the work in [Bochnak and Siciak 1971a; 1971b; Siciak
1972], which generalizes the results in [Hille and Phillips 1974].

We also present two applications of our techniques. The first application is that
when g is in the connected component of identity of G, the conjugacy invariance
relation

(1) π(g)ρπ (x)π(g)−1
= ρπ (Ad(g)x) for every x ∈ g

follows from the remaining assumptions in the definition of a unitary representation
of (G, g). (See Proposition 4.8 below.) Such a conjugacy invariance relation is one
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of the assumptions of [Carmeli et al. 2006, Definition 2]. As a consequence, we ob-
tain a reformulation of the definition of a unitary representation (see Definition 4.1)
which makes it more practical than the original form given in [Carmeli et al. 2006]
because in explicit examples checking that the infinitesimal action satisfies the
bracket relation is easier than checking the conjugacy invariance relation (1).

The second application is an analytic realization of the oscillator representation
of the restricted orthosymplectic Banach–Lie supergroup. Again the main issue
is to show that the action of the odd part is defined on the subspaces of smooth
and analytic vectors and leaves them invariant. We use a general statement, that is,
Theorem 4.10, which we expect to be useful in a variety of situations, for instance
when one is interested in integrating a representation of a Banach–Lie superalgebra.

This article is organized as follows. In Section 2 we introduce our notation
and basic definitions and prove some general lemmas which will be used in the
later sections. In Section 3 we state some general facts about smooth and analytic
vectors of unitary representations of Banach–Lie groups. Section 4 is devoted to the
proof of our main results, Theorems 4.10 and 4.12. In Section 5 we give a realiza-
tion of the oscillator representation of the restricted orthosymplectic Banach–Lie
supergroup. In Appendix A we give an example of a smooth unitary representation
of a Banach–Lie group which has no nonzero analytic vectors. In Appendix B we
give an example of an analytic unitary representation of a Banach–Lie group which
has no nonzero bounded vectors. Appendix C contains the background material
on analytic maps between Banach spaces.

This article contains general results about arbitrary Banach–Lie supergroups.
These results are needed for the study of unitary representations of concrete exam-
ples. In our forthcoming works we will study unitary representations of Banach–
Lie supergroups corresponding to affine Lie superalgebras, and the supergroup
version of the Kirillov–Ol’shanskii classification of unitary representations of the
infinite-dimensional unitary group [Kirillov 1973; Ol’shanskii 1991]. We also plan
to investigate unitary representations of super versions of loop groups, resp., suit-
able double extensions. On the algebraic side, a classification of the unitary highest
weight modules are known from the work of Kac and Todorov [1985] and Jarvis
and Zhang [1988]. To develop a suitable analytic context, we plan to use Lie
supergroups (G, g), where G is a Banach–Lie group of H 1-loops with values in a
compact Lie algebra, so that we can build on the results developed in the present
paper.

2. Notation and preliminaries

If B is a real Banach space with norm ‖ · ‖R then we define its complexification
as the complex Banach space with underlying space BC

=B⊗R C and with norm
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‖ · ‖C, where for every v ∈BC we set

‖v‖C = inf{ |ζ1|·‖v1‖R+· · ·+ |ζk |·‖vk‖R : v = v1⊗Rζ1+· · ·+vk⊗Rζk }.

Note that if v = v1⊗R 1+ v2⊗R i then

(2) max{‖v1‖R, ‖v2‖R} ≤ ‖v‖C ≤ ‖v1‖R+‖v2‖R.

All Banach and Hilbert spaces will be separable. Let H be a real or complex
Hilbert space. If T :H→H is a bounded linear operator on H, then ‖T ‖Op denotes
the operator norm of T , and if T is a Hilbert–Schmidt operator, then ‖T ‖HS denotes
its Hilbert–Schmidt norm.

Now assume H is a complex Hilbert space. The group of unitary linear transfor-
mations on H is denoted by U(H). The domain of an unbounded linear operator
T on H is denoted by D(T ), and if B⊆ D(T ) is a subspace, then T |B denotes the
restriction of T to B. If S and T are two unbounded operators on H then their sum
S+ T is an operator with domain D(S+ T )=D(S)∩D(T ), and their product ST
is an operator with domain

D(ST )= { v ∈ D(T ) : T v ∈ D(S) }.

For two unbounded operators S and T , we write S ≺ T if D(S) ⊆ D(T ) and
T |D(S) = S.

The adjoint of a linear operator T is denoted by T ∗. If T is closable, then its
closure is denoted by T . For every integer n > 1 we set

D(T n)= { v ∈ D(T ) : T v ∈ D(T n−1) }.

We also set D∞(T )=
⋂
∞

n=1 D(T n). If v ∈ D∞(T ) satisfies

∞∑
n=0

tn

n!
‖T nv‖<∞ for some t > 0

then v is called an analytic vector of T . The space of analytic vectors of T is
denoted by Dω(T ).

By a Z2-graded Hilbert space H=H0⊕H1 we simply mean an orthogonal direct
sum of two complex Hilbert spaces H0 and H1. (For another equivalent definition,
see [Carmeli et al. 2006, Section 2.1].)

All Banach–Lie groups and the homomorphisms between them will be real ana-
lytic. Let G be a Banach–Lie group and g= Lie(G). The identity component of G
is denoted by G◦. We assume, without loss of generality, that the norm inducing
the topology of the Banach–Lie algebra g satisfies ‖[x, y]‖ ≤ ‖x‖ · ‖y‖ for every
x, y ∈ g.
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By a Banach–Lie superalgebra we mean a Lie superalgebra g= g0⊕ g1 over R

or C with the following two properties.

(i) g is a Banach space with a norm ‖ · ‖ satisfying

(3) ‖[x, y]‖ ≤ ‖x‖ · ‖y‖ for every x, y ∈ g.

(ii) g0 and g1 are closed subspaces of g.

Remark. Consider the norm ‖ · ‖′ on g which is defined as follows. For every
x ∈ g, we write x = x0+ x1, where x0 ∈ g0 and x1 ∈ g1, and set ‖x‖′ =‖x0‖+‖x1‖.
From the definition of a Banach–Lie superalgebra it follows that the norms ‖ · ‖
and ‖ · ‖′ are equivalent.

The Banach–Lie group of continuous even automorphisms (that is, automor-
phisms which preserve parity) of a Banach–Lie superalgebra g is denoted by Aut(g).

Definition 2.1. A Banach–Lie supergroup is an ordered pair (G, g) with the fol-
lowing properties.

(i) G is a Banach–Lie group.

(ii) g is a Banach–Lie superalgebra over R.

(iii) g0 = Lie(G).

(iv) There exists a homomorphism of Banach–Lie groups Ad : G→ Aut(g) such
that

deAd(x)= adx for every x ∈ g0,

where deAd denotes the differential of Ad at e ∈ G, and adx(y)= [x, y].

We refer to the homomorphism Ad : G→ Aut(g) of Definition 2.1(iv) by the
adjoint action of G on g. Observe that the map

G× g→ g, (g, x) 7→ Ad(g)x

is analytic.
If g is a real Lie superalgebra, then its complexification is denoted by gC. It

is easily seen that if g is a real Banach–Lie superalgebra, then gC with the norm
defined in the beginning of Section 2 is a complex Banach–Lie superalgebra. After
a suitable scaling, we can assume that the norm ‖ · ‖ chosen on gC satisfies

‖[x, y]‖ ≤ ‖x‖ · ‖y‖ for every x, y ∈ gC.

A homomorphism of Banach–Lie supergroups (φ, ϕ) : (H, h)→ (G, g) is a pair
of maps where φ : H → G is a homomorphism of Banach–Lie groups, ϕ : h→ g

is a continuous homomorphism of Lie superalgebras, and deφ = ϕ|h0
.
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A unitary representation of a Banach–Lie group G is an ordered pair (π,H)

such that π : G→ U(H) is a group homomorphism and for every v ∈H the orbit
map

(4) πv : G→H, πv(g)= π(g)v

is continuous. If φ : H → G is a homomorphism of Banach–Lie groups, then the
restriction of (π,H) to H is the unitary representation (π ◦φ,H) of H .

We conclude this section with a few lemmas about unbounded operators.

Lemma 2.2. Let T be a self-adjoint operator on a complex Hilbert space H and
L⊆ D(T ) be a dense subspace of H satisfying at least one of the following prop-
erties.

(a) For every t ∈ R, we have ei tT L⊆ L.

(b) Every v ∈ L is an analytic vector for T .

Then T |L is essentially self-adjoint.

Proof. When (a) holds, the result follows from [Reed and Simon 1972, Theo-
rem VIII.11]. When (b) holds, it is an immediate consequence of Nelson’s Analytic
Vector Theorem [Nelson 1959, Lemma 5.1]. �

The next lemma is obvious, but it will help us shorten several similar arguments.

Lemma 2.3. Let P1 and P2 be symmetric linear operators on a complex Hilbert
space H and v ∈ D(P1)∩D(P2) such that P1v ∈ D(P1) and P2

1 v = P2v. Then

‖P1v‖ ≤ ‖v‖
1
2 · ‖P2v‖

1
2 .

Proof. ‖P1v‖
2
= |〈P1v, P1v〉| = |〈v, P2

1 v〉| = |〈v, P2v〉| ≤ ‖v‖ · ‖P2v‖. �

Lemma 2.4. Let T be a self-adjoint operator on a complex Hilbert space H. Let L

be a dense subspace of H such that L⊆ D(T ) and T |L is essentially self-adjoint,
and S be a symmetric operator such that L ⊆ D(S), SL ⊆ L, and S2

|L = T |L.
Then S|L is essentially self-adjoint, S|L = S, and S 2

= T .

Proof. The proof of the lemma is similar to that of [Carmeli et al. 2006, Lemma 1].
We spell it out for completeness.

Set S1 = S|L. From T = T |L = S2
1 it follows that

(5) 〈T v, v〉 ≥ 0 for every v ∈ D(T ).

By [Reed and Simon 1972, Theorem VIII.3], in order to prove that S1 is essentially
self-adjoint, it suffices to show that if

(6) S∗1v = λv
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for a nonzero v ∈ D(S∗1 ) and a λ ∈ C, then λ ∈ R. If v and λ satisfy (6) then for
every w ∈ L we have

〈S2
1w, v〉 = 〈S1w, S∗1v〉 = λ〈S1w, v〉 = λ〈w, S∗1v〉 = λ

2
〈w, v〉 = 〈w, λ2v〉.

Therefore v ∈D((S2
1)
∗) and (S2

1)
∗v=λ2v. But T = (T |L)∗= (S2

1)
∗ and in particular

T v = (S2
1)
∗v = λ2v. From (5) it follows immediately that λ ∈ R. This completes

the proof of essential self-adjointness of S1.
Next observe that S1 ≺ S ≺ S∗ ≺ S∗1 . Since S1 is essentially self-adjoint, we

have S1 = S∗1 and therefore S = S1. Since the operator S1 is self-adjoint, it follows
from [Dunford and Schwartz 1988, Corollary XII.2.8] that S1

2 is also self-adjoint.
Consequently,

S1
2
=
(
S1

2)∗
≺ (S2

1)
∗
= T and T = S2

1 ≺ S1
2

which implies that S2
= S1

2
= T . �

Remark. Note that in the statement of Lemma 2.4, it follows directly from S2
= T

that D(T )⊆ D(S).

Lemma 2.5. Let P1 and P2 be two symmetric operators on a complex Hilbert
space H such that D(P1)=D(P2). Let L⊆D(P1) be a dense linear subspace of H

such that P1|L = P2|L. Assume that the latter operator is essentially self-adjoint.
Then P1 = P2.

Proof. Observe that

P1|L ≺ P1 ≺ P∗1 ≺ (P1|L)
∗
= P1|L

from which it follows that P1 = P1|L. Similarly, P2 = P2|L and therefore P1 = P2.
It follows immediately that P1 = P2. �

3. Smooth and analytic vectors of unitary representations

Let G be a Banach–Lie group, g=Lie(G), and (π,H) be a unitary representation of
G. For every x ∈ g, the skew-adjoint operator corresponding to the one-parameter
unitary representation

R→ U(H), t 7→ π(exp(t x))

via Stone’s theorem is denoted by dπ(x). If x = a+ ib ∈ gC, then we set

dπ(x)= dπ(a)+ idπ(b),

where the right-hand side means the sum of two unbounded operators, that is,

D(dπ(x))= D(dπ(a))∩D(dπ(b)).
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Recall that πv : G 7→ H denotes the orbit map defined in (4). Let H∞ be the
subspace of smooth vectors of (π,H), that is,

H∞ = { v ∈H : πv is a smooth map }.

If H∞ is a dense subspace of H then the representation (π,H) is called a smooth
unitary representation.

As in [Neeb 2010a, Section 4], we endow the space H∞ with the topology
induced by the family of seminorms {qn}

∞

n=0, where

qn(v)= sup
{
‖dπ(x1) · · · dπ(xn)v‖ : x1 , . . . , xn ∈ g, ‖x1‖ ≤ 1, . . . , ‖xn‖ ≤ 1

}
.

With this topology H∞ is a Fréchet space [Neeb 2010a, Proposition 5.4]. Moreover,
the map

(7) g×H∞→H∞, (x, v) 7→ dπ(x)v

is continuous [Neeb 2010a, Lemma 4.2] and the map

(8) G×H∞→H∞, (g, v) 7→ π(g)v

is smooth [Neeb 2010a, Theorem 4.4].
A vector v ∈H∞ is called analytic if the orbit map πv :G→H is a real analytic

function. The space of analytic vectors is denoted by Hω. If Hω is a dense subspace
of H then the representation (π,H) is called an analytic unitary representation.

Proposition 3.1 below records well known facts about unitary representations of
the real line and its proof is omitted.

Proposition 3.1. Let (π,H) be a unitary representation of R and A be the skew-
adjoint infinitesimal generator of (π,H).

(i) A vector v ∈H is smooth if and only if v ∈ D∞(A).

(ii) A vector v ∈H is analytic if and only if v ∈ Dω(A).

(iii) Let v ∈ D∞(A) and r > 0 be such that
∞∑

n=0

rn

n!
‖Anv‖<∞. Then

π(t)v =
∞∑

n=0

tn

n!
Anv for every t ∈ (−r, r) .

If G is a Banach–Lie group and g= Lie(G) then for every r > 0 we set

Br = { x ∈ gC
: ‖x‖< r }.

Lemma 3.2. Let G be a Banach–Lie group, g= Lie(G), (π,H) be a unitary rep-
resentation of G, and v ∈ H∞. Then v ∈ Hω if and only if there exists an r > 0
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such that for every x ∈ Br the series

(9) fv(x)=
∞∑

n=0

1
n!

dπ(x)nv

converges in H (and therefore defines an analytic map Br →H).

Proof. Let v ∈Hω and x ∈ Br . By Proposition 3.1, for all sufficiently small t > 0
we have

π(exp(t x))v =
∞∑

n=0

tn

n!
dπ(x)nv.

This means that the series (9) converges in an absorbing set. By [Neeb 2011,
Lemma 4.4] for every integer n ≥ 0 the function

g→H, x 7→
1
n!

dπ(x)nv

is a continuous homogeneous polynomial of degree n. Thus by Theorem C.1(i) the
series (9) defines an analytic map in a neighborhood of zero in g. By Theorem C.2
this series also defines an analytic map in a neighborhood of zero in gC.

Conversely, assume the series (9) converges for every x ∈ Br . By Theorem C.1(i)
there exists an r ′ > 0 such that

(10)
∞∑

n=0

1
n!

sup{‖dπ(x)nv‖ : x ∈ Br ′}<∞.

Therefore Proposition 3.1(iii) implies that

πv(exp(x))= fv(x) for every x ∈ Br ′ ∩ g.

From Theorem C.1(ii) it follows that fv is an analytic function in Br . Therefore
the orbit map πv is also analytic in a neighborhood of identity of G. It follows
immediately that v ∈Hω. �

Notation. For every r > 0 set

Hω,r
=

{
v ∈H∞ :

∞∑
n=0

1
n!

dπ(x)nv converges in H for every x ∈ Br

}
.

From Lemma 3.2 it follows that Hω
=
⋃

r>0 Hω,r , and Proposition 3.1(iii) shows
that if v ∈Hω,r then

(11) π(exp(x))v = fv(x) for every x ∈ Br ∩ g.
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Lemma 3.3. Let G be a Banach–Lie group, (π,H) be a unitary representation
of G, v ∈ H∞, r > 0, and g = Lie(G). Then v ∈ Hω,r if and only if the map
πv ◦ exp |Br∩g extends to an analytic function hv : Br →H.

Proof. Let v ∈Hω,r . From Theorem C.1(ii) it follows that the series fv(x) of (9)
defines an analytic function in Br . By (11) we have

π(exp(x))v = fv(x) for every x ∈ Br ∩ g.

Therefore πv ◦ exp |Br∩g extends to an analytic function in Br .
Conversely, assume that πv ◦ exp |Br∩g extends to an analytic map hv : Br →H.

Since Br is a balanced neighborhood of zero, from Theorem C.4 it follows that

hv(x)=
∞∑

n=0

1
n!
δ
(n)
0 hv(x) for every x ∈ Br .

By Theorem C.4(i), for every n ≥ 0 the function δ(n)0 hv : gC
→H is a continuous

homogeneous polynomial of degree n. Observe that hv(x)= π(exp(x))v for every
x ∈ Br ∩ g, and by taking the n-th directional derivatives of both sides we obtain

(12) δ
(n)
0 hv(x)= dπ(x)nv for every x ∈ Br ∩ g.

Both sides of (12) are continuous homogeneous polynomials, and in particular
analytic in Br . Therefore by analytic continuation, the equality (12) holds for
every x ∈ Br . Consequently, the series (9) converges for every x ∈ Br , that is,
v ∈Hω,r . �

Lemma 3.4. Let G be a Banach–Lie group and g= Lie(G). Then there exists an
r◦ > 0 such that for every 0< r < r◦, every unitary representation (π,H) of G, and
every v ∈Hω,r , the following statements hold.

(i) fv(x) ∈Hω for every x ∈ Br .

(ii) If a ∈ gC then the map

ua : Br →H, ua(x)= dπ(a)( fv(x))

is analytic in Br .

Proof. (i) Let z ? z′ denote the Baker–Campbell–Hausdorff series for two elements
z, z′ ∈ gC whenever it converges. Choose r◦ > 0 small enough that the map

µ : Br◦ × Br◦→ gC, µ(z, z′)= z ? z′

is analytic in Br◦ × Br◦ .
Let x ∈ Br . We write x = x ′+ i x ′′, where x ′, x ′′ ∈ g, and consider the complex

subspace V = SpanC{x
′, x ′′} of gC. Choose s > 0 such that ‖x‖ < s < r , and let
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Bs denote the closure of Bs . Since V is finite-dimensional, Bs ∩V is a compact
subset of W . It follows that there exists an 0< r ′ < r such that

{ z ? z′ : z ∈ Br ′ and z′ ∈ Bs ∩V } ⊆ Br .

Consequently, for every z ∈ Br ′ the map

φz : Bs ∩V→H, φz(y)= fv(z ? y)

is well-defined and analytic.
Next fix z ∈ Br ′ ∩ g and consider the function

ψz : Bs→H, ψz(y)= π(exp(z)) fv(y)

which is analytic in Bs . If y ∈ Bs ∩V∩ g, then z ? y ∈ Br ∩ g and by (11) we have

φz(y)= fv(z ? y)= π(exp(z ? y))v = π(exp(z))π(exp(y))v = ψz(y).

As both φz and ψz are analytic in Bs ∩V, it follows that the equality φz(y)=ψz(y)
holds for every y ∈ Bs ∩V. In particular, for every z ∈ Br ′ ∩ g we have

(13) fv(z ? x)= π(exp(z)) fv(x).

This implies that the map

G→H, g 7→ π(g) fv(x)

is analytic in a neighborhood of the identity, that is, fv(x) ∈Hω. This completes
the proof of (i).

(ii) It suffices to prove the statement when a ∈ g. If 0< r < r◦ then there exists an
open set W ⊆ Br × Br such that {0}× Br ⊆W and for every (z, z′) ∈W we have
z ? z′ ∈ Br . Observe that the map

(14) 9 :W →H, 9(z, z′)= fv(z ? z′)

is analytic in W . The map

C→H, ζ 7→ fv
(
(ζ · a) ? x

)
is an analytic function of ζ in a neighborhood of the origin. From (13) it follows
that for every x ∈ Br we have

dπ(a)( fv(x))=
∂

∂ζ
fv
(
(ζ · a) ? x

)∣∣∣
ζ=0
.

From analyticity of the map 9 :W →H defined in (14) it follows that the map

Br →H, x 7→
∂

∂ζ
fv
(
(ζ · a) ? x

)∣∣∣
ζ=0

is analytic in Br . This completes the proof of (ii). �
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4. Representations of Banach–Lie supergroups

Our next task is to define the notions of smooth and analytic unitary representa-
tions of a Banach–Lie supergroup. The definitions are similar to the one given in
[Carmeli et al. 2006, Definition 2] for finite-dimensional Lie supergroups.

Definition 4.1. Let (G, g) be a Banach–Lie supergroup. A smooth unitary rep-
resentation (respectively, an analytic unitary representation) of (G, g) is a triple
(π, ρπ ,H) satisfying the following properties.

(i) (π,H) is a smooth (respectively, analytic) unitary representation of G on the
Z2-graded Hilbert space H such that for every g ∈ G, the operator π(g) pre-
serves the Z2-grading.

(ii) ρπ : g→EndC(B) is a representation of the Banach–Lie superalgebra g, where
B=H∞ (respectively, B=Hω).

(iii) ρπ (x)= dπ(x)|B for every x ∈ g0.

(iv) e−π i/4ρπ (x) is a symmetric operator for every x ∈ g1.

(v) Every element of the component group G/G◦ has a coset representative g ∈G
such that π(g)ρπ (x)π(g)−1

= ρπ (Ad(g)x) for every x ∈ g1.

The category of smooth (respectively, analytic) unitary representations of (G, g) is
denoted by Rep∞(G, g) (respectively, Repω(G, g)).

Remark. Observe that in Definition 4.1(ii) the map ρπ is an abstract representa-
tion, that is, there are no continuity assumptions. If G is connected then obviously
Definition 4.1(v) always holds trivially. This point is the main difference between
Definition 4.1 above and the definition given in [Carmeli et al. 2006, Definition 2]
for finite-dimensional Lie groups, where it is assumed that

(15) π(g)ρπ (x)π(g)−1
= ρπ (Ad(g)x) for every x ∈ g1 and every g ∈ G,

while the infinitesimal action is supposed to satisfy a weaker condition. Indeed
Proposition 4.8 below implies that, for a (possibly disconnected) G, Equation (15)
follows from Definition 4.1.

We will need a slightly more general gadget than smooth and analytic unitary
representations, and we introduce it in the next definition.

Definition 4.2. Let (G, g) be a Banach–Lie supergroup. A prerepresentation of
(G, g) is a 4-tuple ( π,H,B, ρB ) which satisfies the following properties.

(i) (π,H) is a unitary representation of G on the Z2-graded Hilbert space H =

H0⊕H1. Moreover, π(g) is an even operator for every g ∈ G.
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(ii) B is a dense Z2-graded subspace of H such that

B⊆
⋂
x∈g0

D
(
dπ(x)

)
.

(iii) ρB
: g→ EndC(B) is a representation of the Banach–Lie superalgebra g.

(iv) If x ∈ g0 then ρB(x)= dπ(x)|B and ρB(x) is essentially skew-adjoint.

(v) If x ∈ g1 then e−π i/4ρB(x) is a symmetric operator.

(vi) For every element of the component group G/G◦, there exists a coset repre-
sentative g ∈ G such that π(g)−1B⊆B and

π(g)ρB(x)π(g)−1
= ρB(Ad(g)x) for every x ∈ g1.

Remark. (i) Observe that in Definition 4.2(iii) there are no continuity assumptions
on the map ρB.

(ii) Definition 4.2 implies that B⊆
⋂

n∈N Dn , where

(16) Dn =
⋂

x1,...,xn∈g0

D
(
dπ(x1) · · · dπ(xn)

)
.

Consequently, it follows from [Neeb 2010a, Theorem 9.4] that B⊆H∞. Since B

is assumed to be dense in H, the unitary representation (π,H) of G is smooth.

(iii) When G is connected, Definition 4.2(vi) always holds trivially. The advantage
of assuming the conjugacy invariance only for coset representatives (and not for
every element of G) is that Theorem 4.10 will be applicable to the situations where
B is not G-invariant. An example of this situation is the Fock space realization of
the oscillator representation of (OSpres(K), ôspres(K)). See Section 5 for details.

For a Banach–Lie group G, the subspaces of smooth and analytic vectors of
a unitary representation are G-invariant. Therefore Lemma 2.2 has the following
immediate consequence.

Corollary 4.3. Let (G, g) be a Banach–Lie supergroup, (π, ρπ ,H) be a smooth
(respectively, analytic) unitary representation of (G, g), and B=H∞ (respectively,
B=Hω). Then (π,H,B, ρπ ) is a prerepresentation of (G, g).

Lemma 4.4. Let (G, g) be a Banach–Lie supergroup and
(
π,H,B, ρB

)
be a pre-

representation of (G, g). Then the following statements hold.

(i) For every x ∈ g0 we have ρB(x)= dπ(x). In particular H∞ ⊆ D(ρB(x)).

(ii) For every x ∈ g1 the operator e−π i/4ρB(x) is essentially self-adjoint and(
ρB(x)

)2
=

1
2dπ([x, x]). In particular H∞ ⊆ D(ρB(x)).

Proof. (i) The statement follows directly from Definition 4.2(iv).

(ii) The statement follows from Lemma 2.4. �
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Notation. Let (π,H,B, ρB) be a prerepresentation of a Banach–Lie supergroup
(G, g). For every x = x0+ x1 ∈ gC we define a linear operator ρ̃B(x) on H with
D(ρ̃B(x))=H∞ as follows. If x0 = a0+ ib0 and x1 = a1+ ib1, where a0, b0 ∈ g0
and a1, b1 ∈ g1, then for every v ∈H∞ we set

ρ̃B(x)v = ρB(a0)v+ iρB(b0)v+ ρ
B(a1)v+ iρB(b1)v.

Proposition 4.5. Let (G, g) be a Banach–Lie supergroup and
(
π,H,B, ρB

)
be a

prerepresentation of (G, g). Then ρ̃B(x)H∞ ⊆H∞ for every x ∈ gC.

Proof. By Lemma 4.4(i) and the definition of ρ̃B it suffices to prove the statement
when x ∈ g1. As shown in [Neeb 2010a, Theorem 9.4], we have H∞ =

⋂
n∈N Dn ,

where

Dn =
⋂

x1,...,xn∈g0

D(dπ(x1) · · · dπ(xn)).

Therefore it is enough to prove that

(17) ρB(x)v ∈ Dn for every x ∈ g1 and v ∈H∞.

Let y ∈ g0. For every w ∈B, using Lemma 4.4 we can write

〈ρB(x)v, dπ(y)w〉 = 〈ρB(x)v, ρB(y)w〉

= eπ i/2
〈v, ρB(x)ρB(y)w〉

= eπ i/2
〈v, ρB(y)ρB(x)w+ ρB([x, y])w〉

= eπ i/2
〈v, ρB(y)ρB(x)w〉+ eπ i/2

〈v, ρB([x, y])w〉

= 〈ρB(x)dπ(y)v,w〉+ 〈ρB([x, y])v,w〉.

It follows that the C-linear functional

B→ C, w 7→ 〈ρB(x)v, dπ(y)w〉

is continuous, that is, ρB(x)v ∈ D
(
(dπ(y)|B)∗

)
. Since dπ(y)|B = ρB(y) is essen-

tially skew-adjoint, from Lemma 4.4(i) it follows that (dπ(y)|B)∗ =−dπ(y), that
is, ρB(x)v ∈ D(dπ(y)). This proves (17) for n = 1.

For n > 1 the proof of (17) can be completed by induction. Let x1, . . . , xn ∈ g0
and v ∈H∞. Using the induction hypothesis, for every w ∈B we can write

〈dπ(xn−1) · · · dπ(x1)ρB(x)v, dπ(xn)w〉 = e(n−
1
2 )π i
〈v, ρB(x)ρB(x1) · · · ρ

B(xn)w〉

= e(n−
1
2 )π i
〈v,ρB([x,x1])ρ

B(x2) · · · ρ
B(xn)w+ρ

B(x1)ρ
B(x)ρB(x2) · · · ρ

B(xn)w〉

= 〈dπ(xn) · · · dπ(x2)ρB([x, x1])v,w〉+ 〈dπ(xn) · · · dπ(x2)ρB(x)dπ(x1)v,w〉.
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An argument similar to the case n = 1 proves that

dπ(xn−1) · · · dπ(x1)ρB(x)v ∈ D(dπ(xn)).

Consequently, v ∈ Dn . �

Proposition 4.6. Let (G, g) be a Banach–Lie supergroup and
(
π,H,B, ρB

)
be a

prerepresentation of (G, g). Then the following statements hold.

(i) The map

(18) gC
×H∞→H∞, (x, v) 7→ ρ̃B(x)v

is C-bilinear.

(ii) If x, y ∈ gC are homogeneous, then for every v ∈H∞ we have

ρ̃B([x, y])v = ρ̃B(x)ρ̃B(y)v− (−1)p(x)p(y)ρ̃B(y)ρ̃B(x)v.

(iii) The map given in (18) is continuous.

Proof. (i) By Lemma 4.4(i) and the definition of ρ̃B it is enough to prove that for
every v ∈H∞ the map

g1→H∞, x 7→ ρB(x)v

is R-linear.
Let x ∈ g1 and a ∈ R. Then the equality

(19) ρB(ax)v = aρB(x)v

holds for every v ∈B, and therefore by Lemma 2.5 it also holds for every v ∈H∞.
A similar reasoning proves that if x, y ∈ g1 then for every v ∈H∞ we have

(20) ρB(x + y)v = ρB(x)v+ ρB(y)v.

(ii) It suffices to prove the statement for x, y ∈ g. Depending on the parities of x an
y, there are four cases to consider, but the argument for all of them is essentially
the same. For example, if x ∈ g0 and y ∈ g1, then we define two operators P1 and
P2 with domains D(P1)= D(P2)=H∞ as follows. If v ∈H∞ then we set

P1v = e−π i/4ρB([x, y])v and P2v = e−π i/4
(
ρB(x) ρB(y)v−ρB(y) ρB(x)v

)
.

Then P1 and P2 are both symmetric, P1|B = P2|B, and by Lemma 4.4(ii) the
operator P1|B is essentially self-adjoint. Lemma 2.5 implies that P1 = P2.

(iii) As in (i), it is enough to prove that the map

(21) g1×H∞→H∞, x 7→ ρB(x)v
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is continuous. Let v ∈ H∞ and y ∈ g1. Setting P1 = e−π i/4ρB(y) and P2 =
1
2 e−π i/2dπ([y, y]) in Lemma 2.3 we obtain

‖ρB(y)v‖ ≤
1
√

2
‖v‖

1
2 · ‖dπ([y, y])v‖

1
2

≤
1
√

2
q0(v)

1
2 q1(v)

1
2 · ‖[y, y]‖

1
2 ≤

1

2
√

2

(
q0(v)+ q1(v)

)
· ‖y‖

from which it follows that

(22) q0
(
ρB(y)v

)
≤

1

2
√

2

(
q0(v)+ q1(v)

)
· ‖y‖.

If x ∈ g0 satisfies ‖x‖ ≤ 1 then ‖[x, y]‖ ≤ ‖y‖ and using (22) we obtain

‖dπ(x)ρB(y)v‖

= q0
(
ρB(x) ρB(y)v

)
≤ q0

(
ρB(y) ρB(x)v

)
+ q0

(
ρB([x, y])v

)
≤

1
2
√

2

(
q0(dπ(x)v)+ q1(dπ(x)v)

)
· ‖y‖+ 1

2
√

2

(
q0(v)+ q1(v)

)
· ‖[x, y]‖

≤
1

2
√

2

(
q1(v)+ q2(v)

)
· ‖y‖+ 1

2
√

2

(
q0(v)+ q1(v)

)
· ‖y‖

=
1

2
√

2

(
q0(v)+ 2q1(v)+ q2(v)

)
· ‖y‖,

from which it follows that

(23) q1
(
ρB(y)v

)
≤

1
2
√

2

(
q0(v)+ 2q1(v)+ q2(v)

)
· ‖y‖.

More generally, if x1, . . . , xn ∈ g0 satisfy ‖x1‖ ≤ 1, . . . , ‖xn‖ ≤ 1, we can use the
equality

dπ(x1) · · · dπ(xn)ρB(y)v = ρB(y) ρB(x1) · · · ρB(xn)v

+

n∑
i=1

ρB(x1) · · · ρB(xi−1) ρB([xi , y]) ρB(xi+1) · · · ρB(xn)v

to prove by induction on n that

(24) qn
(
ρπ (y)v

)
≤

1
2
√

2
‖y‖ ·

n+1∑
k=0

(
n+ 1

k

)
qk(v) for every n ≥ 0.

From (24) the continuity of (21) follows immediately. �

Our next goal is to prove Proposition 4.8 below. The proof of the latter proposi-
tion is based on a subtle lemma from [Jørgensen and Moore 1984, Chapter 3]. We
use the lemma in the form given in [Merigon 2011].
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Lemma 4.7. Let A and B be two linear operators on a complex Hilbert space H

and D be a dense subspace of H with the following properties.

(i) D(A)= D(B)= D.

(ii) A is essentially skew-adjoint.

(iii) AD⊆ D.

(iv) et AD⊆ D for every t ∈ R.

(v) B is closable.

Let v ∈ D be such that the map

R→H, t 7→ B Aet Av

is continuous. Then the map

R→H, t 7→ Bet Av

is differentiable and d
dt
(Bet Av)= B Aet Av.

Proof. See [Merigon 2011, Lemma 5]. �

Proposition 4.8. Let (G, g) be a Banach–Lie supergroup where G is connected
and

(
π,H,B, ρB

)
be a prerepresentation of (G, g). Then for every g ∈ G, every

x ∈ gC

1
, and every v ∈H∞ we have

(25) π(g)ρ̃B(x)π(g)−1v = ρ̃B(Ad(g)x)v.

Proof. Fix y ∈ g0 and set A(s) = π(exp((1− s)y)) for every s ∈ R. For every
v ∈H∞ and every s ∈ R define

K (s) : gC

1
→H, K (s)x = A(s)ρ̃B(x)A(s)−1v.

If g = exp(y) and γ (s) = Ad(exp(sy))x for every s ∈ R then the left hand side
of (25) is equal to K (0)γ (0) and the right hand side of (25) is equal to K (1)γ (1).
Therefore it suffices to prove that the map s 7→ K (s)γ (s) is constant.

By Proposition 4.6, for every t ∈ R the operator K (t) is bounded. From conti-
nuity of the maps (7) and (8) it follows that the map

R→H, s 7→ ρ̃B(x)ρ̃B(y)A(s)−1v

is continuous as well. It follows from Lemma 4.7 that the map

η : R 7→H, η(s)= ρ̃B(x)A(s)−1v

is differentiable, and η′(s)= ρ̃B(x)ρ̃B(y)A(s)−1v.
Next we show that the map

(26) R→H, s 7→ K (s)x
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is differentiable and we compute its derivative. Observe that

d
ds
(K (s)x)= d

ds
(A(s)η(s))= lim

h→0

1
h
(

A(s+ h)η(s+ h)− A(s)η(s)
)

and

(27) 1
h
(

A(s+ h)η(s+ h)− A(s)η(s)
)

= A(s+ h)
(1

h
(
η(s+ h)− η(s)

))
+

1
h
(

A(s+ h)η(s)− A(s)η(s)
)
.

The first term in (27) can be written as

A(s+ h)
(1

h
(
η(s+ h)− η(s)

)
− η′(s)

)
+ A(s+ h)η′(s).

Since ‖A(s+ h)‖Op = 1, when h→ 0 we obtain

A(s+ h)
(1

h
(
η(s+ h)− η(s)

)
− η′(s)

)
→ 0 and A(s+ h)η′(s)→ A(s)η′(s).

Since η(s) ∈H∞, as h→ 0 the second term in (27) converges to −A(s)ρ̃B(y)η(s).
It follows that

(28) d
ds
(
K (s)x

)
= A(s)η′(s)− A(s)ρ̃B(y)η(s)= A(s)[ρ̃B(x), ρ̃B(y)]A(s)−1v.

To complete the proof, it suffices to show that d
ds
(K (s)γ (s))= 0 for every s ∈ R.

We have

(29) 1
h
(
K (s+ h)γ (s+ h)− K (s)γ (s)

)
= K (s+ h)

(1
h
(
γ (s+ h)− γ (s)

))
+

1
h
(
K (s+ h)γ (s)− K (s)γ (s)

)
.

The first term in (29) can be written as

K (s+ h)
(1

h
(
γ (s+ h)− γ (s)

)
− γ ′(s)

)
+ K (s+ h)γ ′(s)

Differentiability of the map given in (26) implies that it is continuous, and in par-
ticular if I is a compact interval containing s, then supt∈I ‖K (t)x‖ < ∞. The
Banach–Steinhaus theorem implies that supt∈I ‖K (t)‖Op <∞. It follows that as
h→ 0 the first term in (29) converges to

K (s)γ ′(s)= A(s)ρ̃B([y, γ (s)])A(s)−1v.

By (28), the second term in (29) converges to

A(s)[ρ̃B(γ (s)), ρ̃B(y)]A(s)−1v.
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It follows that

d
ds
(K (s)γ (s))= A(s)ρ̃B([y, γ (s)])A(s)−1v+ A(s)[ρ̃B(γ (s)), ρ̃B(y)]A(s)−1v

= 0. �

Proposition 4.9. Let (G, g) be a Banach–Lie supergroup and
(
π,H,B, ρB

)
be a

prerepresentation of (G, g). Then there exists an r◦ > 0 such that for every positive
r < r◦ and every x ∈ gC we have ρ̃B(x)Hω,r

⊆Hω,r . In particular, for every x ∈ gC

we have ρ̃B(x)Hω
⊆Hω.

Proof. It suffices to prove the statement when x is a homogeneous element of g.
We give the argument for x ∈ g1. The argument for the case x ∈ g0 is analogous.

Let r◦ be the constant obtained from Lemma 3.4 and take v ∈ Hω,r , where
0< r < r◦. Recall that

Br = { y ∈ gC

0
: ‖y‖< r }.

The map y 7→ fv(y)=
∑ 1

n!
dπ(x)nv of Lemma 3.2 is analytic in Br . Since

∞∑
n=0

1
n!
‖adn

y(x)‖ ≤
∞∑

n=0

1
n!
‖y‖n · ‖x‖<∞,

Theorem C.1(ii) implies that the map

(30) gC

0
→ gC

1
, y 7→ eady x =

∞∑
n=0

1
n!

adn
y(x)

is analytic in gC

0
.

Consider the map

ϕ : gC

0
× Br →H, ϕ(y, z)= ρ̃B(eady x) fv(z).

Note that if z ∈ Br then by Lemma 3.4(i) we have fv(z) ∈Hω and therefore ϕ is
well-defined. Our next goal is to prove that ϕ is separately analytic.

Fix z ∈ Br and let w = fv(z). We have w ∈Hω. Proposition 4.6 implies that the
map

gC

1
→H, u 7→ ρ̃B(u)w

is C-linear and continuous. Therefore analyticity of the map given in (30) implies
that the map y 7→ ϕ(y, z) is analytic in gC

0
.

Next we prove analyticity in Br of the map z 7→ ϕ(y, z). Fix y ∈ gC

0
and set

ỹ =
∑
∞

n=0
1
n!adn

y(x). Writing ỹ = a+ ib, where a, b ∈ g1, and using C-linearity of
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ρ̃B, it turns out that it suffices to prove analyticity in Br of the maps

z 7→ ρ̃B(a) fv(z) and z 7→ ρ̃B(b) fv(z).

The argument for both cases is the same, and we only give it for the first case.
Lemma 3.4(ii) implies that the map

Br 7→H, z 7→ ρ̃B([a, a]) fv(z)

is analytic in Br . The operator T = e−π i/4ρ̃B(a) is self-adjoint and spectral theory
implies that T (I + T 2)−1 is a bounded operator. Using Proposition 4.6(ii) we can
write

ρ̃B(a) fv(z)= eπ i/4T (I + T 2)−1(I + T 2) fv(z)

= eπ i/4T (I + T 2)−1( fv(z)+ 1
2 e−π i/2ρ̃B([a, a]) fv(z)

)
,

from which it follows that the map z 7→ ρ̃B(a) fv(z) is analytic in Br .
By Theorem C.3, the separately analytic map ϕ(y, z) is analytic. Thus the map

Br →H, y 7→ ϕ(y, y)

is analytic in Br .
Let y ∈ Br ∩ g0. By (11) we have fv(y) = π(exp(y))v. Write x = x ′ + i x ′′,

where x ′, x ′′ ∈ g1, and set g = exp(y). Using Proposition 4.8 we obtain

ϕ(y, y)= ρ̃B(eady x) fv(y)

= ρ̃B
(
Ad
(

exp(y)
)
x ′
)

fv(y)+ i ρ̃B
(
Ad
(

exp(y)
)
x ′′
)

fv(y)

= π(g)ρ̃B(x ′)π(g)−1 fv(y)+ iπ(g)ρ̃B(x ′′)π(g)−1 fv(y)

= π(g)ρ̃B(x)π(g)−1π(g)v = π(g)ρ̃B(x)v.

From Lemma 3.3 it follows that ρ̃B(x)v ∈Hω,r . �

We can now prove our first main theorem, which states that every prerepresen-
tation of a Banach–Lie group corresponds to a unique unitary representation.

Theorem 4.10 (Stability theorem). Let (π,H,B, ρB) be a prerepresentation of a
Banach–Lie supergroup (G, g).

(i) There exists a unique map

ρπ : g→ EndC(H
∞)

such that ρπ (x)|B = ρB(x) and (π, ρπ ,H) is a smooth unitary representation
of (G, g).
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(ii) If (π,H) is an analytic unitary representation of G, then there exists a unique
map

ρπ : g→ EndC(H
ω)

such that ρπ (x)|B = ρB(x) and (π, ρπ ,H) is an analytic unitary representa-
tion of (G, g).

Proof. (i) To prove the existence of ρπ , we set ρπ (x) = ρ̃B(x) for every x ∈ g.
Proposition 4.5 implies that ρ̃B(x) ∈ EndC(H

∞). To prove the conjugacy invari-
ance relation of Definition 4.1(v), for every element of G/G◦ we take a coset
representative g ∈ G which satisfies the condition of Definition 4.2(vi), and use
Lemma 2.5 with P1 = e−π i/4π(g)ρ̃B(x)π(g)−1, P2 = e−π i/4ρ̃B(Ad(g)x), and
L=B.

To prove uniqueness, it suffices to show that if (π, ρπ ,H) is a smooth unitary
representation such that for every x ∈ g we have ρπ (x)|B = ρB(x) then for every
x ∈ g we have

(31) ρπ (x)|H∞ = ρ̃B(x).

It suffices to prove (31) when x is homogeneous. If x ∈ g1 then by Lemma 4.4(ii)
the operator e−π i/4ρ̃B(x)|B is essentially self-adjoint. Therefore (31) follows from
setting P1 = e−π i/4ρπ (x)|H∞ , P2 = e−π i/4ρ̃B(x), and L=B in Lemma 2.5. The
argument for x ∈ g0 is similar.

(ii) Existence follows from (i) and Proposition 4.9. The proof of uniqueness is
similar to the one given in (i). �

Let F : Repω(G, g)→ Rep∞(G, g) be the functor defined by

(π, ρπ ,H) 7→ (π, ρ̃Hω

,H).

A morphism between two objects of Repω(G, g) will automatically become a mor-
phism between their images under F in Rep∞(G, g), and in fact F is fully faith-
ful. Let Rep∞a (G, g) denote the full subcategory of Rep∞(G, g) whose objects are
smooth unitary representations (π, ρπ ,H) of (G, g) such that (π,H) is an analytic
unitary representation of G.

Corollary 4.11. The functor F is an isomorphism of the categories Repω(G, g) and
Rep∞a (G, g).

Proof. Immediate, from the uniqueness statement of Theorem 4.10(ii). �

Remark. A natural question that arises from Corollary 4.11 is whether or not F is
an isomorphism between the categories Repω(G, g) and Rep∞(G, g). We answer
this question negatively in Appendix A by giving an example of a Banach–Lie
group G with a smooth unitary representation (π,H) which does not have any
analytic vectors.
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Let (φ, ϕ) : (H, h)→ (G, g) be a homomorphism of Banach–Lie supergroups.
One can obtain restriction functors

Res∞ : Rep∞(G, g)→ Rep∞(H, h) and Resω : Repω(G, g)→ Repω(H, h)

associated to this homomorphism as follows. If (π, ρπ ,H) is a smooth (respec-
tively, analytic) unitary representation of (G, g), then we set L=H∞ (respectively,
L=Hω). Observe that (π ◦φ,H,L, ρL

◦ϕ) is a prerepresentation of (H, h). The
functor Res∞ (respectively, Resω) maps (π, ρπ ,H) to the unique smooth (respec-
tively, analytic) unitary representation of (H, h) which corresponds to this prerep-
resentation. (The existence and uniqueness of this unitary representation follows
from Theorem 4.10.) In conclusion, we have proved the following theorem.

Theorem 4.12 (Restriction theorem). Let (φ, ϕ) : (H, h)→ (G, g) be a homomor-
phism of Banach–Lie supergroups, (π,H, ρπ ) be a smooth (respectively, analytic)
unitary representation of (G, g), and L=H∞ (respectively, L=Hω). Then there
exists a unique smooth (respectively, analytic) unitary representation (σ,H, ρσ ) of
(H, h) with the following properties.

(i) For every h ∈ H we have σ(h)= π ◦φ(h).

(ii) For every x ∈ h we have ρσ (x)|L = ρπ ◦ϕ(x).

5. The oscillator representation of (ÔSpres(K), ôspres(K))

In this section we show that the oscillator representation of the restricted orthosym-
plectic Banach–Lie supergroup is an analytic unitary representation in the sense of
Definition 4.1. To simplify the presentation, we have omitted some of the tedious
computations. They can be done using the method of [Neeb 2010b, Section 9].

Let K = K0 ⊕K1 be a Z2-graded complex Hilbert space. For simplicity we
assume that both K0 and K1 are infinite-dimensional. The case where one or both
of these spaces are finite-dimensional is similar.

We denote the inner product of K by 〈·,·〉. By restriction of scalars we can also
consider K as a real Hilbert space.

Let J+ : K→ K denote multiplication by
√
−1, and J− : K→ K be the map

defined by

J−v =−(−1)p(v)
√
−1 v for every homogeneous v ∈ K.

In the following, both J+ and J− will be considered as R-linear maps.
If A : K→ K is an R-linear map, then AJ+− J+A is C-conjugate linear. The

space of Hilbert–Schmidt R-linear maps on K (respectively, on Ks , where s ∈ {0, 1})
is denoted by HS(K) (respectively, by HS(Ks)). The group of bounded invertible
R-linear maps on K (respectively, on Ks , where s ∈ {0, 1}) is denoted by GL(K)
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(respectively, by GL(Ks)). We set

GLres(K)= { T ∈ GL(K) : T J+− J+T ∈ HS(K) }.

The groups GLres(Ks), where s ∈ {0, 1}, are defined similarly.
Let EndR(K)= EndR(K)0⊕EndR(K)1 denote the superalgebra of bounded R-

linear maps on K. Every T ∈ EndR(K) can be written in a unique way as T =
Tlin+ Tconj, where Tlin is C-linear and Tconj is C-conjugate linear. In fact we have

Tlin =
1
2(T − J+T J+) and Tconj =

1
2(T + J+T J+).

The inner product of the complex Hilbert space K yields R-bilinear forms (·,·)0
on K0 and (·,·)1 on K1 defined by

(v,w)0 = Re〈v,w〉 for every v,w ∈ K0,

(v, w)1 = Im〈v,w〉 for every v,w ∈ K1.

As a result, we obtain an R-bilinear form (·,·)= (·,·)0⊕ (·,·)1 on K= K0⊕K1.
The restricted orthogonal group Ores(K0) is defined by

Ores(K0)= { T ∈ GLres(K0) : (T v, Tw)0 = (v,w)0 for every v,w ∈ K0 }.

Observe that

ores(K0)= Lie(Ores(K0))= { T ∈ glres(K0) : (T v,w)0+ (v, Tw)0 = 0 },

where
glres(K0)= { T ∈ EndR(K0) : Tconj ∈ HS(K0) }.

The definitions of the restricted symplectic group Spres(K1) and its Lie algebra
spres(K1)= Lie(Spres(K1)) are analogous.

The Banach–Lie superalgebra ospres(K) is the subspace of EndR(K) spanned by
elements T ∈ EndR(K)0 ∪EndR(K)1 with the following properties.

(i) For every v,w ∈ K, we have (T v,w)+ (−1)p(T )p(v)(v, Tw)= 0.

(ii) Tconj ∈ HS(K).

The norm ‖ · ‖ on ospres(K) is given as follows. For every T ∈ ospres(K), we set

‖T ‖′ = ‖ Tlin ‖Op+‖ Tconj ‖HS,

where ‖ · ‖Op denotes the operator norm of a C-linear operator on the (complex)
Hilbert space K and ‖ · ‖HS denotes the Hilbert–Schmidt norm of an R-linear op-
erator on the (real) Hilbert space K. One can prove that ‖ · ‖′ is continuous, and
therefore by a suitable scaling one obtains a norm ‖ · ‖ which satisfies (3).



CATEGORIES OF UNITARY REPRESENTATIONS AND RESTRICTION FUNCTORS 455

The restricted orthosymplectic Banach–Lie supergroup associated to K is the
Banach–Lie supergroup (OSpres(K), ospres(K) ), where

OSpres(K)= Ores(K0)×Spres(K1).

It is known [Segal 1981] that to realize the spin representation of Ores(K0) or
the metaplectic representation of Spres(K1) one needs to pass to certain central
extensions Ôres(K0) and Ŝpres(K1) which are also Banach–Lie groups [Neeb 2010b,
Section 9]. This leads to a Banach–Lie supergroup (ÔSpres(K), ôspres(K)), where
the Banach–Lie superalgebra ôspres(K) is the central extension of ospres(K) corre-
sponding to the cocycle

ω : ospres(K)× ospres(K)→ R

which can be uniquely identified by the following properties.

(i) If A, B ∈ ospres(K) have different parity then ω(A, B)= 0.

(ii) If A, B ∈ ospres(K)0 then ω(A, B)=− 1
2 tr(J+Aconj Bconj).

(iii) If A, B ∈ ospres(K)1 then ω(A, B)=− 1
2 tr(J−Aconj Bconj).

In other words, we have ôspres(K) = ospres(K)⊕ R as a vector space, with the
superbracket

[(T, z), (T ′, z′)] = ([T, T ′], ω(T, T ′)).

We now describe the Fock space realization of the metaplectic representation
of ôspres(K). We choose an orthonormal basis { f1, f2, f3, . . . } for the fermionic
space K0 and an orthonormal basis {b1, b2, b3, . . . } for the bosonic space K1. For
every two integers k, l ≥ 0, we define Fk,l to be the complex vector space spanned
by monomials

(32) f r1
1 f r2

2 f r3
3 · · · b

s1
1 bs2

2 bs3
3 · · ·

with the following properties.

(i) For every positive integer m, we have rm ∈ {0, 1} and sm ∈ {0, 1, 2, 3, . . . }.

(ii) For all but finitely many m, we have rm = sm = 0.

(iii)
∑
∞

m=1 rm = k and
∑
∞

m=1 sm = l.

We will refer to the monomials satisfying the above properties as reduced mono-
mials. To simplify the notation, we will also use more general monomials of the
form v1 · · · vm, where vk ∈ K0 ∪K1 for every 1 ≤ k ≤ n. Observe that any such
monomial can be expressed as a linear combination of reduced monomials using
linearity and the relations

fm fn =− fn fm and bmbn = bnbm
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for every two nonnegative integers m, n.
We set F=

⊕
k,l≥0 Fk,l and define an inner product 〈·,·〉F on F as follows. If

v = f r1
1 f r2

2 · · · b
s1
1 bs2

2 · · · ∈Fk,l and w = f
r ′1
1 f

r ′2
2 · · · b

s′1
1 b

s′2
2 · · · ∈ Fk′,l ′ then

〈v,w〉F =

{
1 if rk = r ′k and sk = s ′k for every k ≥ 1,
0 otherwise.

Next we describe the action of ôspres(K) on F. Let (T, z) ∈ ôspres(K), where T is
a homogeneous element expressed in the form T = Tlin+ Tconj. For every v ∈ F

we set
ρF
(
(T, z)

)
v = ρF(Tlin)v+ ρ

F(Tconj)v+
√
−1 z · v,

where ρF(Tlin) and ρF(Tconj) are defined as follows. If v= v1 · · · vm is a monomial
then

ρF(Tlin)v =

m∑
r=1

(−1)p(Tlin)
(

p(v1)+···+p(vr−1)
)
v1 · · · vr−1(Tlinvr )vr+1 · · · vm .

We also define ρF(Tconj)v by

ρF(Tconj)v = a(Tconj)v− a(Tconj)
†v,

where a(Tconj) : F→ F and a(Tconj)
†
: F→ F are linear maps defined as follows.

If v ∈ Fk,l then

a(Tconj)v = λk,l

(√
−1

∞∑
r=1

(Tprojbr )br +

∞∑
r=1

(Tproj fr ) fr

)
v,

where λk,l =
1
2

√
(k+ l + 1)(k+ l + 2). Moreover, a(Tconj)

† is the superadjoint of
a(Tconj) on F, that is,

a(Tconj)
†
=

{
a(Tconj)

∗ if T is even,
−
√
−1 a(Tconj)

∗ if T is odd,

where a(Tconj)
∗ is the adjoint of a(Tconj) on F, which is defined by

〈 a(Tconj)
∗w,w′ 〉F = 〈w, a(Tconj)w

′
〉F for every w,w′ ∈ F.

The restriction of this action to ôspres(K)0 is the tensor product of the spin represen-
tation of ôres(K0) and the metaplectic representation of ŝpres(K1). This representa-
tion of ôspres(K)0 integrates to an analytic unitary representation (π,H) of ÔSpres(K)

on the completion of F. For every (T, z) ∈ ôspres(K), the space F consists of ana-
lytic vectors for the operator ρF

(
(T, z)

)
[Neeb 2010b, Section 9]. From Lemma 2.2

it follows that (π,H,F, ρF) is a prerepresentation of (ÔSpres(K), ôspres(K)). Con-
sequently, Theorem 4.10 implies the following result.
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Theorem 5.1. Let F be the Hilbert space completion of the Fock space F defined
above. Then there exists a unique analytic unitary representation (σ, ρσ ,F) of
(ÔSpres(K), ôspres(K)) with the following properties.

(i) F⊆ F
ω

, that is, every v ∈ F is an analytic vector for (σ,F).

(ii) ρσ (x)|F = ρF(x) for every x ∈ ôspres(K).

Appendix A. A smooth nonanalytic unitary representation

The goal of this appendix is to give two examples: a smooth unitary representation
of a Banach–Lie group without nonzero analytic vectors, and an analytic unitary
representation of a Banach–Lie group without nonzero bounded vectors.

We start with the first example. In this example the Hilbert space of the repre-
sentation is H= L2([0, 1],C) and G is the additive group of a Banach space g of
measurable functions [0, 1] → R with the property that

L∞([0, 1],R)⊆ g⊆
⋂
p∈N

L p([0, 1],R).

Using results from [Neeb 2010a], these two inclusions easily imply that the repre-
sentation (π,H) of G given by

(
π( f )ξ

)
(x)= ei f (x)ξ(x) is smooth. Now the main

point is to choose g large enough so that the space Hω does not contain nonzero
vectors.

Let g(x)= e−
√

x for x ≥ 0. Then
∫
∞

0 xng(x) dx = 2 ·0(2n+ 2) <∞ for every
n ∈ N, while

∫
∞

0 et x g(x) dx =∞ for every t > 0. Consider the map

G : [0,∞)→ [0,∞), G(x)= 1
2

∫ x

0
g(t) dt.

As g is continuous, the function G is C1 with G ′(x) > 0 for every x ≥ 0. Next
observe that

lim
x→∞

G(x)=
1
2

∫
∞

0
e−
√

t dt =
∫
∞

0
e−x x dx = 0(2)= 1.

Therefore G : [0,∞)→ [0, 1) is a C1-diffeomorphism. Set

(33) h(x)=
{

G−1(1− x) if 0< x ≤ 1,
0 if x = 0.

Then h : [0, 1] → [0,∞) is a Lebesgue measurable function with a singularity at 0.
In the following we denote the Lebesgue measure of a measurable set E ⊆ [0, 1]

by µ(E). We say that the metric density of E at x0 is 1 if

lim
ε→0

µ(E ∩ [x0− ε, x0+ ε])

2ε
= 1.
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According to [Rudin 1987, §7.12], at almost every point of E the metric density
of E is 1. Clearly, 0 and 1 can never have this property for E ⊆ [0, 1]. Note that
at every point x0 of metric density 1, we also have

lim
ε→0

µ(E ∩ [x0, x0+ ε])

ε
= 1.

Lemma A.1. If {an}
∞

n=0 and {sn}
∞

n=0 are sequences of nonnegative real numbers
such that {an}

∞

n=0 is decreasing and an→ 0, then

∞∑
n=0

(an − an+1)(s0+ · · ·+ sn)=

∞∑
n=0

ansn.

Proof. For every two nonnegative integers p, q set

bp,q =

{
(ap − ap+1)sq if p ≥ q,
0 otherwise.

By [Rudin 1987, Corollary 1.27] we have
∑
∞

p=0
∑
∞

q=0 bp,q =
∑
∞

q=0
∑
∞

p=0 bp,q .
The lemma follows easily from the latter equality. �

Lemma A.2. Let H : (0, 1] → R be a continuous and decreasing map such that∫ 1
0 H(x) dx =∞ and E ⊆ [0, 1] be a measurable set such that

lim
ε→0

µ(E ∩ [0, ε])
ε

= 1.

Then
∫

E et H(x) dx =∞ for every t > 0.

Proof. Our assumption implies that limx→0 H(x)=∞ because otherwise H would
be bounded, hence integrable. Adding a constant to H will not affect the statement
of the lemma. Therefore we may assume that H(1)= 1. We now put εn := H−1(2n)

and note that ε0 = 1 as well as εn→ 0. We now find that

∞=

∫ 1

0
H(x) dx =

∞∑
n=0

∫ εn

εn+1

H(x) dx ≤
∞∑

n=0

2n+1(εn − εn+1).

Lemma A.1 implies that

(34)
∞∑

k=0

εk2k
=

∞∑
n=0

(2n+1
− 1)(εn − εn+1)=∞

because
∑
∞

n=0 εn − εn+1 = ε0.
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If En = E ∩ [0, εn] for every n ≥ 0, then using Lemma A.1 we have∫
E

H(x) dx =
∞∑

n=0

∫
En\En+1

H(x) dx ≥
∞∑

n=0

2n(µ(En)−µ(En+1))

=

∞∑
n=0

(1+ 1+ 21
+ · · ·+ 2n−1)(µ(En)−µ(En+1))

= µ(E0)+

∞∑
n=1

2n−1µ(En).

Since limn→∞ µ(En)/εn = 1, from (34) it follows that
∫

E H(x) dx =∞. �

Lemma A.3. The map h given in (33) has the following properties:

(i) h ∈
⋂

p∈N L p([0, 1],R).

(ii) h|(0,1] is strictly decreasing with limx→0 h(x)=∞.

(iii) If E ⊆ [0, 1] is a measurable subset satisfying limε→0
µ(E∩[0,ε])

ε
= 1, then∫

E eth(x) dx =∞ for every t > 0.

Proof. (i) For every n ∈ N we have∫ 1

0
h(x)n dx =

∫ 1

0
h(1− x)n dx =

∫
∞

0
h(1−G(y))n|G ′(y)| dy

=
1
2

∫
∞

0
yng(y) dy <∞.

(ii) Follows from the definition of h.

(iii) For every t > 0 we have∫ 1

0
eth(x) dx =

∫ 1

0
eth(1−x) dx =

∫
∞

0
eth(1−G(y))

|G ′(y)| dy

=
1
2

∫
∞

0
et yg(y) dy =∞.

Lemma A.2 completes the argument. �

Let ‖ · ‖p denote the usual norm of L p([0, 1],R). Set cn = ‖h‖n for every n ∈N.
Note that cn > 0 for every n ∈ N. Since h is unbounded, for every c > 0 the set

Ic = {x ∈ [0, 1] : |h(x)| ≥ c}

has positive measure. This implies that ‖h‖n ≥ n
√
µ(Ic)c. Since the right hand side

converges to c when n→∞, it follows that limn→∞ ‖h‖n =∞.
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We are now ready to define the Banach space g. For every measurable function
f : [0, 1] → R we define a norm

‖ f ‖ = sup
{
‖ f ‖n

cn
: n ∈ N

}
,

and set
g=

{
f ∈

⋂
p∈N

L p([0, 1],R) : ‖ f ‖<∞
}
.

It is fairly straightforward to check that g is a Banach space and L∞([0, 1],R)⊆ g.
We set G = g, that is, the additive group of the Banach space g.

By construction, h ∈ g. Next we observe that we may also identify g with a space
of 1-periodic functions on R. Then the norm defined on g is translation invariant.
Therefore g also contains the functions hx0( · ) = h̃( · − x0)|[0,1], where h̃ is the
1-periodic extension of h to R. For x0 < 1 and 0< ε < 1− x0, it satisfies

(35)
∫ x0+ε

x0

ethx0 (x) dx =∞ for t > 0

by Lemma A.3(iii).

Theorem A.4. Let H= L2([0, 1],C), G= g be as above, and (π,H) be the unitary
representation of G defined by

(
π( f )ξ

)
(x) = ei f (x)ξ(x). Then (π,H) is smooth

and Hω
= {0}.

Proof. According to [Neeb 2010a, Section 10] an element ξ ∈H is a smooth vector
if and only if

‖ f nξ‖2 <∞ for every n ∈ N and every f ∈ g.

Hence the inclusion g⊆
⋂

p∈N L p([0, 1],R) implies that all bounded functions are
smooth vectors. In particular, (π,H) is a smooth representation.

By Lemma 3.2 and Theorem C.1 an element ξ ∈ H is analytic if and only
if
∑
∞

n=0 ‖ f nξ‖2/n! converges on some neighborhood of the origin in g. If ξ is
nonzero, then there exists an ε > 0 for which the subset

E = { x ∈ [0, 1] : ε < |ξ(x)|< 1/ε }

has positive measure. Let χE denote the characteristic function of the set E . Ana-
lyticity of ξ leads to the estimates∫

E
e| f (x)| dx =

∞∑
n=0

∫
E | f (x)|

n dx
n!

≤

∞∑
n=0

‖ f nχE‖2

n!
≤

1
ε

∞∑
n=0

‖ f nξ‖2

n!
<∞

for all elements f in a neighborhood of the origin in g.
Let x0 ∈ (0, 1) be a point of metric density 1 of E and recall that this implies that

the sets Eε := E ∩ [x0, x0+ ε] satisfy limε→0 µ(Eε)/ε = 1. Therefore Lemma A.2
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implies that the function f (x) = h̃(x − x0) satisfies
∫

E et f (x) dx = ∞ for every
t > 0. This contradiction shows that there is no nonzero analytic vector in H. �

Appendix B. An analytic representation without bounded vectors

In this appendix we give an example of an analytic unitary representation of a
Banach–Lie group without nonzero bounded vectors. The notation in this appendix
is the same as in Appendix A.

Definition B.1. Let G be a Banach–Lie group and (π,H) be a unitary representa-
tion of G. We call (π,H) bounded if π : G→ U(H) is continuous with respect to
the operator norm on U(H). A vector v ∈H is said to be bounded if the represen-
tation of G on the closed invariant subspace Hv = Span(π(G)v) is bounded. The
subspace of bounded vectors in H is denoted by Hb. The representation (π,H) is
said to be locally bounded if Hb is dense in H.

Since G and U(H) are Banach–Lie groups, every bounded representation is in
particular analytic as a map G→ U(H). In particular, Hb

⊆Hω.
Observe that a representation is locally bounded if and only if it is a direct sum

of bounded representations. In fact, if Hb is dense, then a standard application
of Zorn’s Lemma shows that H is an orthogonal direct sum of cyclic subspaces
generated by bounded vectors.

For an element x of a vector space V , we write x∗(α)= α(x) for the correspond-
ing linear functional on the dual space V ∗.

Example B.2. (i) Let G = (V,+) be the additive group of a finite-dimensional
real vector space and µ be the Lebesgue measure on V ∗. Then π(x) f = ei x∗ f
defines a continuous unitary representation on H= L2(V ∗, µ). A vector f ∈H is
bounded if and only if f vanishes almost everywhere outside some compact subset.
Clearly this condition is stronger than f ∈Hω, which is equivalent to ex∗ f being
square integrable for every x in a neighborhood of 0 in V .

(ii) When G = (V,+) is the additive group of a finite-dimensional vector space,
Bochner’s theorem asserts that every continuous positive definite function φ : G→
C is the Fourier transform

φ = µ̂, µ̂(x)=
∫

V ′
eiα(x) dµ(α)

of a finite positive regular Borel measure µ on the dual space V ∗. Then the repre-
sentation of H= L2(V ∗, µ) by π(x) f = ei x∗ f is cyclic, generated by the constant
function 1, and 〈π(x)1, 1〉 = µ̂(x) = φ(x). The description of the bounded and
analytic vectors under (a) remains the same in this situation.
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(iii) If G = (V,+) is the additive group of a Banach space and µ is a regular
positive Borel measure on the topological dual space V ′ with respect to the weak-
∗ topology, then we also obtain a unitary representation of G on H := L2(V ′, µ)
by π(x) f = ei x∗ f .

Every weak-∗-compact subset of V ′ is weakly bounded, hence bounded by the
Banach–Steinhaus theorem. Therefore the compact subsets of V ′ are precisely the
weak-∗-closed bounded subsets. All closed balls in V ′ have this property. If µ is
supported by a bounded set, then one easily verifies that the representation π is
bounded. If this is not the case, then f ∈Hb is equivalent to f vanishing µ-almost
everywhere outside a sufficiently large ball. Since µ is regular, this implies that π
is locally bounded.

Theorem B.3. Let G = (V,+) be the additive group of a Banach space. For a
positive definite function φ on G the corresponding GNS representation (πφ,Hφ)

is locally bounded if and only if there exists a regular positive Borel measure µ on
V ′ with φ = µ̂.

Proof. If φ = µ̂ for a regular positive Borel measure on V ′, then the GNS repre-
sentation defined by φ is isomorphic to the cyclic subrepresentation of L2(V ′, µ)
generated by the constant function 1, hence locally bounded by Example B.2(iii).

Conversely, suppose that (πφ,Hφ) is locally bounded, that is, it can be expressed
as a direct sum ⊕̂

j∈J
(π j ,H j )

of bounded representations. Writing φ =
∑

j∈J v j with v j ∈ H j , the orthogo-
nality of the family {v j : j ∈ J } implies that only countably many of them are
nonzero, and since φ is cyclic in Hφ , the index set J is countable. Suppose that
all the functions φ j (g)= 〈π j (g)v j , v j 〉 are Fourier transforms of positive regular
Borel measures µ j on V ′. Then φ =

∑
j φ j =

∑
j µ̂ j is the Fourier transform

of the positive Borel measure µ =
∑

j∈J µ j . Therefore without loss of gen-
erality we may assume that πφ is a bounded representation. Then the spectral
theorem for semibounded representations [Neeb 2009, Theorem 4.1] implies the
existence of a regular Borel spectral measure P on some weak-∗-compact subset
X ⊆ V ′ with πφ(x) =

∫
X eiα(x) d P(α). For the cyclic vector v ∈ Hφ satisfying

φ(x)= 〈πφ(x)v, v〉, this leads

φ(x)= 〈πφ(x)v, v〉 =
∫

X
eiα(x) d Pv(α)= P̂v(x),

where Pv(E)= 〈P(E)v, v〉 is the positive regular Borel measure associated to v
and P . �
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The preceding discussion shows that the locally bounded cyclic representations
are precisely those that can be realized in spaces L2(V ′, µ) for regular Borel mea-
sures on V ′. For a representation (π,H) with no nonzero bounded vector, for no
nonzero v ∈ H, the positive definite function πv,v(x) = 〈π(x)v, v〉 is a Fourier
transform of a regular Borel measure on V ′. In this sense they are very singular. In
the light of this discussion, it is a natural question how big the difference between
analytic and bounded representations really is.

From now on, for every measurable function f we set

‖ f ‖ = sup
{
‖ f ‖n

n
√

n!
: n ∈ N

}
.

The following theorem shows that analytic representations of Banach–Lie groups
need not contain nonzero bounded vectors.

Theorem B.4. The space

g=
{

f ∈
⋂
p∈N

L p([0, 1],R) : ‖ f ‖<∞
}

is a Banach space. The unitary representation (π, L2([0, 1],C)) of G = (g,+)
given by

(
π( f )ξ

)
(x)= ei f (x)ξ(x) is analytic with Hb

= {0}.

Proof. To prove that g is indeed a Banach space is straightforward and we leave it
to the reader. As limn→∞

n
√

n! = ∞, we also have L∞([0, 1],R) ⊆ g, so that the
constant function 1 is a cyclic vector. To show that (π,H) is analytic, it therefore
suffices to show that 1 ∈Hω.

We claim that the series
∑
∞

n=0
1
n!‖dπ( f )n1‖2 =

∑
∞

n=0
1
n!‖ f n

‖2 converges uni-
formly for ‖ f ‖ < 1

2 , and this implies the analyticity of 1. Below we need the
estimate

(2n)! = (1 · · · 3 · · · (2n− 1))(2 · · · 4 · · · 2n)≤ (2 · · · 4 · · · 2n)2 = 22n(n!)2.

This leads to
∞∑

n=0

1
n!
‖ f n
‖2 =

∞∑
n=0

1
n!
‖ f ‖n2n ≤

∞∑
n=0

√
(2n)!
n!
‖ f ‖n ≤

∞∑
n=0

2n
‖ f ‖n =

1
1− 2‖ f ‖

.

Next we show that Hb
= {0}. Suppose that ξ is a nonzero bounded vector, that is,

that the representation of G on the cyclic subspace Hξ generated by ξ is bounded.
This implies in particular that Hξ is invariant under the derived representation, that
is, under multiplication with elements of g. As ξ is nonzero, there exists an ε > 0
for which the set E = {x ∈ [0, 1] : |ξ(x)| ≥ ε} has positive measure. Since (ξ |E)−1

is bounded, the characteristic function χE of E is contained in Hξ , and further
L∞([0, 1],R) ·χE ⊆Hξ implies that L2(E)⊆Hξ .
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The boundedness of the representation of G on L2(E) implies in particular for
each f ∈ g that ‖et f |E − χE‖∞→ 0 for t → 0, and hence that f |E is essentially
bounded. For f (x)= log(x) we have

‖ f ‖nn =
∫ 1

0
| log(x)|n dx =

∫
∞

0
yne−y dy = 0(n+ 1)= n!,

which shows that log( · ) ∈ g. Let l̃og denote the 1-periodic extension of log to
R and logx0

( · ) = l̃og( · − x0)|[0,1]. Then the translation invariance of the norm
defining g implies that logx0

∈ g.
As E has positive measure, there exists a point x0 ∈ (0, 1)∩ E of metric density

1, hence an ε0 > 0 for which the set Eε = {x ∈ E : x0 ≤ x ≤ x0+ ε} has positive
measure for every ε ∈ (0, ε0). This implies that logx0

is not essentially bounded
on E . From this contradiction we derive that Hb

= {0}. �

Appendix C. Analytic functions in the Banach context

Let A and B be two Banach spaces over K, where K ∈ {R,C}. A homogeneous
polynomial of degree n from A to B is a map

p :A→B, p(v)= F(v, . . . , v),

where F :A× · · ·×A→B is a symmetric K-multilinear map. The homogeneous
polynomial p is continuous if and only if F is continuous.

If U ⊆A is an open set, then a continuous function f :U→B is called analytic
in U if and only if for every u ∈U there exist a neighborhood Vu of the origin in
A and continuous homogeneous polynomials pn :A→B such that deg(pn)= n,
u+ Vu ⊆U , and

(36) f (u+ v)=
∞∑

n=0

pn(v) for every v ∈ Vu .

Remark. The convergence of the series (36) is pointwise. However, Theorem C.1
below implies that if the series (36) converges in U pointwise, then for every u ∈U
the series also converges normally at u (i.e., absolutely uniformly in a neighbor-
hood of u). In some references, e.g., [Bourbaki 1967, Number 3.2], analytic maps
are defined on the basis of the latter form of convergence.

Recall that a subset S of a vector space V over K is called absorbing if for every
v ∈ V there exists a tv > 0 such that for all c ∈ K, if |c| ≤ tv then c · v ∈ S.

Theorem C.1. Let A and B be Banach spaces over K, where K ∈ {R,C}. Let
S⊆A be an absorbing set. For every integer n ≥ 0, let pn :A→B be a continuous
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homogeneous polynomial of degree n. Consider the formal series

φ(v)=

∞∑
n=0

pn(v).

(i) Suppose that there exists an absorbing set S ⊆ A such that the series φ(v)
converges for every v ∈ S. Then there exists an open neighborhood U of the
origin in A such that

∞∑
n=0

sup{‖pn(v)‖ : v ∈U }<∞.

(ii) Suppose that there exists an open neighborhood V of the origin in A such that
the series φ(v) converges for every v ∈ V . Then the function

φ|V : V →B

is analytic in V .

Proof. Statement (i) follows from [Bochnak and Siciak 1971b, Proposition 5.2 and
Theorem 5.2]. Statement (ii) follows from [loc. cit., Theorem 5.2]. �

Remark. When A= Cn and B= C, Theorem C.1 implies a result originally due
to Hartogs. A proof of this special case is given in [Rudin 1980, Theorem 1.5.6].

Let A be a real Banach space and B be a complex Banach space (which can also
be considered as a real Banach space). Every R-multilinear map F :A×· · ·×A→

B can be extended to a C-multilinear map FC
:AC
×· · ·×AC

→B by extension of
scalars. Therefore every continuous homogeneous polynomial p :A→B extends
to a continuous homogeneous polynomial pC

:AC
→B.

Theorem C.2. Let A be a real Banach space and B be a complex Banach space.
For every integer n ≥ 0, let pn :A→B be a continuous homogeneous polynomial
of degree n. Suppose that the formal series

φ(v)=

∞∑
n=0

pn(v)

converges for every v ∈U , where U is an open neighborhood of zero in A. Then
there exists an open neighborhood U C of zero in AC such that U ⊆U C, the series

φC(v)=

∞∑
n=0

pC
n (v)

converges for every v ∈U C, and the map φC
|U C :U C

→B is analytic in U C.
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Proof. The statements of the theorem follow from [Bochnak and Siciak 1971b,
Proposition 5.4] and Theorem C.1(ii) above. �

An analogue of Hartogs’ theorem is also valid in this framework.

Theorem C.3. Let A, B, and C be complex Banach spaces and U ⊆A×B be an
open set. If a function f :U → C is separately analytic, then it is analytic.

Proof. This is [Bochnak and Siciak 1971b, Corollary 6.2]. �

Recall that in a complex topological vector space, a neighborhood W of the
origin is called balanced if and only if for every z ∈ C such that |z| ≤ 1 and every
w ∈W we have z ·w ∈W .

Theorem C.4. Let A and B be complex Banach spaces, U ⊆A be an open set, and
f :U →B be analytic in U. Let u ∈U and W be a balanced open neighborhood
of zero in A such that u+W ⊆U. For every integer n ≥ 0, set

δ(n)u f (v)=
dn

dζ n f (u+ ζ · v)|ζ=0.

Then the following statements hold.

(i) For every n, δ(n)u f is a continuous homogeneous polynomial of degree n.

(ii) f (u+ v)=
∞∑

n=0

1
n!
δ(n)u f (v) for every v ∈W .

Proof. These statements are consequences of [Bochnak and Siciak 1971b, Propo-
sition 5.5]. �
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