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ODD HAMILTONIAN SUPERALGEBRAS
AND SPECIAL ODD HAMILTONIAN SUPERALGEBRAS

OF FORMAL VECTOR FIELDS

LI REN, QIANG MU AND YONGZHENG ZHANG

The natural filtrations of odd Hamiltonian superalgebras and special odd
Hamiltonian superalgebras of formal vector fields are proved to be invari-
ant under their automorphism group respectively, by determining the set
of ad-quasi-nilpotent elements. Thereby, the automorphism groups of these
Lie superalgebras are determined.

1. Introduction

As is well known, filtration structures and automorphism groups play an impor-
tant role in the classification of modular Lie algebras (see [Jin 1992; Strade and
Farnsteiner 1988; Wilson 1975]) and nonmodular Lie superalgebras (see [Kac
1977; Kac 1998; Scheunert 1979]), respectively. Cartan-type Lie algebras and
Lie superalgebras possess natural filtration structures. The natural filtrations of the
infinite-dimensional Lie algebras L(m) and L̂(m) were proved to be invariant in
[Rudakov 1986], where L=W , S, H or K . The natural filtrations of the general Lie
superalgebra and special Lie superalgebra of formal vector fields were proved to be
invariant in [Zhang and Liu 2004]. The invariance of natural filtrations of Cartan-
type Lie algebras or Lie superalgebras provides a useful method of determining
intrinsic properties and automorphism groups (see [Wilson 1971; Zhang and Liu
2004]).

We consider the infinite-dimensional odd Hamiltonian superalgebra HO and
special odd Hamiltonian superalgebra SHO of formal vector fields, which are
involved in [Kac 1998]. The corresponding results of Cartan-type Lie algebras
are generalized and Jin’s methods are used (see [Jin 1992]). Denote by {X i }i≥−1
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the natural filtration of X . By determining the ad-quasi-nilpotent elements in the
even part and the subalgebras generated by certain ad-quasi-nilpotent elements,
we prove that the natural filtration of X is invariant under automorphisms in the
following sense: If ϕ is an automorphism of X , then ϕ(X i )⊆ X i for every i ≥−1.
Besides, we prove that every automorphism of X is continuous and can be induced
from an automorphism of 3(n, n). Finally, we prove that the automorphism group
of X is isomorphic to the admissible automorphism group of the base superalgebra
3(n, n).

This paper is arranged as follows. In Section 2, we recall the necessary defini-
tions concerning Lie superalgebras of Cartan type HO and SHO of formal vector
fields. In Section 3, we characterize the ad-quasi-nilpotent elements with certain
properties, and prove the invariance of their natural filtrations. In Section 4, we
determine the automorphism groups of Lie superalgebras of Cartan type HO and
SHO of formal vector fields.

2. Preliminaries

In this paper, F denotes an algebraically closed field of characteristic zero, and
n is a positive integer greater than 3. Let N and N0 denote the sets of positive
integers and nonnegative integers, respectively. Let Z2 = {0, 1̄} denote the ring
of integers modulo 2. Let P(n) = F[[x1, . . . , xn]] denote the ring of formal power
series in n variables over field F. For α = (α1, α2, . . . , αn) ∈ Nn

0 , we abbreviate
xα1

1 xα2
2 · · · x

αn
n to x (α), and put |α| =

∑n
i=1 αi . Let 3(n) be the Grassmann algebra

over F in n variables xn+1, xn+2, . . . , x2n . Denote by 3(n, n) the tensor product
P(n)⊗F 3(n). Then 3(n, n) is a noncommutative linearly compact topological
superalgebra with a fundamental system {(31)

j
} j≥1 of neighborhoods of 0, where

(31)
j
= spanF{xi1 · · · xik | j ≤ k}. In particular, (31)

1 is the ideal of 3(n, n)
generated by {x1, . . . , x2n} (see [Kac 1998]). For g ∈ P(n) and f ∈ 3(n), we
abbreviate g⊗ f to g f .

Put Y0 = {1, 2, . . . , n}, Y1 = {n+ 1, . . . , 2n} and Y = Y0 ∪ Y1. Let

Bk = {〈i1, i2, . . . , ik〉 | n+ 1≤ i1 < i2 < · · ·< ik ≤ 2n}

and B(n)=
⋃n

k=0 Bk , where B0 =∅. Given u = 〈i1, i2, . . . , ik〉 ∈ Bk , set |u| = k,
{u} = {i1, i2, . . . , ik} and xu

= xi1 xi2 · · · xik (with the convention that |∅| = 0
and x∅

= 1). Then {x (α)xu
| α ∈ Nn

0, u ∈ B(n)} is an F-basis of the infinite-
dimensional superalgebra 3(n, n). Clearly, 3(n, n) has a Z-grading structure
3(n, n)=

⊕
i≥03(n, n)[i], where

3(n, n)[i] = spanF{x
(α)xu

| |α| + |u| = i, α ∈ Nn
0, u ∈ B(n)}.



ODD AND SPECIAL ODD HAMILTONIAN SUPERALGEBRAS 473

An arbitrary element f ∈3(n, n) can be uniquely decomposed into f =
∑
∞

i=0 fi ,
where fi ∈ 3(n, n)[i]. The continuation of the addition of topological algebra
3(n, n) allows us to get the sum of infinite nonzero elements of 3(n, n). Set
3(n, n) j =

⊕
i≥ j 3(n, n)[i]. Then {3(n, n) j } j≥0 is a filtration of3(n, n). Clearly,

3(n, n) j = {(31)
j
}, where j ∈ N0.

Let D1, D2, . . . , D2n be the linear transformations of 3(n, n) such that

Di (x (α)xu)=

{
x (α−εi )xu if i ∈ Y0,

x (α) · (∂xu/∂xi ) if i ∈ Y1.

Then Di is a derivation of superalgebra 3(n, n) for every i ∈ Y . Let Der3(n, n)
be the Lie superalgebra consisting of all continuous derivations of 3(n, n). Then
Der3(n, n) = W (n, n), where W (n, n) = {

∑2n
i=1 fi Di | fi ∈ 3(n, n)}, and we

call W (n, n) the general superalgebra of formal vector fields (see [Kac 1998]).
Clearly, W (n, n) has a Z-grading structure W (n, n) =

⊕
i≥−1 W (n, n)[i], where

W (n, n)[i] = spanF{ f D j | f ∈3(n, n)[i+1], j ∈ Y }. Let

W (n, n) j =
⊕
i≥ j

W (n, n)[i].

Then {W (n, n) j } j≥−1 is called the natural filtration of W (n, n). Therefore, W (n, n)
is a linearly compact topological Lie superalgebra with {W (n, n) j } j≥−1 as a fun-
damental system of neighborhoods of 0.

If deg f appears in some expression in this paper, we always regard f as a
Z2-homogenous element and deg f as the Z2-degree of f . Then deg Di = µ(i),
where

µ(i)=
{

0̄ if i ∈ Y0,

1̄ if i ∈ Y1.

The following formula holds in W (n, n) (see [Zhang 1997]):

[ f Di , gD j ] = f Di (g)D j − (−1)deg f Di deg gD j gD j ( f )Di ,

where f, g ∈3(n, n) and i, j ∈ Y .
Put

i ′ =
{

i + n if i ∈ Y0,

i − n if i ∈ Y1.

Let TH :3(n, n)→W (n, n) be the linear mapping such that

(1) TH ( f )=
2n∑

i=1

(−1)µ(i) deg f Di ( f )Di ′ .

Put HO(n)= {TH ( f ) | f ∈3(n, n)}. Then HO(n) is an infinite-dimensional Lie
superalgebra (see [Kac 1998]), called the odd Hamiltonian superalgebra of formal
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vector fields. For f, g ∈3(n, n) the equation

(2) [TH ( f ), TH (g)] = TH
(
TH ( f )(g)

)
holds (see [Kac 1998]). Clearly, the algebra HO(n) has a Z-grading structure
HO(n) =

⊕
i≥−1 HO(n)[i], where HO(n)[i] = {TH ( f ) | f ∈ 3(n, n)[i+2]}. Set

HO(n)i = H O(n)∩W (n, n)i . Then {H O(n)i }i≥−1 is called the natural filtration
of HO(n).

Let HO(n, n) be the Z2-graded space 3(n, n)/F ·1 with reversed parity, that is,
HO(n, n)= HO(n, n)0̄+ HO(n, n)1̄, where

HO(n, n)θ = spanF{x
(α)xu

∈3(n, n)θ+1̄ | |α| + |u| ≥ 1}, θ ∈ Z2.

We denote by p(y) the Z2-degree of the element y of HO(n, n) to distinguish
it from the Z2-degree in 3(n, n). By (2), we can define a Lie multiplication in
HO(n, n) by

(3) [y, z] =
2n∑

i=1

(−1)µ(i) p(y)+µ(i)Di (y)Di ′(z).

Clearly, Lie superalgebra HO(n, n) is isomorphic to HO(n).
Let 1=

∑n
i=1 Di Di ′ be a linear mapping on 3(n, n), let

31(n, n)= { f ∈3(n, n) |1 f = 0},

and let SHO(n, n)=31(n, n)/F · 1. Then SHO(n, n) is a Z2-graded subspace of
HO(n, n). For f, g ∈3(n, n) we have

1
(
TH ( f )(g)

)
= (−1)deg f+1̄TH ( f )(1g)− (−1)deg f deg g+deg f TH (g)(1 f );

see [Kac 1998]. Therefore, with the multiplication defined in (3), SHO(n, n) is a
subalgebra of HO(n, n). Set

(4) SHO(n, n)= spanF

{
[x (α), xu

]
∣∣ α ∈ Nn

0, u ∈ B(n), |α| + |u| ≥ 3
}
.

Then SHO(n, n) is an infinite-dimensional subalgebra of SHO(n, n), called the
special odd Hamiltonian superalgebra of formal vector fields (see [Kac 1998]).
Clearly, SHO(n, n) has a Z-grading structure SHO(n, n) =

⊕
i≥−1 SHO(n, n)[i],

where

SHO(n, n)[i] = spanF

{
[x (α), xu

]
∣∣ α ∈ Nn

0, u ∈ B(n), |α| + |u| = i + 4
}
.

Set SHO(n, n)i = SHO(n, n) ∩ W (n, n)i . Then {SHO(n, n)i }i≥−1 is called the
natural filtration of SHO(n, n).

Set SHO(n)= TH (SHO(n, n)). Clearly, with the multiplication defined in (2),
SHO(n) is a Lie superalgebra that is isomorphic to SHO(n, n). For the sake of
simplicity, we always write SHO for SHO(n, n) or SHO(n).
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In the following, we simply write HO for HO(n), and let X denote the Lie
superalgebra HO or SHO .

3. Invariant subalgebras and natural filtrations

Lemma 3.1. Suppose that y ∈ X[−1] ∩ X 0̄ and that y 6= 0. Then

y(3(n, n)[r ])=3(n, n)[r−1]

for all r ∈ N; hence y(3(n, n))=3(n, n).

Proof. We first prove that 3(n, n)[r−1] ⊆ y(3(n, n)[r ]). Write y =
∑n

j=1 c j D j ,
where c j ∈ F. Then there exists at least one nonzero element in {c1, . . . , cn}. Let
c1 j = c j , where 1 ≤ j ≤ n. Then there exist cl j ∈ F, where 2 ≤ l ≤ n, 1 ≤ j ≤ n,
such that the matrix (ci j )1≤i, j≤n is invertible. Let (ai j )1≤i, j≤n = (ci j )

−1
1≤i, j≤n . Note

that (1, 0, . . . , 0) (ci j )1≤i, j≤n = (c1, c2, . . . , cn). It follows that

(5) (1, 0, . . . , 0)= (c1, c2, . . . , cn) (ai j )1≤i, j≤n.

Let h j =
∑n

i=1 ai j xi , where j ∈ Y0, and let hk = xk , where k ∈ Y1. Then the set
{h1, h2, . . . , h2n} is an F-basis of 3(n, n)[1]. Therefore, for every r ∈ N, we have

3(n, n)[r−1] = spanF{h
α1
1 · · · h

αn
n hi1 · · · hik },

where (α1, . . . , αn) ∈ Nn
0 , 〈i1, . . . , ik〉 ∈ Bk and

∑n
i=1 αi + k = r − 1. Noting that

α1 ∈ N0, we see that α1 + 1 6= 0, since char F = 0. By (5), we have y(h j ) = δ j1,
where j ∈ Y0. Consequently, we have

y((α1+ 1)−1h1hα1
1 · · · h

αn
n hi1 · · · hik )= hα1

1 · · · h
αn
n hi1 · · · hik .

Thus 3(n, n)[r−1] ⊆ y(3(n, n)[r ]). The reverse inclusion can be verified trivially.
Suppose that f =

∑
s≥0 fs is an arbitrary element of 3(n, n), where fs is in

3(n, n)[s]. According to the results above, for every s ∈ N0, there exists a gs+1

in 3(n, n)[s+1] such that fs = y(gs+1). Since y is continuous, it follows that
f =

∑
s≥0 y(gs+1)= y(

∑
s≥0 gs+1) ∈ y(3(n, n)). Thus 3(n, n)= y(3(n, n)). �

Lemma 3.2. Suppose that y ∈ X[−1]∩ X 0̄ and that y 6= 0. Then [y, X[r ]] = X[r−1]

for all r ∈ N0.

Proof. It suffices to show that X[r−1]⊆[y, X[r ]]. Consider the case of HO . Suppose
that TH ( f ) is an element of H O[r−1], where f ∈3(n, n)[r+1]. Then by Lemma 3.1
there exists g ∈3(n, n)[r+2] such that y(g) = f , which combined with (2) yields
that TH ( f )= [y, TH (g)] ∈ [y, H O[r ]].

Consider the case of SHO . Suppose that [x (α), xu
] is a standard basis element

of SH O[r−1], and assume that y = xi ′ , where i ∈ Y0. Then by (3), we have that
−[x (α), xu

] = [xi ′, [x (α+εi ), xu
]] is in [y, SH O[r ]]. �
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Lemma 3.3. Suppose that y ∈ X−1 ∩ X 0̄ \ X0 and that y 6= 0. Then [y, X ] = X.

Proof. It suffices to show that X ⊆ [y, X ]. Suppose that y =
∑

i≥−1 yi , where
yi ∈ X[i], and suppose that z =

∑
i≥−1 zi is an arbitrary element of X , where

zi ∈ X[i]. Then by Lemma 3.2, we can inductively pick w j ∈ X[ j], such that
[y−1, w0] = z−1 when j = 0, and [y−1, w j ] = z j−1 −

∑ j−1
i=0 [yi , w j−1−i ] when

j > 0. For arbitrary k ∈ N0, direct calculations show that

(6)
[

y−1,
k∑

j=0
w j

]
= [y−1, w0] +

k∑
j=1
[y−1, w j ] =

k−1∑
j=−1

z j −
∑

0≤i+ j≤k−1
[yi , w j ],

and

(7)
[ ∑

i≥0
yi ,

k∑
j=0
w j

]
=

[ k−1∑
i=0

yi ,
k∑

j=0
w j

]
+

[ ∑
i≥k

yi ,
k∑

j=0
w j

]
=

∑
0≤i+ j≤k−1

[yi , w j ] +
∑

i+ j≥k
[yi , w j ].

Combining (6) and (7), we have[
y,

k∑
j=0
w j

]
=

[
y−1,

k∑
j=0
w j

]
+

[ ∑
i≥0

yi ,
k∑

j=0
w j

]
=

k−1∑
j=−1

z j +
∑

i+ j≥k
[yi , w j ] ∈

k−1∑
j=−1

z j + Xk .

Noting that Xk=
⋂k

i=0 X i , we see that
[
y,
∑k

j=0w j
]
≡
∑k−1

j=−1 z j (mod
⋂k

i=0 X i ).
Let w =

∑
j≥0w j . Then [y, w] = [y,

∑
j≥0w j ] ≡

∑
j≥−1 z j (mod

⋂
i≥0 X i ),

whence [y, w] = z. Thus X ⊆ [y, X ]. �

For an element y of Lie superalgebra L , we call y ad-nilpotent if there ex-
ists a positive integer t such that (ad y)t(L) = 0. We call y ad-quasi-nilpotent if⋂
∞

t=1(ad y)t(L) = 0 (see [Humphreys 1972; Jin 1992]). Obviously, ad-nilpotent
elements are ad-quasi-nilpotent elements. In particular, Di is an ad-nilpotent ele-
ment of X for every i ∈ Y1.

Let J be a subset of L . Put

qnL(J ) := {y ∈ J | y is an ad-quasi-nilpotent element of L}.

In the following, we simply write qn(J ) for qnX (J ), and denote by Qn(J ) the
subalgebra of X generated by qn(J ). It is clear that X1 ⊆ qn(X). In the following,
we will determine the ad-quasi-nilpotent elements of X[0], and prove the invariance
of natural filtration of X .

We denote by M2n(3(n, n)) the F-algebra consisting of all 2n × 2n matrices
over 3(n, n), denote by pr[0] the projection of 3(n, n) on 3(n, n)[0], and denote
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by pr1 the projection on 3(n, n)1. For (ai j )i, j∈Y ∈M2n(3(n, n)), we also denote

pr[0] : (ai j )i, j∈Y 7→ (pr[0](ai j ))i, j∈Y and pr1 : (ai j )i, j∈Y 7→ (pr1(ai j ))i, j∈Y .

Lemma 3.4. Suppose that h1, h2, . . . , h2n ∈ 3(n, n)1 with deg(h j ) = µ( j) such
that the matrix (pr[0](Di h j ))i, j∈Y is invertible. Then there exists an automorphism
σ of 3(n, n) such that

(8) σ(xi )= hi for all i ∈ Y.

Proof. Let σ : 3(n, n)→ 3(n, n) be an even endomorphism such that (8) holds.
Note that the natural filtration of 3(n, n) is invariant under σ . Then σ induces
a linear transformation σi of 3(n, n)i/3(n, n)i+1 for every i ≥ 0. We first use
induction on k to show that σk is bijective. Since the matrix of σ1 with respect to
F-basis {x1+3(n, n)2, . . . , x2n +3(n, n)2} is just (pr[0](Di h j ))i, j∈Y , we see that
σ1 is bijective. Suppose that k > 1 and x (α)xu is an element of 3(n, n)[k]. Then
we can write x (α)xu

= f j fk− j , where f j ∈ 3(n, n)[ j] and fk− j ∈ 3(n, n)[k− j]

with 1≤ j < k. By induction, there exist f ′j ∈3(n, n)[ j] and f ′k− j ∈3(n, n)[k− j]

such that σ( f ′j )≡ f j (mod3(n, n) j+1) and σ( f ′k− j )≡ fk− j (mod3(n, n)k− j+1),
whence

σ( f ′j f ′k− j )= σ( f ′j )σ ( f ′k− j )≡ f j fk− j = x (α)xu (mod3(n, n)k+1).

Thus σk is surjective. Note that since 3(n, n)k/3(n, n)k+1 is finite-dimensional,
it follows that σk is bijective.

We next prove that σ is bijective. Suppose that f ∈ ker(σ )∩3(n, n)i for any
i ≥ 0. Then σi ( f + 3(n, n)i+1) = 0. It follows that f ∈ 3(n, n)i+1, since σi

is injective. Thus ker(σ ) ⊆
⋂

j≥i 3(n, n) j = 0, and σ is injective. Suppose that
g = g0+ g1 ∈ 3(n, n), where g0 ∈ F, g1 ∈ 3(n, n)1. Since σ1 is surjective, there
exists g′1 ∈ 3(n, n)1 such that σ1(g′1+3(n, n)2) = g1+3(n, n)2. It follows that
g2 := g1 − σ(g′1) ∈ 3(n, n)2. Note that σi is surjective for every i ≥ 0. Then we
can inductively pick g′i ∈3(n, n)i , and define gi+1 ∈3(n, n)i+1 by

(9) gi+1 := gi − σ(g′i ).

Let g′ = g0+
∑

i≥0 g′i . Since σ is continuous, it follows from (9) that

σ(g′)= σ(g0)+
∑
i≥0

σ(g′i )= g0+
∑
i≥1

(gi − gi+1)= g0+ g1 = g,

whence σ is surjective. �

Let ρ be the corresponding representation with respect to X[0]-module X[−1],
that is, ρ(y) = ad y|X[−1] for all y ∈ X[0]. It is easy to see that ρ is faithful. For
y ∈ X[0], we also denote by ρ(y) the matrix of ρ(y) relative to the fixed ordered
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F-basis {D1, D2, . . . , D2n}. Denote by gl(n, n) the general linear Lie superalgebra
of 2n× 2n matrices over F (see [Scheunert 1979]).

Lemma 3.5. Suppose that A is an invertible matrix of gl(n, n), and y ∈W (n, n)[0].
Then there exists an automorphism ϕ of W (n, n) such that ρ(ϕ(y))= Aρ(y)A−1.

Proof. Suppose that A=
(
ai j
)

1≤i, j≤2n , and let h j =
∑2n

i=1 ai j xi , where 1≤ j ≤ 2n.
Then {h1, h2, . . . , h2n} is an F-basis of 3(n, n)[1]. Note that Di (h j ) = ai j for all
i, j ∈ Y . It follows from Lemma 3.4 that there exists σ ∈ Aut3(n, n) such that
σ(xi )= hi for all i ∈ Y . Clearly, σ ∈ Aut(3(n, n) :W (n, n)).

Let ϕ :W (n, n)→W (n, n) be the linear mapping such that z 7→ σ zσ−1 for all z
in W (n, n). Then ϕ is an automorphism of W (n, n). We claim that ϕ is the desired
automorphism. Suppose that A−1

= (ci j )1≤i, j≤2n , and let y =
∑

s,r∈Y bsr xs Dr be
an arbitrary element of W (n, n)[0], where bsr ∈ F. Then ρ(y) = (bsr )1≤s,r≤2n .
Noting that (ϕy)(σ xi )= σ(yxi ), we see that ϕ(y)=

∑
t, j∈Y σ(yxt)D j . Thus

ϕ(y)=
∑

t, j∈Y

ct jσ
(∑

s∈Y

bst xs
)
D j =

∑
t, j,s∈Y

bst ct jσ(xs)D j

=

∑
t, j,s∈Y

bst ct j hs D j =
∑

t, j,s,k∈Y

aksbst ct j xk D j .

It follows that ρ(ϕ(y))= Aρ(y)A−1. �

Lemma 3.6. Suppose that y ∈W (n, n)[0]. Then ad y is a nilpotent linear transfor-
mation of W (n, n)[r ] for every r ≥−1 if and only if ρ(y) is a nilpotent matrix.

Proof. If ad y|W (n,n)[−1] is nilpotent, then the definition of ρ shows that ρ(y) is
a nilpotent matrix. Conversely, suppose that ρ(y) is nilpotent. By Lemma 3.5,
it suffices to consider the case when ρ(y) is a strictly upper triangular matrix.
Suppose that y =

∑
i, j∈Y,i< j ai j xi D j , where ai j ∈ F.

We first prove that ad xi D j is nilpotent linear transformation of W (n, n)[r ] for
every r ≥−1 when i < j . For any standard basis element x (α)xu Dk of W (n, n)[r ],
where α ∈ Nn

0 , u ∈ B(n) and k ∈ Y , two cases arise.

Case 1. j ∈ Y0. If k 6= i , then

(ad xi D j )
t(x (α)xu Dk)= x t

i Dt
j (x

(α))xu Dk = 0

when t ≥ r + 2. If k = i , then

(ad xi D j )
t(x (α)xu Di )= x t

i Dt
j (x

(α))xu Di − t x t−1
i Dt−1

j (x (α))xu D j = 0

when t ≥ r + 3.

Case 2. j ∈ Y1. If k 6= i , then

(ad xi D j )
t(x (α)xu Dk)= (ad xi D j )

t−2(x2
i x (α)D2

j (x
u)Dk)= 0



ODD AND SPECIAL ODD HAMILTONIAN SUPERALGEBRAS 479

when t ≥ 2, and if k = i , then

(ad xi D j )
t(x (α)xu Di )= l(ad xi D j )

t−3(x2
i x (α)D2

j (x
u)D j )= 0

when t ≥ 3, where l = 1 or l =−1.
Therefore (ad xi D j )

t(x (α)xu Dk)= 0 when t ≥ r +4. Let fk =
∑

α,u cα,u x (α)xu

be an arbitrary element of 3(n, n)[r+1], where cα,u ∈ F, k ∈ Y . Then for any
t ≥ r + 4,

(ad xi D j )
t( fk Dk)=

∑
α,u

(ad xi D j )
t(cα,u x (α)xu Dk)= 0,

since (ad xi D j ))
t is continuous. Consequently, we see that ad xi D j |W (n,n)[r ] is

nilpotent for every r ≥−1 when i < j .
Note that the set {±xi D j , 0 | i< j} is closed under the multiplication of W (n, n),

and the Lie superalgebra spanF{±xi D j , 0 | i < j} is finite-dimensional. It follows
from [Strade and Farnsteiner 1988, Theorem 1.3.1] that ad y|W (n,n)[r ] is nilpotent.

�

Lemma 3.7. Suppose that y ∈ X[0]. Then ad y is a nilpotent linear transformation
of X[r ] for every r ≥−1 if and only if ρ(y) is a nilpotent matrix.

Proof. Clearly, ρ(y) is a nilpotent matrix when ad y|X[−1] is nilpotent. Conversely,
suppose that ρ(y) is a nilpotent matrix. Then by Lemma 3.6, ad y is a nilpotent
linear transformation of W (n, n)[r ] for every r ≥ −1. Since X is a subalgebra of
W (n, n), it follows that ad y|X[r ] is nilpotent. �

Lemma 3.8. Suppose that y = y0+ y1 ∈ qn(X0), where y0 ∈ X[0], y1 ∈ X1. Then
ρ(y0) is a nilpotent matrix, and hence, y0 ∈ qn(X[0]).

Proof. Let X(i) = X/X i+1 for every i ≥ −1. Then X(i) ∼=
⊕

j≤i X[ j]. For every
i ≥−1, let τi be the endomorphism on X(i) satisfying τi (z)≡[y, z] (mod X i+1) for
all z ∈ X(i). Assume that ρ(y0) is not a nilpotent matrix. Then τi is not nilpotent for
every i ≥−1. Let X(i) =Ui⊕Vi be the Fitting decomposition of X(i) with respect
to τi , where Ui 6=0, τi |Ui is invertible, τi |Vi is nilpotent. Since X(i)= X(i+1)/X[i+1],
τi = τi+1 (mod X i+1) and τi+1(X[i+1])⊆ (X[i+1]), it follows that

X(i) = (Ui+1+ X[i+1]/X[i+1])⊕ (Vi+1+ X[i+1]/X[i+1]).

is also the Fitting decomposition of X(i) with respect to τi , and by the uniqueness
of the Fitting decomposition, we get Ui =Ui+1+ X[i+1]/X[i+1]. This implies that
Ui is the projection of Ui+1 on X(i). Set

U = {z ∈ X | the projection of z on X(i) belongs to Ui for all i ≥−1}.

By the completeness of X , the set U is nonempty, and its projection on X(i) is
Ui for each i ≥ −1. It follows that [y,U ] = U . So

⋂
∞

t=0(ad y)t(X) ⊇ U 6= 0,
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contradicting the hypothesis that y is ad-quasi-nilpotent. Therefore, ρ(y0) is a
nilpotent matrix, which combined with Lemma 3.7 yields y0 ∈ qn(X[0]). �

Proposition 3.9. One has qn(X0)= AN0 ∩ X[0]+ X1, where

AN0 = {y | y ∈W (n, n)[0] such that ρ(y) is a nilpotent matrix }.

Proof. By Lemma 3.8, it suffices to show that AN0∩X[0]+X1⊆ qn(X0). Suppose
that y0 ∈ AN0 ∩ X[0], and suppose that y1 ∈ X1. Let y = y0+ y1. Then ρ(y0) is a
nilpotent matrix. According to Lemma 3.7, there exists a positive integer ti such
that (ad y0)

ti (X[i]) = 0 for each i ≥ −1. This implies that (ad y0)
ti (X i ) ⊆ X i+1.

Consequently, we have (ad y)t−1+···+tk (X0)⊆ Xk+1 for any k ≥−1. It follows that⋂
∞

t=1(ad y)t(X0)⊆
⋂
∞

k=1 Xk = 0, whence y ∈ qn(X0). �

Lemma 3.10. Qn(X0)= Qn(X[0] ∩ X0)+ X1 ∩ X0, and then Qn(X0)⊆ X0 ∩ X0.

Proof. Note that X1 ⊆ Qn(X). It follows that X1 ∩ X0 ⊆ Qn(X0). Consequently,
we have Qn(X[0] ∩ X0)+ X1 ∩ X0 ⊆ Qn(X0).

Conversely, suppose that y = y−1+ y0 ∈ qn(X0), where y−1 ∈ X[−1] ∩ X0, and
y0 ∈ X0 ∩ X0. Assume that y−1 6= 0. It follows from Lemma 3.3 that [y, X ] = X ,
which implies that y is not an ad-quasi-nilpotent element of X , a contradiction.
Thus y ∈ X0 ∩ X0.

Now we can write y = y0 + y1, where y0 ∈ X[0] ∩ X0, and y1 ∈ X1 ∩ X0.
By Lemma 3.8, we have y0 ∈ qn(X[0] ∩ X0) ⊆ Qn(X[0] ∩ X0). It follows that
y ∈ Qn(X[0] ∩ X0)+ X1 ∩ X0. Thus

(10) qn(X0)⊂ Qn(X[0] ∩ X0)+ X1 ∩ X0.

The right-hand side of (10) is a subalgebra of X0. Then

Qn(X0)⊂ Qn(X[0] ∩ X0)+ X1 ∩ X0.

Thus the lemma holds. �

Lemma 3.11. Suppose that i, j ∈ Y with i 6= j ′. Then TH (xi x j ) ∈ qn(X[0]).

Proof. It suffices to show that ad TH (xi x j ) is a nilpotent linear transformation of
W (n, n)[t] for every t ≥−1. Suppose that x (α)xu Dk is a standard basis element of
W (m, n)[t], where t ≥ −1. To simplify our proof for the lemma, we only verify
the case i ∈ Y0, j ∈ Y1, and k 6= i, j as the proofs for the other cases are similar
and hence omitted.

An induction on l shows that

(ad TH (xi x j ))
l(x (α)xu Dk)

= (−1)l−1lx l−1
i Dl−1

j ′ (x
(α))x j Di ′(xu)Dk + (−1)l x l

i Dl
j ′(x

(α))xu Dk = 0.

This yields that (ad TH (xi x j ))
l(x (α)xu Dk)= 0 when l ≥ t + 3. �
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Let In denote the identity matrix of size 2n×2n, and let ei j denote the 2n×2n
matrix whose (i, j)-entry is 1 and whose other entries are 0. Set

p̃(n)=
{(

A B
C −AT

)
∈ gl(n, n)

∣∣∣∣ B =−BT,C = CT
}
,

p(n)=
{(

A B
C −AT

)
∈ p̃(n)

∣∣∣∣ tr A = 0
}
,

where AT is the transpose of A. Then p̃(n), p(n) are subalgebras of gl(n, n) (see
[Kac 1998]). Clearly,

p̃(n)0 =
{(

A 0
0 −AT

)
∈ gl(n, n)

}
,

p(n)0 =
{(

A 0
0 −AT

)
∈ gl(n, n)

∣∣∣∣ tr A = 0
}
.

Lemma 3.12. (1) ρ(TH (xi x j )) = (−1)µ(i
′)ei ′ j − (−1)µ(i

′)µ( j)e j ′i for all i, j ∈ Y ,
hence ρ(HO[0])= p̃(n) and ρ(HO[0] ∩ HO0)= p̃(n)0.

(2) ρ(TH (xi x j )) = (−1)µ(i
′)ei ′ j − (−1)µ(i

′)µ( j)e j ′i for all i, j ∈ Y with i 6= j ′,
ρ(TH (xk xk′ − xl xl ′)) = ekk − ek′k′ − ell + el ′l ′ for all k, l ∈ Y0 with k 6= l, hence
ρ(SHO[0])= p(n) and ρ(SHO[0] ∩ SHO0)= p(n)0.

Proof. (1) Direct calculation shows that ad TH (xi x j )(D j ) = (−1)µ(i
′)Di ′ , and

ad TH (xi x j )(Di )=−(−1)µ(i
′)µ( j)D j ′ . It follows that

ρ(TH (xi x j ))= (−1)µ(i
′)ei ′ j − (−1)µ(i

′)µ( j)e j ′i .

Note that HO0 = spanF{TH (xi x j ) | i, j ∈ Y }. Consequently, (1) holds.
(2) The proof is similar to that of (1), hence omitted. �

Lemma 3.13. ρ(Qn(X[0] ∩ X0))= p(n)0.

Proof. Suppose that y ∈ qn(X[0] ∩ X0). Then ρ(y) is a nilpotent matrix by
Lemma 3.8. It follows from Lemma 3.12 that ρ(y)= diag(A,−AT), where A and
−AT are n× n nilpotent matrices. This shows that tr A = 0, that is ρ(y) ∈ p(n)0.
Thus ρ(qn(X[0] ∩ X0))⊆ p(n)0.

Conversely, set

R = {TH (xi x j ) | i ∈ Y0, j ∈ Y1, with i 6= j ′}.

Then R⊆qn(X[0]∩X0), by Lemma 3.11, whence ρ(R)⊆ρ(qn(X[0]∩X0)). Noting
that ρ(TH (xi x j )) = e j ′i − ei ′ j for all i ∈ Y0, j ∈ Y1 with i 6= j ′, by Lemma 3.12,
we see that ρ(R) generates p(n)0. Thus p(n)0 ⊆ ρ(Qn(X[0] ∩ X0)). �

Note that NorX0
(Qn(X0))= {y ∈ X0 | [y,Qn(X0)] ⊆ Qn(X0)}. Clearly, the set

NorX0
(Qn(X0)) is invariant under automorphisms of X .
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Proposition 3.14. X0∩ X0 =NorX0
(Qn(X0)). In particular, X0∩ X0 is an invari-

ant subalgebra.

Proof. Note that [ p̃(n)0, p(n)0] = p(n)0. It follows from Lemmas 3.12 and 3.13
that

[ρ(X[0] ∩ X0), ρ(Qn(X[0] ∩ X0))] = [ p̃(n)0, p(n)0] = ρ(Qn(X[0] ∩ X0)),

whence

(11) [X[0] ∩ X0,Qn(X[0] ∩ X0)] = Qn(X[0] ∩ X0),

since ρ is faithful. By Lemma 3.10 and (11), we have

[X0 ∩ X0,Qn(X0)] = [X[0] ∩ X0+ X1 ∩ X0,Qn(X[0] ∩ X0)+ X1 ∩ X0]

⊆ [X[0] ∩ X0,Qn(X[0] ∩ X0)] + X1 ∩ X0

⊆ Qn(X[0] ∩ X0)+ X1 ∩ X0 = Qn(X0).

Thus X0 ∩ X0 ⊆ NorX0
(Qn(X0)).

Conversely, suppose that y= y−1+y0∈NorX0
(Qn(X0)), where y−1∈ X[−1]∩X0,

y0 ∈ X0∩X0. We want to show that y−1= 0. Assume y−1=
∑n

t=1 at Dt 6= 0, where
at ∈ F. Then we can pick k ∈ Y0 such that ak 6= 0, and then pick jk ∈ Y1 such that
jk 6= k ′. From Lemma 3.11 we see that TH (xk x jk )∈Qn(X0), which combined with
our hypothesis that y ∈ NorX0

(Qn(X0)), yields [y, TH (xk x jk )] ∈ Qn(X0), whence
[y, TH (xk x jk )] ∈ X0 ∩ X0 by Lemma 3.10. On the other hand, a direct calculation
shows that

[y, TH (xk x jk )] = [y−1, TH (xk x jk )]+ [y0, TH (xk x jk )] = −ak D j ′k +[y0, TH (xk x jk )].

Since [y0, TH (xk x jk )] ∈ X0∩X0, we see that ak = 0, contradicting our assumption,
thus y−1 = 0. So y = y0 ∈ X0 ∩ X0, proving NorX0

(Qn(X0)) ⊆ X0 ∩ X0. Since
NorX0

(Qn(X0)) is invariant, we see that X0 ∩ X0 is invariant. �

Set �= {y ∈ qn(X0∩X0) | [y, X0∩X0] ⊆ qn(X0∩X0)}. Then Proposition 3.14
shows that � is invariant under automorphisms of X .

Proposition 3.15. X1∩X 0̄=�. In particular, X1∩X 0̄ is an invariant subalgebra.

Proof. We only verify the case of SHO , as the proof for HO is similar and hence
omitted. Suppose that y = y0 + y1 is an arbitrary element of �, where y0 is in
SHO[0] ∩ SH O0 and y1 is in SHO1 ∩ SHO0. Suppose that

y0 =
∑

i, j∈Y0,i 6= j

ai j TH (xi x j ′)+

n−1∑
i=1

ai i TH (xi xi ′ − xi+1x(i+1)′),
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where ai j ∈ F. Let bi j = ai j , where i, j ∈ Y0 with i 6= j , and let bi i = ai i−ai−1,i−1,
where i ∈ Y0, and a00 = ann = 0. Let

l =min
{
i ∈ Y0

∣∣ bi j0 6= 0 for some j0 ∈ Y
}
,

t =min
{

j ∈ Y0
∣∣ bi0 j 6= 0 for some i0 ∈ Y

}
.

We first consider the case l ≤ t . Set k =max{ j ∈ Y0 | bl j 6= 0}. Then l ≤ t ≤ k, and
blk 6= 0. If l = k, then

y0 =

n∑
i=l+1

n∑
j=l,i 6= j

ai j TH (xi x j ′)+

n−1∑
i=l

ai i TH (xi xi ′ − xi+1x(i+1)′),

and

ρ(y0)=

n∑
i=l

ai i (ei i − ei+1i+1)−

n∑
i=l

ai i (ei ′i ′ − e(i+1)′(i+1)′)

+

n∑
i=l+1

n∑
j=l,i 6= j

ai j (e j i − ei ′ j ′)=

(
all All ∗

0 ∗

)
,

where All is the l× l matrix whose (l, l)-entry is 1 and 0 elsewhere. Since all 6= 0,
we conclude that ρ(y[0]) is not a nilpotent matrix. It follows from Lemma 3.8 that
y 6∈ qn(SHO0), contradicting the hypothesis that y ∈�. Therefore l < k and

y0 =

k∑
j=t, j 6=l

al j TH (xl x j ′)+

n∑
i=l+1

n∑
j=t,i 6= j

ai j TH (xi x j ′)+

n∑
i=t

ai i TH (xi xi ′ − xi+1x(i+1)′).

A direct calculation shows that

ρ
(
[TH (xk xl ′), y0]

)
= [elk − ek′l ′, ρ(y0)]

= alk(ell − el ′l ′ − ekk + ek′k′) −

k−1∑
j=t, j 6=l

al j (e jk − ek′ j ′)

+

n∑
i=l+1,i 6=k

aik(eli − ei ′l ′)+ (akk − ak−1,k−1− δlt all)(elk − ek′l ′)

=

(
alk All ∗

0 ∗

)
,

so ρ([TH (xk xl ′), y0]) is not a nilpotent matrix. Since

[TH (xk xl ′), y] = [TH (xk xl ′), y0] + [TH (xk xl ′), y1],

it follows from Lemma 3.8 that [TH (xk xl ′), y] 6∈ qn(SHO0), contradicting our hy-
pothesis that y ∈�.
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We now consider the case l > t . Set k =max{i ∈ Y0 | bi t 6= 0}. Then t < l ≤ k,
bkt 6= 0 and

y0 =

k∑
i=l

ai t TH (xi xt ′) +

n∑
i=l

n∑
j=t+1,i 6= j

ai j TH (xi x j ′) +

n∑
i=l

ai i TH (xi xi ′ − xi+1x(i+1)′).

A direct computation shows that

ρ
(
[TH (xt xk′), y0]

)
= [ekt − et ′k′, ρ(y0)]

= −akt(et t − et ′t ′ − ekk + ek′k′)+

k−1∑
i=l

ai t(eki − ei ′k′)

−

n∑
j=t+1, j 6=k

ak j (e j t − et ′ j ′)+ (ak−1,k−1− ak,k)(ekt − et ′k′)

=

(
−akt Bt t 0
∗ ∗

)
,

where Bt t is the t× t matrix whose (t, t)-entry is 1 and 0 elsewhere. It follows that
ρ([TH (xt xk′), y0]) is not a nilpotent matrix, whence [TH (xt xk′), y] /∈ qn(SHO0) by
Lemma 3.8, a contradiction which yields y0=0. Therefore y= y1∈ SHO1∩SHO0,
proving �⊆ SHO1 ∩ SHO0.

Conversely, noting that SHO1 ⊆ qn(SHO), we see that

[SHO1 ∩ SHO0, SHO0 ∩ SHO0]

⊆ SHO1 ∩ SHO0 ⊆ SHO0 ∩ SHO0 ∩ qn(SHO)= qn(SHO0 ∩ SHO0).

Thus SHO1 ∩ SHO0 ⊆ �. Since � is invariant, we see that SHO1 ∩ SHO0 is
invariant. �

Lemma 3.16. [X 1̄, X1 ∩ X0] = X0 ∩ X 1̄.

Proof. It suffices to show that X0∩ X 1̄ ⊆ [X 1̄, X1∩ X0]. We first consider the case
of HO . Suppose that TH (x (α)xu) ∈ HO0 ∩ HO1̄, where α ∈ Nn

0 , u ∈ B(n). Note
that if |u| 6= n, then there exists k ∈ Y1 \ {u} such that

TH (x (α)xu)= [Dk, TH (x (α)xk xu)] ∈ [HO1̄, HO1 ∩ HO0],

and if |u| = n, then

−TH (x (α)xu)= [TH (xi ′x j ), TH (xi x (α)D j (xu))] ∈ [HO1̄, HO1 ∩ HO0],

for all i ∈ Y0, j ∈ Y1.
Next, we consider the case of SHO . Suppose that [x (α), xu

] ∈ SHO0 ∩ SHO1̄,
where α ∈ Nn

0 , u ∈ B(n). If |u| 6= n, then there exists k ∈ Y1 such that k 6∈ {u}. It
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follows from (3) that

−[x (α), xu
] = [xk′, [x (α), xk xu

]] ∈ [SHO1̄, SHO1 ∩ SHO0].

If |u| = n, then by the hypothesis, we see that |u| is even. It follows that

[x (α), xu
] = [x3′ · · · xn′, [x (α+ε3), x3′x1′x2′]] ∈ [SHO1̄, SHO1 ∩ SHO0]. �

Theorem 3.17. The natural filtration of X is invariant under automorphisms of X.

Proof. By Proposition 3.15, we see that X1∩ X0 is invariant under automorphisms
of X . It follows from Lemma 3.16 that X0∩ X 1̄ is invariant, which combined with
Proposition 3.14 yields that X0 is invariant. Noting that

X[i] = {y ∈ X | [y, X ] ⊆ X[i−1]}

for every i ≥ 1, we see that X[i] is invariant. Thus X is invariant. �

4. The automorphism group of X

Lemma 4.1. Suppose that ϕX ∈ Aut X. Then:

(1) ϕX is a continuous automorphism.

(2) There exists an F-basis {e1, e2, . . . , e2n} of X[−1] such that ϕX (Di )≡ei (mod X).

Proof. (1) By Theorem 3.17, we have ϕX (X i ) ⊆ X i for every i ≥ −1. It follows
that X i ⊆ ϕ

−1
X (X i ). On the other hand, noting that ϕ−1

X ∈ Aut X , we see that
ϕ−1

X (X i )⊆ X i . Consequently, ϕX is a continuous automorphism.

(2) By Theorem 3.17, ϕX can induce an F-isomorphism ϕX of the quotient spaces

ϕX : X/X0→ X/X0,

such that ϕX (y + X0) = ϕX (y)+ X0 for all y ∈ X . Since {Di + X0 | i ∈ Y } is an
F-basis of X/X0, it follows that {ϕX (Di )+X0 | i ∈ Y } is an F-basis of X/X0. Then
for every i ∈ Y , there exists ei ∈ X[−1] such that ϕX (Di )+ X0 = ei + X0. Thus (2)
holds. �

Proposition 4.2. Suppose that ϕ, ψ ∈ Aut X. If ϕ|X[−1] = ψ |X[−1] , then ϕ = ψ .

Proof. We first use induction on k to show that ϕ|X[k] =ψ |X[k] , where k ≥−1. The
result is obvious for k = −1. We assume it for k − 1. Suppose that y ∈ X[k], and
let z = ϕ(y)−ψ(y). Then

[z, ψ(Di )] = [ϕ(y)−ψ(y), ψ(Di )] = ϕ([y, Di ])−ψ([y, Di ])= 0

for every i ∈ Y . By Lemma 4.1 (2), we can write ψ(Di ) = ei + wi , where
{e1, . . . , e2n} is an F-basis of X[−1] and wi ∈ X0. It follows that [z, ei +wi ] = 0.
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Suppose that ei =
∑

j∈Y ai j D j , where ai j ∈ F, and let (ci j )1≤i, j≤2n = (ai j )
−1
1≤i, j≤2n .

Then [z,−wi ] = [z, ei ] =
∑

j∈Y ai j [z, D j ], whence

(12) [z, Dl] =

2n∑
i=1

cli [z,−wi ] for all l ∈ Y.

Noting that y ∈ X0, we see that z ∈ X0. Thus we can write z =
∑

j≥0 z j , where
z j ∈ X[ j]. Applying (12), we have [z, Dl] ∈ X0, thus [z0, Dl] ∈ X0 ∩ X[−1] = 0
for all l ∈ Y . This yields z0 = 0. Now we can write z =

∑
j≥1 z j . Repeating the

argument above, we can see that z j = 0 for each j ≥ 1. It follows that z = 0,
whence ϕ|X[k] = ψ |X[k] . Hence ϕ = ψ , by Lemma 4.1 (1). �

Given σ ∈ Aut3(n, n) and D ∈ Der3(n, n), we set Dσ
= σDσ−1. Then

σ̃ : D 7→ Dσ is an automorphism of Der3(n, n). Let

Aut(3(n, n) : X)= {σ ∈ Aut3(n, n) | |σ̃ (X)⊆ X}.

Then Aut(3(n, n) : X) is a subgroup of Aut3(n, n), and it is called the admis-
sible automorphism group of 3(n, n) relative to X . Obviously, the morphism
8 : Aut(3(n, n) : X)→ Aut X given by σ 7→ σ̃ |X is a homomorphism of groups.

Lemma 4.3. (1) Suppose that A ∈M2n(3(n, n)). Then pr[0](A) is invertible if and
only if A is invertible.

(2) Suppose that {e1, . . . , e2n} is a 3(n, n)-basis of W (n, n). Let pr[−1] be the
projection of W (n, n) onto W (n, n)[−1]. Then {pr[−1] e1, . . . , pr[−1] e2n} is an F-
basis of W (n, n)[−1].

(3) Suppose that ϕ is an automorphism of X , and suppose that {yi | i ∈ Y } ⊂ X is a
3(n, n)-basis of W (n, n). Then {ϕ(yi ) | i ∈ Y } is also a 3(n, n)-basis of W (n, n).

(4) The natural filtration of 3(n, n) is invariant under automorphisms of 3(n, n).

Proof. (1) We first prove that A is invertible when pr[0] A is invertible. Set

P(n)1 = { f ∈ P(n) | pr[0]( f )= 0} and

T = spanF{x
(α)xu

| Di (xu) 6= 0 for some i ∈ Y }.

Then we can write A= pr[0](A)+B+C , where B ∈M2n(P(n)1), C ∈M2n(T ). Let
D = pr[0](A)+ B. Since P(n) is commutative, we see that det D is well defined.
Note that pr[0](det D) = det(pr[0] D) 6= 0, we can write det D = a + f , where
0 6= a ∈ F, f ∈ P(n)1. Put g = a−1

(∑
∞

i=0(−1)i (a−1 f )i
)
. A direct calculation

shows that g det D = 1. It follows that det D is invertible, whence D is invertible.
Let E be the inverse of D. Since C ∈M2n(T ), we have C E ∈M2n(T ), which

combined with the fact that the product of any n+1 elements of T is 0 yields that
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C E is nilpotent. Thus I +C E is invertible. Consequently, we have

AE(I +C E)−1
= (C + D)E(I +C E)−1

= (C E + DE)(I +C E)−1
= I.

Therefore A is invertible.
Using the fact that pr[0](AB)= pr[0](A) pr[0](B) for arbitrary matrices A and B

in M2n(3(n, n)), we can prove the converse implication.

(2) Suppose that (D1, . . . , D2n)
T
= A(e1, . . . , e2n)

T, where A ∈ M2n(3(n, n)).
Then (D1, . . . , D2n)

T
=pr[0] A(pr[−1](e1), . . . , pr[−1](e2n))

T. Since {D1, . . . , D2n}

is an F-basis of W (n, n)[−1], it follows that {pr[−1](e1), . . . , pr[−1](e2n)} is an F-
basis of W (n, n)[−1].

(3) By Theorem 3.17, ϕ induces canonically ϕ∈gl(X/X0). Denote by ȳi the image
of yi under the canonically map X → X/X0. Then {ȳi | i ∈ Y } is an F-basis of
X/X0. Assume that

(ϕ(y1), . . . , ϕ(y2n))
T
= A(D1, . . . , D2n)

T,

where A ∈M2n(3(n, n)). Decomposing A = pr[0] A+ pr1 A, we obtain

(ϕ(y1), . . . , ϕ(y2n))
T
= (ϕ(y1), . . . , ϕ(y2n))

T
= pr[0] A(D1, . . . , D2n)

T.

This implies that pr[0] A is invertible. It follows from (1) that A is invertible. There-
fore {ϕ(y) | i ∈ Y } is a 3(n, n)-basis of W (n, n).

(4) Since Der3(n, n)=W (n, n), we have Aut3(n, n)=Aut(3(n, n) :W (n, n)).
By [Zhang and Liu 2004, Theorem 2.12], the natural filtration of W (n, n) is invari-
ant under Aut W (n, n). Note that for every i ∈ Y , σ̃ ( f Di ) = (σ f )(σ̃Di ), where
σ ∈ Aut3(n, n) and f ∈3(n, n), which implies the desired result. �

Theorem 4.4. The map 8 : Aut(3(n, n) : X)→ Aut X given by σ 7→ σ̃ |X is an
isomorphism.

Proof. It suffices to show that 8 is bijective. Assume that σ ∈Aut(3(n, n) : X) is
an element such that σ̃ |X = 1|X . We first use induction on |α| + |u| to show that
σ(x (α)xu)= x (α)xu , where x (α)xu is a standard basis element of 3(n, n), α ∈ Nn

0 ,
u ∈ B(n). If |α| + |u| = 1, then x (α)xu

= xi for some i ∈ Y . Since for every k ∈ Y

Dk(σ (xi ))= (σ̃ (Dk))(σ (xi ))=σDkσ
−1σ(xi )=σDk(xi )=σ(δik)=δik=Dk(δik),

it follows that Dk(σ (xi ) − xi ) = 0, which combined with Lemma 4.3(4) yields
σ(xi )= xi . If |α| + |u|> 1, then by induction

Dk(σ (x (α)xu)− x (α)xu)= (σ̃Dk)σ (x (α)xu)− Dk(x (α)xu)= 0,

for every k ∈ Y . Thus σ(x (α)xu)− x (α)xu
∈ F∩3(n, n)1= 0. Consequently, σ = 1

and 8 is injective.
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We next prove that 8 is surjective. Suppose that ϕ is in Aut X . Then by
Lemma 4.3 (3), {ϕ(D1), . . . , ϕ(D2n)} is a 3(n, n)-basis of W (n, n). Therefore,
we can suppose that ϕ(TH (xi x j )) =

∑2n
t=1 hi j tϕ(Dt), where i, j ∈ Y with i 6= j ′,

and hi j t ∈3(n, n). Applying Lemma 4.3 (2), we have hi j t ∈3(n, n)1. Thus

(13) ϕ
(
[Dk, TH (xi x j )]

)
=

[
ϕ(Dk),

2n∑
t=1

hi j tϕ(Dt)
]
=

2n∑
t=1

(ϕ(Dk)(hi j t))ϕ(Dt).

On the other hand,

ϕ
(
[Dk, TH (xi x j )]

)
= ϕ[Dk, (−1)µ(i)µ( j ′)x j Di ′ + (−1)µ( j)xi D j ′]

= (−1)µ(i)µ( j ′)δk jϕ(Di ′)+ (−1)µ( j)δkiϕ(D j ′).
(14)

In particular, by letting i = 1 and j ∈ Y \ {1′} in equations (13) and (14), one sees
that ϕ(Dk)(h1 j1′) = δk j + δk1δ j1 for all k ∈ Y . Similarly, by letting i = 2′ and
j = 1′, we obtain ϕ(Dk)(h2′1′2)= δk1′ . Let h1 =

1
2 h111′ , h1′ = h2′1′2 and h j = h1 j1′

for j ∈ Y \ {1, 1′}. Then h j ∈3(n, n)1 with deg(h j )= µ( j), and

(15) ϕ(Di )(h j )= δi j for all i, j ∈ Y.

Suppose that ϕ(Di )=
∑2n

t=1 fi t Dt , where fi t ∈3(n, n). It follows from (15) that

(δi j )i, j∈Y = (ϕ(Di )h j )i, j∈Y = ( fi j )i, j∈Y (Di h j )i, j∈Y .

This implies that (Di h j )i, j∈Y is invertible, whence (pr[0](Di h j ))i, j∈Y is invertible
by Lemma 4.3(1). Consequently, there exists σ ∈Aut3(n, n) such that σ(xi )= hi

by Lemma 3.4, which combined with (15) yields

(σ̃Di −ϕDi )(h j )= σ(Di x j )− δi j = 0

for all i, j ∈ Y . Since h1, h2, . . . , h2n generate 3(n, n), we see that σ̃Di = ϕDi ,
whence σ̃ |X = ϕ by Proposition 4.2. �
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