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This paper analyses stable commutator length (scl) in groups Zr ∗ Zs. We
bound it from above in terms of the reduced word length (sharply in the
limit) and from below in terms of the answer to an associated subset-sum
problem. Combining both estimates, we prove that as m tends to infinity,
words of reduced length m generically have scl arbitrarily close to 1

4 m− 1.
We then show that, unless P=NP , there is no polynomial time algorithm

to compute scl of efficiently encoded words in F2.
All these results are obtained by exploiting the fundamental connection

between scl and the geometry of certain rational polyhedra. Their extremal
rays have been classified concisely and completely. However, we prove that a
similar classification for extremal points is impossible in a very strong sense.

1. Introduction

Stable commutator length (hereafter scl) is a concept in geometric group theory
that arises naturally in the study of least genus problems, such as:

Given a topological space X and a loop γ , what is the least genus of a
once-punctured, orientable surface which can be mapped to X such that
the boundary wraps once around γ ?

It transpires that the real-valued function scl gives an algebraic analogue of the
(relative) Gromov–Thurston norm in topology and has deep connections to various
areas of interest in modern geometry (see [Calegari 2009]). The computation of
scl is notoriously difficult and its distribution often mysterious, even in free groups.
Important open problems in the theory of scl in such groups are to determine the
image of scl (“inverse problem”), and, more ambitiously, to find a clear relation
between the outer form of a word and its scl (“form problem”).

MSC2010: 20F12, 20F65, 52B15, 52C45, 57M07.
Keywords: stable commutator length, scl, complexity theory, sails, P = NP, generic behaviour,

polyhedra, Calegari’s algorithm, bounded cohomology, NP-hard, NP-complete, computational
geometry.
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2 LUKAS BRANTNER

An a priori completely unrelated concept ubiquitous in the theory of linear op-
timisation is that of a (convex) polyhedron and its boundary, the sail. If such
a polyhedron P is pointed (i.e., does not contain any line), it has a particularly
simple ray-vertex decomposition as

P = cone(R)+ conv(V ),

where R and V are the finite sets of extremal rays and points respectively (see
Chapter 8 of [Schrijver 1986]). Combinatorial optimisation is often concerned
with polyhedra whose elements represent flows, and which are given to us as the
convex hulls of combinatorially distinguished flows (e.g., paths from source to sink;
see Chapter 13 in [Schrijver 2003]). In such cases, the description of V and R is a
crucial step towards a complete understanding of the geometry of P .

These two concepts were bridged by an algorithm of Calegari [2011], that es-
tablishes an intricate connection between the computation of scl in groups of the
form ∗m

i=1Zmi and the geometry of certain rational flow polyhedra. The sails of
these polyhedra are the unit sets of one-homogeneous functions, which one has to
maximise over certain subsets in order to compute scl.

There are two ways in which this link can be exploited: the relative approach
compares the polyhedra corresponding to different words and converts geometric
relations between them into numerical ones relating their scls. In contrast, the
absolute approach uses the precise, very involved geometry of individual polyhedra
to compute the scl of given words exactly. The former technique is significantly
more accessible as it does not require such a detailed analysis. Amongst other
things, it has been used to prove the salient surgery theorem (see Theorem 4.13 in
[Calegari 2011]), which demonstrates that the scl of certain natural sequences of
words converges.

Following this method, we start off the first section of this paper by observing
that certain linear algebraic relations between exponents of words translate directly
into inequalities of scl and then use this to relate the scl-images of different groups
of the form Zr

∗Zs . More importantly, we combine both of the aforementioned
approaches to obtain new upper and lower bounds and use these to prove that the
scl of a generic word of reduced length m is close to 1

4 m− 1.
Our lower bound implies that to prove the longstanding open conjecture that

scl(Z ∗ Z) ⊇ Q ∩ [1,∞), we can restrict our attention to a certain subclass of
words.

Our second main theorem shows that computing scl is hard: unless P= NP, the
scl of a word cannot be determined in polynomial time.

The second approach is more formidable, but promises more substantial progress
towards a complete solution of the two guiding problems mentioned above. An ex-
haustive analysis of the polyhedral geometry has been carried out in a few specific
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cases (see Section 4.1 in [Calegari 2011]), allowing the explicit computation of scl
in several infinite families of words. These partial successes raised the hope that
a complete description of the polyhedra was within reach. Indeed, the first half of
their ray-vertex decomposition was found by Calegari [2011, Lemma 4.11], who
provided a general and simple classification of their extremal rays (see page 5).

The main result of the second section of this paper demonstrates that the next
step cannot be made: a similar classification for extremal points is impossible,
roughly speaking because they exhibit provably arbitrarily complicated behaviour.
We conclude the paper by showing that a natural alternative description of the
relevant polyhedra is infeasible from a complexity-theoretic perspective.

Main results. We first use polyhedra to prove positive theorems on scl, and then we
provide negative results explaining why certain nice descriptions of these polyhedra
cannot exist. All words are assumed to lie in the commutator subgroup of Z∞ ∗Z∞,
to start in the left and to end in the right factor. Here Z∞ is free abelian group on
countably many generators, which we denote by {ai }i∈N in the left factor and by
{bi }i∈N in the right factor. For x ∈ Z∞ with components x (i), we write

ax
= ax (1)

1 · a
x (2)
2 · · · ,

and a similar expression defines bx.
This particular case comprises all words in all groups Zr

∗ Zs . A word has
reduced length m if it switches m times from one to the other factor of our free
product. This notion generalises to all free products, and it differs from the classical
word length, which counts the number of letters in a word. For the words we
examine, m = 2n is even.

In Section 2, we define stable commutator length, and then give a detailed
description of Calegari’s algorithm, thereby introducing relevant terminology.

In Section 3, we prove bounds on scl and the complexity of its computation.
Words of reduced length m = 2n in Z∞ ∗Z∞ are most naturally expressed as

φ(x, y)= ax1 ·by1 . . . axn ·byn

where x = {xj} and y = {yj} are certain collections of nonzero vectors.
We start by proving that values in the set scl(Z∞ ∗ Z∞)\scl(Zr

∗ Zs) cannot
come from words that are “too short”:

Lemma 3.3 (Compactness). If v ∈Z∞∗Z∞ has reduced length N , its scl is already
contained in the image scl(Zr

∗Zs) for all r, s ≥ N.

More importantly, we give a lower bound on scl depending on the number of
exponents we need to represent zero as a nontrivial sum (repetitions allowed).

Theorem 3.4 (Lower bound). Let w = φ(x, y) ∈ Z∞ ∗Z∞ have reduced length 2n.
Fix p, q ∈ N, and assume that the following two implications hold:
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• If (λ j ) j ∈ Nn
\{0} is a vector with

∑
j λ j x

(i)
j = 0 for all i , then

∑
j λ j ≥ p.

• If (µ j ) j ∈ Nn
\{0} is a vector with

∑
j µ j y(i)j = 0 for all i , then

∑
j µ j ≥ q.

In this case, we have the inequality

scl(w)≥ n
2

(
1− 1

p
−

1
q

)
.

For each length, intersecting the polyhedra of all words of this length yields an
upper bound on scl which is “best possible in the limit”.

Theorem 3.7 (Upper bound). Write C(m) for the supremum of the scl of words in
Z∞ ∗Z∞ of reduced length m = 2n > 4. This supremum is attained and satisfies

C(m)≤


n
2
− 1 if n is odd

n
2
−
(n−1)!−1

n(n−2)!−2
if n is even.

Moreover, given ε > 0, we have 1
4 m − 1 ≤ C(m) ≤ 1

4 m − 1+ ε for m sufficiently
large.

To state our main result precisely, we need to define what we mean by a generic
property. Recall the map φ from above, which associates a word of reduced length
m = 2n to pairs (x, y) of certain collections of vectors in the rank-(n−1) module
V = {z ∈ Zn

|
∑

j z j = 0}.

Definition 1.4. Let P be a property on words in the commutator of Z∞ ∗Z∞. We
say words of reduced length m = 2n generically satisfy P if there are finitely many
submodules W1, . . . ,Wl of V of ranks at most n− 2, such that whenever not all
x (i) and not all y(i) lie in

⋃
k Wk , the property P(φ(x, y)) holds.

Welding the upper and the lower bound together, we conclude:

Theorem 3.9 (Generic word). Given any ε > 0, we can choose N such that for all
m ≥ N , words w of reduced length m generically satisfy

scl(w) ∈
[1

4 m− 1, 1
4 m− 1+ ε

]
.

For efficiently encoded words in F2, all known scl algorithms are computation-
ally expensive. Here we elucidate that such expenditure arises not through the fault
of the algorithms but from the intrinsic difficulty of the determination of scl:

Theorem 3.11 (Complexity). Unless P= NP, the scl of words φ(x, y) ∈ F2 cannot
be computed in polynomial time in the input size of the vector (x, y).

In Section 4, we analyse the geometry of the relevant flow polyhedra. In order to
express the main result precisely, we need to clarify what we mean by the “abstract
graph underlying a flow”.
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Definition 1.7. Take the smallest equivalence relation on the class of (finite) multi-
digraphs, or MD-graphs, that is stable under subdivision of directed edges.

An MD-graph is called abstract if it does not contain subdivided edges. Note
that every MD-graph is equivalent to a unique abstract graph.

The underlying abstract graph of a flow is the abstract graph of its support.1

Figure 1. The abstract graph of an MD-graph.

The general classification of extremal rays in [Calegari 2011, Lemma 4.11]
implies that the abstract graphs underlying extremal rays are of an elegant sim-
plicity — they are all isomorphic to one of the following three MD-graphs:

Figure 2. The three abstract graphs underlying extremal rays.

However, we prove that a classification of the extremal points that gives rise to
any nontrivial restriction on the underlying abstract graphs cannot exist.

Theorem 4.1 (Nonclassifiability). For every connected, nonempty, abstract MD-
graph G, there is an (alternating) word w ∈ Z ∗ Z and an extremal point f of a
flow polyhedron associated to w such that G is the abstract graph underlying f .

The polyhedra in Calegari’s algorithm arise as P = conv(D+ V ), where V is
the (understood) recession cone, and D is an infinite integral subset of V . The aim
is to find an efficient representation, and a very natural alternative to the ray-vertex
decomposition is the essential decomposition: here, we use the minimal set T ⊂ D
(essential vectors) with T + V = D+ V to encode P . Our final theorem indicates
that this decomposition is computationally infeasible.

Theorem 4.13 (Essential membership). The decision problem “Given a word w in
F2 and a vector v in the corresponding cone, is v essential?” is coNP-complete.

2. Background

We give a review of some basic properties of scl and relevant previous work.

1The support of a flow is the digraph induced by the edges with nonzero flow.
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Word parametrisation φ. First, we introduce effective notation for words in the
group Z∞ ∗Z∞, which is the fundamental group of the wedge of two spaces. With-
out losing generality for our purposes, we will assume that all mentioned words
are elements of the commutator subgroup of G = A ∗ B = Z∞ ∗Z∞ that start in
A and end in B. The following is the central invariant of words in our group; it
measures how often a loop switches from one space to another.

Definition 2.1. Every word w can be written as w= u1v1 · · · unvn with ui ∈ A\{1}
and vi ∈ B \{1}. We define the reduced word length (or, more concisely, reduced
length) of w to be 2n.

We will examine the map φ introduced on page 3 in more detail. Let Uk (k ∈N)
be copies of the space U = {z ∈ Zn

|
∑

j z j = 0} and define

Mn =

{(
z(1), z(2), . . .

)
∈

∞⊕
k=1

Uk

∣∣∣ ∀j ∈ {1, . . . , n} ∃i ∈ N : z(i)j 6= 0
}
.

For z ∈Mn , we write zj= (z
(1)
j , z(2)j , . . . ). The map φ then gives a bijection between

Mn ×Mn and words of reduced length 2n, which is given explicitly by

φ(x, y)=
(
a

x (1)1
1 a

x (2)1
2 . . .

)
·
(
b

y(1)1
1 b

y(2)1
2 . . .

)
· · ·
(
ax (1)n

1 ax (2)n
2 . . .

)
·
(
by(1)n

1 by(2)n
2 . . .

)
.

For a loop γ suitably representing φ(x, y), the integer x (i)j can be geometrically
interpreted as the number of times our loop walks along the i-th generator in the left
space between the (2 j − 1)th and (2 j)-th passage through ∗. A shifted statement
holds for y(i)j and the right space.

Definition of stable commutator length. We give a very accessible, algebraic def-
inition and sketch an equivalent, more motivated topological one.

Definition 2.2. Let G be a group and g ∈ [G,G]. The commutator length cl(g) is
defined to be the least number of commutators in G whose product is g.

We stabilise this definition and define the stable commutator length of g to be

scl(g)= lim
n→∞

cl(gn)

n
.

There is a close link between commutator length and the least genus problem
mentioned above, which yields a purely topological definition of cl:

Proposition 2.3. Let (X, x) be a pointed topological space with fundamental group
G = π1(X, x). Assume that γ is a based loop with homotopy class g. Then cl(g) is
the least genus of a once-punctured, orientable, compact, and connected surface S
that can be mapped to X such that ∂S wraps once around γ . (This follows directly
from the well-known classification of compact surfaces.)
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This result can be extended to obtain a similar topological definition of scl. It
describes scl as a measure of how simple a surface (rationally) bounding a given
loop can be, where the meaning of “simple” is slightly tweaked:

A map f : S→ X from a compact orientable surface S is called admissible for
a loop γ if f wraps the boundaries of S around γ . To such a map, we associate
the quotient

∑
j |min(χ(S j ), 0)|/2n, where χ(S j ) is the Euler characteristic of

the connected components S j of S, and n is the degree with which f wraps ∂S
around γ . Then scl([γ ]) is given by the infimum of this quotient over all admissible
maps f .

Moreover, scl can be extended to homologically trivial chains on our group G.
One can use this to continuously extend scl to the group B1(G) of 1-boundaries
in the real group homology of G. In many relevant cases, this extension even
descends to a norm on a suitable quotient of B1(G).

However, the precise formulation of both of these definitions requires Sections
2.1 and 2.6 in [Calegari 2009]. We also recommend Section 2.4, which establishes
a close connection between scl and bounded cohomology.

Calegari’s algorithm. This algorithm enables the computation of scl in free prod-
ucts of free abelian groups. For the sake of notational convenience, we will restrict
ourselves to the specific case of two factors and to words rather than chains. Our
group is then the fundamental group of the wedge X of two tori, hence we can
represent its elements by loops in these spaces.

Figure 3. Loop representing w= a1b1b2a−1
1 b−1

1 b−1
2 ∈Z∗Z2 with

scl(w)= 1
2 .

The algorithm proceeds in three steps: To a given word φ(x, y) of length m= 2n,
it first associates two complete digraphs on n vertices. Special flows on these two
graphs define two polyhedral cones equipped with 1-homogeneous functions. The
sum of these functions then has to be maximised over a subset to compute scl.

Sketch of proof. The proof of Calegari’s algorithm exploits the topological nature
of scl. Let γ be a loop in X that nicely represents φ(x, y). Given an admissible
map f : S → X , we cut our surface S along the preimage f −1({∗}) of the glu-
ing point into two simple components. Therewith, we decouple the left and the
right half of our loop temporarily. The combinatorics of the boundaries of the two
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simple components give rise to a pair of flow vectors (vA, vB) on n vertices. This
pair carries all the scl-relevant information we can extract from f . Homological
triviality of the left and right half of γ imply that (vA, vB) lies in the Cartesian
product of two polyhedral cones V (x), V (y). These cones define the crucial flow
polyhedra P(x), P(y), whose boundaries are the unit sets of the 1-homogeneous
Klein functions κx , κy . A detailed analysis finally shows that scl can be computed
by maximising κx + κy over a certain compact subset of V (x)× V (y).

In the remainder of this section, we will give a precise formulation of the very
technical terms used in this sketch. We will give entirely self-contained definitions,
that do not depend on the sketched topological background.

The flow polyhedron P. We introduce necessary graph-theoretic terminology:

Definition 2.4. Let Gn be the complete digraph with n vertices [n] = {1, . . . , n}.
Given a vertex i ∈ [n] and a map f : [n]2 → R on edges, we define the inflow
and outflow of f at i by inflowi ( f ) =

∑
j f j i and outflowi ( f ) =

∑
j fi j . Here

fi j = f (i, j) denotes the value of the map f on the directed edge from i to j .
A nonnegative map f on edges is called a flow if inflowi ( f )= outflowi ( f ) at

all vertices. We write Wn ⊂ Rn2

≥0 for the cone of such flows.

Definition 2.5. An MD-graph is connected if for all vertices i, j , there is a directed
path from i to j . The graph is weakly connected if replacing all directed edges by
undirected ones turns it into a connected undirected graph.

Fix z ∈ Mn . The next objects are the key ingredients in the definition of P .

Definition 2.6. We introduce the weight function hz :Wn→ RN on flows via

(hz( f ))i =
n∑

j=1

z(i)j outflow j ( f ).

Its vanishing will mirror homological triviality of a half of the loop on the level of
the representing vectors.

The cone V (z) is defined as the set of flows for which hz vanishes. The nonzero
integral vectors in V (z) with connected support form the set D(z) of disc vectors.

We are now in a position to define the initially mentioned, crucially important
flow polyhedron P(z) examined in our paper and the function κz it determines.

Definition 2.7. The rational, a posteriori finite sided, flow polyhedron P(z) is
defined as P(z)= conv(D(z)+ V (z))= conv(D(z))+ V (z).

The sail S(z) is the boundary of this polyhedron.
The Klein function κz is the unique 1-homogeneous function satisfying:

• If the ray [v] passing through v ∈ V has [v] ∩ S(z)=∅, then κz(v)= 0.

• If v is the closest point to 0 in [v] ∩ S(z), then κ(v)= 1.
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Roughly speaking, κz is the 1-homogeneous function whose unit set is the sail.
There is a more practical definition of κz established in Lemma 3.10 of [Calegari
2011]:

Lemma 2.8. For v ∈ V (z), an admissible expression is defined to be a representa-
tion of the form v =

∑
j t j d j + v

′, where d j ∈ D(z), v′ ∈ V (z) and t j > 0. Then
κz(v)= sup(

∑
j t j ), where the supremum runs over all admissible expressions.

Calegari’s formula. If the surface S rationally bounds [γ ] = φ(x, y), the represent-
ing pair of vectors (vA, vB) must not only lie in V (x)× V (y), but also be paired.
This property reflects that the two simple components can be glued back together
and is defined as follows.

Definition 2.9. For (x, y) ∈ Mn ×Mn , define the set of paired vectors to be

Y (x, y)= {(vA, vB) ∈ V (x)× V (y) | ∀i, j : (vA)i j = (vB)( j−1)i },

where we adopt the convention that 1− 1= n.
We define the compact set of unit outflow vectors by

Y1(x, y)= {(vA, vB) ∈ Y (x, y) | ∀i : outflowi (vA)= outflowi (vB)= 1}.

Notice that Y n
1 := Y1(x, y) is independent of (x, y) ∈ Mn ×Mn .

We can finally reap the benefits of our endeavours and state Calegari’s formula:

Theorem 2.10 (Calegari). If g = φ(x, y) ∈ Z∞ ∗Z∞ for x, y ∈ Mn ×Mn , then

scl(g)= 1
2

(
n−max{κx(vA)+ κy(vB) | (vA, vB) ∈ Y1(x, y)}

)
.

3. Estimates

This section is divided into three parts: we first pursue the relative approach with
linear algebraic means and then give upper and lower bounds that allow us to
determine the generic value of scl. In the final section (see page 15), we prove that
the determination of scl is hard in a precise sense.

Linear algebra of exponents. The first, easily proven bound relates the scl of cer-
tain words of same reduced length.

Lemma 3.1 (Inequality). Let v = φ(r, s) and w = φ(t, u) ∈ Z∞ ∗Z∞ have equal
reduced length m = 2n, and assume that there are inclusions of Z-modules

〈{r (i)}〉 ⊆ 〈{t (i)}〉 and 〈{s(i)}〉 ⊆ 〈{u(i)}〉.

Then
scl(v)≤ scl(w).
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Proof. For z ∈ Mn and a flow f , the function hz vanishes on f if and only if
the vector (outflow j ( f )) j is perpendicular to all vectors {z(i)}. This immediately
gives the inclusion V (r)×V (s)⊇ V (t)×V (u). With Lemma 2.8, we then see that
κr + κs ≥ κt + κu , wherever defined. Since the sets over which we are maximising
are both equal to Y n

1 , Calegari’s formula gives the result. �

The lemma shows that the map scl ◦φ : Mn ×Mn→ R factors through spaces,
i.e., 〈{r (i)}〉× 〈{s(i)}〉 = 〈{t (i)}〉× 〈{u(i)}〉 implies scl(φ(r, s))= scl(φ(t, u)).

Example 3.2. This property can help us in concrete cases; for instance,

scl
(
a2

1a−3
2 ba−2

1 a1
2ba3

1a1
2ba−3

1 a1
2b−3)
= scl

(
a2

1a−3
2 a5

3ba−2
1 a1

2a−3
3 ba3

1a1
2a2

3ba−3
1 a1

2a−4
3 b−3),

since (5,−3, 2,−4)= (2,−2, 3,−3)− (−3, 1, 1, 1).

The last lemma can be used to prove the compactness lemma, which touches on
the “inverse problem”. Assume w is a word with short reduced length that uses a
large number of generators of the free abelian factors. Then our next lemma shows
that we actually only need a small number of generators to realise the scl of w.

Lemma 3.3 (Compactness). If w = φ(x, y) ∈ Z∞ ∗Z∞ has reduced length 2N , its
scl is already contained in the image scl(Zr

∗Zs) for all r, s ≥ N.

Proof. Since ZN is a free module of rank N over a principal ideal domain, the two
submodules generated by {x (i)} and {y(i)} respectively are free of rank at most N .
Therefore, we can choose generating sets {r1, . . . , rN } and {s1, . . . , sN }.

Now consider w0 = φ((r1, . . . , rN , 0, . . . ), (s1, . . . , sN , 0, . . . )). Since the map
scl ◦ φ factors through spaces, we have scl(w)= scl(w0). We complete the proof
by noticing that for all n,m ≥ N , the word w0 lies in the image of the obvious
scl-preserving inclusion Zr

∗Zs
→ Z∞ ∗Z∞. �

Generic value of scl. In order to determine the generic behaviour of scl, we will
need to bound it from above and below.

The first theorem of this section provides a lower bound on scl in terms of a
subset-sum type problem determined by the exponents of our word. The immediate
relation between the outer form of the word and the type of the bound makes it
particularly powerful, as can be seen in the remainder of this section.

Theorem 3.4 (Lower bound). Let w = φ(x, y) ∈ Z∞ ∗Z∞ have reduced length 2n.
Fix p, q ∈ N, and assume that the following two implications hold:

• If (λ j ) j ∈ Nn
\{0} is a vector with

∑
j λ j x

(i)
j = 0 for all i , then

∑
j λ j ≥ p.

• If (µ j ) j ∈ Nn
\{0} is a vector with

∑
j µ j y(i)j = 0 for all i , then

∑
j µ j ≥ q.
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In this case, we have the inequality

scl(w)≥ n
2

(
1− 1

p
−

1
q

)
.

Proof. The main idea behind this proof is to use the given implications to show
that the disc vectors have to contain a “large amount of flow”.

By compactness, there is a vector (vA, vB) ∈ Y1(x, y) maximising κx + κy . Let
vA =

∑
k tkdk + v

′ be any admissible expression with tk > 0, dk ∈ D(x), v′ ∈ V (x).

Claim. There is an inequality κx(vA)≤ n/p.

Proof of claim. Step 1. By definition, the function hx vanishes on disc vectors.
This means that (hx(dk))i =

∑
j x (i)j outflow j (dk) = 0 for all i, k. Using the first

implication of the theorem, we conclude that
∑

j outflow j (dk)≥ p for all k.

Step 2. Since (vA, vB) lies in the set Y1(x, y), we have outflow j (vA) = 1 for
all vertices j . Using our admissible expression from above, we conclude that∑

k tk outflow j (dk)≤ 1 for all j .

Step 3. We swap the order of summation:

p
∑

k

tk ≤
∑

k

∑
j

tk outflow j (dk)=
∑

j

∑
k

tk outflow j (dk)≤ n.

By Lemma 2.8, we then have κx(vA)= sup(
∑

k tk), where the supremum runs over
all admissible expressions. This implies the claim. �

Similarly, we prove κy(vB)≤ n/q . The result follows by Theorem 2.10. �

A major open problem in the theory of scl is to prove the conjecture that scl(F2)

contains every rational number q ≥ 1. By Lemma 3.18 in [Calegari and Walker
2011], if s, t ∈ scl(F2), then also s+ t + 1

2 ∈ F2. Writing q = 1
2 + (q − 1)+ 1

2 , we
see that the conjecture is equivalent to:

Conjecture 3.5 (Interval). The image scl(F2) contains every rational number in
the interval [1, 2].

The next corollary of the lower bound theorem gives an indication where to look
for these scl-values: Either they come from short words or from words that walk
along the same subloop twice in opposite directions (as in Figure 3).

Corollary 3.6. Let w = φ(x, y) be a word of reduced length m = 2n with scl(w)
in [1, 2]. Then either m ≤ 24 or there are distinct indices j1, j2 in {1, . . . , n} such
that we have one of the two following identities of vectors:(

x (i)j1

)
i =−

(
x (i)j2

)
i or

(
y(i)j1

)
i =−

(
y(i)j2

)
i .
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Proof. Suppose that the second possible conclusion does not hold. Since all vec-
tors (x (i)j )i , (y

(i)
j )i are nonzero, we can apply Theorem 3.4 (lower bound) with the

values p = q = 3 to obtain 2≥ scl(w)≥ n/6. �

After having bounded scl from below, we will now proceed to give an upper
bound purely in terms of the reduced word length. This bound is sharp in the limit
and will be the second key ingredient in the determination of the generic behaviour
of scl in Theorem 3.9.

Theorem 3.7 (Upper bound). Write C(m) for the supremum of the scl of words
in Z∞ ∗ Z∞ of reduced length m = 2n > 4. Then this supremum is attained and
satisfies

C(m)≤


n
2
− 1 if n is odd

n
2
−
(n−1)!−1

n(n−2)!−2
if n is even.

Moreover, given ε > 0, we have 1
4 m − 1 ≤ C(m) ≤ 1

4 m − 1+ ε for m sufficiently
large.

Proof. For a given reduced length 2n, we will intersect all cones V (x) to obtain a
word wn whose scl is maximal for this length. More precisely, define z ∈ Mn by

z(1) =
(
1 −1 . . . 0

)
, . . . , z(n−1)

=
(
1 0 . . . −1

)
, z(n) = z(n+1)

= . . .= 0.

Then the universally bounding word is given by wn = φ(z, z).
For all x, y ∈ Mn , we have 〈{x (i)}〉, 〈{y(i)}〉 ⊆ 〈{z(i)}〉 = { f ∈ Zn

|
∑

j f j = 0}.
Therefore, Lemma 3.1 (inequality) gives that scl(w)≤ scl(wn) for all words w of
reduced length 2n.

We will now bound scl(wn). Notice that V (z)=
⋂

x∈Mn
V (x) is exactly the set

of flows f on Gn for which outflowi ( f ) is equal at all vertices i . In particular, all
Hamiltonian cycles on {1, . . . , n} are disc vectors. We split cases:

• n odd: Let vA be the flow corresponding to the cycle 1, 3, 5, . . . , 2, 4, 6, . . . , 1.
We are forced by the pairing condition to define vB to be the flow corresponding
to 1, n, n − 1, . . . , 2, 1. Clearly, we have (vA, vB) ∈ Y n

1 , and since both vectors
vA, vB are disc vectors, we also conclude that κz(vA), κz(vB)≥ 1. Theorem 2.10
and Theorem 3.4 (lower bound) then imply that

scl(wn)=
n
2
− 1.

• n even: Let v be the vector obtained by adding the n possible rotations of Figure 4.
Then v is a flow in V (z) with outflowi (v)= n(n− 2)! − 2. Notice that v contains
the flow which is obtained by summing up all possible Hamiltonian cycles except
for 1, 2, . . . , n, 1. Since there are (n− 1)! − 1 of them, Lemma 2.8 implies that
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(n− 2)! − 1
(n− 2)! − 1

(n− 2)!

(n− 2)!

(n− 2)!(n− 2)!

(n− 2)!

(n− 2)!

Figure 4. Vector in Rn2
; the vertices {1, . . . , n} are arranged

clockwise. The number attached to a vertex gives the value on
the edge going into this vertex.

κz(v)≥ (n− 1)! − 1. We observe that (v, v) ∈ Y (z, z) is a paired vector, so

(vA, vB) :=

(
v

n(n− 2)! − 2
,

v

n(n−2)!−2

)
∈ Y1(z, z)

lies in the set we need to maximise over. We now use Theorem 2.10, the 1-
homogeneity of κz and Theorem 3.4 (lower bound) to conclude that

n
2
− 1≤ scl(wn)≤

n
2
−
(n− 1)! − 1

n(n− 2)! − 2
.

We finally observe that C(n)= scl(wn), which completes the proof. �

Remark 3.8. For n = 4, a computer calculation with A. Walker’s implementation
of Calegari’s algorithm [Walker 2011] gives

scl(w4)=
7
6
= 2− (4−1)!−1

4(4−2)!−2
;

hence the estimate for even n is sharp in at least one case. A precise computation
of C(n)= scl(wn) for general even n remains an open problem.

We now have all the necessary tools at our disposal to prove the main theorem
of this section and determine the generic behaviour of scl. Recall Definition 1.4
(generic properties).

Theorem 3.9 (Generic words). Given any ε > 0, we can choose N such that for
all m ≥ N , words w of reduced length m generically satisfy

scl(w) ∈
[1

4 m− 1, 1
4 m− 1+ ε

]
.

Proof. Let ε > 0. By Theorem 3.7 (upper bound), we can pick N such that for
all 2n ≥ N , words w of length 2n have scl(w) ≤ 1

2 n − 1 + ε. Fix n and set
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V = {z ∈ Zn
|
∑

j z j = 0}. For each of the finitely many vectors λ ∈ Nn with
0<

∑
j λ j < n, define the space Wλ by

Wλ =

{
z ∈ V

∣∣∣ ∑
j

λ j z j = 0
}
= ker

(
1 1 . . . 1
λ1 λ2 . . . λn

)
.

Since the rows of this matrix are linearly independent, the submodule Wλ has rank
at most n− 2.

Let w = φ(x, y) be any word of reduced length 2n. If not all x (i) and not all
y(i) lie in

⋃
λ Wλ, Theorem 3.4 (lower bound) helps us prove that scl(w)≥ 1

2 n− 1.
The theorem follows. �

Remark 3.10. Calegari’s algorithm also applies to free products of k > 2 free
abelian groups, and it is natural to ask which results carry over to this more general
setting. Let w be a word with ni nontrivial loop segments in the i-th group of our
product.

Again, we have k flow polyhedra P1, . . . , Pk , where Pi is constructed from
the exponents of letters in the i-th group by the same procedure as before. The
definition of the associated functions κ1, . . . , κn also carries over. To compute scl,
we have to maximise their sum over a compact subset Y1 of the product of all Pi .
This sum is obtained by first restricting to unit outflow vectors, and then imposing a
gluing condition, whose exact form is more complicated than before (see [Calegari
2011]).

The lower bound theorem generalises: Assume we are given a word w of length
m whose exponents in the i-th free factor are i x1, . . . ,

i xni , and such that we need
to sum at least pi of these exponents (with repetitions) to obtain zero. By the same
estimates on κi as before, we obtain

scl(w)≥ 1
4

m− 1
2

∑
i

ni
pi
.

However, the proof of the upper bound theorem breaks down in this more general
setting. Our strategy for k = 2 was to give every edge roughly the same weight
so that the pairing condition holds independently of the precise form of the word.
The vector obtained in this way had equal outflow at all vertices since both graphs
had the same cardinality, so it was possible to rescale and obtain a required unit
outflow vector.

For k > 2, the cardinalities of the involved graphs are usually very different, and
therefore this vector cannot be rescaled anymore to have unit outflow everywhere.

Therefore the proof of the generic word theorem does not generalise. We can still
deduce from the generalised lower bound theorem that words w with ni nontrivial
loop segments in the i-th group generically have scl(w)≥ 1

4 m− 1
2 k.
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Complexity of computing scl. We will give a lower bound on the algorithm inde-
pendent complexity of computing scl of efficiently encoded words in F2.

Theorem 3.11 (Complexity). Unless P= NP, the scl of words φ(x, y) ∈ F2 cannot
be computed in polynomial time in the input size of the vector (x, y).

After briefly reviewing basic complexity-theoretic notation and previous results
on scl, the main aim of this section is to prove this complexity theorem with the
techniques from the preceding section.

Remark 3.12. An algorithm is polynomial if it runs in time polynomially bounded
in terms of the size of its input.

A decision (or promise) problem is said to be polynomially solvable if there is
a polynomial algorithm that solves it. We say the problem lies in the class P.

A decision (or promise) problem lies in the complexity class NP if a solution
to the problem can be checked in polynomial time in the input size. The problem
is said to be NP-complete if it lies in NP and if no other problem in this class is
harder in a precise sense.

The input size of a computational task is the number of bits required to encode
the input binarily. For example, a vector (x1, . . . , xn) of natural numbers requires
roughly

∑
i log2 xi bits.

Remark 3.13. There is a simple measure of length in the free group F2 = Z ∗Z

other than the reduced length from Definition 2.1: the classical length of a word
is the number of letters in a shortest representation. This notion does not naturally
extend to groups Zr

∗Zs for r > 1 or s > 1 as it depends on a choice of bases for the
factors. The alternative scl-algorithm presented in section 4.1.7 of [Calegari 2009]
shows that scl can be computed in polynomial time in the classical length. More
precisely, if we encode words as binary strings with pairs of entries representing
generators and their inverses, then we can compute scl in polynomial time in the
size of this (very large) input.

However, it is artificial and inefficient to waive the use of exponents and use
unary coding — for example, to write aaaaababa−1a−1a−1a−1a−1a−1b−1b−1 for
the word a5baba−6b−2. But “using exponents” is just the colloquial term for
encoding our words via the map φ, adapted to F2. We will therefore consider
the problem of computing scl(φ(x, y)) for x, y ∈ (Z\{0})n as input. Our proof
will show that unless P= NP, there is no algorithm which solves this problem in
polynomial time in the size of the vector (x, y). Notice that this is strictly stronger
than just saying that unless P= NP, scl cannot be computed in polynomial time in
the reduced length.

Complexity-theoretic notation. The following classical problem is known to be NP-
complete and will be the starting point of our complexity-theoretic analysis.



16 LUKAS BRANTNER

Problem 3.14 (SUBSET SUM). Given (r1, . . . , rn) ∈ Zn , is there a nonzero vector
(λ1, . . . , λn) ∈ {0, 1}n with

∑
j λ jr j = 0?

This problem can be modified in several different ways, and we will now give
names to the variations we need.

We first restrict ourselves to cases where the whole input is known to sum up to
zero and ask for proper nonempty subsets whose sum is zero.

Problem 3.15 (SUBSET SUM′). Given (r1, . . . , rn) ∈ Zn with
∑

j r j = 0, is there a
vector (λ1, . . . , λn) ∈ {0, 1}n with 0<

∑
j λ j < n and

∑
j λ jr j = 0?

We vary this problem and allow the repeated use of individual r j ’s, but keep the
total number of employed r j ’s bounded.

Problem 3.16 (VAR SUBSET SUM′). Given (r1, . . . , rn) ∈ Zn with
∑

j r j = 0, is
there a vector (λ1, . . . , λn) ∈ Nn

\{0} with 0<
∑

j λ j < n and
∑

j λ jr j = 0?

We combine two problems and obtain the following promise problem:

Problem 3.17 (MIXED SUBSET SUM′). Given (r1, . . . , rn) ∈ Zn with
∑

j r j = 0
such that SUBSET SUM′ holds if and only if VAR SUBSET SUM′ does, are they both
satisfied?

Finally, we define the decision problem that will serve as the key gadget in the
proof of Theorem 3.11 (complexity).

Problem 3.18 (SMALL SCL). Given a vector x ∈ (Z\{0})n with
∑

j x j = 0, define
y = (1, . . . , 1,−(n− 1)) ∈ Mn . Is it true that scl(φ(x, y)) < 1

2 n− 1?

Proof of the complexity theorem. Our aim is to polynomially reduce SUBSET SUM
to SMALL SCL. This proves the complexity theorem: if we could compute scl for
words encoded with φ in polynomial time in the input size of the vectors, then it
would be possible to answer SMALL SCL and thus also SUBSET SUM in polynomial
time. This would then imply P= NP.

A combinatorial argument due to Frederick Manners, given in the Appendix,
reduces SUBSET SUM to MIXED SUBSET SUM′. Hence we are left with reducing
MIXED SUBSET SUM′ to SMALL SCL. This reduction relies on Theorem 3.4 (lower
bound) and the following following relation between scl and the SUBSET SUM′

problem.

Lemma 3.19. Let x ∈ (Z\{0})n be a vector with
∑

j x j = 0. Assume there is a
nonempty set J ⊂ {1, . . . , n} of size M ≤ 1

2 n with
∑

j∈J x j = 0 and moreover that
neither J nor J c are of the form2

{k, k+ 1}. Then we have

scl
(
ax1b . . . axn−1baxn b−(n−1))

≤
n
2
− 1− 1

(n−M−1)!
<

n
2
− 1.

2In this lemma, we work with addition modulo n, picking representatives in {1, . . . , n}.
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Proof. Set y = (1, . . . , 1,−(n − 1)). We will first give a unit outflow vector
vA ∈ V (x) with κx(vA)≥ 2, and then find vB ∈ V (y) such that (vA, vB) is paired
and κy(vB) is large enough.

A pair of flow vectors (c, d) on Gn , the complete digraph on vertices {1, . . . , n},
shall be called J -pair if c represents a Hamiltonian cycle on J and d represents
one such cycle on J c. Observe that we can pick N = (n−M − 1)! such J -pairs
(c1, d1), . . . , (cN , dN ) so that their sum v =

∑
j (c j + d j ) has nonzero flow on all

edges inside J and all edges inside J c. The assumptions of this theorem tell us that
the vector v ∈ V (x) decomposes into at least 2N disc vectors since the relevant
sums vanish. Using Lemma 2.8, we obtain that the vector vA =

1
N v has κx(vA)≥ 2.

Define
(vB)i j = (vA) j (i+1).

One checks easily that vB is a flow with unit outflow everywhere. Therefore, we
know that vB ∈ V (y) and (vA, vB) ∈ Y1(x, y).

We are left with proving that κy(vB)≥
1
N . It is enough to show that vB has con-

nected support, since then NvB is a disc vector and we therefore have κy(NvB)≥ 1.
A digraph is called weakly connected if replacing all directed edges by undirected
ones turns it into a connected graph. By Proposition 4.9 proven below, it is enough
to show that the support of the flow vB is weakly connected.

If I = {p, . . . , (p+ s)} ⊂ J and (p−1), (p+ s+1) /∈ J , we say I is an interval
in J . We have an obvious analogous definition for intervals in J c. Then {1, . . . , n}
decomposes into intervals I1, . . . , Im , where I j is in J for j odd and in J c for j
even.

Our goal is to show that given an interval Ik = {p, . . . , p+ s} in J , all points in
Ik lie in the same weakly connected component as p− 1. We split this into cases.

Case 1: s = 0. In this case, (vB)p(p−1) = (vA)(p−1)(p+1) > 0 and so p and p− 1
are weakly connected.

Case 2: s ≥ 1. By the form of J , we can pick q 6= p, (p+ 1) with q ∈ J . One
checks that the edges indicated in Figure 5 have positive flow for vB .

J J c
p p+1 p+s

p−1
p+s+1

q

Figure 5. Flow vector in Rn2
; the vertices {1, . . . , n} are arranged clockwise.
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Exactly the same argument holds for intervals in J c. Combining these two
claims, we see that Ik and Ik−1 lie in the same weakly connected component for
all k. We go once around the circle to conclude that the weak support of vB is
connected. �

We are now ready to reduce MIXED SUBSET SUM′ to SMALL SCL:

Lemma 3.20. If we can solve SMALL SCL in polynomial time, then we can also
solve MIXED SUBSET SUM′ in polynomial time.

Proof. Given a problem instance (r1, . . . , rn) ∈ Zn , we can check in polynomial
time if there is a j with r j = 0 or r j + r j+1 = 0.

If this is not the case, we compute

s = scl(ar1b . . . arn−1barn b−(n−1)).

If s < 1
2 n − 1, Theorem 3.4 (lower bound) lets us conclude that the problem

VAR SUBSET SUM′(r1, . . . , rn) is true; thus so is MIXED SUBSET SUM′(r1, . . . , rn).
If s ≥ 1

2 n, then we use Lemma 3.19 to conclude that SUBSET SUM′(r1, . . . , rn)

and hence MIXED SUBSET SUM′(r1, . . . , rn) are both false. �

This concludes the proof of the theorem. �

4. Polyhedra

Nonclassifiability theorem. Whereas the extremal rays of the scl-polyhedra P(z)=
conv(D(z)+ V (z)) have been classified in a satisfactory manner (see Figure 2),
such a description could not be found for their extremal points. Our main theorem,
whose proof will occupy most of this section, gives a reason for this.

Theorem 4.1 (Nonclassifiability). Let G be a connected MD-graph with M ver-
tices and E > 0 edges. Then there is an (alternating) word w ∈ Z ∗ Z of length
m = 4

(
M + 3E3M E+1

)
and an extremal point f of a flow polyhedron associated to

w such that G is the abstract graph underlying f .

We start this section with a brief treatment of extremal points, and then present
a more general version of the nonclassifiability theorem, deducing the specific case
from there. In the third part, we then prove the generalised theorem.

Extremal points of polyhedra. The next definition is central.

Definition 4.2. Let S ⊂ Rn be a subset. A vector x ∈ S is called an extremal point
of S if x cannot be written as a nontrivial convex combination of other vectors
in S, that is, if the condition x =

∑n
i=1 λivi with vi ∈ S, λi ∈ R>0, and

∑
j λ j = 1

implies v j = x for all j .
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Let E ⊂ Zn be a set of integral vectors and P = conv(E) the polyhedron defined
by its convex hull. The following is a very useful criterion for deciding whether a
given point in E is extremal.

Lemma 4.3. A vector d ∈ P is an extremal point if and only if d ∈ E and, for all
N ∈ N and d1, . . . , dN ∈ E ,

Nd = d1+ · · ·+ dN =⇒ d1 = · · · = dN = d.

Proof. Clearly, an extremal point d must lie in E , else it would need to be a non-
trivial convex combination of vectors in E . If Nd = d1+· · ·+ dN is an expression
as above, dividing by N gives a convex combination. We conclude di = d for all i .

Conversely, assume d ∈ E is a vector for which the above implication holds. An
easy computation shows that d is extremal if and only if it cannot be written as a
nontrivial convex combination of vectors in E . Suppose d =

∑
j λ j d j is a convex

combination with λ j > 0 and d j ∈ E for all j .
If d j = d for all i , we are done.
If not, we can bring all λ j d j with d j = d to the left hand side, rescale, and hence

obtain a representation of d as a convex combination of vectors that are all different
from d . Therefore, we may assume d j 6= d for all j . As the rational vector d lies in
the real convex span of the rational points d1, . . . , dN ∈ Zn , we know by Lemma 4
in [Bousquet-Mélou and Petkovšek 2000] that d also lies in their rational convex
span. Thus we can find µ j = p j/q j with p j ∈ N0, q j ∈ N such that d =

∑
µ j d j .

Then, for N =
∏

j q j , we have

Nd =
∑

i

pi

(∏
j 6=i

q j

)
di .

This is a sum of
∑

i pi
∏

j 6=i q j = N
∑

i pi/qi = N vectors in E , so by the implica-
tion in the theorem, we have d = di for all i with pi 6= 0. This is a contradiction. �

Generalised nonclassifiability theorem. We need new definitions to state the gen-
eral version of the theorem. Recall the definition of MD-graphs (1.7) and of the
function abst. We can associate polyhedra to edge weights on graphs.

Definition 4.4. Let G be an MD-graph with edge weights w. Consider the set Ew
of nonzero (nonnegative) integral flows f for which

∑
e f (e)w(e)= 0. Define the

polyhedron associated to w by Qw = conv(Ew).

As an interpretation, we can think of G as a country with cities and connecting
streets, where transferring a food unit over route e costs w(e) money units. The
Ew are the nonzero integral food flows for which our selfless state does not earn
or lose money with its road toll/subsidy system.

We extend this definition to vertex weights.
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Definition 4.5. Let v be a vertex weight on G. Define an edge weight wv by giving
an edge from a to b the weight v(a). Set Ev = Ewv and Qv = Qwv .

In our motivational analogy, this corresponds to the state adjusting tolls accord-
ing to how desirable it is to leave certain cities. Notice that for x ∈ (Z\{0})n

a vertex weight on the complete digraph Gn , the set Ev contains precisely the
nonzero integral vectors in the set V (x) defined in Definition 2.6.

Recall that an MD-graph is reflexive if its weakly connected components agree
with its connected components. In this situation, we can prove:

Theorem 4.6 (Generalised nonclassifiability). Let G be a reflexive abstract MD-
graph with M vertices and E > 0 edges. Let x ∈ Zn be a vertex weight on Gn

containing at least M + 3E3M E+1 entries equal to 1 and at least M + 3E3M E+1

entries equal to −1. Then, there is an extremal point f of the polyhedron Qx whose
abstract graph is G.

We deduce the specific nonclassifiability theorem from this general case.

Proof of Theorem 4.1 from Theorem 4.6. Let G be a connected, so in particular
reflexive, MD-graph with M vertices and E > 0 edges. Let w be the word φ(x, x),
where

x =
(
1, . . . , 1,︸ ︷︷ ︸

N times

−1, . . . ,−1︸ ︷︷ ︸
N times

)
for N = M+3E3M E+1. By the general version of the theorem, the polyhedron Qx

contains an extremal point f for Qx whose underlying abstract graph is G.

Claim. With the notation introduced in Definition 2.6, we have

P(x)= conv(D(x)+ V (x))⊂ Qx .

Proof of claim. Given d + v ∈ D(x)+ V (x), we can use Lemma 4.11 in [Calegari
2011] to express v as v =

∑
j λ jv j as a nonnegative linear combination of integral

representatives vi of the extremal rays of V . Then for some natural N >
∑

i λi , we
have

d + v =
∑

j

1
N
λ j (d + Nv j )+

(
1− 1

N

∑
j

λ j

)
· (d + 0).

This implies that d + v ∈ Qx . The claim follows as Qx is convex. �

Since f is an extremal point in Qx and lies in P(x), it follows immediately that
d is also an extremal point for P(x). �

Remark 4.7. Theorem 4.1 is sharp in the sense that only connected graphs can
occur as abstract graphs underlying extremal points of P(x). Indeed, all extremal
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points are disc vectors as if v = d + e is extremal, with d ∈ D(x) and e ∈ V (x),
then, by considering the expression v = 1

2 d + 1
2(d + 2e), we can see that e = 0.

We need a central definition before we can start the proof of the generalised the-
orem. We have seen in Definition 1.7 that to every MD-graph G, we can associate
an equivalent abstract graph, denoted by abst(G). The next definition describes
how this construction extends to flows and weights.

Definition 4.8. Given a flow g on a graph G with support S. The abstract graph
abst(g) := abst(S) is naturally equipped with an induced flow f .

If moreover G is equipped with an edge weight u : E(G)→R, then we construct
the induced weight w on abst( f ) as follows: We can pass from a (finite) graph to its
abstraction in finitely many steps by successively joining pairs of edges. Whenever
we merge two edges e1, e2, we give the new arising edge e12 the weight u(e1)+

u(e2). This yields a well-defined weight w on the graph abst( f ).
Write abst( f, w) for the graph abst( f ) with induced flow and edge weight.

Proof of Theorem 4.6. This rather long proof involves multiple steps. Before we
fill out the details, we will give a rough sketch of how we turn a graph into an
extremal point underlied by this graph. The deep reason that allows us to get such
a strong control over extremal points via Lemma 4.3 (extremality criterion) is that
N positive integers summing up to N all have to be equal to 1. Let G be a reflexive
abstract MD-graph with M vertices and E > 0 edges, together with a vertex weight
x ∈ Zn as in the theorem. We proceed in three steps:

Step 1. We find an integral flow f on the graph G, nonzero on all edges, such that
there exists an edge e (drawn with a dotted line) with flow value 1. Moreover, f
satisfies f (e′)≤ E M on all edges e′.

Step 2. We define an integral edge weight w on G, that is negative on e and positive
on all other edges. The number-theoretic properties of w are chosen to allow an
application of Lemma 4.3 (extremality criterion). More precisely, we will show
that the flow f is an extremal point of the polyhedron Qw.

Step 3. We implement the edge weighted flowed graph (G, f, w): this means we
find an integral flow g ∈ V (x) on Gn such that supp(g)= G, the induced flow of
g is f , and the edge weight on G induced from the weight wx on Gn agrees with
the weight w from Step (2). It then follows easily that g is the required extremal
point of Qx .

Figure 6 describes this construction in a simple example (notice that not all
edges are drawn in the fourth part.)

We now provide the details.

Step 1. To find the required flow, we need two lemmata. The first characterises
which graphs can appear as supports of flows.
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Figure 6. Finding extremal point with given abstract graph. Here
w1 = 106

+ 1, w2 = 106
+ 10, w3 = 106

+ 102, w4 = 106
+ 103,

w5 = 106
+ 104, w6 =−9, 032, 211.

Proposition 4.9. Let G be an MD-graph with M vertices and E edges. Then G
admits a flow f which is positive on all edges if and only if it is reflexive. Moreover,
such a flow can be chosen to satisfy f (e)≤ E M .

Proof. Let f be such a flow and assume that H is a weakly connected component of
G. Write fi j for the sum of all flows through edges from i to j . By finiteness, there
is a connected component C in H without ingoing edges. But such a component
would also have no outgoing edges by the following calculation:

0=
∑
i∈C

∑
j∈G

fi j − f j i =
∑
i∈C

∑
j∈C

fi j − f j i +
∑
i∈C

∑
j∈G\C

fi j − f j i = 0+
∑
i∈C

∑
j∈G\C

fi j .

Hence, C is equal to H .
If, conversely, G is a reflexive MD-graph on n vertices, we can consider the set

S of all possible cycles on G (no repeated vertices; we allow cycles that use only
one edge to go from a vertex back to itself). This set certainly contains at most
E M elements. We obtain a flow f by adding all of these individual cycles in S. It
is nonzero on all edges since we can complete every directed edge to a cycle by
reflexivity. �

The next graph-theoretic lemma is the key tool in Step (1), since it will allow
us to find the distinguished edge e.

Lemma 4.10. Let G be a connected abstract MD-graph with at least one edge.
Then there is an edge e such that G \{e} is still connected.

Proof. We prove the claim by induction.
If |G| = 1, 2, the statement holds trivially.
If |G|> 2, we have indegree(v)+outdegree(v)≥ 3 for all vertices v in G since G

is abstract. We call this the degree condition. Choose a cycle C of length k ≥ 2 in G.
If there is a vertex in C that is joined to any vertex in C apart from its succeeding
one, then we can remove an edge without disconnecting the graph. Thus we may
also assume that the internal edges of C are exactly the k edges forming the cycle,
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hence in particular that C 6= G. Define G ′ to be the graph obtained from G by
contracting C to a single vertex v. Then 1 < |G ′| < |G|. At every vertex of G ′

apart from v, the degree condition holds automatically. There is certainly one in-
and one outgoing vertex at v by connectedness.

If this is all, then k = 2 and the in-/outgoing edges of the cycle must be attached
to distinct vertices by the degree condition in Figure 7. In this case, remove the

Figure 7. Special case with circle C of length k = 2.

indicated edge going in the opposite direction without disconnecting the graph.
If, on the other hand, the degree condition holds at v, our smaller contracted

graph G ′ is connected and abstract, and we can remove an edge e without discon-
necting G ′ by induction. Now remove the corresponding edge from G. Since every
path in G ′ lifts to a path in G, we conclude that also G \{e} is also connected. �

We can now finish the first step of the proof: Let G be a reflexive abstract MD-
graph with M vertices and E > 0 edges. Pick a connected component C of G
with at least one edge and remove some edge e from C without disconnecting it
by Lemma 4.10. Then G \{e} is still reflexive, so by Proposition 4.9, we can find
a flow f ′ on this graph with 0< f ′(e′)≤ (E − 1)M for all edges e′. Pick a cycle
through e and add the corresponding flow to f ′ to obtain the flow f required for
Step 1.

Step 2. The next number-theoretic lemma gives a uniqueness result for the scalar
product of integral vectors and will facilitate the definition of the edge weight w.

Lemma 4.11. Given a vector f = ( f1, . . . , fk) ∈ Nk
0 of nonnegative integers, we

can find (w1, . . . , wk) ∈ Nk
0 such that if

k∑
j=1

λ jw j =

k∑
i= j

f jw j

for a vector λ ∈ Nk
0 then λ= f , and so that wi < 2(

∑
j f j + 1)k+1 for all i .

Proof. Set M=
∑k

j=1 f j . Let n= (M+1)k+1 and definew j byw j =n+(M+1) j−1

for j = 1, . . . , k. The result follows by distinguishing the cases
∑

j λ j smaller than,
larger than, or equal to M , and using uniqueness of the (M+1)-adic representation
in the third case. �

Recall the flow f on G constructed in Step 1. Label all edges other than e by
e1, . . . , eE−1. We now apply Lemma 4.11 to the vector ( f (e1), . . . , f (eE−1)) to
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obtain an edge weight w defined on all edges except for e. Give e = eE the weight
w(eE)=−

∑E−1
j=1 f (e j )w(e j ). We have a bound |w(e j )|< 2E (M+1)(E+1) for all j .

Claim. The flow f is an extremal point in Qw = conv(Ew).

Proof. The crucial fact underlying this trick is that if N positive integers sum up
to N , they must all be equal to 1.

Assume that f ∈ Ew. Let N f = f1 + · · · + fN be a decomposition for the
flow N f with f1, . . . , fN ∈ Ew and N ∈ N. Every fi is a nonzero integral flow
in Ew and therefore must have positive flow through e to balance out the negative
weight coming from flow through other edges. The numbers f1(e), . . . , fN (e) are
all positive integers and sum up to N = N f (e). Hence fi (e)= 1 for all i .

Since fi ∈ Ew, this implies that

E−1∑
j=1

fi (e j )w(e j )−

E−1∑
j=1

f (e j )w(e j )= 0

for all i , and we conclude fi = f for all i by the choice of w in Lemma 4.11. �

Step 3. We will describe hereafter how we can find a flow g ∈ V (x) such that the
graph abst(g), equipped with the flow induced by g and the edge weight inherited
from wx , is equal to the flowed weighted abstract graph (G, f, w) constructed
above. In a second step, we will deduce from Step (2) that g is extremal.

Concretising abstract graphs. Recall our given vertex weight x ∈ Zn . Label the
vertices in Gn with x-weight +1 by L1, . . . , L p (the “left vertices”) and the ones
with weight −1 by R1, . . . , Rq (the “right vertices”). Assume that G has vertices
V1, . . . , VM and edges e1, . . . , eE−1, eE = e.

Construct a flow g ∈ V (x) in a step-by-step process as follows: The vertex Vi

in Gn will correspond to L i in G for i = 1, 2, . . . ,M , so all vertex representing
nodes of Gn lie on the left. Having implemented the edges e1, . . . , ei−1 with the
flow vector hi−1, assume Ei goes from Vp to Vq with wei = s. Pick |s| vertices
l1, . . . , l|s| on the left and |s| vertices r1, . . . , r|s| vertices on the right of Gn that do
not lie in supp(hi−1). We always have enough vertices available since

p, q ≥ M + 3E3M E+1
≥ M +

E∑
j=1

(|w(e j )| + 1).

Define a simple path P in Gn as follows:

• If s > 0, consider P = pr1ls . . . l1q.

• If s = 0, we take P = pr1q .

• If s < 0, the path we use is P = pr1r2 . . . r|s|+1q .
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Obtain the weight hi from hi−1 by adding flow f (ei ) to the edges of the path P .
One checks easily that the resulting vector g = hE satisfies

abst(g, wx)= (G, f, w).

We are now finally in a position to finish off this proof. Let g =
∑

j λ j g j be a
convex representation of g with g j ∈ Qx , λ j > 0,

∑
j λ j = 1. We can abstract to

find flow vectors f j on G which induce g j as in Definition 4.8. Since the weight
w is induced by wx , all abstractions f j must lie in Qw. We thus obtain a convex
representation of the flow f in Qw. By Step 2, we know that f is extremal and
hence all flows f j must be equal to f .

From this, we immediately conclude that g = g j for all j , so g is extremal in
Qx . This completes the proof of Theorem 4.6. �

Essential decomposition. The principal aim of our efforts is to find a concise rep-
resentation of the scl-polyhedra of elements z ∈ Mn . These are given as

P = P(z)= conv(D(z)+ V (z))= conv(D(z))+ V (z).

Here V = V (z) is the understood recession cone of the polyhedron, and what
we need to describe is the contribution of the disc vectors D = D(z). The set of
extremal points of P is the minimal set S ⊂ D+ V with conv(S+ V )= P . As a
natural alternative, we can consider the minimal set T ⊂ D+V with T+V = D+V ,
and we obtain the essential decomposition. An easy exercise shows that T consists
of the following vectors:

Definition 4.12. A vector d ∈ D is an essential disc vector if it cannot be written
as a nontrivial sum in D+ V , i.e., if d = e+ v, e ∈ D, v ∈ V implies v = 0.

It is immediate from the minimality of S that S is contained in T , i.e., every
extremal point is an essential disc vector. The example in Figure 8 shows that not
every essential disc vector needs to be extremal.

1 −1

2
4

−3
−3

1
1

1
1

1
1

1
1

Figure 8. An essential, but not extremal, disc vector (average of
two distinct disc vectors).

We have seen in the previous section that the set S of extremal points cannot be
classified by the topology of the flows. Since S ⊂ T , this result extends to T . There
is a further complication of computational nature arising for essential disc vectors:
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the essential decomposition of the scl-polyhedra is not suitable for computational
purposes. More precisely:

Theorem 4.13 (Essential membership). The following decision problem is coNP-
complete (i.e., has NP-complete complement): “Given a word w = φ(x, y) ∈ F2 of
reduced length m = 2n and an integral vector d ∈ Zn2

, is d an essential disc vector
for D(x)+ V (x)?”

Proof. The input of the problem can be represented as an element s = (x, d) of⋃
n

(
Z\{0}n−1

)
×Nn2

0 , since y is irrelevant and xn is determined by x1, . . . , xn−1.
First notice that checking whether a given flow d ∈Nn2

0 has connected support
can be done in polynomial time (e.g., by depth-first search). To see that the problem
is in coNP, assume that the answer to the problem determined by (x, d) is negative,
where x has length n. We can check in polynomial time if d ∈ D(x), so we may
assume that this is the case. Given a counterexample e, v ∈ Nn2

0 , we can check in
polynomial time that e ∈ D(x), v ∈ V (x)\{0} and d = e+v. Therefore our problem
is in coNP.

To show that it is coNP-complete, we will give a polynomial time reduction
from the following coNP-complete problem.

Problem 4.14 (coSUBSET SUM). Given R ⊂ Z finite, is it true that
∑
t∈T

t 6= 0 for
all T ∈ P(R)\{∅}?

Suppose we have a list of numbers a1, . . . , am and want to decide the statement
“No nonempty subset sums up to 0”.

Set am+1=−
∑m

i=1 ai and notice that there is a nonempty subset of {a1, . . . , am}

summing up to 0 if and only if there is a proper nonempty subset of {a1, . . . , am+1}

with vanishing sum. It is enough to consider only nontrivial instances of coSUBSET
SUM, so we may assume that ak 6= 0 for all k. Let n = (2(m+ 1))+ 2 and define
the vertex weight x = (m, 1, a1,−1, a2,−1, . . . , am+1,−1) ∈ Mn .

Consider the vector d ∈ D(x) determined by the flow drawn in Figure 9.

−1
−1

−1

a1

a2

am+1

1m

Figure 9. Reduction from coSUBSET SUM to ESSENTIAL.
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Now d is an essential disc vector if and only if there is no proper nonzero con-
nected integral subflow e with hx(e)= 0, but these flows correspond bijectively to
proper nonempty subsets T ⊂ {a1, . . . , am+1} with

∑
t∈T at = 0. Hence deciding

if d is essential is equivalent to deciding coSUBSET SUM. The reduction is com-
putable in polynomial time. �

Notice that the above polynomial reduction fails if we restrict ourselves to alternat-
ing words since there, the length m = 2n of our word grows proportionally to the
|ai | and hence exponentially in the input size.

We conclude the paper with an unrelated, but pretty conjecture we spotted.

Conjecture 4.15. Let p, q, r ∈ N and n = p+ q + r . Then

scl(a−nb−1a pbaqb−1ar b)= 1− gcd(n, q)
2n

.
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Appendix: Proof of the NP-completeness of MIXEDSUBSETSUM′

by Freddie Manners

Definitions. We recall the definitions of the problems SUBSET SUM, SUBSET SUM′,
VAR SUBSET SUM′, and MIXED SUBSET SUM′. We further define what it means to
consider these problems over Zk ; for example:

Problem A.1 (SUBSET SUM over Zk). Given v1, . . . , vn with vi ∈ Zk , does there
exist a nonzero vector (λ1, . . . , λn) ∈ {0, 1}n with

∑
j λ jv j = 0?

The other problems over Zk are defined analogously. When we wish to consider
the original problem, we may refer to it as, say, SUBSET SUM over Z to avoid
ambiguity.

It is a classical fact that SUBSET SUM over Z is NP-complete. We wish to
investigate the complexity of MIXED SUBSET SUM′ over Z.

Proofs. We first note that SUBSET SUM and SUBSET SUM′ are trivially equivalent.

Lemma A.2. Given v1, . . . , vn ∈ Z summing to zero, (SUBSET SUM′) holds if and
only if (SUBSET SUM) holds on v1, . . . , vn−1.

Proof. The complement of a solution to SUBSET SUM′ (i.e., setting λ′i = 1− λi ) is
also a solution. �



28 ON THE COMPLEXITY OF SAILS

We now prove a crucial lemma that allows us to consider solving simultaneous
subset sum problems; equivalently, it allows us to work over Zk rather than Z.

Lemma A.3. Each of the problems SUBSET SUM′, VAR SUBSET SUM′, and MIXED
SUBSET SUM′ over Zk has a polynomial reduction to the same problem over Z.

Proof. Pick integers 1 = N1� . . .� Nk , and set yi =
∑k

j=1 N jv
( j)
i . Then if the

N j increase sufficiently fast, the problems for (yi ) and (vi ) are equivalent. (Note
the N j need not increase so rapidly that their lengths in bits are superpolynomial
in the other inputs.) �

We can now present our main construction, which aims to reduce SUBSET SUM′

(over Z) to MIXED SUBSET SUM′ (over Zk for some k). Let a1, . . . , an ∈ Z be an
input to SUBSET SUM′. Consider the following table:

α1 α2 · · · αn β1 β2 · · · βn P Q

1 a1 a2 · · · an 0 0 · · · 0 0 0
2 −1 −1 · · · −1 −1 −1 · · · −1 n n

3 −1 0 · · · 0 −1 0 · · · 0 1 1
4 0 −1 · · · 0 0 −1 · · · 0 1 1
...

...
...

...
...

...
...

...
...

...
...

n+ 2 0 0 · · · −1 0 0 · · · −1 1 1

n+ 3 −1 −1 · · · −1 0 0 · · · 0 r n−r

The columns beyond the first, labelled αi , βi , P , Q, represent elements of Zk

for k = n + 3, and the rows are simultaneous subset sum problems to be satis-
fied. Note that every row sums to zero; that is, (αi , βi , P, Q) are a valid input
to VAR SUBSET SUM′ or SUBSET SUM′. Finally, r is some integer in the range
0< r < n.

Lemma A.4. Suppose that a solution λ= (λαi , λβi , λP , λQ) to VAR SUBSET SUM′

exists. Then:

(i) λP + λQ = 1.

(ii) λαi + λβi = 1 for all 1≤ i ≤ n.

(iii)
∑

i λαi = r or n− r .

(iv) λ constitutes a solution to SUBSET SUM′ on the table above.

(v) The (λαi ) constitute a solution to SUBSET SUM′ on a1, . . . , an .

Proof. (i) This follows from considering row 2: if λP + λQ = 0 then
∑

j λ j = 0,
and if λP + λQ ≥ 2 then

∑
j λ j ≥ 2n+ 2, which are both forbidden.
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(ii) This follows from (i) and considering row i + 2.

(iii) This follows from (i) and considering row n+ 3.

(iv) This follows from (i) and (ii).

(v) That
∑

i λαi ai = 0 follows from considering row 1. Recall that 0 < r < n.
Then (ii) and (iii) give the other constraints. �

As a direct consequence of part (iv) of this lemma, we see that the table is a
valid input to MIXED SUBSET SUM′. We now show a converse to part (v).

Lemma A.5. If µ1, . . . , µk is a solution to SUBSET SUM′ on a1, . . . , an , then for
some choice of r , we can construct a solution to SUBSET SUM′ on the above table.

Proof. This is straightforward: take r =
∑

i µi , λαi = µi , λβi = 1−µi , λP = 1,
and λQ = 0. �

We can now state and prove our main result.

Theorem A.6. SUBSET SUM′ over Z has a polynomial reduction to MIXED SUBSET
SUM′ over Zk (for k = n+ 3).

Proof. By Lemmas A.4 and A.5, a1, . . . , an has a solution to SUBSET SUM′ if
and only if the table has a solution to MIXED SUBSET SUM′ for some value of r
(0< r < n). So, running an oracle for MIXED SUBSET SUM′ at most n− 2 times
gives a solution to the SUBSET SUM′ problem. �

Corollary A.7. The problem MIXED SUBSET SUM′ over Z is NP-complete.

Proof. We use Lemma A.2, Theorem A.6 and Lemma A.3 to give reductions from
SUBSET SUM over Z, to SUBSET SUM′ over Z, to MIXED SUBSET SUM′ over Zk ,
to MIXED SUBSET SUM′ over Z in that order. (It is clear that MIXED SUBSET SUM′

is in NP.) �
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