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CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS IN CPn

QING CHEN, SEN HU AND XIAOWEI XU

We present a method of construction of minimal and H-minimal Lagrangian
submanifolds in complex projective space CPq+m from a Legendrian sub-
manifold in S2q+1(1) ⊂ Cq+1 and a Lagrangian submanifold in Cm that is
contained in S2m−1(r). We also provide some explicit examples.

1. Introduction

Let (N , J, ω) be a Kähler manifold with dimC N = n, where J is the complex
structure and ω is the Kähler form. An immersion f :6→ N from a q-dimensional
manifold 6 into N is called totally real if f ∗ω = 0. In particular, a totally real
immersion f is called Lagrangian if q = n.

We recall some definitions from Y. G. Oh’s paper [1993]. A vector field V
along a Lagrangian immersion f :6→ N is called a Hamiltonian variation if the
1-form αV := (V cω)|6 is exact on 6. A smooth family { ft } of immersions from
6 into N is called a Hamiltonian deformation if its derivative is Hamiltonian, and
a Lagrangian immersion f :6→ N is called Hamiltonian-minimal or H-minimal
if it satisfies

d
dt

∣∣∣
t=0

vol ft(6)= 0

for all Hamiltonian deformations. The Euler–Lagrange equation of H-minimal
Lagrangian submanifolds is

δαH = 0,

where H is the mean curvature vector field of f and δ is the codifferential oper-
ator on 6 with respect to the induced metric. In particular, minimal Lagrangian
submanifolds are trivially H-minimal.

In the past few decades, many geometers have given many methods of construc-
tion of minimal and H-minimal Lagrangian submanifolds in the complex space
form. I. Castro and F. Urbano [1998] classified S1-invariant H-minimal Lagrangian
submanifolds in C2, and in [Castro and Urbano 2004] they also constructed special
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Lagrangian submanifolds in Cn . R. Schoen and J. Wolfson [1999] studied the
minimal Lagrangian cones in C2. A. E. Mironov [2004] gave many examples of
minimal and H-minimal Lagrangian submanifolds in Cn and CPn , and he, jointly
with D. F. Zuo [Mironov and Zuo 2008], constructed a family of flat H-minimal La-
grangian tori in CP3. H. Ma and M. Schmies [2006] gave a family of Hamiltonian
stationary Lagrangian tori in CP2 with S1-symmetry. Castro and Urbano, together
with H. Zh. Li [Castro et al. 2006] used Legendrian immersions in odd-dimensional
spheres and anti–de Sitter spaces to construct minimal and H-minimal Lagrangian
submanifolds in the complex space form. D. Joyce [2002] gave many examples of
minimal Lagrangian submanifolds with symmetries in Cn . L. Bedulli and A. Gori
[2008] studied homogeneous Lagrangian submanifolds in CPn . R. Chiang [2004]
gave many Lagrangian submanifolds in CPn with interesting topological feature.

Let Cm be the complex Euclidean space endowed with the standard Hermitian
inner product (z, w)=

∑m
j=1 z j w̄ j for z = (z1, . . . , zm), w = (w1, . . . , wm) ∈ Cm

and the canonical complex structure J z = i z. The real part of ( , ) determines a
metric 〈 , 〉 on Cm , i.e., 〈 , 〉 = Re( , ). The Liouville 1-form on Cm is given
by � = i

2

∑
j (z

j dz̄ j
− z̄ j dz j ), and the Kähler form of Cm is ωCm = d�/2. Let

S2q+1(1) be the (2q+1)-dimensional unit sphere in Cq+1, and let H :S2q+1(1)→
CPq , Z 7→ [Z ], be the Hopf fibration of S2q+1(1) over the complex projective
space CPq . We say an immersion f̌ : 61 → S2q+1(1) ⊂ Cq+1, p 7→ f̌ (p)= Z ,
of a q-dimensional manifold 61 into S2q+1(1) is Legendrian if f̌ ∗�= 0. In this
case, f̌ is isotropic in Cq+1, i.e., f̌ ∗ωCq+1 = 0, and the normal bundle T⊥61 in
T S2q+1(1) splits as J (T61)⊕SpanR{J Z}. This means that f̌ is horizontal with
respect to the Hopf fibration H, and hence f̃ =H ◦ f̌ :61→ CPq is a Lagrangian
immersion and the metric induced on 61 by f̌ and f̃ are the same.

In this paper we construct minimal and H-minimal Lagrangian submanifolds in
CPn from Legendrian submanifolds in odd-dimensional spheres and Lagrangian
submanifolds in Cm which are contained in spheres. The basic theorem in our
construction is as follows.

Theorem 1.1. Let f̌ :6q
1 → S2q+1(1) be a Legendrian immersion and f̂ :6m

2 →

Cm a Lagrangian immersion with f̂ (62) ⊂ S2m−1(r) ⊂ Cm . Write Z = f̌ (p1),
z = f̂ (p2), n = q +m. Define a new map f̆ :61×62→ S2n+1(1) by

(p1, p2) 7→
1

√
1+ r2

(Z , z).

Then f =H ◦ f̆ is a Lagrangian immersion from 61×62 into CPn . Moreover:

(i) The immersion f is minimal if and only if f̃ =H ◦ f̌ :61→ CPq is minimal
and

(1-1) Ĥ C
− (Ĥ C, en)en = 0, (Ĥ C, en)=

i(n+ 1)r
1+ r2 ,
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where Ĥ C is the complex mean curvature vector of f̂ and en = i z/r defines a
global vector field on 62.

(ii) The immersion f is H-minimal if and only if

(1-2) δαH̃ + δαĤ = r2
〈grad ĥn, en〉− (r2ĥn + (n+ 1)r)

∑
λ

〈∇̂eλen, eλ〉,

where ĥn =− Im
(
(Ĥ C, en)

)
, and ∇̂ and {eλ, en} are respectively the connec-

tion and an orthonormal frame field on 62 relative to the metric induced by f̂ .

As applications of Theorem 1.1, we have:

Theorem 1.2. Let f̌ : 6q
1 → S2q+1(1), f̌ (p1) = Z , be a Legendrian immersion.

If H ◦ f̌ : 61→ CPq is H-minimal, then f =H ◦ f̆ is an H-minimal Lagrangian
immersion, where f̆ :61× T n−q

→ S2n+1(1) (with T = S1(1)) is defined by

(p1, p2) 7→
1

√
n− q + 1

(Z , ei tq+1, . . . , ei tn ).

Theorem 1.3. Let f̌ : 6q
1 → S2q+1(1), f̌ (p1) = Z , be a Legendrian immersion.

Define the new map f̆ :61× Sm−1
× T 1

→ S2m−1(1) by

(p1, x, ei t) 7→
1
√

2
(Z , ei t x).

(i) If q =m−1 and H◦ f̌ :61→CPm−1 is minimal, then f =H◦ f̆ is a minimal
Lagrangian immersion.

(ii) If H◦ f̌ :61→CPq is H-minimal, then f =H◦ f̆ is an H-minimal Lagrangian
immersion.

We prove these theorems in Section 3, and based on them, we give some explicit
examples of minimal and H-minimal Lagrangian submanifolds in Section 4.

Throughout this paper, we use the following conventions for index ranges:

0≤ A, B, C, . . .≤ n; 1≤ α, β, γ, . . .≤ n;

1≤ j, k, l, . . .≤ q; q+1≤ λ, µ, ν, . . .≤ n.

For conjugation, we use the conventions ω̄AB̄ = ω ĀB , f̄ αi = f ᾱi , and so on.

2. Preliminaries

Basic formulae of submanifolds in a Kähler manifold. To study real submani-
folds in a Kähler manifold, it is convenient to use formulae from the complex case.
So, we first deduce some basic formulae that are not used frequently in the classical
theory of submanifolds.
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Let 6 be a smooth Riemannian manifold with dimR6 = q . Locally, we choose
an orthonormal frame field {e j } of 6, and its dual {θ j

}. Then the first Cartan
structure equation of 6 is given by

(2-1) dθ j
=−θ

j
k ∧ θ

k, θ
j

k + θ
k
j = 0,

where θ j
k are the connection forms with respect to the coframe field θ j . Let N

be a Kähler manifold with dimC N = n. Locally, we choose a unitary frame field
{εα} of (1,0)-type on N , and denote its dual by {ϕα}. Then the structure equation
is given by

(2-2) dϕα =−ϕβᾱ ∧ϕβ, ϕαβ̄ +ϕβ̄α = 0,

where ϕβᾱ are the connection forms with respect to ϕα.
Let f :6→ N be an isometric immersion. Set

(2-3) f ∗ϕα = f αj θ
j .

Taking the exterior derivative on both sides of (2-3), we obtain

(2-4) (d f αj − f αk θ
k
j +ϕβᾱ f βj )∧ θ

j
= 0

by (2-1), (2-2) and (2-3). If we set

(2-5) D f αj = d f αj − f αk θ
k
j +ϕβᾱ f βj = f αjkθ

k,

the covariant derivative of f αj , then we have f αjk = f αk j by (2-4). The tensor field
5C
=
∑

j,k,α f αjk θ
j
⊗ θ k
⊗ εα is called the complex second fundamental form of

f , and is a smooth section of the bundle T ∗6⊗ T ∗6⊗ T (1,0)N . The vector field
H C
=
∑

j,α f αj j εα is called the complex mean curvature vector field of f .
If we split εα as εα = 1

2(εα − iεα∗), then {εα, εα∗ = Jεα} is an orthonormal
frame field on N , and its dual is denoted by {φα, φα

∗

}. The first Cartan structure
equation is given by

(2-6) dφα =−φαβ ∧φ
β
−φαβ∗ ∧φ

β∗, dφα
∗

=−φα
∗

β ∧φ
β
−φα

∗

β∗ ∧φ
β∗,

where φαβ , φαβ∗ , φ
α∗

β and φα
∗

β∗ are the connection forms with respect to the frame
field φα, φα

∗

. Set

(2-7) f ∗φα = aαj θ
j , f ∗φα

∗

= aα
∗

j θ
j .

Taking the exterior derivative of (2-7), by (2-1), (2-6) and (2-7), we obtain

(daαj − aαk θ
k
j +φ

α
βaβj +φ

α
β∗a

β∗

j )∧ θ
j
= 0,(2-8)

(daα
∗

j − aα
∗

k θ
k
j +φ

α∗

β aβj +φ
α∗

β∗a
β∗

j )∧ θ
j
= 0.(2-9)
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Set

Daαj = daαj − aαk θ
k
j +φ

α
βaβj +φ

α
β∗a

β∗

j = hαjkθ
k,(2-10)

Daα
∗

j = daα
∗

j − aα
∗

k θ
k
j +φ

α∗

β aβj +φ
α∗

β∗a
β∗

j = hα
∗

jkθ
k,(2-11)

the covariant derivatives of aαj and aα
∗

j respectively. Then, we know that hαjk = hαk j ,
hα
∗

jk = hα
∗

k j by (2-8) and (2-9). Clearly, the tensor field

5= hαjk θ
j
⊗ θ k
⊗ εα + hα

∗

k j θ
j
⊗ θ k
⊗ εα∗

is the real second fundamental form in the usual sense; it is a smooth section of
the bundle T ∗6⊗ T ∗6⊗ T N . The vector field H =

∑
j (h

α
j jεα + hα

∗

j j εα∗) is the
real mean curvature vector field of f .

The relationship between the real second fundamental form and the complex
second fundamental form of f is given by:

Proposition 2.1. With the notation above, we have

(2-12) hαjk =
1
2
( f αjk + f ᾱjk), hα

∗

jk =
i
2
( f ᾱjk − f αjk).

Moreover, f is minimal if and only if H C
= 0.

Proof. One readily checks that

(2-13) ϕα = φ
α
+ iφα

∗

.

Then, from (2-3), we get

(2-14) f αj = aαj + iaα
∗

j .

Since N is kählerian, it’s easy to check that φαβ = φ
α∗

β∗ and φαβ∗ =−φ
α∗

β , which
gives

(2-15) ϕβᾱ = φ
α
β − iφαβ∗

by (2-2), (2-6) and (2-13). By the definition of f αjk and (2-15), we have

(2-16) f αjkθ
k
= D f αj = d f αj − f αk θ

k
j +ϕβᾱ f βj

= d(aαj + iaα
∗

j )− (a
α
k + iaα

∗

k ) θ
k
j + (φ

α
β − iφαβ∗)(a

β

j + iaβ
∗

j )

= (daαj −aαk θ
k
j +φ

α
βaβj +φ

α
β∗a

β∗

j )+ i(daα
∗

j −aα
∗

k θ
k
j +φ

α∗

β aβj+φ
α∗

β∗a
β∗

j )

= (hαjk + ihα
∗

jk)θ
k,

which gives (2-12). �
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Note that the Kähler form of N is ωN =
i
2

∑
α ϕα ∧ ϕᾱ. So, for a vector field

V = vαεα + vα
∗

εα∗ we have

(2-17) V cω = ω(V, · )= i
2
(
(vα + ivα

∗

)ϕᾱ − (v
α
− ivα

∗

)ϕα
)
.

In particular, for the mean curvature vector field H of a given isometric immersion
f :6→ N , we have

(2-18) αH := (Hcω)6 = h jθ
j , h j =

i
2
( f αkk f ᾱj − f ᾱkk f αj ),

by (2-12) and (2-17). Therefore, the codifferential of αH is given by

(2-19) δαH =−
∑

j

h j j ,

where h jkθ
k
= dh j − hkθ

k
j is the covariant derivative of h j .

Lagrangian submanifolds in Cm contained in a sphere. Let Cq+1 be complex
Euclidean space as described in the introduction. Let f̂ : 62 → Cm , f̂ (p) = z,
be a Lagrangian immersion with f̂ (62) ⊂ S2m−1(r). Locally, one can select an
orthonormal frame field eq+1, . . . , en−1, en = i z/r such that

dz =
n∑

λ=q+1

θ̂λeλ, ds2
62
=

n∑
λ=q+1

(θ̂λ)2.

Since f̂ is Lagrangian, one readily checks that eλ is also a unitary frame field, i.e.,
(eλ, eµ)= δλµ. So, if we set

deλ = ω̂λµ̄eµ, ω̂λµ̄ = (deλ, eµ),

then

(2-20) ω̂λµ̄+ ω̂µ̄λ = 0,

because (eλ, eµ)= δλµ. Obviously, we have

(2-21) (dz, eλ)= θ̂λ, ω̂λn̄ =−ω̂n̄λ =−

( i
r

dz, eλ
)
=

i
r
θ̂λ.

Denote by θ̂λµ the connection 1-forms with respect to the frame field θ̂λ. Set
θ̂λµ = 0̂

λ
νµθ̂

ν , f̂ ∗ω̂λµ̄ = 3̂λµ̄,ν θ̂ν . We then obtain the complex second fundamental
form of f̂ . That is:

(2-22) f̂ λµν =−0̂
λ
λµ+ 3̂µλ̄,ν,

by (2-5) and the fact that f̂ λµ = δλµ. So, by (2-18), we obtain
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(2-23) αĤ = ĥλθ̂λ, ĥλ =
i
2
( f̂ λµµ− f̂ λ̄µµ).

Note that en is a globally defined vector field on 62, so (Ĥ C, en) =
∑

λ f̂ n
λλ,

which plays an important role in our main construction, is a globally defined
smooth complex-valued function on 62.

Lagrangian submanifolds in CPn. Complex projective space CPn is the set of
all one-dimensional complex lines through the origin in Cn+1. It can be written as
CPn ∼=U (n+1)/(U (1)×U (n)), where U (n+1) is the unitary group; thus, U (n+1)
is a principal U (1)×U (n)-bundle over CPn .

Let Z0, Z1, . . . , Zn be a moving frame of Cn+1. We have

(2-24) d Z A = ωAB̄ Z B, ωAB̄ = (d Z A, Z B),

where ωAB̄ = (d Z A, Z B) are the Maurer–Cartan forms of U (n+1). They are skew-
Hermitian, i.e.,

(2-25) ωAB̄ +ωB̄ A = 0.

Taking the exterior derivative of (2-24), we get the Maurer–Cartan equation of
U (n+1):

(2-26) dωAB̄ =
∑

C

ωAC̄ ∧ωC B̄,

(2-27) ds2
F S =

∑
α

ω0ᾱω0̄α,

determines a Kähler metric on CPn , called the Fubini–Study metric. The Kähler
form of ds2

F S is given by

ωF S =
i
2

∑
α

ω0ᾱ ∧ω0̄α.

If we set ϕα := ω0ᾱ, then {ϕα} is a unitary frame field on CPn of (1,0)-type (see
[Griffiths 1974] for details). Therefore, by the Maurer–Cartan equation (2-26), we
obtain the first structure equation:

(2-28) dϕα =−ϕβᾱ ∧ϕβ, ϕβᾱ = ωβᾱ −ω00̄δαβ, ϕβᾱ +ϕᾱβ = 0,

where ϕβᾱ are the connection forms with respect to the frame field ϕα.
Let 6 be a smooth manifold with dim6 = q, and let f be an immersion from

6 into CPn . Let U ⊂ 6 be an open set. We say Z : U → U (n+1) is a moving
frame along f if Z satisfies f = π ◦ Z , where π is the canonical projection. For a
moving frame along a totally real immersion f , we have:
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Proposition 2.2. Let f be a totally real immersion from 6 into CPn . If U is
any small enough open subset of 6, and the induced metric on U is given by
f ∗ds2

F S =
∑

j (θ
j )2, then there exists a moving frame Z along f such that

(2-29) ω00̄ = 0, ω0 j̄ = θ
j , ω0λ̄ = 0,

where the ωAB̄ are the pull-backs of the Maurer–Cartan forms of U (n+1) by Z∗.

Proof. Throughout this proof, we will assume that the neighborhoods chosen are
small enough to satisfy the topological assumptions.

Without loss of generality, we may assume f (U ) is contained in a small open
set V of CPn . Let e j be the dual frame field of θ j . We extend ε j =

1
2(e j − i Je j )

smoothly to V and choose ελ on V such that {εα} is smooth unitary frame on V .
Let {ϕα} be the dual of {εα}. Then {ϕα} is a unitary coframe field of (1, 0)-type on
V and satisfies f ∗ϕ j = θ

j , f ∗ϕλ = 0. Notice that we have used the fact that f is
totally real in choosing εi .

Let S1 = (Z0, Z1, . . . , Zn)
T
: V →U (n+ 1) be a local section of the principal

bundle π :U (n+1)→CPn . Then {S∗1ω0ᾱ} is a unitary coframe field of (1, 0)-type
(see [Griffiths 1974]) on V . Therefore, there exists a unitary matrix A = (aαβ̄)n×n

defined on V such that ϕα =
∑

β aαβ̄S∗1ω0ᾱ. If we choose another local section
S2 = (Z0, Z̃1, . . . , Z̃n)

T
: V →U (n+ 1) such that Z̃α =

∑
β aᾱβ Zβ , then

ϕα = S∗2ω0ᾱ

by (2-24).
Set Z̃ =S2◦ f . One can check that Z̃∗ω0ī = θ

i and Z̃∗ω0λ̄= 0, so d Z̃∗ω00̄= 0 by
the Maurer–Cartan equation (2-26), i.e., Z̃∗ω00̄ is a closed 1-form on U , so one can
find a smooth function u defined on U such that idu = Z̃∗ω00̄. Taking Z = e−iu Z̃ ,
it is easily checked that the pull-back of the Maurer–Cartan form of U (n+1) by
Z∗ is (2-29). This completes the proof. �

Let f : 6 → CPn be a Lagrangian isometric immersion, and let θα be an
orthonormal frame field on 6. By Proposition 2.2, there exists a moving frame
Z0, Z1, . . . , Zn along f such that

(2-30) ϕα = ω0ᾱ = θ
α.

For later use, we set

(2-31) ωαβ̄ =3αβ̄,γ θ
γ , ω00̄ =300̄,γ θ

γ ,

and let

(2-32) θαβ = 0
α
γβ θ

γ

be the connection 1-forms with respect to θα.
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Note that f αβ = δ
α
β by (2-30), and so the complex second fundamental form of

f is given by

(2-33) f αβγ =−0
α
γβ +3βᾱ,γ − δαβ300̄,γ ,

by (2-5), (2-28), (2-31) and (2-32). So, we obtain

(2-34) αH = hβ θβ, hβ =
i
2
( f βγ γ − f β̄γ γ ),

by (2-18).

3. Proof of Theorem 1.1

Let f̌ :61→ S2q+1(1), f̌ (p)= Z̃0, be a Legendrian isometric immersion. Then
f̃ =H ◦ f̆ : 61→ CPq , p 7→ f̃ (p)= [Z̃0] is a Lagrangian isometric immersion.
Since f̌ is a Legendrian immersion, one readily checks that

(3-1) ω̃00̄ = (d Z̃0, Z̃0)= 0.

By Proposition 2.2, one can choose a pairwise Hermitian orthogonal local frame
field, Z̃1, . . . , Z̃q , such that Z̃0, Z̃1, . . . , Z̃q is a moving frame along f̃ , and

(3-2) ω̃0 j̄ = (d Z̃0, Z̃ j )= θ̃
j .

are real 1-forms. As before, we set

(3-3) ω̃ j k̄ = (d Z̃ j , Z̃k)= 3̃ j k̄,l θ̃
l .

If we denote the connection 1-forms with respect to θ̃ j by θ̃ j
k = 0̃

j
lk θ̃

l , by similar
calculations to those in Section 2, we obtain the complex fundamental form of f̃ .
That is,

(3-4) f̃ j
kl =−0̃

j
lk + 3̃k j̄,l,

by (3-1).
Define the map f̆ :61×62→ S2n+1(1) by

(p1, p2) 7→
1

√
1+ r2

( f̌ (p1), f̂ (p2))=
1

√
1+ r2

(Z̃0, z),

with f̌ and f̂ as before. We will study the map f =H◦ f̆ :61×62→CPn , given
by

(p1, p2) 7→
1

√
1+ r2

[Z̃0, z].
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We chose the moving frame Z0, Z1, . . . , Zn as follows:

Z0 =
1

√
1+ r2

(Z̃0, z),

Z j = (Z̃ j , 0),

Zλ = (0, eλ), q + 1≤ λ < n,

Zn =
1

√
1+ r2

(−ir Z̃0, en),

where Z̃0, Z̃ j and eλ, en are as they were in the context of f̌ and f̂ , respectively.
According to (2-24), we obtain

ω0 j̄ =
1

√
1+ r2

(d Z̃0, Z̃ j )=
1

√
1+ r2

ω̃0 j̄ =
1

√
1+ r2

θ̃ j
=: θ j ,(3-5)

ω0λ̄ =
1

√
1+ r2

(dz, eλ)=
1

√
1+ r2

θ̂λ =: θλ, q + 1≤ λ < n(3-6)

ω0n̄ = (d Z0, Zn)=
1

1+ r2 (dz, en)=
1

1+ r2 θ̂
n
=: θn,(3-7)

by (2-21) and (3-1). Similarly,

ω00̄ =
1

1+ r2 (dz, z)=
ir

1+ r2 (dz, en)= irθn,(3-8)

ω j k̄ = ω̃ j k̄, ω j λ̄ = 0, ω j n̄ =−irθ j ,(3-9)

ωλµ̄ = ω̂λµ̄, ωλn̄ =
i
r
θλ, ωnn̄ =

i
r
θn.(3-10)

where q + 1≤ λ and µ < n.
Since θ j , θλ, θn are real and linearly independent on 61 × 62, so f is an

immersion and the induced metric is given by

(3-11) ds2
= f ∗ds2

F S =
∑
α

(θα)2

=

q∑
j=1

(
1

√
1+ r2

θ̃ j
)2

+

n−1∑
λ=q+1

(
1

√
1+ r2

θ̂λ
)2

+

(
1

1+ r2 θ̂
n
)2

,

which is a product metric. If we choose the orthonormal frame field θα on 61×62,
then

(3-12) f ∗ω0ᾱ = θ
α, f αβ = δαβ .
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The pull back of the Kähler form is

f ∗ωF S =
i
2

∑
α

ω0ᾱ ∧ω0̄α =
i
2

∑
α

θα ∧ θα = 0,

and thus f is a Lagrangian immersion.

Lemma 3.1. Let

ds̃2
=

n∑
α=1

(θ̃α)2 and ds2
=

n∑
α=1
(θα)2 =

n∑
α=1

(aα θ̃α)2

be two metrics, where the aα are positive constants. Let

θ̃αβ = 0̃
α
γβ θ̃

γ and θαβ = 0
α
γβ θ

γ

be the connection 1-forms with respect to θ̃α and θα. Then
(3-13)

0αβγ =
1
2

(( aα
aβaγ

+
aγ

aαaβ

)
0̃αβγ +

( aβ
aαaγ

−
aα

aβaγ

)
0̃αγβ +

( aγ
aαaβ

−
aβ

aαaγ

)
0̃
γ

αβ

)
.

In particular, if a1 = · · · = an = a, then

(3-14) 0αβγ =
1
a
0̃αβγ ,

and if a1 = · · · = an−1 = a, an = a2, then

(3-15) 0λµµ =
1
a
0̃λµµ, 0λnn =

1
a
0̃λnn, 0n

µµ =
1
a2 0̃

n
µµ, 0n

nn =
1
a2 0̃

n
nn,

where 1≤ λ and µ≤ n− 1.

Proof. Denote the dual of {θ̃α} by {ẽα}. Then {eα =
1
aα

ẽα} is the dual of {θα}.
Since both {θ̃α} and {θα} are orthonormal, we obtain

(3-16) 0̃αβγ =−0̃
γ

βα, 0αβγ =−0
γ

βα.

By the structure equation (2-1), one can check that

(3-17) [ẽβ, ẽγ ] = C̃α
βγ ẽα, C̃α

βγ = 0̃
α
βγ − 0̃

α
γβ,

which gives

(3-18) [eβ, eγ ] = Cα
βγ eα, Cα

βγ =
aα

aβaγ
C̃α
βγ .

Note that eα are orthonormal with respect to the metric ds2, so by Koszul’s
formula [Petersen 1998], we have

0αβγ =
1
2(C

α
βγ −Cβ

γα +Cγ

αβ),

which, using (3-16)–(3-18), gives (3-13) . This completes the proof. �
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Next, we calculate the mean curvature of f . Noting that ds2 is a product metric,
we obtain

0
j
kl =

√
1+r2 0̃

j
kl, 0λα j = 0

j
αλ = 0,(3-19)

0λµµ =
√

1+r2 0̂λµµ, 0λnn =
√

1+r2 0̂λnn, q + 1≤ λ,µ < n,(3-20)

0n
nn = (1+r2)0̂n

nn, 0n
µµ = (1+r2)0̂n

µµ, q + 1≤ µ < n,(3-21)

by (3-14) and (3-15) from Lemma 3.1.
From (3-8)–(3-10), one readily checks that

300̄,α = irδnα, 3 j k̄,l =
√

1+r23̃ j k̄,l,(3-22)

3λ j̄,α =3 j λ̄,α = 0, 3 j n̄, j =−ir, 3λµ̄,ν =
√

1+r2 λ̂λµ̄,ν,(3-23)

3λn̄,λ = 3̂λn̄,λ =
i
r
, 3nλ̄,n = 0, 3nn̄,n = 3̂nn̄,n =

i
r
,(3-24)

where q + 1≤ λ < n.

Proof of Theorem 1.1. According to the identities (2-33) and (3-4), we obtain

(3-25) f j
kk =−0

j
kk +3k j̄,k =

√
1+r2(−0̃

j
kk + 3̃k j̄,k)=

√
1+r2 f̃ j

kk,

by (3-19) and (3-22). Similarly, we obtain

f j
λλ = 0, f λj j = 0, q + 1≤ λ < n,(3-26)

f λµµ =
√

1+r2 f̂ λµµ, f λnn =
√

1+r2 f̂ λnn, q + 1≤ λ,µ < n,(3-27)

f n
λλ = (1+ r2) f̂ n

λλ− ir, q + 1≤ λ < n,(3-28)

f n
j j =−ir, f n

nn = (1+ r2) f̂ n
nn − 2ir.(3-29)

So, f is minimal if and only if

q∑
k=1

f̃ j
kk = 0, 1≤ j ≤ q,

n∑
µ=q+1

f̂ λµµ = 0, q + 1≤ µ < n, and
n∑

λ=q+1

f̂ n
λλ =

i(n+ 1)r
1+ r2 ,

by Proposition 2.1. This completes the first part of Theorem 1.1.
To prove the second part, we must calculate the 1-form αH = (Hcω)61×62 =∑n
β=1 hβ θβ . According to (2-34), (3-25)-(3-28), we obtain
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h j =
√

1+ r2 h̃ j , hλ =
√

1+ r2 ĥλ, q + 1≤ λ < n,(3-30)

hn = (1+ r2) ĥn + (n+ 1)r,(3-31)

where we have set

αH̃ =
∑

j

h̃ j θ̃
j and αĤ =

∑
λ

ĥλ θ̂λ.

Next, we calculate the δαH . The covariant derivative of hβ is given by

Dhβ = hβγ θγ = dhβ − hγ θ
γ

β ,

and because ds2 is a product metric, we have

h jγ θ
γ
= dh j − hγ θ

γ

j = dh j − hk θ
k
j

=

√
1+ r2(dh̃ j − h̃k θ

k
j )

=

√
1+ r2(h̃ j;k θ̃

k
− h̃l 0

l
k j θ

k)

=

√
1+ r2(h̃ j;k − h̃l 0̃

l
k j ) θ̃

k

= (1+ r2)h̃ jk θ
k,

by (3-5), (3-30) and Lemma 3.1, which gives

(3-32) h j j = (1+ r2)h̃ j j .

Here, we write dh̃ j = h̃ j;k θ̃
k and Dh̃ j = h̃ jk θ̃

k
= dh̃ j − h̃k θ̃

k
j . Similarly, we have

hλλ = (1+ r2)ĥλλ− (1+ r2)
(
r2ĥn + (n+ 1)r

)
0̂n
λλ, q + 1≤ λ < n,(3-33)

hnn = (1+ r2)ĥnn + r2(1+ r2)ĥn;n.(3-34)

So, by (2-19) and (3-32)–(3-33), we obtain

(3-35) δαH = (1+ r2)(δαH̃ + δαĤ )+ (1+ r2)
(
(r2ĥn + (n+ 1)r)0̂n

λλ− r2ĥn;n
)
,

where δαH̃ , δαĤ are the codifferentials of αH̃ , αĤ with respect to f̃ , f̂ respectively.
This completes the proof. �

4. Some explicit examples

As a first example, we study the standard Lagrangian torus

f̂ : S1(1)× · · ·×S1(1)→ Cm, z = f̂ (p)= (ei t1, . . . , ei tm ),

where we parametrize S1(1) by S1(1)= {ei t
: 0≤ t ≤ 2π}.
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Choosing the moving frame of Cm along f̂ to be

eλ =
i

√
λ(λ+ 1)

(ei t1, . . . , ei tλ,−λei tλ+1, 0, . . . , 0), 1≤ λ < m,(4-1)

em =
i
√

m
(ei t1, . . . , ei tm ),(4-2)

it is easy to check that the coefficients θ̂λ := (dz, eλ) satisfy

θ̂λ =
1

√
λ(λ+ 1)

(dt1+ · · ·+ dtλ− λ dtλ+1), 1≤ λ < m,(4-3)

θ̂m
=

1
√

m
(dt1+ · · ·+ dtm),(4-4)

dtλ =−(λ− 1)
θ̂λ−1

√
(λ− 1)λ

+

m−1∑
µ=λ

θ̂µ
√
µ(µ+ 1)

+
θ̂m
√

m
.(4-5)

From (4-1)–(4-5), we have

ω̂λλ̄ = (deλ, eλ)=−
i(λ−1)θ̂λ
√
λ(λ+1)

+

m−1∑
µ=λ+1

i θ̂µ
√
µ(µ+1)

+
i θ̂m
√

m
, λ < m,(4-6)

ω̂λµ̄ =−ω̂µ̄λ =−(deµ, eλ)=
i θ̂λ

√
µ(µ+ 1)

, λ < µ < m,(4-7)

ω̂λm̄ =−ω̂m̄λ =−(dem, eλ)=
i θ̂λ
√

m
, λ < m,(4-8)

ω̂mm̄ =
i θ̂m
√

m
.(4-9)

The metric induced by f̂ is flat, so we obtain, by (2-22),

f̂ λµµ = 3̂µλ̄,µ = 0, λ < µ < m,(4-10)

f̂ λλλ = 3̂λλ̄,λ =−
i(λ− 1)
√
λ(λ+ 1)

, λ < m,(4-11)

f̂ λµµ = 3̂µλ̄,µ =
i

√
λ(λ+ 1)

, µ < λ < m,(4-12)

f̂ λmm = 0, f̂ m
λλ = f̂ m

mm =
i
√

m
, λ < m.(4-13)

Proposition 4.1. Let f̂ : S1(1)× · · · ×S1(1)→ Cm , z = f̂ (p) = (ei t1, . . . , ei tm ),
be the standard Lagrangian torus in Cm . Its complex mean curvature H C satisfies

Ĥ C
− (Ĥ C, em)em = 0, (Ĥ C, em)= i

√
m.
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Moreover, if we set ĥm =− Im
(
(Ĥ C, em)

)
, we have

m〈grad ĥm, em〉− (mĥm + (n+ 1)
√

m)
∑
λ

〈∇̂eλem, eλ〉 = 0.

Proof. The first part holds because of (4-10)–(4-13). The second part is true be-
cause the induced metric is flat and ĥm is a constant. �

Proof of Theorem 1.2. The theorem follows from Theorem 1.1, Proposition 4.1,
and the fact that the standard torus studied above is H-minimal in Cm . �

For the next example, consider

(4-14) Sm−1(1)= {x ∈ Rm
: |x | = 1}

with its standard embedding in Cm . Take an orthonormal tangent frame field
ê1, . . . , êm−1, with respect to which the metric is expressed by

dx =
m−1∑
λ=1

θ̂λ êλ, d θ̂λ =−θ̂λµ ∧ θ̂
µ
;

the coefficients θ̂λ and θ̂λµ are real. Further, set

(4-15) dêλ =
∑
µ

ω̂λµ êµ, 1≤ λ,µ < m,

where the ω̂λµ are real and satisfy ω̂λµ+ ω̂µλ = 0.
Take the immersion f̂ : Sm−1(1) × T 1

→ Cm given by (x, ei t) 7→ z = ei t x .
Choosing the moving frame of Cm along f̂ to be

(4-16)
eλ = ei t êλ, 1≤ λ < m,

em = i z = iei t x,

we conclude that

(4-17)
θλ := (dz, eλ)= θ̂λ, 1≤ λ < m,

θm
:= (dz, em)= dt,

are real 1-forms, which implies that f̂ is a Lagrangian immersion. Through direct
calculation, we have

(4-18) ωλλ̄ = ωmm̄ = iθm, ωλm̄ = iθλ, 1≤ λ < m

and

(4-19) ωλµ̄ = ω̂λµ, 1≤ λ < µ < m,

which are real 1-forms. As before, we use the notation ωλµ = (deλ, eµ).
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If we denote the connection 1-forms with respect to θλ by θλµ, we clearly have

(4-20) θm
λ = 0, θλµ = θ̂

λ
µ = ω̂µλ, 1≤ λ,µ < m.

From (4-20) and (2-33), we obtain

(4-21) f̂ λµµ = 0, f̂ m
λλ = i, 1≤ λ < m, 1≤ µ≤ m.

Proposition 4.2. The map f̂ : Sm−1(1)× T 1
→ Cm given by (x, ei t) 7→ ei t x is

an H-minimal Lagrangian immersion in Cm , and its complex mean curvature H C

satisfies

Ĥ C
− (Ĥ C, em)em = 0, (Ĥ C, em)= im.

Moreover, if we set ĥm =− Im
(
(Ĥ C, em)

)
, we have

〈grad ĥm, em〉− (ĥm + (n+ 1))
∑
λ

〈∇̂eλem, eλ〉 = 0.

Proof. By the definition of ĥλ, we have ĥλ = 0, 1≤ λ < m and ĥm =−m, which
imply δαĤ = 0. So, f̂ is H-minimal. The second identity holds because ĥm is a
constant and θm

λ = 0. �

Proof of the Theorem 1.3. This follows from Proposition 4.2 and Theorem 1.1. �

Example 4.3 (Clifford torus in CPn). Taking q = 0 in Theorem 1.1, we have
proved that the Clifford torus is a minimal Lagrangian submanifold in CPn . This
is a known result; here we just provided an alternative proof.

Example 4.4 (H-minimal Sq(1)× T n−q in CPn). Let f̌ : Sq(1)⊂ Rq+1 ↪→ Cq+1,
f (p) = Z , be the standard embedding. Then H ◦ f̌ is totally geodesic in CPq .
Define f̆ : Sq(1)× T n−q

→ S2n+1(1) by

(Z , ei tq+1, . . . , ei tn ) 7→
1

√
n− q + 1

(Z , ei tq+1, . . . , ei tn ).

This gives an H-minimal immersion H ◦ f̆ , by Theorem 1.2.

Example 4.5 (exotic H-minimal S3(1)× T n−3 in CPn). Recall from [Bedulli and
Gori 2008], [Chen et al. 1996], [Chiang 2004], or [Li and Tao 2006] the exotic
minimal Lagrangian immersion f̌ : S3(1)→ CP3 mapping the point (a, b), where
|a|2+ |b|2 = 1, to[

ā3
+ 3āb̄2,

√
3(ā2b+ b̄|b|2− 2b̄|a2

|),
√

3(āb2
+ a|a|2− 2a|b|2), b3

+ 3a2b
]
.
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By Theorem 1.2, we know that the Lagrangian immersion f :S3(1)×T n−3
→CPn

mapping
(
(a, b), (ei t4, . . . , ei tn )

)
to[

ā3
+ 3āb̄2,

√
3(ā2b+ b̄|b|2− 2b̄|a2

|),
√

3(āb2
+ a|a|2− 2a|b|2), b3

+ 3a2b,
ei t4, . . . , ei tn

]
is H-minimal.

Example 4.6. Let Sm−1(1) be as in (4-14). The immersion

f : Sm−1(1)× Sm−1(1)× T 1
7→ CP2m−1

given by

(x, y, ei t) 7→ [x, ei t y]

is a minimal Lagrangian immersion.
The map f : Sq(1)× Sm−1(1)× T 1

7→ CPq+m given by the same formula is an
H-minimal Lagrangian immersion.

Example 4.7. The immersion f : T m−1
×Sm−1(1)× T 1

→ CP2m−1 given by

(
(1, ei t1, ei tm−1), x, ei t)

7→

[
1
√

m
,

ei t1
√

m
, . . . ,

ei tm−1

√
m
, ei t x

]
is a minimal Lagrangian immersion, and the map f : T q

×Sm−1(1)×T 1
→CPq+m

given by

(
(1, ei t1, . . . , ei tq ), x, ei t

)
7→

[
1

√
q + 1

,
ei t1
√

q + 1
, . . . ,

ei tq
√

q + 1
, ei t x

]
is an H-minimal Lagrangian immersion. Here, we have used the fact the Clifford
torus T n

→ CPn , given by

(ei t1, . . . , ei tn ) 7→ [1, ei t1, . . . , ei tn ],

is minimal.

Example 4.8. The map S3(1)× S3(1)× T 1
→ CP7 taking

(
(a, b), x, ei t

)
to[

ā3
+3āb̄2,

√
3(ā2b+ b̄|b|2−2b̄|a2

|),
√

3(āb2
+a|a|2−2a|b|2), b3

+3a2b, ei t x
]

(where (a, b)∈C2 satisfies |a|2+|b|2= 1 and x ∈R4 satisfies |x |2= 1) is a minimal
Lagrangian immersion.

The map S3(1)× Sm−1(1)× T 1
→ CPm+3 given by the same formula (with

x ∈ Rm satisfying |x |2 = 1) is an H-minimal Lagrangian immersion.
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