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Diagram algebras (for example, graded braid groups, Hecke algebras and
Brauer algebras) arise as tensor power centralizer algebras, algebras of
commuting operators for a Lie algebra action on a tensor space. This work
explores centralizers of the action of a complex reductive Lie algebra g on
tensor space of the form M ⊗ N ⊗ V ⊗k. We define the degenerate two-
boundary braid algebra Gk and show that centralizer algebras contain quo-
tients of this algebra in a general setting. As an example, we study in detail
the combinatorics of special cases corresponding to Lie algebras gln and sln

and modules M and N indexed by rectangular partitions. For this setting,
we define the degenerate extended two-boundary Hecke algebra Hext

k as a
quotient of Gk, and show that a quotient of Hext

k is isomorphic to a large
subalgebra of the centralizer. We further study the representation theory
of Hext

k to find that the seminormal representations are indexed by a known
family of partitions. The bases for the resulting modules are given by paths
in a lattice of partitions, and the action of Hext

k is given by combinatorial
formulas.
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1. Introduction

The phenomenon now known as Schur–Weyl duality was first studied by Frobenius
and Schur in their work connecting the representation theory of the symmetric
groups and the general linear groups. It has since stimulated many advances in
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the development of tensor power centralizer algebras, algebras of operators which
preserve symmetries in a tensor space. Striking examples include these:

(1) The Brauer algebras in [Brauer 1937] centralize the action of symplectic and
orthogonal groups on tensor space (Cn)⊗k .

(2) The graded Hecke algebra of type A centralizes the action of sln on L(λ)⊗
(Cn)⊗k , where L(λ) is the irreducible sln module indexed by a partition λ;
see [Arakawa and Suzuki 1998].

(3) The degenerate affine Wenzl algebra in [Nazarov 1996] centralizes the action
of symplectic and orthogonal groups on L(λ)⊗ (Cn)⊗k .

Orellana and Ram [2007] give a unified approach to studying tensor power central-
izer algebras, including the affine and cyclotomic Hecke and Birman–Murakami–
Wenzl algebras.

Gier and Nichols [2009] uncovered in the study of loop models and spin chains
in statistical mechanics yet another potential use of Schur–Weyl duality. They
discovered a connection between the two-boundary Temperley–Lieb algebra and a
quotient of the affine Hecke algebra of type C. The Temperley–Lieb algebra is the
centralizer of the quantum group Uqsl2 on tensor space M⊗N⊗(C2)⊗k , where M
and N are simple Uqsl2-modules, which suggested the possibility of constructing
affine Hecke algebra type C modules explicitly using Schur–Weyl duality tools.

In Section 2, we begin studying the centralizer of the action of g on M⊗N⊗V⊗k ,
where g is a finite-dimensional complex reductive Lie algebra and M , N , and V are
finite-dimensional irreducible g-modules. We define the degenerate two-boundary
braid algebra Gk , an associative algebra over the complex numbers. This braid
algebra can be pictured as the degeneration of the quantum group analog, group
algebra of the braid group in a space with two punctures, a generalization of the
affine braid group studied in [Orellana and Ram 2007]. The algebra Gk is generated
by

C[x1, . . . , xk], C[y1, . . . , yk], C[z0, z1, . . . , zk], and CSk,

with relations twisting the polynomial rings and the symmetric group together. The
first main theorem, Theorem 2.1, is that Gk acts on M ⊗ N ⊗ V⊗k and that this
action commutes with the action of g. In many cases, both historic and new, this
action will produce Endg(M ⊗ N ⊗ V⊗k). For example,

(i) when g= gln or sln , V is the standard representation, and
(a) M and N are trivial, the image of Gk in Endg(M⊗ N ⊗V⊗k) is the same

as that of the symmetric group Sk ;
(b) M is trivial and N is a simple highest weight module, the image of Gk in

Endg(M ⊗ N ⊗ V⊗k) is the same as that of the graded Hecke algebra of
type A;
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(ii) when g= son or sp2n , V is the standard representation, and

(a) M and N are trivial, the image of Gk in Endg(M⊗ N ⊗V⊗k) is the same
as that of the Brauer algebras;

(b) M is trivial and N is a simple highest weight module, the image of Gk in
Endg(M ⊗ N ⊗ V⊗k) is the same as that of the degenerate affine Wenzl
algebra.

We discuss the specifics of these examples in Remark 2.2.
In Section 3, we consider the new cases where g= sln or gln , M = L((a p)) (the

finite-dimensional irreducible g-module indexed by the rectangular partition with
p parts of length a), N = ((bq)), and V is the standard representation. Theorem 4.9
states that a twist of the representation given in Theorem 2.1 factors through this
quotient. We call this quotient of Gk the extended degenerate two-boundary Hecke
algebra Hext

k .
We further study the representation theory of Hext

k throughout Sections 4 and 5,
classifying the seminormal representations. Using the combinatorics of Young
tableaux, we describe these representations explicitly in Sections 4.3 and 5. The
basis elements for the resulting modules are given by paths in a lattice of partitions,
and the action of Hext

k is given in terms of contents of boxes in those partitions.
This work may proceed in a number of directions. First, an analogous theory

may also be developed for centralizers of type B, C, and D, which will parallel that
of the degenerate affine Wenzl algebra as studied in [Nazarov 1996; Ariki et al.
2006]. Also, functorial techniques developed in [Orellana and Ram 2007] may be
used to promote the study of calibrated Hext

k -modules, given in Section 5, to that
of all standard modules. This should extend to the study of standard modules for
types B, C, and D as well.

Finally, one subalgebra of Hext
k , the degenerate two-boundary Hecke algebra Hk ,

is of particular interest since it is strikingly similar to the graded Hecke algebra of
type C. This can be seen through the combinatorics that are presented throughout
Sections 4.3 and 5 and in the action of the type C Weyl group in the final proof of
the paper. This observation suggests the possibility of studying representations of
type C Hecke algebras using Schur–Weyl duality techniques, a study that is further
developed in forthcoming papers.

2. The degenerate two-boundary braid algebra

Fix k ∈ Z≥0. Let Sk be the symmetric group, which is generated by simple trans-
positions si = (i i + 1) and braid relations

(2-1) si si+1si = si+1si si+1 and si s j = s j si if j 6= i ± 1.
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The main object of study in this section is the degenerate two-boundary braid
algebra, denoted Gk , and is a two-boundary analog to the degenerate one-boundary
braid algebra in [Daugherty et al. 2011]. By design, we will see in the Section 2.1
that Gk acts on tensor space of a specific form for a finite-dimensional reductive
Lie algebra. The algebra Gk is generated over C by

(2-2) tw for w ∈ Sk, x1, . . . , xk, y1, . . . , yk, and z0, z1, . . . , zk,

subject to relations as follows. Let m1=0 and, for j >1, define m j =
∑

1≤i< j mi, j ,
where

(2-3)
m j−1, j = x j − ts j−1 x j−1ts j−1 and

mi, j = t(i j−1)m j−1, j t(i j−1) for 1≤ i < j − 1.

Then Gk is the associative algebra generated over C by elements (2-2) with relations

zi = xi + yi −mi for 1≤ i ≤ k,(2-4)

twtw′ = tww′ for w ∈ Sk(2-5)

xi x j = x j xi , yi y j = y j yi , zi z j = z j zi for all admissible i, j,(2-6)

tsi x j = x j tsi , tsi y j = y j tsi , tsi z j = z j tsi for j 6= i, i + 1,(2-7)

(z0+ · · ·+ zi )x j = x j (z0+ · · ·+ zi ),

(z0+ · · ·+ zi )y j = y j (z0+ · · ·+ zi ) for i ≥ j,

(2-8)

tsi (xi + xi+1)= (xi + xi+1)tsi ,

tsi (yi + yi+1)= (yi + yi+1)tsi for 1≤ i ≤ k− 1,

(2-9)

(tsi tsi+1)(xi+1− tsi xi tsi )(tsi+i tsi )= xi+2− tsi+1 xi+1tsi+1,

(tsi tsi+1)(yi+1− tsi yi tsi )(tsi+i tsi )= yi+2− tsi+1 yi+1tsi+1

for 1≤ i ≤ k− 2,

(2-10)

xi+1− tsi xi tsi = yi+1− tsi yi tsi for 1≤ i ≤ k− 1.(2-11)

2.1. Action on tensor space. Let g be a finite-dimensional complex reductive Lie
algebra. We fix a triangular decomposition

(2-12) g= n−⊕ h⊕ n+, with n+ =
⊕
α∈R+

gα,

and let R+ be a fixed set of positive roots for g. A weight is an element of
h∗ = Hom(h,C).

The trace form 〈 · , · 〉 : g⊗ g→ C associated to a faithful representation θ of g

is defined by
〈x, y〉 = tr(θ(x)θ(y)).
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This is an ad-invariant, symmetric, bilinear form that is nondegenerate on both
g and h. Therefore the map h→ h∗ defined by h 7→ 〈h, · 〉 and hµ 7→ µ is an
isomorphism, where hµ is the unique element of h such that 〈hµ, h〉 = µ(h) for
all h ∈ h. Define the symmetric, bilinear, nondegenerate form 〈 · , · 〉 : h∗⊗h∗→C

by 〈λ,µ〉 = 〈hλ, hµ〉.
Let M , N , and V be finite-dimensional simple g-modules, and consider the

action of g on the tensor space M⊗N⊗V⊗k . Denote the centralizer of the action
of g on a g-module U by

Endg(U )= {ϕ ∈ End(U ) | xϕ = ϕx for all x ∈ g}.

We will construct a homomorphism 8 : Gk → Endg(M ⊗ N ⊗ V⊗k) using the
observation that the map given by

(2-13) Endg(U )→ Endg(U ⊗U ′), ϕ 7→ ϕ⊗ idU ′

is an injective algebra homomorphism for any g-modules U and U ′.
Fix a basis {bi } for g and let {b∗i } be the dual basis to {bi } with respect to 〈 · , · 〉.

The Casimir element of the enveloping algebra Ug is

(2-14) κ =
∑

i

bi b
∗

i ,

and is central in Ug. If U and U ′ are g-modules, then κ acts on U ⊗U ′ by

(2-15) κ ⊗ idU ′ + idU ⊗ κ + 2γ, where γ =
∑

i

bi ⊗ b∗i .

Since κ and γ are independent of the choice of the basis, we have, in particular,

(2-15b) γ =
∑

i

b∗i ⊗ bi .

Let γ j, j ′ be the operator given by the action of γ on the j and j ′ factors of V⊗k

(acting by the identity on all other factors). Note that γ j, j ′ = γ j ′, j because of
(2-15b). Similarly, for a factor X (X = M, N , M ⊗ N , or V , where applied), we
use the following notation:

γM,N γ acting on factors M and N in a tensor space,

γX,i γ acting on factor X and the i th copy of V in a tensor space,

κX κ acting on the factor X in a tensor space,

κX,≤ j κ acting on the factor X and the first j factors of V ,
where κX,≤0 = κX .
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Using (2-15) to apply κ iteratively to M⊗V⊗k , N ⊗V⊗k , and M⊗N ⊗V⊗k , we
find that as operators on M ⊗ N ⊗ V⊗k , for X = M, N or M ⊗ N ,

(2-16) κX,≤ j = κX + jκV + 2
( ∑

1≤i≤ j

γX,i +
∑

1≤r<s≤ j

γr,s

)
.

Theorem 2.1. There is an algebra homomorphism

8 : Gk→ Endg(M ⊗ N ⊗ V⊗k)

defined by

8(xi )=
1
2(κM,≤i − κM,≤i−1), 8(yi )=

1
2(κN ,≤i − κN ,≤i−1),

8(zi )=
1
2(κM⊗N ,≤i − κM⊗N ,≤i−1+ κV ) for 1≤ i ≤ k,

8(z0)=
1
2(κM⊗N − κM − κN )= γM,N ,

8(tsi )= idM ⊗ idN ⊗ id⊗( j−1)
V ⊗ s⊗ id⊗(k− j−1)

V for 1≤ i ≤ k− 1,

where s · (u⊗ v)= v⊗ u.

Proof. The tsi act by simple transpositions, so they generate an action of CSk

on V⊗k . Since the coproduct is cocommutative, the action of CSk commutes with
the g-action.

Since κ is central, κM,≤i ∈ Endg(M ⊗ V⊗i ). By (2-13), this means κM,≤i ⊗

id j−i
V is an element of Endg(M ⊗ V⊗ j ) for i < j . Thus the actions of κM,≤i for

i = 1, 2, . . . , k, and so the actions of x1, . . . , xk , pairwise commute. Similarly,
{y1, . . . , yk} and {z0, . . . , zk} each act commutatively on M⊗N ⊗V⊗k . Again by
(2-13), these operators are also all contained in Endg(M ⊗ N ⊗ V⊗k). Moreover,
since M , N , and V are simple, κM , κN , and κV act as constants. So

8(z0+ · · ·+ zi )=
1
2(κM⊗N ,≤i + iκV − κM − κN )

commutes with κM,≤ j and κN ,≤ j for j ≤ i , verifying (2-8).
The relations in (2-9) follow from

8(tsi (xi + xi+1))=
1
2 tsi (κM,≤i+1− κM,≤i−1)

=
1
2 tsi

(
γM,i + γM,i+1+ 2κV + 2

i−1∑
`=1

(γ`,i + γ`,i+1)+ 2γi,i+1

)
by (2-16)

=
1
2

(
γM,i+1+ γM,i + 2κV + 2

i−1∑
`=1

(γ`,i+1+ γ`,i )+ 2γi+1,i

)
tsi

=8((xi + xi+1)tsi )

(a similar computation confirms 8(tsi (yi + yi+1))=8((yi + yi+1)tsi )). The action
of the symmetric group commutes with the action of g, and if j < i , κX,≤ j acts by
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the identity on the i and i + 1 factors of V⊗k . Thus

(2-17) tsiκX,≤ j = κX,≤ j tsi if j 6= i and X = M , N , or M ⊗ N ,

is satisfied for all i 6= j , which implies (2-7).
Finally, as operators on M ⊗ N ⊗ V⊗k via 8,

xi =
1
2(κM,≤i − κM,≤i−1)=

1
2κV + γM,i +

∑
1≤`<i

γ`,i by (2-16)

and similarly

yi =
1
2κi + γN ,i +

∑
1≤`<i

γ`,i and zi = κV + γN ,i + γM,i +
∑

1≤`<i

γ`,i .

So

(2-18) mi,i+1 = xi+1− tsi xi tsi = yi+1− tsi yi tsi = zi+1− tsi zi tsi = γi,i+1.

So (2-11) and (2-4) are satisfied. Since tsi tsi+1γi,i+1tsi+1 tsi = tsiγi,i+2tsi = γi+1,i+2,
relation (2-10) follows from (2-18). �

Remark 2.2. As discussed in the introduction, the degenerate two-boundary braid
algebra is meant to be the degeneration of the group algebra of the two-boundary
braid group, which is the braid group in a space with two punctures, or “flag poles”.
The two-boundary braid group is the generalization of the affine braid group used in
[Orellana and Ram 2007], and just like the affine braid group, has many centralizer
algebras for quantum groups as quotients. Analogously, Gk has many familiar
centralizer algebras for Lie algebras as quotients, and the map in Theorem 2.1
factors through these quotients (in some cases after applying an automorphism).
For example:

(1) When g= gln or sln and V is the standard representation, the action of tsi on
V ⊗ V is the same as that of γ on V ⊗ V . So

(a) when M and N are trivial, the images of xi and yi are linear combinations
of the images of ts j for j = 1, . . . , i − 1, and so the image of Gk in
End(M ⊗ N ⊗ V⊗k) is the same as that of the symmetric group Sk ; and

(b) when M is trivial and N is a simple highest weight module, the image
of xi is redundant as above, and the image of Gk in End(M ⊗ N ⊗ V⊗k)

(after a version of the automorphism in Lemma 4.8 when g = sln) is the
same as that of the graded Hecke algebra of type A.

(2) When g = son or sp2n , V is the standard representation, and M is trivial,
we hope to see the Brauer algebra in [Brauer 1937] and the degenerate affine
Wenzl algebra in [Nazarov 1996] (when N is trivial or not, respectively), in



98 ZAJJ DAUGHERTY

which case we expect to see elements that are diagrammatically represented
by

si = �
�
@
@

•

•

•

•

•

•

•

•

•

•

•

•

1

1

i

i

i+1

i+1

k

k

· · · · · · and s̄i = � �� �
•

•

•

•

•

•

•

•

•

•

•

•

1

1

i

i

i+1

i+1

k

k

· · · · · ·

The diagram si corresponds to tsi in Gk , and the diagram s̄i corresponds to
the element ei = tsi yi − yi+1tsi − 1. The map 8 factors through the quotient
of Gk by the relations in [Nazarov 1996, §4] (after an automorphism in the
case where g= sp2n) or by relations in [Daugherty et al. 2011, §2.2] (with no
automorphism), as is shown in [Daugherty et al. 2010]. So,

(a) when M and N are trivial, the image of Gk in End(M ⊗ N ⊗ V⊗k) is the
same as that of the Brauer algebras, and

(b) when M is trivial and N is a simple highest weight module, the image
of Gk in End(M ⊗ N ⊗ V⊗k) is the same as that of the degenerate affine
Wenzl algebra.

3. The degenerate two-boundary Hecke algebra

Our next goal is to consider the case where g is of type gln or sln , and M , N ,
and V are three specific g-modules. In general, even if we specify V to be the
standard representation as usual, the decomposition of M ⊗ N is not in general
multiplicity free, and so the method of considering quotients of the braid algebra
in studying centralizers Endg(M ⊗ N ⊗ V⊗k) is ineffective. However, in the case
where M and N are indexed by rectangular partitions, it is an amazing consequence
of the Littlewood–Richardson rule that the decomposition of M⊗N is multiplicity
free. Furthermore, when constructing Hecke algebras in the quantum case, one
places quadratic relations on all generators corresponding to the R-matrices. In
the degenerate case, these generators are specifically ts1, . . . , tsk−1 , x1 and y1. By
choosing M and N to be indexed by rectangular partitions, we will force quadratic
relations on x1 and y1 as desired.

In this way, we use the representations of Gk in Theorem 2.1 to motivate the con-
struction of a new algebra, the degenerate extended two-boundary Hecke algebra.
In Section 4 we will carefully lay out the combinatorics behind this construction
and explore this motivation further. This section is devoted to the definition and
two presentations of Hext

k .
Fix a, b, p, q ∈ Z>0. The degenerate extended two-boundary Hecke algebra

Hext
k is the quotient of the degenerate two-boundary braid algebra by the relations

(3-1) tsi xi = xi+1tsi − 1 and tsi yi = yi+1tsi − 1 for i = 1, . . . , k− 1,
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and

(3-2) (x1− a)(x1+ p)= 0, (y1− b)(y1+ q)= 0.

The degenerate two-boundary Hecke algebra Hk is the subalgebra of Hext
k gener-

ated by x1, . . . , xk , y1, . . . , yk , z1, . . . , zk , ts1, . . . , tsk−1 .
Proposition 3.1 provides a presentation of Hext

k that is a consolidation of the
presentation of Gk using the quotient in (3-1) and (3-2). We follow this up with
Theorem 3.2, which provides a much more efficient presentation we will make use
of in Section 5.

Proposition 3.1. Define

xi = tsi−1 xi−1tsi−1 + tsi−1 and zi = tsi−1 zi−1tsi−1 + tsi−1 for i = 2, . . . , k,

and

m1 = 0, mi =

i−1∑
j=1

t( j i) for i > 0 and yi = zi − xi +mi for i = 1, . . . , k.

Then Hext
k is generated as an algebra over C by x1, z0, z1 and tw for w ∈ Sk with

relations

twtw′ = tww′ for w,w′ ∈ Sk,

and the quadratic relations

(x1− a)(x1+ p)= 0, (y1− b)(y1+ q)= 0 for a, b, p, q ∈ Z>0,

the commutation relations

tsi x j = x j tsi , tsi z j = z j tsi for j 6= i, i + 1,

xi x j = x j xi , yi y j = y j yi , zi z j = z j zi , z0zi = zi z0 for 1≤ i, j ≤ k,

x j zi = zi x j for i > j,

and the twisting relations

xi (z0+ · · ·+ zi )= (z0+ · · ·+ zi )xi ,

yi (z0+ · · ·+ zi )= (z0+ · · ·+ zi )yi for i = 1, . . . , k.

Proof. Equation (2-3) can be rewritten as

m j, j+1 = x j+1− ts j x j ts j = ts j ,

mi, j = t(i j−1)m j−1, j t(i j−1) = t(i j) if i < j − 1.
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So m1 = 0 and mi =
∑

1< j<i t(i j). Therefore (2-4) implies

tsi zi tsi = tsi (xi + yi −mi )tsi

= xi+1− tsi + yi+1− tsi − tsi

(∑
1< j<i t(i j)

)
tsi

= xi+i + yi+1− tsi − tsi −
∑

1< j<i t(i+1 j)

= xi+i + yi+1−mi − tsi = zi+1− tsi .

Similarly, for i = 1, . . . , k− 1, any two of

xi+1− tsi xi tsi = tsi , yi+1− tsi yi tsi = tsi , and zi+1− tsi zi tsi = tsi

imply the third. So we use (3-1) to discard the generators x2, . . . , xk , y1, . . . , yk ,
and z2, . . . , zk , by defining

xi = tsi−1 xi−1tsi−1 + tsi−1 and zi = tsi−1 zi−1tsi−1 + tsi−1 for i = 2, . . . , k,

and yi = zi − xi +mi for i = 1, . . . , k.

Relation (2-9) can be rewritten as

tsi xi − xi+1tsi = tsi (tsi xi − xi+1tsi )tsi and tsi yi − yi+1tsi = tsi (tsi yi − yi+1tsi )tsi

for 1≤ i ≤ k−1, which is equivalent to −1=−1. Relation (2-10) is equivalent to

(tsi tsi+1)(tsi )(tsi+i tsi )= tsi+1 for 1≤ i ≤ k− 2,

which is redundant with relation t2
si
= 1 and the second relation in (2-1). Relation

(2-11) is equivalent to tsi = tsi . So by introducing (3-1), we can discard relations
(2-9)–(2-11). The second relation in (2-7) can also be discarded since

tsi y j = tsi

(
z j− x j+

j−1∑
`=1

t(` j)

)
=

(
z j− x j+

j−1∑
`=1

t(` j)

)
tsi = y j tsi for j 6= i, i+1,

Finally, independent of (3-1), we rewrite relation (2-8) as

xi z0 = z0xi + ((z1+ · · ·+ zi )xi − xi (z1+ · · ·+ zi )),

yi z0 = z0 yi + ((z1+ · · ·+ zi )yi − yi (z1+ · · ·+ zi )), for i = 1, . . . , k,

and, for i > j ,

x j zi = x j (z0+ · · ·+ zi )− x j (z0+ · · ·+ zi−1)

= (z0+ · · ·+ zi )x j − (z0+ · · ·+ zi−1)x j= zi x j ,

y j zi = zi y j . �

The following is a streamlined version of Proposition 3.1, which will be our
favorite presentation for calculating representations in Section 5.
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Theorem 3.2. Let
wi = zi −

1
2(a− p+ b− q).

Hext
k is generated as an algebra over C by w0, w1, . . . , wk , x1, ts1, . . . , tsk−1 with

relations the braid relations

t2
si
= 1, tsi tsi+1 tsi = tsi+1 tsi tsi+1, tsi ts j = ts j tsi for |i − j |> 1,(3-3)

x1(ts1 x1ts1 + ts1)= (ts1 x1ts1 + ts1)x1,(3-4)

the quadratic relations

(3-5) (x1− a)(x1+ p)= 0,

the commutation relations

tsiw j = w j tsi for j 6= i, i + 1,(3-6)

x1wi = wi x1 for i = 2, . . . , k,(3-7)

x1tsi = tsi x1 for i = 2, . . . , k− 1,(3-8)

wiw j = w jwi for i, j = 0, . . . , k,(3-9)

and twisting relations

tsiwi = wi+1tsi − 1 for i = 1, . . . , k− 1,(3-10)

x1w0 = w0x1− (x1w1−w1x1),(3-11)

x1w1 =−w1x1+ (a− p)w1+w
2
1 +

1
4((a+ p)2− (b+ q)2)(3-12)

Proof. With the exception of

yi = zi − xi +mi = wi − xi +mi +
1
2(a− p+ b− q),

every substitution of zi =wi+
1
2(a−p+b−q) in the presentation in Proposition 3.1

results in a cancellation, that is,

tsiw j = w j tsi for j 6= i, i + 1,

w0wi = wiw0 for 1≤ i, j ≤ k,

x jwi = wi x j for i > j

and

xi (w0+· · ·+wi )= (w0+· · ·+wi )xi and yi (w0+· · ·+wi )= (w0+· · ·+wi )yi ,

are immediate.
Next, we address (3-12) by proving the following claim:
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Claim 1. The set of relations

(3-13)
(x1− a)(x1+ p)= 0, (y1− b)(y1+ q)= 0,

w1 = x1+ y1−
1
2(a− p+ b− q)

are equivalent to the set of relations

(3-14)
(x1− a)(x1+ p)= 0,

x1w1 =−w1x1+ (a− p)w1+w
2
1 +

1
4((a+ p)2− (b+ q)2)

Proof. (3-13) implies (3-14): First notice that

x2
1 = (a− p)x1+ ap, y2

1 = (b− q)y1+ bq,

z2
1 = (x1+ y1)

2
= x1 y1+ y1x1+ (a− p)x1+ (b− q)y1+ ap+ bq.

So

x1w1+w1x1

= x1(x1+ y1− (a− p+ b− q)/2)+ (x1+ y1− (a− p+ b− q)/2)x1

= 2x2
1 + (x1 y1+ y1x1)− (a− p+ b− q)x1

= (a− p− (b− q))x1+ 2ap+ (x1 y1+ y1x1).

Since

w2
1 = z2

1− (a− p+ b− q)z1+
1
4(a− p+ b− q)2

= x1 y1+ y1x1+ (a− p)x1+ (b− q)y1+ ap+ bq

− (a− p+ b− q)(x1+ y1)+
1
4(a− p+ b− q)2

= (x1 y1+ y1x1)− (b− q)x1− (a− p)(w1− x1+ (a− p+ b− q)/2)

+ ap+ bq + 1
4(a− p+ b− q)2

= (x1 y1+ y1x1)+ (a− p− (b− q))x1− (a− p)w1

+ ap+ bq − (a− p)2/4+ (b− q)2/4,

we have x1w1+w1x1 is equal to

(a− p− (b− q))x1+ 2ap

+
(
w2

1− ((a− p− (b−q))x1− (a− p)w1+ap+bq− (a− p)2/4+ (b−q)2/4)
)

= w2
1 + (a− p)w1+

1
4((a+ p)2− (b+ q)2)
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We show (3-14) implies (3-13): If y1 = w1 − x1 +
1
2(a − p+ b− q), then using

both relations in (3-14) to expand x2
1 and w1x1+ x1w1, direct calculation yields

(y1− b)(y1+ q)

= (w1− x1+
1
2(a− p+ b− q)− b)(w1− x1+

1
2(a− p+ b− q)+ q)

= 0. �

The remainder is showing that the relations in Proposition 3.1 follow from rela-
tions (3-3) and (3-4)–(3-12). As in Proposition 3.1, define xi+1 = tsi xi tsi + tsi . By
induction on `,

(3-15) xi+1 = tsi · · · ts`+1(ts`x`ts` + ts`)ts`+1 · · · tsi +

i∑
r=`+1

tsi · · · tsr+1 tsr tsr+1 · · · tsi .

Claim 2. tsi x j = x j tsi for i > j .

Proof. If i > j , then tsi commutes with ts` for all ` < j , so by (3-8) and (3-15)

tsi x j = tsi (ts j−1 · · · ts2)(ts1 x1ts1 + ts1)(ts2 · · · ts j−1)

+ tsi

j−1∑
`=2

ts j−1 · · · ts`+1 ts` ts`+1 · · · ts j−1

= (ts j−1 · · · ts2)(ts1 x1ts1 + ts1)(ts2 · · · ts j−1)tsi

+

( j−1∑
`=2

ts j−1 · · · ts`+1 ts` ts`+1 · · · ts j−1

)
tsi

= x j tsi . �

Claim 3. tsi x j = x j tsi for i < j − 1.

Proof. By (3-15),

tsi x j = tsi (ts j−1 · · · tsi+2 tsi+1)(tsi xi tsi + tsi )(tsi+1 tsi+2 · · · ts j−1)

+ tsi ts j−1 · · · tsi+2 tsi+1 tsi+2 · · · ts j−1

+ tsi

j−1∑
`=i+2

ts j−1 · · · ts`+1 ts` ts`+1 · · · ts j−1

= (ts j−1 · · · tsi+2)(tsi )
(
tsi+1(tsi xi tsi + tsi )tsi+1 + tsi+1

)
(tsi+2 · · · ts j−1)

+

( j−1∑
`=i+2

ts j−1 · · · ts`+1 ts` ts`+1 · · · ts j−1

)
tsi
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But, by Claim 2, since i + 1> i ,

tsi (tsi+1(tsi xi tsi + tsi )tsi+1 + tsi+1)= tsi tsi+1 tsi xi tsi tsi+1 + tsi tsi+1 tsi tsi+1 + tsi tsi+1

= tsi+1 tsi tsi+1 xi tsi tsi+1 + tsi+1 tsi t
2
si+1
+ tsi tsi+1 t2

si

= tsi+1 tsi xi tsi+1 tsi tsi+1 + tsi+1 tsi + tsi+1 tsi tsi+1 tsi

= tsi+1 tsi xi tsi tsi+1 tsi + tsi+1 tsi + tsi+1 tsi tsi+1 tsi

= (tsi+1(tsi xi tsi + tsi )tsi+1 + tsi+1)tsi .

So tsi x j = x j tsi . �

Claim 4. xi x j = x j xi for i, j = 1, . . . , k.

Proof. First, x1x2 = x2x1 by (3-4). Next, we induct on i to show xi xi+1 = xi+1xi

for i = 1, . . . , k− 1:

xi xi+1 = xi tsi xi tsi + xi tsi

=
(
(tsi−1 xi−1tsi−1 + tsi−1)tsi (tsi−1 xi−1tsi−1 + tsi−1)+ (tsi−1 xi−1tsi−1 + tsi−1)

)
tsi

= (tsi−1 xi−1tsi−1 tsi tsi−1 xi−1tsi−1 + tsi−1 xi−1tsi−1)tsi

+ (tsi−1 tsi tsi−1 xi−1tsi−1 + tsi−1 xi−1tsi−1 tsi tsi−1)tsi + (tsi−1 tsi tsi−1 + tsi−1)tsi .

But

(tsi−1 xi−1tsi−1 tsi tsi−1 xi−1tsi−1 + tsi−1 xi−1tsi−1)tsi

= tsi−1 xi−1tsi tsi−1 tsi xi−1tsi−1 tsi + tsi−1 xi−1t2
si

tsi−1 tsi

= tsi−1 tsi xi−1tsi−1 xi−1tsi tsi−1 tsi + tsi−1 tsi xi−1tsi tsi−1 tsi

= tsi−1 tsi xi−1tsi−1 xi−1tsi−1 tsi tsi−1 + tsi−1 tsi xi−1tsi−1 tsi tsi−1

= tsi−1 tsi (xi−1tsi−1 xi−1tsi−1 + xi−1tsi−1)tsi tsi−1

= tsi−1 tsi (tsi−1 xi−1tsi−1 xi−1+ tsi−1 xi−1)tsi tsi−1

= tsi (tsi−1 xi−1tsi−1 tsi tsi−1 xi−1tsi−1 + tsi−1 xi−1tsi−1),

and

(tsi−1 tsi tsi−1 xi−1tsi−1 + tsi−1 xi−1tsi−1 tsi tsi−1)tsi

= tsi tsi−1 xi−1tsi tsi−1 + tsi−1 xi−1tsi tsi−1

= tsi tsi−1 xi−1tsi tsi−1 + t2
si

tsi−1 tsi xi−1tsi−1

= tsi (tsi−1 xi−1tsi−1 tsi tsi−1 tsi−1 tsi tsi−1 xi−1tsi−1),

and

(tsi−1 tsi tsi−1 + tsi−1)tsi = tsi tsi−1 t2
si
+ t2

si
tsi−1 tsi = tsi (tsi−1 + tsi−1 tsi tsi−1).
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So

xi xi+1 = tsi

(
(tsi−1 xi−1tsi−1 + tsi−1)tsi (tsi−1 xi−1tsi−1 + tsi−1)+ (tsi−1 xi−1tsi−1 + tsi−1)

)
= tsi xi tsi xi + tsi xi = xi+1xi .

Finally, assume, without loss of generality, that i < j . Then Claim 4 follows by
(3-15) and Claim 2. �

Claim 5. w j xi = xiw j for j > i .

Proof. By (3-15),

xi = tsi−1 · · · ts1 x1ts1 · · · tsi−1 +

i−1∑
`=1

tsi−1 · · · ts`+1 ts` ts`+1 · · · tsi−1 .

So (3-6) and (3-7) imply w j xi = xiw j for j > i . �

Claim 6. xi (w0+ · · ·+wi )= (w0+ · · ·+wi )xi for i = 1, . . . k.

Proof. This follows by induction on i , with i = 1 satisfied by (3-11). Rewrite
(3-10) as tsi (wi +wi+1)= (wi +wi+1)tsi , so

xi (w0+ · · ·+wi )= (tsi−1 xi−1tsi−1 + tsi−1)(w0+ · · ·+wi )

= (w0+ · · ·+wi )(tsi−1 xi−1tsi−1 + tsi−1)= (w0+ · · ·+wi )xi

since xi−1wi = wi xi−1 by Claim 5, and ts`w j = w j ts` for ` < j by (3-6). �

Claim 7. If y1=w1−x1+
1
2(a− p+b−q) and y2=w2−x2+ts1+

1
2(a− p+b−q),

then y1 y2 = y2 y1 and y1tsi = tsi y1 for i > 1.

Proof. Let K = 1
2(a− p+ b− q). So

y1 y2 = (w1− x1+K )(w2−(ts1 x1ts1+ ts1)+ ts1+K )

= (w2+K )(w1− x1+K )−(w1− x1+K )ts1 x1ts1

= (w2+K )(w1− x1+K )−(ts1 x1ts1)K −w1ts1 x1ts1+ x1ts1 x1ts1

= (w2+K )(w1− x1+K )−(ts1 x1ts1)K + x1ts1 x1ts1−(ts1w2−1)x1ts1

= (w2+K )(w1− x1+K )−(ts1 x1ts1)K + x1ts1 x1ts1+ x1ts1− ts1 x1w2ts1

= (w2+K )(w1− x1+K )−(ts1 x1ts1)K + ts1 x1ts1 x1+ ts1 x1− ts1 x1(ts1w1+1)

= (w2+K )(w1− x1+K )−(ts1 x1ts1)K + ts1 x1ts1 x1− ts1 x1ts1w1

= (w2− ts1 x1ts1+K )(w1− x1+K )

= y2 y1.

The latter is simply tsi commuting with w1, x1, and K for i > 1. �
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Claim 8. Let mi =
∑i−1

j=1 t( j i) and K = 1
2(a− p+ b− q). If y1 = w1− x1+ K ,

then
yi = wi − xi +mi + K and yi = tsi−1 yi−1tsi−1 + tsi−1

for i = 2, . . . , k are equivalent definitions of yi .

Proof. Since ts j t(i j)ts j = t(i j+1), we have ts j m j ts j = m j+1− ts j , and so

tsi yi tsi + tsi = tsi (wi − xi +mi + K )tsi + tsi

= (wi+1− tsi )− (xi+1− tsi )+ (mi+1− tsi )+ K + tsi

= wi+1− xi+1+mi+1+ K = yi+1.

The other direction follows by induction. �

Claim 9. If yi is as in Claim 8, then

yi y j = y j yi for i, j = 1, . . . , k, tsi y j = y j tsi for j 6= i, i + 1,

yiw0 = w0 yi + ((w1+ · · ·+wi )yi − yi (w1+ · · ·+wi )) for i = 1, . . . k.

Proof. These follow from Claims 7 and 8 analogously to the xi -valued relations
above. �

This completes the proof of Theorem 3.2. �

As a final remark, Theorem 3.2 implies Hext
k
∼= C[w0]⊗Hk as vector spaces.

4. Tensor space as a Hext
k -module

Now we fix g= gln or sln , and show that for special choices of g-modules M , N ,
and V , the algebra Hext

k acts on tensor space M ⊗ N ⊗ V⊗k by a twist of the
representation 8 in Theorem 2.1 via an automorphism of Gk . We go on to explore
seminormal representations arising from this representation.

4.1. Preliminaries on gln and sln. Let V =Cn with orthonormal basis {v1, . . . , vn}.
We consider the Lie algebras

gln = End(V ) and sln = {x ∈ End(V ) | tr(x)= 0}.

Let ε1, . . . , εn be the orthonormal basis of the weight space h∗, where if Ei, j in
End(V ) is given by Ei, jvk = δ j,kvi , then εi (E j, j )= δi, j . The set of positive roots
is given by

R+ = {εi − ε j | 1≤ i < j ≤ n}.

The set of roots is R = R+ ∪ R−, where R− = {−α | α ∈ R+}, and has basis
{αi = εi − εi+1 | i = 1, . . . , n− 1}.
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Figure 1. Weights represented as multisegments. (I) Partition as-
sociated to λ=3ε1+2ε2+2ε3−

7
n (ε1+· · ·+εn). (II) Multisegment

associated to λ = 3ε1 + 2ε2 + 2ε3 − ε4. (III) Multisegment from
(II) filled in with contents, as defined in (4-4).

The finite-dimensional irreducible sln-modules are indexed by the dominant in-
tegral weights

P+ =

{
λ= λ1ε1+· · ·+λn−1εn−1−

|λ|

n
(ε1+· · ·+ εn)

∣∣∣∣∣
λi ∈ Z≥0,

λ1 ≥ · · · ≥ λn−1 ≥ 0,
|λ| = λ1+ · · ·+ λn−1

}
,

and we identify each weight λ with the partition with λi boxes in row i . The
finite-dimensional irreducible gln-modules are indexed by the dominant integral
weights

P+ = {λ= λ1ε1+ · · ·+ λnεn | λi ∈ Z, λ1 ≥ · · · ≥ λn} ,

and we identify each weight λ the partition which extends infinitely to the left,
and ends on the right in column λi . For examples of each, see Figure 1 parts (I)
and (II). In the case where g= gln and λi ≥ 0 for all 1≤ i ≤ n, we often represent
λ as a finite partition, leaving off boxes to the left of 0. In either case, the first
fundamental weight is indexed by a single box, that is, it is given by

ω1 =

{
ε1 g= gln,

ε1−
1
n (ε1+ · · ·+ εn) g= sln.

Now let L(λ) be the finite-dimensional irreducible highest weight g-module of
weight λ, that is, the irreducible g-module generated by highest weight vector v+λ
of weight λ with action

hv+λ = λ(h)v
+

λ and xv+λ = 0 for h ∈ h, x ∈ n+.

In particular, when g= gln or sln , the standard representation is L(ω1).
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We can calculate the decomposition numbers for the tensor product of two high-
est weight modules using the Littlewood–Richardson rule [Macdonald 1995, I,1].
The two special cases we require are as follows.

Example 4.1 (adding a box). For g= gln or sln+1 and µ ∈ P+,

L(µ)⊗ L(ω1)=
⊕
λ∈µ+

L(λ), where µ+ =
{

partitions of height ≤ n
obtained by adding a box to µ

}
.

Example 4.2 (rectangles [Stanley 1986, Lemma 3.3; Okada 1998, Theorem 2.4]).
Let p≥q and a, b be nonnegative integers. Denote the rectangular partition with p
rows of length a by (a p). Then each L(λ) has multiplicity 1 in L((a p))⊗ L((bq))

if λ ∈ P, and is zero otherwise, where P= P((a p), (bq)) is the set of partitions λ
with height ≤ p+ q such that

(4-1)

λq+1 = λq+2 = · · · = λp = a,

λq ≥max(a, b),

λi + λp+q−i+1 = a+ b for i = 1, . . . , q.

In other words, P is the set of partitions made by placing (bq) to the right of (a p),
carving a corner out of (bq), rotating it 180◦ and gluing it to the bottom of (a p).
For example,

× = + +

+ + +

A useful visualization of these partitions is given in Figure 2.

4.1.1. The Casimir element and the operator γ. When g= sln , we distinguish the
weight

(4-2) ρ =
1
2

∑
α∈R+

α =
1
2

n∑
i=1

(n+ 1− 2i)εi .

When g= gln , we choose the analogous weight

(4-3) δ = (n− 1)ε1+ (n− 2)ε2+ · · ·+ εn−1 =

n∑
i=1

(n− i)εi ,

which matches [Macdonald 1995, I,1]. Keeping g= gln or sln , recall from (2-14)
and (2-15) that

κ =
∑

i

bi b∗i and γ =
∑

i

bi ⊗ b∗i .
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µ′

µ

a b

p q

q

b

µ′

µ

b a

p q

q

a

Figure 2. An illustration of partitions in P=P((a p), (bq)). Out-
lined sections are filled full with boxes, and dashed regions are
filled with complementary partitions. At left, the case a > b: µ is
a partition in a b× q box, and µ′ is the 180◦ rotation of (bq)/µ.
At right, the case a < b: µ is a partition in an a×q box, and µ′ is
the 180◦ rotation of (aq)/µ.

Lemma 4.1. The Casimir element κ acts on L(λ) by the constant

κL(λ) =

{
〈λ, λ+ 2δ〉− (n− 1)|λ| when g= gln,

〈λ, λ+ 2ρ〉 when g= sln.

It follows that if L(λ) is a submodule of L(µ) ⊗ L(ν), then γ acts on the L(λ)
isotypic component of L(µ)⊗ L(ν) by the constant

γλµν =

{1
2

(
〈λ, λ+ 2δ〉− 〈µ,µ+ 2δ〉− 〈ν, ν+ 2δ〉

)
when g= gln,

1
2(〈λ, λ+ 2ρ〉− 〈µ,µ+ 2ρ〉− 〈ν, ν+ 2ρ〉) when g= sln.

Proof. Both cases are classical results. We include here an argument for g = gln ,
as it is illustrative of both. For the action of κ when g = sln , see also [Jacobson
1962, Section 8.2]. The elementary matrices {Ei j | 1 ≤ i, j ≤ n} form a basis of
gln with dual basis {E j i | 1≤ i, j ≤ n} with respect to the trace form. So

κ =
∑

1≤i, j≤n

Ei j E j i =

n∑
i=1

Ei i Ei i +
∑

1≤i< j≤n

(Ei i − E j j + 2E j i Ei j ),

and therefore

κv+λ =
( n∑

i=1

λ2
i +

∑
1≤i< j≤n

λi−λ j+0
)
v+λ

=

(
〈λ, λ〉+

n∑
i=1

(
(n−i)−(i−1)

)
λi

)
v+λ

=

(
〈λ, λ〉+

n∑
i=1

(
2n−2i

)
λi−(n−1)λi

)
v+λ =

(
〈λ, λ〉+〈λ, 2δ〉−(n−1)|λ|

)
v+λ .
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Since κ acts on L(µ)⊗ L(ν) by (κ ⊗ idL(ν))+ (idL(µ)⊗ κ)+ 2γ,

γλµν =
1
2

(
〈λ, λ+ 2δ〉− 〈µ,µ+ 2δ〉− 〈ν, ν+ 2δ〉

)
−

1
2(n− 1)

(
|λ| − |µ| − |ν|

)
.

If L(λ)⊆ L(µ)⊗ L(ν), then |λ| = |µ|+ |ν|, so the desired action of γ follows. �

If B is the box in column c and row r of a partition λ, the content of B is

(4-4) c(B)= c− r.

See Figure 1 part (III) for an example of a filling of boxes in a multisegment with
their respective contents. We can now give a combinatorial description of the values
γ takes on tensor products in the special cases described in Examples 4.1 and 4.2.

Lemma 4.2. If L(λ) is a submodule of L(µ)⊗ L(ω1), then γ acts on the L(λ)
isotypic component of L(µ)⊗ L(ω1) by the constant

γλµω1
=

{
c(λ/µ) if g= gln,

c(λ/µ)− |µ|/n if g= sln,

where λ/µ is the box added to µ to obtain λ.

Proof. These values are also known in the literature, but we give an illustrative
calculation. Let g = gln and write µ = µ1ε1+ · · · +µnεn . Adding a box to µ in
the i-th row is equivalent to adding εi to µ. So, since ω1 = ε1, by Lemma 4.1,

2γλµω1
= (〈µ+ εi , µ+ εi + 2δ〉− 〈µ,µ+ 2δ〉− 〈ω1, ω1+ 2δ〉)

= 2〈µ, ε1〉+ 2〈εi − ε1, µ〉+ 2〈εi − ε1, ε1〉+ 〈εi − ε1, εi − ε1+ 2δ〉

= 2(µ1+µi −µ1− 1+ 1+ (n− i)− (n− 1))= 2(µi + 1− i).

A box added to row i of µ is in position (i, µi + 1) and has content (µi + 1)− i ,
so γλµω1

= c(λ/µ).
The case where g= sln follows analogously, since adding a box to µ in the i-th

is equivalent to adding εi − (ε1+ · · ·+ εn)/n to µ, so λ= µ+ εi − ε1+ω1. �

Finally, we will need to understand the action of γ on M ⊗ N , where M and N
are indexed by rectangular partitions. Specifically, fix a, b, p, q positive integers
with p ≥ q and

p+ q ≤
{

n if g= gln,

n− 1 if g= sln.

Let M = L((a p)) and N = L((bq)), and recall from Example 4.2 that nontrivial
submodules of M ⊗ N have multiplicity 1 and are indexed by partitions in P.

Remark 4.3. As a consequence of the description of P in (4-1), if a box in λ ∈
P((ab), (pq)) is moved from position (i, j) to form another partition in P, it must
be moved to position (a+ b+ 1− i, p+ q + 1− j).
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Any partition in P can be built iteratively by beginning with the partition

(a p)+ (bq)=


a(ε1+ · · ·+ εp)+ b(ε1+ · · ·+ εq) when g= gln,

a(ε1+ · · ·+ εp)+ b(ε1+ · · ·+ εq)−
ap+bq

n (ε1+ · · ·+ εn)

when g= sln,

and moving successive boxes down. Figure 3 gives an example of this process.

Lemma 4.4. Let µ and λ index distinct nontrivial components of M ⊗ N , assume
λ differs from µ by moving one box from position (µi , i). Denote the constant by
which κ acts on an irreducible component L(ν) as κL(ν). Then

κL(λ) = κL(µ)− 4((µi − i)− 1
2(a− p+ b− q)).

Proof. If g = gln and λ = µ− εi + ε j is obtained from µ by moving a box from
row i into row j , then

κL(λ) = 〈λ, λ+ 2δ〉− (n− 1)|λ|

= 〈µ,µ+ 2δ〉− (n− 1)|µ| + 2〈µ, ε j − εi 〉+ 〈ε j − εi , ε j − εi + 2δ〉

= κL(µ)− 2
(
(µi − i)− (λ j − j)

)
= κL(µ)− 2(content of old box− content of new box).

A similar computation will show the same for g = sln . Now, if λ and µ are both
elements of P, then j = p+ q + 1− i and λ j = a+ b+ 1−µi . So

κL(λ) = κL(µ)− 2
(
(µi − i)− ((a− p)+ (b− q)− (µi − i))

)
= κL(µ)− 4((µi − i)− 1

2(a− p+ b− q)). �

Lemma 4.5. Let λ ∈P and define Bλ to be the set of boxes in λ in rows p+1 and
below. Then γ acts on an irreducible component L(λ) of L((a p))⊗ L((bq)) by the
constant

γλ(a p)(bq ) =

{
abq + 2

∑
B∈Bλ

(c(B)− 1
2(a− p+ b− q)) if g= gln,

abq − abpq/n+ 2
∑

B∈Bλ
(c(B)− 1

2(a− p+ b− q)) if g= sln.

Proof. Both cases proceed similarly by a direct calculation.
Let g= gln . By Lemma 4.1,

κL((a p)+(bq )) = 〈(a p)+ (bq), (a p)+ (bq)+ 2δ〉− (n− 1)(ap+ bq)

= 〈(a p), (a p)+ 2δ〉− (n− 1)ap

+〈(bq), (bq)+ 2δ〉− (n− 1)bq + 2〈(a p), (bq)〉

= κM + κN + 2〈a(ε1+ · · ·+ εp), b(ε1+ · · ·+ εq)〉

= κM + κN + 2abq.
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Since any partition indexing a component of M⊗N can be arrived at recursively
by beginning with λ0 = (a p)+ (bq) and moving boxes down, iteratively applying
Lemma 4.4 implies

κL(λ) = κL(λ0)+ 4
∑

B∈Bλ

(c(B)− 1
2(a− p+ b− q))

= κM + κN + 2abq + 4
∑

B∈Bλ

(c(B)− 1
2(a− p+ b− q)).

So γ acts on the L(λ) component of M ⊗ N by

γλ(a p),(bq ) = abq + 2
∑

B∈Bλ

(c(B)− 1
2(a− p+ b− q)).

In the case where g= sln ,

κL((a p)+(bq )) = κM + κN + 2abq − 2apbq/n,

and so the desired result follows analogously. �

An illustration of Lemmas 4.4 and 4.5 is given in Figure 3. We now have all
of the machinery needed to rework the representation of the braid algebra Gk from
Section 2.1 into a representation of Hext

k , which we will do in Section 4.2. However,
the recursive process in Figure 3 suggests something further about those partitions
obtained by adding a box to a partition in P, as we explore in the following two
lemmas. These results will prove useful later in Section 5. Let P1 be the set of
partitions that are obtained by adding a box to an element of P.

Lemma 4.6. If µ ∈ P1((a p), (bq)), then there are exactly one or two λ ∈ P for
which λ⊆ µ.

Proof. As described in Example 4.2, P is the set of partitions λ with height≤ p+q
such that

(4-5)
λq+1 = λq+2 = · · · = λp = a, λq ≥max(a, b),

λi + λp+q−i+1 = a+ b for i = 1, . . . , q.

Again, a useful visualization of these partitions is provided in Figure 2. As stated
in Remark 4.3, if a box is removed from λ ∈ P in position (i, j), then a box must
be added to position (a + b+ 1− i, p+ q + 1− j) to get another partition in P.
Consider a partition µ ∈ P1((a p), (bq)). Assume, in addition to having p ≥ q ,
that if p = q then a ≥ b. By moving through the criteria in (4-5) and considering
addable boxes for a partition that meets these criteria, we can see that this partition
falls into one of the following categories.
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−p−1
·

a−1·2(a−p−1)

−(a−1+p−1)

��

a4a
−(a+p)//

· −p

a−1
·

a+1·
3a−p

−(a−1+p−1)
  

−(a+1+p+1)

??

a−3p
a

−p−1
·
−p+1·

−(a+p)//

· −p

−4p

−p+1
·

a+1
·

2(a−p+1)

−(a+1+p+1)

>>

Figure 3. An illustration of Lemmas 4.4 and 4.5: The process of
constructing partitions in P, those partitions indexing nontrivial
components of L((a p))⊗ L((bq)). In this example, a, p ≥ 2 and
b = q = 2. The leftmost partition is (a p) + (22). The larger
outlined area represents a × p boxes. Partitions are labeled with
the action of γ in the case where g= gln . Edges represent a box in
the leftmost partition being moved down to its lower complemen-
tary position (as described in Remark 4.3) to form the rightmost
partition, and are labeled by the change this presents in the value
of γ. Boxes are marked if they are a change to the left or right,
and are labeled by their contents. placed some dots in the figure

(1) µ has height p+q+1: In this case, exactly one box can be removed to form
a partition that satisfies (4-5), the box in position (1, p+q+1). This partition
µ looks like the partition in Figure 4 with only box 1 added. For example

if (a p)= , (bq)= , µ= , then µ came from λ= .

(2) µq+1 = a + 1: In this case, there is exactly one box that can be removed to
obtain a partition that satisfies (4-5), the box in position (a+ 1, q + 1). This
partition µ looks like the partition in Figure 4 with only box 2 added.
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1

2

3

4
ν ′

ν

or

1

2

3

ν ′

ν

4

a < b:

Figure 4. Added boxes corresponding to partitions with one par-
ent, as described in cases 1–4 in the proof of Lemma 4.6 (see also
Figure 2). At left, the case a > b. At right, the case a < b.

(3) µ1 = a+b+1: Again, there is exactly one box that can be removed, the box
in position (a+b+1, 1). This partition µ looks like the partition in Figure 4
with only box 3 added.

(4) µp+1 = b+ 1: This is similar to the case above, but is a little more complex.
We can only see µp+1= b+1 when a> b and µq = a. So the only removable
box is the one in position (b+1, p+1). This partitionµ looks like the partition
in Figure 4 with only box 4 added.

(5) µ j + µp+q− j+1 = a + b + 1 for some 1 ≤ j ≤ p, but µ j < a + b + 1 and
µp+q− j+1 < min(a, b)+ 1: This is the case which will yield two partitions.
One is the partition in which we remove the box in position (µ j , j); the other
is the partition in which we remove the box in position (a + b + 1 − µ j ,

p+q+1− j). This partition µ looks like those in Figure 5, where the boxes
marked x and y are corner boxes, one of x or y has position (i, j), and the
other has position (a+ b+ 1−µ j , p+ q + 1− j).

For example,

if (a p)= , (bq)= , and µ= ,

then µ came from λ= or λ= . �

Lemma 4.7. Suppose µ ∈P1 and λ ∈P differ by a box, and c(µ/λ) is the content
of this box. Then

(1) there is exactly one such λ if and only if c(µ/λ) is equal to −p − q, a − q,
a+ b, or b− p, and



DEGENERATE TWO-BOUNDARY CENTRALIZER ALGEBRAS 115

@
@@

a+ b

@
@
@
@
a− q

@
@
@
@
b− p

@
@@
−p− q

x

y

or

@
@@

a+ b

@
@
@
@
a− q

@
@
@
@
b− p

@
@@
−p− q

x

y

Figure 5. Added boxes corresponding to partitions with two par-
ents, as described in case 5 in the proof of Lemma 4.6 (see also
Figure 2). At left, the case a> b. At right, the case a< b. Critical
diagonals are marked with contents a+b, a−q , b− p, and−p−q
for Lemma 4.7.

(2) if c(µ/λ) is not equal to −p− q , a− q , a+ b, or b− p, then there is exactly
one λ′ ∈ P distinct from λ that differs from µ by a box, and

c(µ/λ′)= a− p+ b− q − c(µ/λ).

Proof. If µ ∈ P1 satisfies cases 1–4 in Lemma 4.6, then

c(µ/λ)=−p− q, a− q, a+ b, or b− p.

The final case yielded two partitions that differ by the movement of one box. If a
box in position (i, j) in λ∈P can be moved to get another partition in P, then that
box must satisfy either

(i) max(a, b) < i ≤ a+ b and 0< j ≤ q , or

(ii) 0< i ≤min(a, b) and p < j ≤ p+ q .

If (i, j) satisfies (i), then

max(a, b)− q < i − j < a+ b− q.

So since p ≥ q ,

−p− q < i − j, a− q < i − j, b− p < i − j, and i − j < a+ b.

If (i, j) satisfies (ii), then

−p− q < i − j <min(a, b)− p.
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So, similarly,

−p− q < i − j, i − j < a− q, i − j < b− p and i − j < a+ b.

Thus, if there are two partitions in P that can be obtained by removing a box from
µ, then the contents of those boxes are distinct from −p − q , a − q, a + b, and
b− p. See Figure 5 for an illustration of these bounds. �

4.2. Action on tensor space. We return now to the representation

8 : Gk→ Endg(M ⊗ N ⊗ V⊗k)

in Theorem 2.1. Unfortunately, this map does not factor through the quotient de-
fined in (3-1) and (3-2). However, we can twist by the following automorphism of
Gk to acquire the desired representations of Hext

k .

Lemma 4.8. Fix cx , cy , cz , d ∈ C. The map φ : Gk→ Gk given by

xi 7→ xi + ((i − 1)d + cx), tsi 7→ tsi ,

yi 7→ yi + ((i − 1)d + cy), z0 7→ z0+ cz,

zi 7→ zi + ((i − 1)d + cx + cy),

is an algebra automorphism.

Proof. Observe that for i ≥ 1,

φ(xi+1− tsi xi tsi )= xi+1− tsi xi tsi + d,

φ(yi+1− tsi yi tsi )= yi+1− tsi yi tsi + d, φ(mi )= mi + (i − 1)d.

Relations (2-10), (2-11), and (2-4) follow directly. �

Reviewing notation from Section 2.1, we denote by γM,N the operator that acts
on M and N in M⊗N⊗V⊗k by γ and on all other factors by the identity. Similarly,
γi, j acts by γ on i-th and j-th factors of V , and for a factor X , γX,i acts on X and
the i-th copy of V , κX acts by κ on X , and κX,≤i acts by κ on X and the first i
factors of V (where κX,≤0 = κX ).

Now, define

(4-6) 8′ =8 ◦φ : Gk→ Endg(M ⊗ N ⊗ V⊗k),
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so that

8′(xi )=
1
2(κM,≤i − κM,≤i−1)+ ((i − 1)d + cx)id,

8′(yi )=
1
2(κN ,≤i − κN ,≤i−1)+ ((i − 1)d + cy)id,

8′(zi )=
1
2(κM⊗N ,≤i − κM⊗N ,≤i−1+ κV )+ ((i − 1)d + cx + cy)id

for 1≤ i ≤ k,

8′(z0)=
1
2(κM⊗N − κM − κN )+ czid= γM,N + czid,

8′(ts j )= idM ⊗ idN ⊗ id⊗( j−1)
V ⊗ s⊗ id⊗(k− j−1)

V ,

where s · (u⊗ v)= v⊗ u for 1≤ j ≤ k− 1.

Theorem 4.9. Fix g = gln or sln , and let M = L((a p)), N = ((bq)), and V =
L(ω1).

(a) When g= gln , fix cx = cy =−
1
2 n, and d = 0.

(b) When g= sln , fix

cx =
ap
n
−

1
2

(
n− 1

n

)
cy =

bq
n
−

1
2

(
n− 1

n

)
, d = 1

n
.

For these cx , cy , and d, and any choice of cz , the map 8′ in (4-6) factors through
the quotient by (3-1) and (3-2), and so defines an action of Hext

k that commutes with
the action of g.

Proof. The relations in (3-1) can be rewritten as

xi+1− tsi xi tsi = tsi , yi+1− tsi yi tsi = tsi for i = 1, . . . , k− 1.

Recall from (2-16) that for X = M , N , or M ⊗ N ,

κX,≤ j = κX + jκV + 2
( ∑

1≤i≤ j

γX,i +
∑

1≤r<s≤ j

γr,s

)
and so

(4-7) κX,≤i − κX,≤i−1 = κV + 2γX,i + 2
∑

1≤`<i

γ`,i

as an operator on X ⊗ V⊗k . Therefore

(κX,≤i+1− κX,≤i )− si (κX,≤i − κX,≤i−1)si

= κV + 2γX,i+1+ 2
∑

1≤`<i+1

γ`,i+1− si

(
κV + 2γX,i + 2

∑
1≤`<i

γ`,i

)
si

= κV + 2γX,i+1+ 2
∑

1≤`<i+1

γ`,i+1−

(
κV + 2γX,i+1+ 2

∑
1≤`<i

γ`,i+1

)
= 2γi,i+1.
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This means that to show (3-1), it only remains to be checked that

idM ⊗ idN ⊗ id⊗i−1
V ⊗ s⊗ id⊗k−i−1

V

=8′(tsi )=8
′(xi+1− tsi xi tsi )

=
1
2

(
(κM,≤i+1− κM,≤i )+ 2(id + cx)

− si (κM,≤i − κM,≤i−1+ 2((i − 1)d + cx))si
)

= γi,i+1+ d =
{
γi,i+1 when g= gln ,
γi,i+1+ 1/n when g= sln ,

as operators on M ⊗ N ⊗ V⊗k (the check for 8′(tsi ) = 8
′(yi+1 − tsi yi tsi ) is the

same).
The decomposition of V ⊗ V is

V ⊗ V = L
( )

⊕ L
( )

,

where if v1, . . . , vn is a basis for V , then

L
( )

= spanC{vi ⊗ v j + v j ⊗ vi | 1≤ i, j ≤ n}, and

L
( )

= spanC{vi ⊗ v j − v j ⊗ vi | 1≤ i, j ≤ n}.

It follows from this decomposition and Lemma 4.2 that the actions of s and γ are
given by

g= gln

L
( )

L
( )

s 1 −1
γ 1 −1

g= sln

L
( )

L
( )

s 1 −1
γ 1− 1/n −1− 1/n

so (3-1) is satisfied.
Next we check (x1− a)(x1+ p)= 0. By (4-7), we have

8′(x1)=
1
2κV + γM,1+ cx .

The module M ⊗ V decomposes as

(4-8) M ⊗ V = L
(

p

a )
⊕ L

(
p

a )
.

Case 1 (g= gln). By Lemma 4.1,

(4-9) κV = 〈ω1, ω1+ 2δ〉− (n− 1)|ω1| = 1+ (n− 1)− (n− 1)= n,
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so κV /2+ cx = 0. By Lemma 4.2 and the decomposition in (4-8), γM,1 is equal
to a or −p, so 8′(x1− a)(x1+ p)= 0 as desired.

Case 2 (g= sln). By Lemma 4.1,

(4-10) κV = 〈ω1, ω1+ 2ρ〉 = n− 1/n,

so κV /2+cx = ap/n. By Lemma 4.2 and the decomposition in (4-8), γM,1 is equal
to (a− ap/n) or (−p− ap/n) so 8′(x1− a)(x1+ p)= 0 as desired.

The relation (y1−b)(y1+q)= 0 follows analogously, and so (3-2) is satisfied. �

4.3. Bratteli diagrams and seminormal bases. Let

(4-11) C= C0 ⊆ C1 ⊆ C2 ⊆ · · ·

be a chain of semisimple algebras. Let Ĉk be the set of equivalence classes of finite-
dimensional irreducible Ck-modules for k= 0, 1, . . . , and write Cµ for a module in
the class µ∈ Ĉk . Here we will be describing an oriented ranked graph, the Bratteli
diagram for (4-11), which encodes the representation theory of Ck in terms of the
representation theory of Ci for i < k. In the example where Ck is the group algebra
of the symmetric group CSk , this diagram the same as Young’s diagram. This ex-
position on Bratteli diagrams and seminormal bases follows closely Okounkov and
Vershik’s discussion [1996] of chains of finite-dimensional semisimple associative
algebras in general.

The Bratteli diagram associated to a chain (4-11) is an oriented ranked graph,
with a rank for each Ci . The vertices of rank or on level k are the elements of the
set Ĉk . Two vertices µ ∈ Ĉk−1 and ν ∈ Ĉk are joined by d oriented edges from µ

to ν if

(4-12) d = dim HomCk−1(C
µ,Cν),

that is, d is the multiplicity of Cµ in the restriction of Cν to a Ck−1-module. Write

µ↘ ν if µ and ν are connected by an edge from µ to ν.

If µ ∈ Ĉi and λ ∈ Ĉk with i < k, write

µ⊂ λ if there is a path µ↘ · · · ↘ λ from µ to λ in the Bratteli diagram.

In other words, µ ⊂ λ if and only if the multiplicity of µ in λ after appropriate
restriction is nonzero.

Our favorite examples are when g= sln or gln , M and N are finite-dimensional
simple modules indexed by rectangular partitions, V is the standard representation,
and

(1) Ck = Endg(M ⊗ V⊗k),



120 ZAJJ DAUGHERTY

(2) Ck = Endg(N ⊗ V⊗k), or

(3) C0 = Endg(M) and Ck = Endg(M ⊗ N ⊗ V⊗k−1).

In fact, as we will see in Examples 4.3 and 4.4, these Bratteli diagrams are all
multiplicity free (d in (4-12) is always 0 or 1). With multiplicity free diagrams,
the decomposition

Cλ =
⊕
µ∈Ĉk−1
µ↘λ

Cµ

is canonical. By induction, we obtain a canonical decomposition of the module Cλ

into irreducible one-dimensional C0-modules

Cλ =
⊕

T

CvT

indexed by all possible paths

(4-13) T = (T (0)
↘ T (1)

↘ · · · ↘ T (k)
= λ),

where T (i)
∈ Ĉi for each 0 ≤ i ≤ k. In particular, vT is the unique element (up to

scalar multiplication) respecting the inductive process, that is, for each 0 ≤ i ≤ k,
after the induction

IndCi
C0

⊕
T

CvT =
⊕
ν

cνCν,

each vector vT lands in the isotypic component cT (i)C
T (i) . We call the basis {vT }

of Cλ a (nonnormalized) seminormal basis.
Any finite dimensional g-module U decomposes as a (g,Endg(U ))-bimodule as

(4-14) U ∼=
⊕
λ

L(λ)⊗Lλ

where Lλ are distinct irreducible Endg(U )-modules (see [Goodman and Wallach
1998, Theorem 3.3.7]) and are isomorphic to the span of all highest weight vec-
tors of weight λ in U . So both the irreducible g-modules and the irreducible
Endg(M ⊗ N ⊗ V⊗k)-modules appearing in M ⊗ N ⊗ V⊗k are indexed by the
same set. Therefore, the result of the combinatorics outlined in Section 4.1 is that,
for our favorite examples, the paths in (4-13) are in bijection with specific sets of
tableaux, which we define now.

For two partitions λ⊆µ, the skew shape µ/λ is the portion of µ not contained in
λ. A (standard) µ/λ-tableaux is a filling of the skew shape µ/λ with the integers
1, . . . , |µ| − |λ| so that the row fillings increase from left to right and the column
fillings increase from top to bottom. For example, if

λ= and µ= ,
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then there are three µ/λ-tableaux,

(4-15) T1=

3

1 2
, T2=

2

1 3
, T3=

1

2 3
.

Now consider sequences of partitions T = (λ = T (0)
↘ T (1)

↘ · · · ↘ T (k)
= µ),

where T (i) is obtained from T (i−1) by adding a box. We can identify each T with
the µ/λ-tableaux built by placing the integer i in the box added at the i-th step.
For example,

↘ ↘ ↘

is identified with T1 in (4-15).

Example 4.3 (Bratteli diagram for Endg(M ⊗ V⊗k)). Let g= sln or gln , let M =
L((a p)) and V = L((11)), and consider the example where Ck = Endg(M⊗V⊗k).
The inclusion map in (2-13) provides a chain

(4-16) C= Endg(M)⊆ Endg(M ⊗ V )⊆ · · ·

as in Equation (4-11). By identifying classes of Ĉk with partitions as in Section 4.1,
we learn from Example 4.1 that the dimensions in (4-12) are all 0 or 1, and that
the paths in (4-13) are in bijection with the set of tableaux

(4-17) {T = ((a p)= T (0)
↘ · · · ↘ T (k))}.

In particular, each Ck-module Cλ has its seminormal basis {vT } indexed by the
tableaux in (4-17) that end at T (k)

= λ. Moreover, Cλ is the same as Lλ in (4-14),
and each vT is a highest weight vector of weight T (i) in ResCk

Ci
M ⊗ V⊗k for each

i = 0, . . . , k.

Example 4.4 (Bratteli diagram for Endg(M ⊗ N ⊗ V⊗k)). Let g = sln or gln ,
M = L((a p)), N = L((bq)), and V = L((11)), and consider the example where

C0 = Endg(M) and Ck = Endg(M ⊗ N ⊗ V⊗k−1).

Just as in the previous example, these Ck satisfy the chain

(4-18) C= Endg(M)⊆ Endg(M ⊗ N )⊆ Endg(M ⊗ N ⊗ V )⊆ · · · .

As in Example 4.2, if (a p) and (bq) are rectangular partitions, let P=P((a p), (bq))

be the set of partitions µ for which L(µ) appears as a submodule of L((a p))⊗

L((bq)). In particular, each L(µ) appears with multiplicity 1. Let P0 = P and
define Pk to be the set of partitions that are obtained by adding a box to an element
of Pk−1.

The classes in Ĉk are in bijection with the partitions in Pk−1, and the Bratteli
diagram for the chain in (4-18) is the following oriented ranked graph:
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Figure 6. Levels 0, 1, and 2 of a Bratteli diagram encoding iso-
typic components of M ⊗ N ⊗ V . The edges are labeled by com-
binatorial values given by the action of Hext

k as stated later in
Theorem 4.10.

Vertices: The vertices are labeled by partitions.
Level 0: On level 0, place one vertex, labeled by (a p).
Level k > 0: On level k > 0, place one vertex for each partition in Pk−1.

Edges: Edges connect two vertices on adjacent levels.
Connect the vertex on level 0 to each of the vertices on level 1 with one edge.
Connect each vertex on level k−1 to a vertex on level k if the vertex on level
k can be obtained by adding a box to the corresponding vertex on level k−1.

For the examples where a, p> 2 and b= q = 2, levels 0, 1, and 2 are shown of the
Bratteli diagram in Figure 6. Notice that each of the partitions in P1 comes from
exactly one or two partitions in P0; this happens for any choice of a, b, p, and q
by Lemma 4.6.
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Again, we learn from Examples 4.1 and 4.2 that the dimensions in (4-12) are all
0 or 1, and that the paths in (4-13) are in bijection with the set of tableaux

(4-19) {T = (T (1)
↘ · · · ↘ T (k)) | T (i)

∈ Pi−1 for i = 1, . . . , k}.

In particular, for each λ ∈ Pk−1, the Ck-module Cλ has seminormal basis {vT }

indexed by the tableaux in (4-19) that end at T (k)
= λ. Moreover, Cλ is the same as

Lλ in (4-14), and each vT is a highest weight vector of weight T (i) in ResCk
Ci

M ⊗
N ⊗ V⊗k−1 for each i = 0, . . . , k− 1.

We now return to the representation8′ in Theorem 4.9, and combinatorially de-
termine the eigenvalues of the operators8′(xi ),8′(yi ), and8′(zi ) for i =1, . . . , k.
If λ⊂µ are partitions differing by a box in column c and row r , recall c(µ/λ)=c−r
is the content of the box µ/λ in µ.

Theorem 4.10. Let 8′ : Hext
k → Endg(M ⊗ N ⊗ V⊗k) be the representation in

Theorem 4.9, with

cz =

{
0 if g= gln,

abpq/n if g= sln.

There is a basis {vT } of M ⊗ N ⊗ V⊗k indexed by standard tableaux

{T = (T (0)
↘ · · · ↘ T (k)) | T ( j)

∈ P j for j = 0, . . . , k}

with action

8′(zi )vT = c(T (i)/T (i−1))vT for i = 1, . . . , k,

and

8′(z0)vT =

(
abq + 2

∑
B∈BT (0)

(
c(B)− 1

2(a− p+ b− q)
))
vT ,

where Bλ is the set of boxes in λ in rows p+ 1 and below.

Proof. The basis for M ⊗ N ⊗ V⊗k produced in Example 4.4 is specifically one
that satisfies

vT ∈ vT (i) ⊗ V⊗(k−i)
⊆ M ⊗ N ⊗ V⊗k for i = 0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆ M ⊗ N ⊗ V⊗i .
Therefore

8′(zi ) · vT =
( 1

2(κM⊗N ,≤i − κM⊗N ,≤i−1+ κV )+ ((i − 1)d + cx + cy)id
)
· vT

= (γL(T (i−1)),V + κV + ((i − 1)d + cx + cy)id)vT .
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By Lemma 4.2, (4-9) and (4-10),

γL(T (i−1)),V =

{
c(T (i)/T (i−1)) if g= gln,

c(T (i)/T (i−1))− (ap− bq + i − 1)/n if g= sln

κV =

{
n if g= gln,

n− 1/n if g= sln.

So since cx = cy =−
1
2 n and d = 0 when g= gln , and

cx =
ap
n
−

1
2

(
n− 1

n

)
, cy =

bq
n
−

1
2

(
n− 1

n

)
, and d = 1

n
when g= sln ,

we have 8′(zi ) · vT = c(T (i)/T (i−1))vT as desired. Similarly, the action of 8′(z0)

follows from Lemma 4.5. �

Example 4.5. To illustrate, we apply Theorem 4.10 to the example where a, p>2,
b = q = 2, and k = 1. Returning to Figure 6 above, we can read that there are
eighteen distinct isotypic components of M ⊗ N ⊗ V , six of which correspond
to 2-dimensional Endg(M ⊗ N ⊗ V )-modules and twelve of which correspond to
1-dimensional Endg(M ⊗ N ⊗ V )-modules.

The edges connecting level 0 to level 1 are labeled by the combinatorial formula
for the action of z0, and the edges connecting level 1 to level 2 are labeled by the
content of the box added. In general, we label the edges connecting level i to level
i + 1 by the content of the box added. The paths in this diagram from (a p) to
λ ∈ P1 index the basis of Lλ, and 8′(z1) and 8′(z0) act on those basis elements
by the corresponding edge labels.

Remark 4.11. Example 4.3 gives a basis {vT } of M ⊗ V⊗k indexed by standard
tableaux

{T = ((a p)= T (0)
↘ · · · ↘ T (k))}.

For every n ∈ N , there is a canonical map

ιn : M ⊗ V⊗k ↪→ M ⊗ V⊗k
⊗ N ∼= M ⊗ N ⊗ V⊗k .

Therefore, by picking a basis {n j } of N , {vT } can be lifted to a basis {ιn j (vT )} j,T

for M ⊗ N ⊗ V⊗k . A similar calculation as in Theorem 4.10 will produce

8′(xi ) · ιn j (vT )= c(T (i)/T (i−1))ιn j (vT ).

Similarly, there is a basis of highest weight vectors {vT } for N ⊗ V⊗k indexed
by standard tableaux

{T = ((bq)= T (0)
↘ · · · ↘ T (k))}.
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By picking a basis {m j } for M , the map

ιm : N ⊗ V⊗k ↪→ M ⊗ N ⊗ V⊗k

produces a basis {ιm j (vT )} j,T that satisfies

8′(yi ) · ιm j (vT )= c(T (i)/T (i−1))ιm j (vT ).

These two examples reflect the fact that the degenerate two-boundary braid al-
gebras and Hecke algebras contain one-boundary analogs (though this isomorphic
containment is left for future work). Later, Theorem 5.3 will provide explicit for-
mulas for x1 (and therefore y1) in terms of the basis given in Theorem 4.10, but
we can already ascertain the eigenvalues of x1 and y1, as they are stable under a
change of basis.

Remark 4.12. The algebras in (4-11) are also known as Gelfand–Zetlin algebras,
and the seminormal bases are (nonnormalized) Gelfand–Zetlin bases. Denote the
center of Ci by Z(Ci ). The commutative subalgebra Ak ⊆ Ck generated by the
subalgebras Z(C0), Z(C1), . . . , Z(Ck) is called the Gelfand–Zetlin subalgebra in
[Okounkov and Vershik 1996]. It remains for future work to show that the sub-
algebra of End(M ⊗ N ⊗ V⊗k) generated by 8′(z0),8

′(z1), . . . , 8
′(zk) has large

index inside of the Gelfand–Zetlin subalgebra for the chain in Example 4.4. How-
ever, Theorem 4.10 is suggestive of this relationship, and future work on the center
of Hext

k will show that the subalgebra generated by subalgebras Z(Hext
0 ), Z(Hext

1 ),
. . . , Z(Hext

k ), is in fact the same as the subalgebra generated by z0, z1, . . . , zk .

5. Seminormal representations of Hext
k

Section 4.2 showed that a quotient of Hext
k is a subalgebra of Endg(M⊗N⊗V⊗k),

when g = gln or sln , M and N are simple g-modules indexed by rectangular
partitions, and V is the standard representation. Section 4.3 then showed that the
action of the generators z0, . . . , zk on M⊗N⊗V⊗k is simultaneously diagonaliz-
able with eigenvalues given by combinatorial values. In this section, we study all
seminormal representations, and conclude finally in Corollary 5.5 that the simple
Endg(M ⊗ N ⊗ V⊗k)-modules in M ⊗ N ⊗ V⊗k are also simple as Hk-modules.

This section serves as a culmination of work done so far on Hk and Hext
k , and will

draw on many results throughout the paper. We will be primarily citing results from
Sections 3, 4.1 and 4.3. The presentation of choice for Hext

k is given in Theorem 3.2;
in particular, we switch from the generating set

z0, z1, . . . , zk, x1, . . . , xk, y1, . . . , yk, ts1, . . . , tsk−1

to the generating set

w0, w1, . . . , wk, x1, ts1, . . . , tsk−1,
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wherewi = zi−(a−p+b−q)/2. Section 4.3 (specifically Example 4.4) introduces
the combinatorial backbone of the modules that we study in this section; the bases
for the modules in Proposition 5.2 are indexed by the same tableaux as in the Brat-
teli diagram for Endg(M ⊗ N ⊗ V⊗k) in Example 4.4. The specific combinatorial
properties of these tableaux begin in Section 4.1: Example 4.2 describes the set P

of partitions that index the simple submodules of L((a p))⊗ L((pq)), and Figure 2
provides a useful illustration of the partitions in P; then Lemmas 4.6 and 4.7 tell us
about the shape and symmetries of the Bratteli diagram at levels 0–2, and Figure 5
illustrates this symmetry. Finally, in Section 4.3, Theorem 4.10 tells us the correct
action of the wi , and Remark 4.11 tells us how to anticipate the eigenvalues of the
action of x1.

Fix a, b, p, q nonnegative integers with q ≤ p. Recall from Example 4.4 that
P0 =P is the set of partitions indexing simple submodules of L((a p))⊗ L((bq)),
and Pi is the set of partitions obtained by adding a box to any partition in Pi−1.
Let Tλ be the set of tableaux

(5-1) Tλ =
{
T = (T (0)

↘ · · · ↘ T (k)
= λ) | T (0)

∈ P, T (i)
∈ Pi

}
.

The box added to T (i−1) to get T (i) is bi = T (i)/T (i−1). Define shifted contents

cT (0)= abq − (|Bµ| +
1
2)(a− p+ b− q)+ 2

∑
B∈Bµ

c(B),

cT (i)= c(T (i)/T (i−1))− 1
2(a− p+ b− q),

where Bµ is the set of boxes in µ in rows p + 1 and below, as described in
Lemma 4.5.

Lemma 5.1. A tableau T ∈ Tλ is fully determined by cT (1), . . . , cT (k) and T (k).

Proof. This can be shown by induction on k. The key observation is that the
value cT (i) for i > 0 determines the diagonal on which T (i)/T (i−1) lies. In any
given partition, there is at most one removable box on any diagonal. So cT (k) and
T (k) determines T (k−1). By iterating, cT (i) and T (i) determines T (i−1), so we can
recover T (k−1), T (k−2), . . . , T (0). �

Two consecutive boxes bi and bi+1 are in the same row or column if and only
if c(bi )= c(bi+1)±1. So for any i for which cT (i) 6= cT (i+1)±1, we can define
si T (i) as the partition obtained removing bi and adding bi+1, and so

(5-2) si T = (T (0)
↘ T (1)

↘ · · · ↘ T (i−1)
↘ si T (i)

↘ T (i+1)
↘ · · · ↘ T (k))

is the tableau constructed from T by switching the order of adding the i-th and
(i+1)-st boxes. Notice that if cT (i) 6= cT (i + 1)± 1, then si T is the only tableau
that varies from T only at the i-th position; otherwise, if cT (i) = cT (i + 1)± 1,
then there is no such tableau.
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Similarly, for any µ ∈ P1, there are exactly one or two partitions ν ∈ P that
differ from µ by a box by Lemma 4.6. In other words, there are exactly one or
two ν ∈ P that could be the first step in a tableau with a given shifted content list
cT (2), . . . , cT (k). Lemma 4.7 tells us that there is one when

cT (1)= 1
2(±(a+ p)± (b+ q)),

and there are two otherwise. So if cT (1) 6= 1
2(±(a+ p)± (b+ q)) define

(5-3) s0T = (s0T (0)
↘ T (1)

↘ · · · ↘ T (k)),

where s0T (0) is the unique partition built by moving T (1)/T (0) to its complementary
position (see Remark 4.3 or Figure 5). Since c(T (1)/s0T (0)) = a − p + b− q −
2c(T (1)/T (0)), we have

(5-4) cs0T (1)=−cT (1).

Proposition 5.2. Fix λ ∈ Pk and define

Hλ
= spanC{vT | T ∈ Tλ}

as a vector space with basis indexed by all tableaux from any µ ∈ P to λ. Define
an action of Hext

k by

wi · vT = cT (i)vT for 0≤ i ≤ k

tsi · vT = [ti ]T,T vT + [ti ]T,si T vsi T for 1≤ i ≤ k− 1

x1 · vT = [x1]T,T vT + [x1]T,s0T vs0T ,

where [ti ]T,si T = 0 if and only if cT (i)= cT (i+1)±1, and [x1]T,s0T = 0 if and only
if cT (1) = 1

2(±(a+ p)± (b+ q)). Then Hλ is a simple Hext
k -module with respect

to this action if and only if

(1) [ti ]T,T = 1/(cT (i + 1)− cT (i)),

(2) [x1]T,T =
(a− p)cT (1)+ c2

T (1)+
1
4((a+ p)2− (b+ q)2)

2cT (1)
,

(3) (commutation)

[ti ]s j T,si s j T [t j ]T,s j T = [ti ]T,si T [t j ]si T,s j si T for j 6= i ± 1,

[ti ]s0T,si s0T [x1]T,s0T = [ti ]T,si T [x1]si T,s0si T for i > 1,

(4) (involutions)

[ti ]T,si T [ti ]si T,T = 1− ([ti ]T,T )2,
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(5) (quadratic relation)

[x1]T,s0T [x1]s0T,T =−
1

(2cT (1))2
(
cT (1)+

(a+p)+(b+q)
2

)(
cT (1)−

(a+p)−(b+q)
2

)
·
(
cT (1)−

(a+p)+(b+q)
2

)(
cT (1)+

(a+p)−(b+q)
2

)
,

(6) (braid relations)

[ti ]T,si T [ti+1]si T,si+1si T [ti ]si+1si T,si si+1si T

= [ti+1]T,si+1T [ti ]si+1T,si si+1T [ti+1]si si+1T,si si+1si T ,

[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

= [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T .

Before we provide a proof of this proposition, we will give a nice example of
such a seminormal representation.

Theorem 5.3. Define an action of Hext
k on Hλ by

wi · vT = cT (i)vT for 0≤ i ≤ k

tsi · vT = [ti ]T,T vT + [ti ]T,si T vsi T for 1≤ i ≤ k− 1,

x1 · vT = [x1]T,T vT + [x1]T,s0T vs0T ,

and

[ti ]T,S =
{√

1− [ti ]2T,T if S 6= T ,
1/(cT (i + 1)− cT (i)) if S = T ,

[x1]T,S =



√√√√ − 1
(2cT (1))2

(
cT (1)+

(a+p)+(b+q)
2

)(
cT (1)−

(a+p)−(b+q)
2

)
·
(
cT (1)−

(a+p)+(b+q)
2

)(
cT (1)+

(a+p)−(b+q)
2

) if S 6= T ,

(a− p)cT (1)+ c2
T (1)+

1
4((a+ p)2− (b+ q)2)

2cT (1)
if S = T .

With this action, Hλ is a simple Hext
k -module.

Proof. The values for [ti ]T,T and [x1]T,T are pulled directly from Proposition 5.2,
so we need only check criteria 3–6: commutation, quadratic relation, and braid
relations. We will verify these using the fact that [x1]T,S and [ti ]T,S for S 6= T are
functions of shifted contents cT ( j).

Commutation: For j 6= i ± 1, cT (i) = cs j T (i), cT (i + 1) = cs j T (i + 1), cT ( j) =
csi T ( j), and cT ( j + 1)= csi T ( j + 1), so

[ti ]s j T,si s j T = [ti ]T,si T and [t j ]T,s j T = [t j ]si T,s j si T .

Similarly, for i > 1, cT (i)= cs0T (i) and cT (i + 1)= cs0T (i + 1), so [ti ]s0T,si s0T =

[ti ]T,si T , and cT (1)= csi T (1), so [x1]T,s0T = [x1]si T,s0si T . Thus criterion 3 is satis-
fied.
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Figure 7. A generic subgraph of the Bratteli diagram in levels
i + 1 through i + 4.

Quadratic relation: By (5-4), [x1]T,s0T = [x1]T,s0T , so criterion 4 is satisfied.

Braid relations: For the first braid relation, let A = cT (i), B = cT (i + 1), and
C = cT (i + 2). Either both sides of the equality

[ti ]T,si T [ti+1]si T,si+1si T [ti ]si+1si T,si si+1si T

= [ti+1]T,si+1T [ti ]si+1T,si si+1T [ti+1]si si+1T,si si+1si T

are zero, or the six tableaux involved sit in a subgraph of the Bratteli diagram
depicted in Figure 7. This encodes the fact that for whichever of these S exist,
their shifted contents follow the pattern in (5-5), and one can use these values to
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Figure 8. A generic subgraph of the Bratteli diagram in levels 0
through 3.

check that the first braid relation is satisfied.

(5-5)

S→ T si T si+1T si si+1T si+1si T si si+1si T

cS(i) A B A C B C
cS(i + 1) B A C A C B
cS(i + 2) C C B B A A

For the second braid relation, let A= cT (1) and B = cT (2). So either both sides
of the equality

[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

= [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T

are zero, or the eight tableaux involved sit in a subgraph of the Bratteli diagram
depicted in Figure 8. This encodes the fact that for whichever of these S exist, their
shifted contents follow the pattern in (5-6), and one can use these values to check
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that the first braid relation is satisfied

(5-6)
S→ T s0T s1T s0s1T s1s0T s0s1s0T s1s0s1T s0s1s0s1T

cS(1) A −A B −B B −B A −A
cS(2) B B A A −A −A −B −B

Thus criterion 6 is satisfied, concluding the proof of Theorem 5.3. �

Proof of Proposition 5.2. The proof comes in two parts. In the first, we check that
the relations in the presentation of Hext

k given in Theorem 3.2 hold, showing that
Hλ is a Hext

k -module. In the second, we verify that Hλ is simple.

Part 1: Hλ is a Hext
k -module. By (3-9), the elements w0, w1, . . . , wk generate a

commutative subalgebra of Hext
k , so we begin by fixing the diagonal action as stated

above,

w0vT =

(
abq + 2

∑
B∈Bλ

(
c(B)− 1

2(a− p+ b− q)
))
vT ,

wivT = cT (i)vT for 1≤ i ≤ k.

Now write

tsivT =
∑
S∈Tλ

[ti ]T,SvS and x1vT =
∑
S∈Tλ

[x1]T,SvS,

where Tλ is the set of tableaux (5-1) and [ti ]T,S, [x1]T,S ∈ C.

Claim a. Relations t2
si
= 1, (3-6), and (3-10) are satisfied if and only if

tsivT = [ti ]T,T vT + [ti ]T,si T vsi T for i = 1, . . . , k− 1,

[ti ]T,T =
1

cT (i+1)−cT (i)
and [ti ]T,S[ti ]S,T = 1− ([ti ]T,T )2.

Proof. The first commutation relation (3-6), tsiw j =w j tsi for j 6= i, i+1, implies

tsiw jvT =
∑
S∈Tλ

cT ( j)[ti ]T,SvS = w j tsivT =
∑
S∈Tλ

cS( j)[ti ]T,SvS.

So for each S, either

(5-7) [ti ]T,S = 0 or cT ( j)= cS( j) for all j 6= i, i + 1.

The first twisting relation (3-10), together with relation t2
si
= 1, requires

tsiwi −wi+1tsi =−1= wi tsi − tsiwi+1,
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that is,

(tsiwi −wi+1tsi )vT =
∑
S∈Tλ

(cT (i)− cS(i + 1))[ti ]T,SvS =−vT

= (wi tsi − tsiwi+1)vT =
∑
S∈Tλ

(cS(i)− cT (i + 1))[ti ]T,SvS.

So

(5-8) [ti ]T,T =
1

cT (i+1)−cT (i)

and for S 6= T , either

(5-9) cS(i + 1)= cT (i) and cS(i)= cT (i + 1) or [ti ]T,S = 0.

By Lemma 5.1, Equations (5-7) and (5-9) tell us

tsivT = [ti ]T,T vT + [ti ]T,si T vsi T for i = 1, . . . , k− 1,

where [ti ]T,si T = 0 if cT (i)= cT (i + 1)± 1. Finally, the involution relation t2
si
= 1

implies

[ti ]T,T =−[ti ]si T,si T and [ti ]T,S[ti ]S,T = 1− ([ti ]T,T )2.

The first is implied by [ti ]T,T = (1)/cT (i+1)−cT (i), but the second places a new
condition on coefficients. �

Claim b. Relation (3-7) is satisfied if and only if

x1vT = [x1]T,T vT + [x1]T,s0T vs0T ,

where [x1]T,s0T = 0 if cT (1)=±(a+ p)±(b+q). Furthermore, (3-5), (3-11), and
(3-12) are additionally satisfied if and only if

[x1]T,T =
(a− p)cT (1)+ c2

T (1)+
1
4((a+ p)2− (b+ q)2)

2cT (1)

and

[x1]T,s0T [x1]s0T,T =−
1

(2cT (1))2
(
cT (1)+

(a+p)+(b+q)
2

)(
cT (1)−

(a+p)−(b+q)
2

)
·
(
cT (1)−

(a+p)+(b+q)
2

)(
cT (1)+

(a+p)−(b+q)
2

)
.

Proof. The relation x1wi = wi x1 for i > 1 implies

x1wivT =
∑
S∈Tλ

cT (i)[x1]T,SvS = wi x1vT =
∑
S∈Tλ

cS(i)[x1]T,SvS.
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So by Lemmas 4.6 and 5.1,

(5-10) x1vT = [x1]T,T vT + [x1]T,s0T vs0T ,

where [x1]T,s0T = 0 if cT (1)=±(a+ p)± (b+ q).
Now let K = 1

4((a+ p)2− (b+ q)2), so the third twisting relation (3-12),

x1w1 =−w1x1+ (a− p)w1+w
2
1 + K ,

says

(x1w1+w1x1)vT = (cT (1)+ cT (1))[x1]T,T vT + (cT (1)+ cs0T (1))[x1]T,s0T vs0T

= 2cT (1)[x1]T,T vT = ((a− p)w1+w
2
1 + K )vT

= ((a− p)cT (1)+ (cT (1))2+ K )vT .

So

(5-11) [x1]T,T =
((a− p)cT (1)+ (cT (1))2+ K )

2cT (1)
.

If S = s0T exists, then the quadratic relation (3-5) implies

x2
1vT = ([x1]

2
T,T + [x1]T,S[x1]S,T )vT + ([x1]T,T [x1]T,S + [x1]T,S[x1]S,S)vS

= (a− p)x1+ ap = ((a− p)[x1]T,T + ap)vT + (a− p)[x1]T,SvS.

We could conclude ([x1]T,T [x1]T,S+[x1]T,S[x1]S,S)= (a− p)[x1]T,S from (5-11),
so this simply tells us that

[x1]T,S[x1]S,T =−[x1]
2
T,T + (a− p)[x1]T,T + ap

=−

(
((a− p)cT (1)+ c2

T (1)+ K )
2cT (1)

)2

+ (a− p)
(
((a− p)cT (1)+ c2

T (1)+ K )
2cT (1)

)
+ ap

=−
1

4c2
T (1)

(
cT (1)+

(a+p)+(b+q)
2

)(
cT (1)−

(a+p)−(b+q)
2

)
·
(
cT (1)−

(a+p)+(b+q)
2

)(
cT (1)+

(a+p)−(b+q)
2

)
.

Finally, the second twisting relation (3-11) implies

x1(w0+w1)vT = (cT (0)+ cT (1))[x1]T,T vT + (cT (0)+ cT (1))[x1]T,s0T vs0T

= (w0+w1)x1vT

= (cT (0)+ cT (1))[x1]T,T vT + (cs0T (0)+ cs0T (1))[x1]T,s0T vs0T .

So we require

[x1]T,s0T = [x1]T,s0T = 0 or cT (0)+ cT (1)= cs0T (0)+ cs0T (1).
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Recall from (5-4) that if vs0T exists, then cs0T (1) = −cT (1). So this requirement
is equivalent to

[x1]T,s0T = 0 or cT (1)= 1
2(cs0T (0)− cT (0)),

and is therefore a consequence of the construction in Lemmas 4.4 and 4.5. �

Claim c. The second relation in (3-3) and relation (3-8) are satisfied if and only if

[ti ]s j T,si s j T [t j ]T,s j T = [ti ]T,si T [t j ]si T,s j si T for j 6= i ± 1,

[ti ]s0T,si s0T [x1]T,s0T = [ti ]T,si T [x1]si T,s0si T for i > 1,

respectively.

Proof. For j 6= i ± 1, the second relation in (3-3) implies

tsi ts jvT = [ti ]T,T [t j ]T,T vT + [ti ]T,si T [t j ]T,T vsi T

+ [ti ]s j T,s j T [t j ]T,s j T vs j T + [ti ]s j T,si s j T [t j ]T,s j T vsi s j T

= ts j tsivT = [ti ]T,T [t j ]T,T vT + [ti ]T,si T [t j ]si T,si T vsi T

+ [ti ]T,T [t j ]T,si T vs j T + [ti ]T,si T [t j ]si T,s j si T vs j si T .

If si T and s j T exist, we already know [t j ]T,T = [t j ]si T,si T and [ti ]s j T,s j T = [ti ]T,T
because cT ( j)= csi T ( j) and cT (i)= cs j T (i) for j 6= i±1. However, since si s j T =
s j si T , we gain the requirement

[ti ]s j T,si s j T [t j ]T,s j T = [ti ]T,si T [t j ]si T,s j si T .

Similarly, for i > 1, relation (3-8) implies

tsi x1vT = [ti ]T,T [x1]T,T vT + [ti ]s0T,s0T [x1]T,s0T vs0T

+ [ti ]T,si T [x1]T,T vsi T + [ti ]s0T,si s0T [x1]T,s0T vsi s0T

= x1tsivT = [ti ]T,T [x1]T,T vT + [ti ]T,T [x1]T,s0T vs0T

+ [ti ]T,si T [x1]si T,si T vsi T + [ti ]T,si T [x1]si T,s0si T vsi s0T

since s0si T = si s0T for i > 1. If s0T and si T exist, we already require that

[ti ]s0T,s0T = [ti ]T,T and [x1]T,T = [x1]si T,si T ,

since cT (i)= cs0T (i), cT (i+1)= cs0T (i+1), and cT (1)= csi T (1). However, given
s0T , si T , and s0si T exist, we gain the requirement

(5-12) [ti ]s0T,si s0T [x1]T,s0T = [ti ]T,si T [x1]si T,s0si T . �

Claim d. The braid relation (3-3) is satisfied if and only if

[ti ]T,si T [ti+1]si T,si+1si T [ti ]si+1si T,si si+1si T

= [ti+1]T,si+1T [ti ]si+1T,si si+1T [ti+1]si si+1T,si si+1si T .
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Proof. If vS exists for S = si T , si+1T , si si+1T , si+1si T , si si+1si T , then

tsi tsi+1 tsivT tsi tsi+1([ti ]T,T vT + [ti ]T,si T vsi T )

= ([ti ]2T,T [ti+1]T,T + [ti ]T,si T [ti+1]si T,si T [ti ]si T,T )vT

+ ([ti ]T,T [ti+1]T,T [ti ]T,si T + [ti ]T,si T [ti+1]si T,si T [ti ]si T,si T )vsi T

+ ([ti ]T,T [ti+1]T,si+1T [ti ]si+1T,si+1T )vsi+1T

+ ([ti ]T,T [ti+1]T,si+1T [ti ]si+1T,si si+1T )vsi si+1T

+ ([ti ]T,si T [ti+1]si T,si+1si T [ti ]si+1si T,si+1si T )vsi+1si T

+ ([ti ]T,si T [ti+1]si T,si+1si T [ti ]si+1si T,si si+1si T )vsi si+1si T

because si si T = T . Similarly,

tsi+1 tsi tsi+1vT =
(
[ti+1]

2
T,T [ti ]T,T + [ti+1]T,si+1T [ti ]si+1T,si+1T [ti+1]si+1T,T

)
vT

+ ([ti+1]T,T [ti ]T,T [ti+1]T,si+1T

+ [ti+1]T,si+1T [ti ]si+1T,si+1T [ti+1]si+1T,si+1T )vsi+1T

+ [ti+1]T,T [ti ]T,si T [ti+1]si T,si T vsi T

+ [ti+1]T,T [ti ]T,si T [ti+1]si T,si+1si T vsi+1si T

+ [ti+1]T,si+1T [ti ]si+1T,si si+1T [ti+1]si si+1T,si si+1T vsi si+1T

+ [ti+1]T,si+1T [ti ]si+1T,si si+1T [ti+1]si si+1T,si si+1si T vsi si+1si T .

To check the identity tsi tsi+1 tsivT = tsi+1 tsi tsi+1vT , we show that each coefficient in
tsi tsi+1 tsivT − tsi+1 tsi tsi+1vT is 0, noting that if some S does not exist, the result is
trivial.

Let A= cT (i), B = cT (i +1), and C = cT (i +2). By definition, for whichever
of these S exist, their shifted contents are given by the table in (5-5). So, by using
the condition that [ti ]T,T = 1/(cT (i+1)− cT (i)) to simplify the expansion above,
we find that the coefficients vanish on each vS , for S = T , si T , si+1T , si si+1T ,
si+1si T . The remaining term,

([ti ]T,si T [ti+1]si T,si+1si T [ti ]si+1si T,si si+1si T

− [ti+1]T,si+1T [ti ]si+1T,si si+1T [ti+1]si si+1T,si si+1si T )vsi si+1si T

cannot be reduced using the determined values, and so we add the assumption that
this coefficient is 0. �

Claim e. The braid relation (3-4) is satisfied if and only if

[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

= [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T .
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Proof. Let aT = [x1]T,T , bT = [x1]T,s0T , dT = [t1]T,T and eT = [t1]T,s1T . So

x1ts1vT = aT dT vT + bT dT vs0T + as1T eT vs1T + bs1T eT vs0s1T , and

x1ts1 x1ts1vT = (a2
T d2

T + bT bs0T dT ds0T + aT as1T eT es1T )vT

+ (aT bT d2
T + as0T bT dT ds0T + as1T bT eT es1T )vs0T

+ (aT as1T dT eT + a2
s1T ds1T eT + bs1T bs0s1T ds0s1T eT )vs1T

+ (aT bs1T dT eT + as1T bs1T ds1T eT + as0s1T bs1T eT ds0s1T )vs0s1T

+ (as1s0T bT dT es0T )vs1s0T + (bs1s0T bT dT es0T )vs0s1s0T

+ (as1s0s1T bs1T eT es0s1T )vs1s0s1T + (bs1T bs1s0s1T eT es0s1T )vs0s1s0s1T ,

and so

(x1ts1 x1ts1 + x1ts1)vT

= (a2
T d2

T + bT bs0T dT ds0T + aT as1T eT es1T + aT dT )vT

+ (aT bT d2
T + as0T bT dT ds0T + as1T bT eT es1T + bT dT )vs0T

+ (aT as1T dT eT + a2
s1T ds1T eT + bs1T bs0s1T ds0s1T eT + as1T eT )vs1T

+ (aT bs1T dT eT + as1T bs1T ds1T eT + as0s1T bs1T eT ds0s1T + bs1T eT )vs0s1T

+ (as1s0T bT dT es0T )vs1s0T + (bs1s0T bT dT es0T )vs0s1s0T

+ (as1s0s1T bs1T eT es0s1T )vs1s0s1T + (bs1T bs1s0s1T eT es0s1T )vs0s1s0s1T .

Similarly, since s0s1s0s1T = s1s0s1s0T ,

(ts1 x1ts1 x1+ ts1 x1)vT

= (a2
T d2

T + bT bs0T dT ds0T + aT as1T eT es1T + aT dT )vT

+ (aT bT dT ds0T + as0T bT d2
s0T + as1s0T bT es0T es1s0T + bT ds0T )vs0T

+ (a2
T dT eT + bT bs0T ds0T eT + aT as1T ds1T eT + aT eT )vs1T

+ (aT bs1T ds0s1T eT )vs0s1T

+ (aT bT dT es0T + as0T bT ds0T es0T + as1s0T bT ds1s0T es0T + bT es0T )vs1s0T

+ (bT bs1s0T ds0s1s0T es0T )vs0s1s0T + (aT bs1T eT es0s1T )vs1s0s1T

+ (bT bs1s0T es0T es0s1s0T )vs0s1s0s1T .

Let A = cT (1) and B = cT (2). By definition, for whichever of these S exist,
their shifted contents are given by the table in (5-6). Thus the values of aS and dS
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are given by

S→ T s0T s1T s0s1T
aS aT −aT + (a− p) as1T −as1T + (a− p)
dS

1
B−A

1
B+A −dT ds0T

S→ s1s0T s0s1s0T s1s0s1T s0s1s0s1T
aS as1T −as1T + (a− p) aT −aT + (a− p)
dS −ds0T dT −ds0T −dT

Furthermore recall that bT bs0T = −a2
T + (a − p)aT + ap and es1T eT = 1− d2

T .
Using these values, we can simplify the expansion of(

(x1ts1 x1ts1 + x1ts1)− (ts1 x1ts1 x1+ ts1 x1)
)
vT

to find that the coefficients of vS vanish for S=T , s0T , s1T , s0s1T , s1s0T , s0s1s0T ,
and s1s0s1T . The remaining term,(
[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

− [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T
)
vs0s1s0s1T ,

cannot be reduced using the determined values, and so we add the assumption that
this coefficient is 0. �

This concludes Part 1, showing that Hλ is a Hext
k -module.

Part 2: Hλ is simple. We first show that any nontrivial submodule of Hλ contains
some basis element vT . We then prove that any basis element vT generates Hλ,
and conclude that Hλ contains no nontrivial proper submodules.

Claim i. If 0 6= v ∈Hλ, then Hext
k v contains some element of the basis vT .

Proof. For any S ∈ Tλ, let

WS = (w1− cS(1))2+ (w2− cS(2))2+ · · ·+ (wk − cS(k))2.

By Lemma 5.1,

WSvT =

( k∑
i=1

(cT (i)− cS(i))2
)
vT = 0 if and only if T = S.

Therefore, if

PrT =
∏

S∈Tλ
S 6=T

(
WS∑k

i=1(cT (i)− cS(i))2

)
, then PrT vS = δST vT .
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Write v =
∑

S∈Tλ
dSvS and dS ∈ C. Since v 6= 0, there is some dT 6= 0, and so

vT = (1/dT )PrT v ∈Hext
k v. �

If cT (1) 6= ±1
2((a+ p)± (b+q)), then [x1]T,s0T 6= 0. Define the operator σ0 on

the basis {vT }T∈Tλ
of Hλ by

(5-13) σ0vT =

{
0 if cT (1)=± 1

2((a+ p)± (b+ q)),
1

[x1]T,s0T
(x1− [x1]T,T )vT otherwise,

and extend linearly. Though σ0 is not formally an element of Hext
k , it defines an

operator on Hλ via Hext
k , that is, σ0vT ∈Hext

k vT . Therefore if vs0T exists, then

σ0vT =
1

[x1]T,s0T
(x1− [x1]T,T )vT

=
1

[x1]T,s0T
([x1]T,T vT + [x1]T,s0T vs0T − [x1]T,T vT )= vs0T ,

and so vs0T ∈Hext
k vT .

Similarly, if cT (i + 1) 6= cT (i)± 1, then [ti ]T,si T 6= 0. Define the operators σi

for i = 1, . . . , k− 1 on the basis {vT }T∈Tλ
of Hλ by

(5-14) σivT =

{
0 if cT (i + 1)= cT (i)± 1,

1
[ti ]T,si T

(tsi − [ti ]T,T )vT otherwise

and extend linearly. Again, σi is not formally an element of Hext
k , but rather defines

an operator on Hλ via Hext
k . So if vsi T exists, we have

σivT =
1

[ti ]T,si T
(tsi − [ti ]T,T )vT

=
1

[ti ]T,si T
([ti ]T,T vT + [ti ]T,si T vsi T − [ti ]T,T vT )= vsi T ,

and so vsi T ∈Hext
k vT .

Recall from Section 4.3 that we can view every tableau either as a sequence of
partitions, as we have been doing, or as a skew shape filled with integers 1, . . . , k
with increasing rows and columns. Viewing T as a standard filling now, consider
the placement of labels i and i + 1. If they are adjacent (in row or column), then
cT (i+1)= cT (i)±1, and so si T does not exist. However, if labels i and i+1 are
nonadjacent, then si T is gotten from T by switching i and i + 1. For example,

(5-15) s2 ·

3 4

1
2 5

=

2 4

1
3 5

.
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Define the tableau row(T ) as the filling of λ/T (0) built by placing values 1, . . . , k
left to right, top to bottom, consecutively (this tableau only depends on the shape
of the first and last partitions in T ).

Claim ii. For any tableau T ∈ Tλ and any submodule U ⊆Hλ,

vT ∈U if and only if vrow(T ) ∈U.

Proof. For any T , the following process allows us to construct row(T ) by applying
a series of si moves to T :

Reading left to right, top to bottom, find the first box that has a different filling
from row(T ). Let j be the filling in this box and i be the box immediately before it.

Notice j−1 is not placed in any boxes north (east or west) or directly west of j ,
since those boxes are filled with 1, . . . , i . Therefore, j − 1 and j can be switched
by applying s j−1.

If s j−1T = row(T ), we are done. Otherwise, begin again at step 1 with s j−1T .
Let w = si` · · · si2si1 be the word generated by this process (where si1 is the first
transposition applied, and so on). In the example begun in (5-15), this process
unfolds as follows.

(5-16)
T

3 4

1
2 5

s2
−→

2 4

1
3 5

s1
−→

1 4

2
3 5

s3
−→

1 3

2
4 5

s2
−→

row(T )
1 2

3
4 5

So w= s2s3s1s2 and s2s3s1s2T = row(T ).
If wT = si` · · · si2si1 T = row(T ), then σi` . . . σi2σi1vT = vrow(T ) and so vrow(T ) ∈

Hext
k vT . We can apply the same process to find w−1row(T ) = T , implying that

σi1σi2 . . . σi`vrow(T ) = vT and so vT ∈Hext
k vrow(T ). �

Recall from Lemma 4.5 that if µ ∈P, then Bµ is the set of boxes in rows p+1
and below in µ. If λ is a partition containing µ, let Bλ

µ be the set of boxes (i, j)
in Bµ for which box (a + b+ 1− i, p + q + 1− j) is also in λ. The criteria in
(4-1) imply that the shape obtained by moving each of the boxes (i, j) ∈ Bλ

µ to
their complementary position (a+b+1− i, p+q+1− j) gives another partition
in P, which we denote (λ/µ)max. For example, if

(5-17) λ= and T (0)
= ,

then Bλ
T (0) = {(1, p+ 2)} and (λ/µ)max

= .
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Moreover, since (λ/µ)max
∈ λ, there is a tableau S= ((λ/µ)max

= S(0)↘· · ·↘
S(k)= λ) from (λ/µ)max to λ. Define Tλ= row(S), that is, Tλ is the unique tableau
in Tλ with T (0) highest in lexicographical order and with fillings reading left to
right, top to bottom. From the example in (5-17), Tλ is the last tableau pictured
below in (5-18).

Claim iii. For any tableau T ∈ Tλ and submodule U ⊆Hλ,

vT ∈U if and only if vTλ ∈U.

Proof. The following process allows us to construct Tλ from T through a series
of si :

(1) Use the process in Claim ii to move T to T ′ = row(T ).

(2) Reading left to right, top to bottom, find the last box (i, j) in Bλ
T ′(0) .

(3) The box in position (a+b+1− i, p+q+1− j) is filled with a 1. Therefore,
we can construct a new tableau S = (S(0) ↘ · · · ↘ S(k) = λ) ∈ Tλ, where
S(0) is built from T ′(0) by moving box (a+b+1− i, p+q+1− j) to (i, j),
and S(i) = T ′(i) for i = 1, . . . , k. The resulting filling will have a 1 in box
(i, j) and 2, . . . , k identical to T ′. This new tableau S is equal to s0T ′ (see
the description of (5-3)).

(4) Use the process in Claim 2 to move to row(s0T ′).

(5) If row(s0T ′)= Tλ, then we are done. If not, return to step 1 with row(s0T ′).

Let w = si` · · · si2si1 be the word generated by this process (where si1 is the
first transposition applied, and so on). Continuing from the example in (5-16) this
process proceeds as follows.

(5-18)
T

3 4

1
2 5

→ · · · →

row(T )
1 2

3
4 5∗

s0
−→

∗ 2

3
1 4 5

s1
−→

1

3
2 4 5

s2
−→

Tλ
1

2
3 4 5

So w= s2s1s0s2s3s1s2, and wT = Tλ.
If wT = si` · · · si2si1 T = Tλ, then σi` · · · σi2σi1vT = vTλ and so vT λ ∈ Hext

k vT .
We can apply the same process to find w−1T λ

= si1si2 · · · si`Tλ = T , implying
σi1σi2 · · · σi`vTλ = vT and so vT ∈Hext

k vTλ . �

By Claim i, any nonzero submodule U ⊆Hλ contains some basis vector vT . By
Claim iii, U therefore contains vTλ , and consequently contains all basis vectors vT
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of Hλ. Thus, U = Hλ and so Hλ is simple. This concludes part 2, and therefore
completes the proof of Proposition 5.2. �

Remark 5.4. We have shown slightly more than was stated in Proposition 5.2.
Namely, if Hλ is a Hext

k -module with basis indexed by T ∈Tλ and wivT = cT (i)vT

for 0= 1, . . . , k, then

(1) tsivT = [ti ]T,T vT +[ti ]T,si T vsi T and x1vT = [x1]T,T vT +[x1]T,s0T vs0T , where
[ti ]T,si T = 0 if and only if cT (i)= cT (i+1)±1, and [x1]T,s0T = 0 if and only
if cT (1)= 1

2(±(a+ p)± (b+ q)),

(2) [x1]T,S and [ti ]T,S satisfy items (1)–(6) of Proposition 5.2, and

(3) Hλ is simple as an Hext
k -module.

What is more is that the proof that Hλ is simple (part 2) relies only on the action
of Hk , and so Res Hext

k
Hk

(Hλ) is simple.

Corollary 5.5. In the setting of Theorem 4.10,

ResEndg(M⊗N⊗V⊗k)

8′(Hext
k )

(Lµ) and ResEndg(M⊗N⊗V⊗k)

8′(Hk)
(Lµ)

are simple Hext
k - and Hk-modules, respectively.

Proof. By Theorem 4.10 any simple Endg(M ⊗ N ⊗ V⊗k)-module

Lµ
⊆ M ⊗ N ⊗ V⊗k

has basis {vT |T ∈Tµ} on whichwi acts via8′ bywivT =cT (i)vT . The restatement
of Proposition 5.2 in Remark 5.4 implies Lµ is simple as both a Hext

k -module and
a Hk-module. �
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