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Given a closed hyperbolic 3-manifold M, we construct a tower of covers
with increasing Heegaard genus and give an explicit lower bound on the
Heegaard genus of such covers as a function of their degree. Using similar
methods, we prove that for any € > 0 there exist infinitely many congruence
covers {M;} such that, for any x € M, M; contains an embedded ball B,
(with center x) satisfying vol B, > (vol M;)/4=¢. We get similar results for
an arithmetic noncompact case.

1. Introduction

Let M be a hyperbolic 3-manifold and {M;} a collection of finite covers of M. The
infimal Heegaard gradient of M with respect to {M;} is defined as

xhmp)
inf ,
i [m(M):m(M;)]

where x" (M;) denotes the minimal value for the negative of the Euler characteristic
of a Heegaard surface in M;.

A fundamental question is whether the infimal Heegaard gradient is zero or
not. This question is closely related to the potential solutions of several important
conjectures in 3-manifold theory, such as the virtual Haken conjecture and the vir-
tual fibering conjecture [Lackenby 2006; 2011]. Assuming the Lubotzky—Sarnak
conjecture, a closed hyperbolic 3-manifold M has a tower {M;} of finite covers
without Property 7. By a theorem of Lackenby [2006], if the infimal Heegaard
gradient of this tower is positive, M; is Haken for sufficiently large i. According
to a conjecture of Lackenby [2006], if the infimal Heegaard gradient of this tower
is zero, M; is fibered for some i. Thus the Heegaard gradient plays an important
role in these approaches to the virtual Haken conjecture and the virtual fibering
conjecture.

When the manifold is arithmetic, Lackenby proved the following.
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Theorem 1.1 [Lackenby 2006]. Let M be an arithmetic hyperbolic 3-manifold.
Then there are positive constants ¢ and C which depend only on M, such that for
any congruence cover M; — M,

clm (M) : m (M) < x"(M;) < Clmy (M) : 1 (M))].

He established this theorem by proving that Property t with respect to a set of
finite covers {M;} implies that {M;} has positive infimal Heegaard gradient. Since
Lubotzky [1994] showed that an arithmetic hyperbolic 3-manifold has Property t
with respect to its congruence covers, Theorem 1.1 follows.

As we’ve seen, Heegaard genera and degrees of towers of covers provide impor-
tant information and have strong connections with various things like Property t,
but, unfortunately, little has been known about these in general [Lackenby 2006;
Long et al. 2008]. Here, we construct towers of finite covers of hyperbolic 3-
manifolds with increasing Heegaard genera. While we do not show that the infi-
mal Heegaard gradient is positive, we do give quantitative lower bounds for the
Heegaard genus in terms of the degree of the cover. More precisely, we prove the
following statement.

Theorem 1.2. Let M be a closed hyperbolic 3-manifold and € > 0 any (small)
number. Then there exists a tower of finite congruence covers

o> My —> o> My > M

1
such that the Heegaard genus of each M; is at least [ (M) : my(M;)]5€. If M is
arithmetic, we can improve the exponent % —€to % — €.

For the arithmetic noncompact case, we get a similar result to the above arith-
metic closed case.

Theorem 1.3. For a given arithmetic noncompact hyperbolic 3-manifold M and
any € > 0, there exists a tower of finite congruence covers

e M —> o> My > M

such that the Heegaard genus of M; is at least > [ (M) : ; (M,-)]%_e.

Although these results are weaker than Theorem 1.1 in the arithmetic case,
our proofs involve different methods. In particular they use the result of Bach-
man, Cooper, and White about the relation between the injectivity radius and the
Heegaard genus of a hyperbolic 3-manifold (see Theorem 2.1 and Corollary 2.2).
Later, in Section 8, we analyze the limitations of these methods. It turns out that
methods qualitatively similar to our own cannot prove analogues of Theorem 1.2
and Theorem 1.3 with % — € and }1 — € replaced by x for any x > % The proofs
of Theorem 1.2 and Theorem 1.3 are similar in spirit but different in the details,
so we give them separately. In addition, we prove the following theorems using
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the tools in the proofs of Theorem 1.2 and Theorem 1.3; see Section 2 for the
definition of the lower injectivity radius, the principal congruence subgroup, and
the Hecke-type congruences subgroups.

Theorem 1.4. For a given closed hyperbolic 3-manifold M and for any € > 0,
there exist infinitely many congruence covers {M;} such that

¢ > [T(M) : w(M;)]5~€

holds for all i, where r; is the lower injectivity radius of M;. In addition, for any
x € M;, M; contains an embedded ball B, with center x and such that

vol B, > (vol M)~

If M is arithmetic, then we can improve the exponents % —e and % —€to }1 —e€ and

1 .
5 — €, respectively.

Theorem 1.5. For a given arithmetic noncompact hyperbolic 3-manifold M, let
M’ be a finite cover of M such that its fundamental group T is a subgroup of
a Bianchi group PSL,(0,), and let I be a square-free ideal of O, with no prime
factors from a fixed finite set of prime ideals which depends only on T''. Then the
following statements hold.

(i) For any € > 0, there exists d > 0 depending on € and T such that if M{,(I) is
a cover induced by a Hecke-type congruence subgroup T'((I) with

(I :To(D]>d,

M(’)(I ) contains an embedded ball B which satisfies

vol B > (vol My(1)) %_e.

(i) There exists d > 0 depending only on T such that if M| (1) is a cover induced
by a Hecke-type congruence subgroup T'{(I) with [T : T\(I)] > d, M{(I)
contains an embedded ball B which satisfies

vol B > c(vol M{(I))%.

(iii) There exists d > 0 depending only on T such that if M'(I) is a cover in-
duced by a principal congruence subgroup U (1) with [T : T/(I)] > d, M'(I)
contains an embedded ball B which satisfies

vol B > c(vol M/(I))%.

In fact, Theorem 1.5(iii) is shown in [Yeung 1994] with the better exponent 2/3
in a different way.
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Outline of the paper. In Section 2, we review some basic facts which we use in
the proofs. We prove Theorems 1.2 and 1.4 in Sections 3 and 4, and Theorem 1.3
in Sections 5 and 6. In Section 7, we show Theorem 1.5. Finally, in Section 8§ we
briefly analyze why our method falls short of proving Theorem 1.1.

2. Some background

2A. Congruence subgroups. Let I' be the fundamental group of a finite-volume
hyperbolic 3-manifold M as a subgroup of PSL,(C) (= SL,(C)/{£1}). Then, after
conjugating, we can assume that there exists an embedding

(2-1) p:I'— PSL,(0Oy),

where Oy is the S-integers of an algebraic number field K [Maclachlan and Reid
2003, Theorem 3.2.8] (taking S to be the multiplicative set of the denominators of
the generators of I'). Given an ideal Js in Oy, the principal congruence subgroup
of level Jg of the group I is the kernel of the natural reduction

(2-2) pys - T'— PSLy(Og/Js),

and is denoted by I'(Js). If Jg = Py... P, is a square free ideal of Og (so the P;
are distinct prime ideals of Og), then, by the Chinese remainder theorem, we have

SLy(Og/Js) =SLa(0s/Py) x --- x SLy(Og/P,).

Since
ISLy(Os/ P)| = N(P)(N*(P;) — 1)

for each prime ideal P;, where N(P;) is the norm of an ideal P; in Og, we get

-
(2-3) IPSLy(0s/Js)| = 5 [ [N(PYN*(P) — 1).
i=1
Clearly the degree [I" : I"(Jg)] is also bounded by the above number.
More generally, a congruence subgroup of T" is a subgroup of I' which contains

a principal congruence subgroup. Typical examples are the Hecke-type congruence
subgroups T'yg(Js) and I'1(Js), which are defined to be

FoUs)={r e o =(15 ")}

N ={reronm=(, 1)}

(52) m (o1)

where
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are the matrix representations of the elements in PSL,(0g/Js). These groups can
also be expressed more explicitly as

=25 <R (24) = (5 1) mos s} ien

=4 5) <[ (24)=+(4 ) moan]ien

where T is the inverse image of I in SL,(Oy).
Now we look at two simple cases where the map in (2-2) is surjective. First, for
a prime ideal P of Og, extend the map in (2-1) to

' — PSL,(Kp)
where K p is the P-adic local field. Then this restricts to a map
2-4) I' — PSL,(Op)
where Op is the unique p-adic integers of K p. If we consider the reduction map
(2-5) I' = PSLy(Op/m0p)

of (2-4) where 7O p is the unique maximal ideal of Op, it is clear that the map in
(2-5) is actually the same as the one in (2-2) when Jg = P. According to [Long
and Reid 1998], this map in (2-5) is surjective for almost all prime ideals P such
that P is a prime ideal factor of a rational prime that splits completely in Og. A
second case where (2-2) is surjective comes when I" is a subgroup of a Bianchi
group, that is, ' C PSL,(Og) where Ok is the ring of integers of an imaginary
quadratic number field K. Under this assumption, by the strong approximation
theorem [Weisfeiler 1984], I" is dense in PSL,(0p) for almost all prime ideals P.
If we define a natural map

(2-6) ¢ :PSL2(0p) — PSLo(Op/70p),

then, using the fact that I" is dense in PSL,(0p), we can get the surjection
2-7) I' > PSL,(0p)/ker ¢.

As Op/mOp is isomorphic to Ox / POk, (2-6) and (2-7) give the surjective map
(2-8) I' - PSL,(0k / POk).

These examples are particularly important because in these cases it is possible to
calculate the indices of the various congruence subgroups explicitly. For example,
if Is = Py ... P, is a square free ideal of Og such that the maps I' — PSL,(0s/P;)
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are surjective for all prime ideals P;, the index of I'/ I'(Ig) is given by (2-3). Fur-
thermore, under the same assumption, it can be shown that

(2-9) [:To(Dl= []NP)+1)
1

and

(2-10) [C:T(D]=3 [Py —1)

i=1
(see [Miyake 1989, Chapter 4] for details).

2B. Injectivity radius. The injectivity radius of a Riemannian manifold M at a
point x € M, inj, (M), is the largest radius for which the exponential map at x
is a diffeomorphism. The upper injectivity radius, inj(M), is the supremum of
inj, (M) as x varies over M, and the lower injectivity radius, inj(M), is the infimum
of inj, (M) as x varies over M. In particular, when M is ?yperbolic, the upper
injectivity radius of M is equal to

(2-11) Tsup{mings/ ger (dis (x, g(x))) : x € H*}

where I' is the fundamental group of M. Moreover if M is closed, the lower
injectivity radius of M has the same value as half of the shortest length of a closed
geodesic of M.

Bachman, Cooper, and White proved the following theorem, which provides
an important method for bounding the Heegaard genus in terms of the injectivity
radius.

Theorem 2.1 [Bachman et al. 2004]. If M is a closed hyperbolic 3-manifold and
r=inj(M),
Heegaard genus of M > % coshr.
Although the above theorem was proved for closed manifolds, using Dehn filling
we can extend the theorem as follows (see [Rubinstein 2005] for a similar result).

Corollary 2.2. The above inequality holds for finite-volume noncompact hyper-
bolic 3-manifolds.

Proof. A finite-volume noncompact hyperbolic 3-manifold M can be approximated
as a geometric limit of closed manifolds, that is, M = lim M,, where {M,} are
closed manifolds obtained by Dehn filling. If we define g (respectively g,) to be
the Heegaard genus of M (respectively M,,), the inequality g > g, is true for all n
because Dehn filling never increases the Heegaard genus. Let r (respectively r;,)
be the upper injectivity radius of M (respectively M,,). Then there exists an € > 0
such that the e-thick part M o) of M has the same upper injectivity radius as M.
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Moreover, we can choose a uniform € > 0 so that this is true for all M,,. Because
M(e o) 1s approximately isometric to M¢ o) as 1 — 00, we get r = limy, o0 7.
Now Corollary 2.2 follows from this, g > g,, and Theorem 2.1. O

The above theorem and corollary will be applied to calculate lower bounds for
Heegaard genera as we mentioned in Section 1. Specifically, we use inj(M) in the

proof of Theorem 1.2 and inj(M) in the proof of Theorem 1.3.

2C. Closed geodesics. Next we quickly review closed geodesics. A closed geo-
desic of a hyperbolic 3-manifold is always induced by a hyperbolic element of its
fundamental group as an invariant axis. We can detect its length by the trace value
of the corresponding hyperbolic element [Maclachlan and Reid 2003, Chapter 11].
Concerning the asymptotic number of closed geodesics of a given closed hyper-
bolic 3-manifold M as a function of length, we have the following nice formula:

Prime geodesic theorem [Margulis 1969]. For a closed hyperbolic 3-manifold M,
the number of primitive elements of length less than or equal to l is asymptotic to
e?!/21 as 1 goes to infinity.

Here a primitive element of I" is one that is not a nontrivial power of any element
in I'. If we denote by #(I/) the number of closed geodesics of length less than or
equal to [ in M, we can get the upper bound of #(I) using the prime geodesic
theorem.

Corollary 2.3. Suppose that M, T", and #(l) are the same as above. Then there
exists a constant ¢’ depending only on T such that

#() < c'e?.

Proof. Put #,;, (1) the number of primitive elements of length less than or equal to
[. Then, by the prime geodesic theorem, there exists d > 0 such that

e21

#prm (l) < T

for all [ > d. Since every hyperbolic element 4 € I' is of the form g™ where g is a
primitive element in I" and m € N, we have

(o.¢]
(2-12) #O =D #om(/ ).
i=1
Let s be the length of a shortest geodesic of M. Because #,m(I/i) =0fori > [I/s],
we can rewrite (2-12) as
00 11/s]
(2-13) #(D) =Y Hpm (/D) =Y H#orm(l/1).

i=1 i=1
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Clearly #pm(l/i) < #om(l). Thus, if [ > d, #ym(1/i) < €2 /1 for 1 <i < |1/s].
Combining this with (2-13), we get
2 B2
#l) < LU/s) 5 = <
for | > d. If we take ¢’ > 0 bigger than #(d) and 1/s, #(I) < ¢’¢* for all [ > 0. [J

2D. Number theory. Lastly we quote two important theorems from number theory
and deduce two corollaries of them.

Prime number theorem [Bateman and Diamond 2004]. Let 7w (x) be the number
of rational primes which are less than or equal to x. Then 7w (x) is asymptotic to
x/logx as x goes to infinity and we denote this by

mT(x) ~

X
logx’
In addition, this is equivalent to

0(x)~x,
where 6(x) =3_,_ logp.

Chebotarev’s density theorem [Narkiewicz 2004]. Let K/Q be a number field
and L be the Galois closure of K. If S| denotes the set of all primes of Z which
split completely over K, the following inequality holds.

MpeSiip=x}

lim inf
x—o0  #{p:p<x}

1
n
where n = [L : Q].

Corollary 2.4. With the same notations as in the above theorem, we can find a
subset S> of Sy such that
#HpeSip=x} 1

lim = -,
x> #pip<x}  n

that is,

lim T2 _ 1

x—>oo x/logx n’

where 1, (x) is the number of primes of S» which are less than or equal to x.
Furthermore, the above formulas are equivalent to

0
lim Sz(x) _ 1

x—>00 X n

k]

where 8s,(x) =3, . ,cs, 10g p-
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Proof. From
HpeSiip=x}

lim inf
x—oo  #{p:p=<x}

1
n’

the first result follows. The second argument can be deduced by copying the anal-
ogous steps of the proof of the equivalence of 7 (x) ~ x/logx and 6(x) ~ x; for
example, see [Bateman and Diamond 2004, Chapter 4]. O

Corollary 2.5. With the same notations as in Corollary 2.4, let py be the k-th
prime number in Sy and dy = p1 ... px. Then, for sufficiently large k, py+1 is less
than 2n log dy, so, for any sufficiently large natural number x, there exists a prime
number p € Sy such that p { x and p < 2nlog x.

Proof. This immediately follows from the definition of €g, (x) and the formula

0
lim S ()C) _ 1

X—00 X I’l'

3. Proof of Theorems 1.2 and 1.4

Throughout Sections 3 and 4, I" is the fundamental group of the closed hyperbolic
3-manifold M and I' is the inverse image of I' in SL,(Og). We also denote the
two inverse images of y € I' in " by +7.

Proof of Theorem 1.2. We start by sketching the key idea of the proof. For a
given closed geodesic of length less than or equal to /, using the facts that a closed
geodesic is always induced by a hyperbolic element and that #(/) is finite, we find
a prime ideal P (of Og) such that its principal congruence group I'(P) doesn’t
contain any hyperbolic elements of length less than or equal to /. Then, applying
Theorem 2.1 and formula (2-10), we calculate bounds for the Heegaard genus and
the index of I'(P). The next lemma, which we’ll prove in the next section, is
important for calculating these bounds.

Lemma 3.1. For w € T of hyperbolic length less than or equal to 1, there exists
a, B € Ok such that £tr& = +a /B and

IN(@£28)] < (C3)',
where C3 > 1 is a constant which depends only on I

The proof of the lemma is not difficult but it involves some preliminaries, so
we’ll prove it independently in Section 4. Here, using the lemma, we prove the
following claim.

Lemma 3.2. Forany d > 0, there exists a Hecke-type congruence subgroup I'1 (Ps)
such that [T : T'1(Ps)] > d and

(3-D Heegaard genus of M1(Ps) > [T : Ty (Pg)]s~¢/2,
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where M (Ps) is the cover induced by I'1(Ps) and € > 0 is any small number.

Proof. First, let [ > 0 be an arbitrary number and
{:l:trc?)l, +tra,..., j:trd)r(l)}

the set of traces of images in T of all hyperbolic elements of length less than
or equal to /. Then, by Corollary 2.3, r(l) < #(I) < ¢ e?! for some constant ¢’
which depends only on I"'. Now Lemma 3.1 implies that, for each i, we can find
o;, Bi € Og with +tr w; = do; /B; such that
r(l)
[ TN =281 ING@i +28) < (€3 P < (€37
i=1
Claim 3.3. Ifl — oo, r(l) — oo and
r()
[ JINGei =281 INe; +281)| — o0
i=1
Proof. Suppose
r()
[ ]INGai =280 N(es +280)]
i=1
is bounded as [ — oo. Pick a rational prime p such that p doesn’t divide the norm
of any generators of S and

r()
p> [ ING: =281 IN(; +28))]
i=1
for all /. If P is a prime factor of pOkg,

r(l)

(3-2) N(P) { H IN(a; —28:)| IN(et; +28)1,
i=1

so, for all i,

(3-3) o £2B; ¢ P = (o; £28)/Bi =trw; £2 ¢ Py = w; ¢ To(Ps),

where ['g(Ps) is a Hecke-type congruence subgroup of I'. This implies ['g(Ps)
doesn’t contain any elements of I', contradicting the fact that I'g(Ps) is a finite
index subgroup of T'. O

By the above claim and Corollary 2.5, if [ is sufficiently large, there exists a

prime p such that
r()

P INGs — 281 IN(; +28)],

i=1
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p splits completely over K, and

r)
/752l
p<2n 10g<]_[ IN(at; = 28)| IN(ex; +2,8,-)|) <2nlog(C3'),

i=1

where n is the degree of the Galois closure of K as was previously defined in
Section 2D. Define p(/) to be the smallest prime which satisfies the above condi-
tions for the given /. Then, by the same reasoning as in the proof of Claim 3.3, we
have p(l) - co as [ — oo.

Now let’s assume [ is sufficiently large so that p(/) doesn’t divide the norm of
any generators of S and any prime factor of p(/)Og gives a surjection in (2-2). Set
Pg to be one of the prime factors of p(l)Ogs, I'1(Ps) = a Hecke-type congruence
subgroup, and M;(Ps) = the corresponding cover of I'{(Ps). Since Ps satisfies
(3-2) and (3-3), the length of a shortest closed geodesic of I' (Ps) is bigger than [,
o)

Heegaard genus of M (Ps) > %el/z.

As N(Py) is equal to p(l), the degree [I" : "1 (Ps)] is less than

Hp)?
by (2-10), and thus,

Lp@)? < 1@n1og(CF'))? = 202 10g>(CF ") = 8n’(c'le?)? log? C5,
because p(l) < 2n log(C_%C/ley). Now it is easy to check that, for any € > 0,

12
C- = @n2(1e?) log? C3)5 /2

for sufficiently large /. This means
Heegaard genus of M;(Ps) > [I": Fl(ps)]%—eﬂ.

From the construction, it is clear that we can make M;(Ps) with arbitrary large
degree and Heegaard genus. U

Note that, in the proof of Lemma 3.2, we actually showed

t/2
(3-4) Heegaard genus of M/ (Ps) > eT > (%(N(PS))2)

1—e/2
where ¢ is the length of a shortest closed geodesic in M| (Ps).

Now we go back to the proof of Theorem 1.2. Let’s construct a tower of finite
covers of M. First, consider a Hecke congruence subgroup I'; (P;) of a prime ideal



154 BOGWANG JEON

Py of Og which satisfies the inequality (3-1) for a given € > 0. Next pick a prime
ideal P, (from Lemma 3.2) with N(P,) sufficiently large such that it satisfies

G (BN > (JNPLP)

If M(P,P,) (respectively M (P,)) denotes a corresponding manifold of a Hecke-
type congruence subgroup Iy (P P,) (respectively I';(P5)), the length of a short-
est closed geodesic in M1 (P; P,) is bigger than the length of a shortest geodesic
in M(P;), because I'1(P; P;) C I'1(P,). Thus, by (3-4), the Heegaard genus of
M (P P,) is at least 1

5—€/2

(3(N(P2)?)
Since the degree of I'{ (P P») is less than %(N(Pl P»))?, from (3-5), we get

1
Heegaard genus of M{(PP,) >[I : (P P)]8 ¢

By induction, for n > 2, let’s pick a prime ideal P,;; having sufficiently large
N(P,41) so that it satisfies

(LNP ) = (LNCP - Pasi)?) s

Define M (P; ... P,+1) to be the corresponding cover of the Hecke-type congru-
ence subgroup I'{ (P ... P,41). Then, by (2-10), the degree of I'1(P; ... Py41) i
less than %(N(Pl ... P)))?, but the Heegaard genus of M{(P; ... P,41) is at least

(LONP )2,

by the same reasoning as above. Hence

Heegaard genus of M{(Py ... P, 1) > [T :T((Py... P,,+1))]%_€.

Now, I'{(Py), I'1(P1 P,), ... gives a desired sequence of congruence covers for
Theorem 1.2. This completes the proof of Theorem 1.2 for the general case.

We now prove the arithmetic case. If M is arithmetic, then there exists a cover
M’ with fundamental group I'’ such that I'” is a subgroup of a maximal order of
a quaternion algebra; see [Maclachlan and Reid 2003, Chapter 8]. In this case, it
is proved in [Marklof 1996] that the number of distinct complex lengths of real
length less than or equal to / in M’ is bounded by c”e!, where ¢” is a constant
depending only on M’. Applying the bound c”¢’ instead of c’e?, we can check
that Lemma 3.2 and the above construction of a sequence of covers still hold for
M’ with the reduced exponents % —€/2 and % — €, instead of é —€/2, % — €,
respectively. In other words, for any € > 0, M’ has a sequence of congruence
covers {I';} such that

Heegaard genus of the cover induced by I'; > [T": I‘,-]%_6
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with arbitrarily large [I" : T';] for each i.

Using this, we show that M has the same property. For any € > 0, first pick ¢’ >0
that is smaller than € and construct a tower of Hecke-type congruence subgroups
{I"} of T"' that satisfies

[ :T/5 € > [T T3¢ = ([T : /][I : T)])a
and
Heegaard genus of the cover induced by '} > ([I": F;])%_G,
for each i. The existence of {I'/} is guaranteed by the earlier discussion. Clearly
{I'/} satisfies

1€

Heegaard genus of the cover induced by I'; > ([T : Fl{])‘11

This gives a desired tower of finite covers of M for the given €. ]

Proof of Theorem 1.4. Let € > 0 be fixed. In the proof of Lemma 3.2, we used the
fact that
1/2
= @ (1e?) log? C3)5 ¢/
holds for sufficiently large /. Changing the inequality slightly so that, for any given
0 <c) <m/2,if we write

(3-6) 2 > 8n2(c'1e¥)? log? C3)§~/2(> [ : Ty (Ps)]§ /)
and
(3-7) ciel > (vol M 8n2(c'le?)* log? C3)3 (> vol M(Ps)3 ),

the above inequalities are also true for all sufficiently large /. The volume of a
hyperbolic ball of radius r is

7 (sinh(2r) — 2r),

and it is bounded below by cje?”, when r is sufficiently large. Now the result
follows from this, (3-6), (3-7), and similar steps in the proof of Lemma 3.2. If M
is arithmetic, we can get the desired result by replacing the exponents % —€/21in
(3-6) and ‘l‘ — € in (3-7) with le —€/2 and % — €, respectively. O

4. Proof of Lemma 3.1

Let R be a finite set of generators of I'. The minimal word length of w € I" is
defined to be

min{ [1]+---+ |l :w=7y"...y* and 7y €Rforl<i <k}
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According to [Milnor 1968], since M is compact, the Cayley graph of I with
respect to R is quasi-isometric to its universal cover H3, so the minimal word length
of w is bounded by ¢'l, where [ is the length of w and ¢’ is a positive constant which
depends only on I'.

Let G be the finite set of Galois embeddings of the number field K in C, and

Ci =max{1, max{|o(a)| : a is an entry of +p forany y € R, 0 € G}}.

Note that, for any y € R, the constant C; is also an upper bound for the absolute
values of all Galois conjugates of all the entries of 7!, since the determinant of
y is equal to 1. The following claim is important in the proof of Lemma 3.1.

Claim 4.1. If k > 0 is the minimal word length of w € T" with respect to the gener-
ating set R, and

i&):i(“” ‘Uz)eﬁ,
w3 w4

where w; € Og, then |o (w})| is bounded by Zk*IC’ffor all jando € G.

Proof. We induct on k. First, the case where kK =1 is clear. Suppose k£ > 2 and the

claim is true for all i <k — 1. Since k > 2, w has one of the forms y ' or y_la)’,

where @’ has word length k — 1 and y € R. We will prove only the case w = y o’
because the other case is similar. If

A ab ar ] )
:I:y_:|:<cd> and :I:w_:l:(wg )

then

j:c?):j:(a b)(a)’l wé)zi(aw’lanwg aw’z—l—wa)
c d/\ o ) co| +doy cob+dw) )’

Focusing on the upper left entry of +@, we have
4-1) lo (aw] + bw3)| < |o(a)] o (@)] +lo(c)||o(@3)].
Since
o (@), lo ()| <25 2C)!
for all o € G by induction, we get
o ()| < @20 + @i he) =24 ¢}
for all o € G. The same estimate holds for the other entries of . O

Proof of Lemma 3.1. Let w € I have length at most / as stated in the lemma. By
Claim 4.1, o (£ tr &)| is bounded by 2¢/~1C¢" 2¢1=1 ¢S = 2¢1C¢" forall o € G.
Since R is a finite set, we can find a common denominator 8’ € Ok of all the entries
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of images of elements of R in SL;(Oy). That is, there exists 8’ € Ok such that, for
any y € R, £y can be represented in the form

i(al/ﬁ/ 062/,3/>
az/B’ as/B' )
where the «; € Og depend on y. If we put

C> =max{lo(B)|:0 € G},

then, as @ has word length at most ¢/, we get «, B € O such that tré& = +a/B
and |0 (B)| is bounded by Cg/l for all 0 € G. Since

lo (@ £2p8)| = |o(tro) 2| |o(B)I,
|o (e =28)| is bounded by
Qs +2)cs! = 2010 +2¢5 <22C,Cy)¢!
for all o € G. Because
N(a £28) < (max{lo (@ £28)|: 0 € GH™,
where m = [K : Q], we get
N(x +28) <2(2C,Cy)<™.

Since [ is the hyperbolic length of a closed manifold M, it is bounded below by
the length s of the shortest closed geodesic. Now it is straightforward to check that
there exists C3 > 1 such that

(C3)! > 2(2C,Cy)™™
foralll >s. ]

5. A technical lemma for Theorem 1.3

Now we embark on the proof of Theorem 1.3. The key idea of the proof is simpler
than that of Theorem 1.2. We’ll show that in the arithmetic noncompact case, the
upper injectivity radius of a Hecke-type congruence subgroup is always bounded
by a function of its degree. First, recall that if M is an arithmetic noncompact
manifold, it has a finite cover M’ such that its fundamental group I'” is a subgroup
of a Bianchi group PSL;,(0,) where O, is an imaginary quadratic number field
[Maclachlan and Reid 2003, Chapter 8]. The following lemma will provide a way
to get a lower bound of upper injectivity radii of the congruence subgroups of I''.
Although the hypotheses of the lemma may seem artificial, they are satisfied for the
congruence subgroups (of I'’) under consideration, as we explain after the proof.
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Lemma 5.1. Let T be a subgroup of PSLy(C) where every element that fixes
00 € aﬂ-l]go is parabolic. Suppose there are positive constants C| and C; so that

(¢ h)er

does not fix 0o, the entry c satisfies |c| > Cy;

(a) when

(b) when y is a nontrivial element which fixes 0o, and is therefore of the form
(1)
01/

Then there exists ¢ € H? such that, for every nontrivial element y € T,

the entry b satisfies |b| > Cj.

coshds ( (£, ¢) = sz.

Proof. Throughout the proof, we will be working in the upper-half space model.
Let ¢ = tj, where t = (C»/C1)"/? and j represents the vertical axis. It will be
shown that ¢ has the desired property. By well-known formulas [Matsuzaki and

C

bd +act® +1tj
e +d|?

we have
y() =

and

_ lv@©—¢P
(D) coshdyp(v(©).§) =550 s + ]

_ |y(c)—c|2|c¢+d|2le
212

|(bd + act> +t§) —tjlcc +d|°
- 212|c¢ +d|?

|bd +aér? +1j(1 — |c¢ +dP)|’
- 212|cc +d|?

|bd +aét?|> (1 —|cc +d|»)?
= 212|ct +d)? 2ct +dJ?

+1

+1

First, consider case (a). Since c¢ = ct j, we get |c¢ +d|*> > t?|c|?. Clearly (5-1)
is bigger than |c¢ + d|?/2 so that it is bounded below by 312C} = CC,/2, and
coshdys (Y (¢), ¢) is as well.
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Second, consider case (b). In this case, we can rewrite coshdys (¥ (¢), ¢) as

2
% + 1.
Obviously this is bounded below by
[T
227 2
Now we apply the above lemma to congruence subgroups of I''. First, let ' (1)
be a Hecke-type congruence subgroup of I', and

= (2 ) erion

O

where [ is an ideal of O,,. By the definition of the Hecke-type congruence subgroup,
we have ¢ € I, so N(¢) = |c|?> > N(I) (when ¢ # 0). Clearly |b| = 1 if b # 0. Fur-
thermore, if y fixes oo (so ¢ =0), |a+d| <2, since a and d are conjugates of each
other and both are units in the ring of integers in an imaginary quadratic number
field. Therefore I'((/) satisfies all the conditions of the lemma. Thus there exists
¢ € H? such that cosh dy3 (v (¢), ¢) is bounded below by %N(I)l/2 for all nontrivial
y € I{(I). By a similar method, for a Hecke-type congruence subgroup I'| (1)
(respectively principal congruence subgroup I'' (1)), we get that cosh dy (¥ (¢), ¢)
is bounded below by %N(I Y172 (respectively %N(l )) for all nontrivial y € I} (1)
(respectively I''(1)).

6. Proof of Theorem 1.3

Proof. If P is a prime ideal of 0,, and Mé(P) is a congruence cover of M’ induced
by a Hecke-type congruence subgroup I'((P) of I/, the upper injectivity radius
inj(M{(P)) is bigger than

(6-1) Lcosh™ ' (AN(P)?),
by Lemma 5.1 and the observation at the end of Section 5. From

cosh” x = 1(cosh(2x) + 1),

cosh(% coshfl(x)) =,/ )%1 > \/g

for x > 1. Combining this with Corollary 2.2 and (6-1), we have

we get

(6-2) Heegaard genus of M(P) > N(f)4
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Assuming N([7) is sufficiently large, the map in (2-8) is surjective, so, by the for-
mula given in (2-9), the degree

[[:TH(P)] = :T'|[I" : T)(P)]

is equal to d(N(P) + 1), where d = [I" : I'']. Furthermore, for any € > 0, we can
easily check that

1
N(P)a i
% > (d(N(P) + 1))+~
holds for sufficiently large N(P). Thus we conclude that
Heegaard genus of M{(P) > ([T : I‘{)(P)])%_6

with sufficiently large N(P).
For a given € > 0, let Py, P,, ... be a sequence of prime ideals of 0, such that
each M (P;) satisfies the condition

> (d(N(P)) + 1))3 .

N(P)3
4

If we put I'; =T'((P; ... P;) and M; = cover of M' induced by T';,

N(P; ... P)t

Heegaard genus of M; > 1 )

by the same method we used to get (6-2). Since

RO 0T - @N e + 1) NGB + 1)

by assumption, the inequality

Heegaard genus of M; > (d(N(Py))+1)...(N(P;) + 1))%_6

follows for all i. Now the sequence {I';} is the desired one for Theorem 1.3. [

7. Proof of Theorem 1.5

Proof. Throughout the proof we suppose that / is a square-free ideal that is not
divisible by any of the prime ideals for which the map in (2-8) is not surjective.
Under this assumption, we apply the explicit formulas (2-3), (2-9), and (2-10).

(i) As we saw in the proof of Theorem 1.3, the cover M (1) contains a ball B of
radius greater than or equal to 1 cosh™' (AN(7)!/?) > 0. Since

/32 _
cosh™! % =In %
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when x > 2 and cosh_l(x/Z) >0, we get

Feosh™ (IN(D?) = § 1n SEEESEO=E > (N - 1)

for N(/) > 4. The volume of a hyperbolic ball of radius r is
 (sinh(2r) —2r),

so, for r sufficiently large, it is bounded below by a constant multiple of ¢>”. This
means that the volume of B is greater than a constant multiple of (N2 =1) —
N(7)'/2 — 1 with sufficiently large N(7). For convenience, we will simply assume
that the volume of B is bounded below by a constant multiple of N(/)!/2.

Let I = P1P,... P such that P; are distinct prime ideals and N(P;) = p?’,
where p; are rational primes and n; = 1 or 2 depending on P;. By the formula in
(2-9), the degree of M| is equal to (p}' + 1)(p5> +1)...(ps* + 1). Now, for any
€ > 0 and ¢ > 0, the inequality

1 7 1
(P} 5 P> (P + DR+ D) . (p + 1)

ny _nz

holds for sufficiently large N(/) = p|'p,* ... ps?, because

1 . 1
LR 1)6( = >2
pr+ne P +1

goes to infinity as p; increases. Part (i) is proved.

(i) Because I'| (1) C T'((I), the cover M{(I) (induced by I'| (1)) also has a ball B
of radius at least % In(N(1)'/2 = 1) for N(I) > 4. As we checked in (i), the volume
of this ball is greater than the constant multiple of N(7)!/? for sufficiently large
N(I). Since the degree of I'| (1) is less than %N(I )2, the statement in (ii) follows.

(iii) By the discussion at the end of Section 5,

coshdy (v (¢), ¢) = AN(I)

for a principal congruence subgroup I''(7) and any nontrivial y € I''(1). Following
the same way as in (i), we can prove that the cover M’ (I) (induced by I'’(1)) con-
tains a ball B of volume bounded below by a constant multiple of N(/). Because
the degree of M’ (1) is less than %N(l )3, we arrive at the desired conclusion. [J

8. Final comments

8A. Inthe proof of Theorem 1.2, we picked the prime number p using Lemma 3.2.
But we can choose a different prime directly from Lemma 3.1. By Lemma 3.1 (with
the same notations as in Section 3), for every w € I' of length less than or equal to /,
there exist o, 8 € Ok suchthattro=ca/B and N(a£28) < Cé. If we select a prime
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p1 which is bigger than C é and smaller than 2C é, then, for a prime ideal factor P,
of p10g, a Hecke-type congruence subgroup I'; (P;) does not contain any element
of length less than or equal to /, because N(P;) ¢ ]—[f(:l)1 IN(o; —28;)| IN(o; +28;)]
and the same reasoning as in the proof of Claim 3.3. Now, applying Chebotarev’s
density theorem, pick a prime number p| such that p| splits completely in Og and
p1 < p} <3pi. Since p| also satisfies p} J(]—[lr(:l)1 IN(o; — 28| IN(at; +28;)| for
any prime factor P| of p|O, a Hecke-type congruence subgroup I'; (P|) does not
contain any element of length less than or equal to /. Hence we get
/2
Heegaard genus of the cover corresponding to 'y (P}) > e
and, from (2-10),
Degree of 'y (P]) < %(p’l)2 < %(6Cé)2,

because pj < 3p1, p1 <2C§, and N(P)) = p!.

However the problem in this case is that we don’t know exactly how big the
constant C3z is. In particular, the constant Csz strongly depends on I'. Thus the
result coming from the above line of reasoning is weaker than the result obtained
using Lemma 3.2, which is universally independent of I".

8B. The reader might wonder why we chose to work with the Hecke-type subgroup
I'1 (P) instead of the principal congruence subgroup I'(P) in Theorem 1.2. In fact,
using T'(P) gives Degree!/!1>~¢ as a lower bound of the Heegaard genus of the
induced cover. Although, for a given [, I'(P) allows us to take a smaller upper
bound on N(P), it doesn’t offset the increase of the degree. More precisely, if a
hyperbolic element w is contained in I'(P), we have tr® = +2 € P? (compare to
the case tr&o = +2 € P when w € I'1(P)) so that we can pick a rational prime
p with a loosened condition p® { [T'Y) IN(a; — 28| IN(a; +2:)], rather than
AT IN(oi —28:)| IN(; +26:)], in the argument after Claim 3.3. By slightly
changing the proof of Corollary 2.5, it is not difficult to see that, for sufficiently
large x, there exists a prime number p € S, such that p? { x and p < nlogx
(compare to the case 2n log x of I'j(P)). But, as we can check from the proof of
Theorem 1.2, nlog x doesn’t improve the result that much. On the contrary, since
the degree of I'(P) has a cube power of N(P) as one of its term, the lower bound
of the Heegaard genus of the cover decreases from Degree'/8~¢ to Degree!/!>—¢.

8C. Now we heuristically explore the limits of Theorem 2.1. For a given closed
hyperbolic 3-manifold M, first find the maximum upper injectivity radius of M.
If r =inj(M) and B(r) is a hyperbolic ball of radius » embedded in M, then, by

assuming
vol M = vol B(r),
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one can calculate the largest possible value of r. Since
vol M = vol B(r) ~ me*,

for sufficiently large values of vol M, it follows that

1. volM
r'\uzln .
T

For the convenience of calculation, we simply assume r = % In(vol M /7). Apply-
ing this value of r to Theorem 2.1, we have

1
W

In conclusion, % is the largest value for the exponent of vol M in Theorem 1.2
that we can get using Theorem 2.1. Recalling Theorem 1.1, we can say that
Theorem 2.1 would have to be improved substantially in the arithmetic case to
give an alternative proof of Theorem 1.1.

Heegaard genus of M > (vol M )%.
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