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RATIONAL SEIFERT SURFACES
IN SEIFERT FIBERED SPACES

JOAN E. LICATA AND JOSHUA M. SABLOFF

Rationally null-homologous links in Seifert fibered spaces may be repre-
sented combinatorially via labeled diagrams. We introduce an additional
condition on a labeled link diagram and prove that it is equivalent to the
existence of a rational Seifert surface for the link. In the case when this con-
dition is satisfied, we generalize Seifert’s algorithm to explicitly construct a
rational Seifert surface for any rationally null-homologous link. As an appli-
cation of the techniques developed in the paper, we derive closed formulae
for the rational Thurston–Bennequin and rotation numbers of a rationally
null-homologous Legendrian knot in a contact Seifert fibered space.

1. Introduction

This paper studies rationally null-homologous links in Seifert fibered spaces, with
the goal of extending techniques from classical knot theory to a more general
setting. Previous work in this vein includes Gilmer’s [1993] signatures for ra-
tionally null-homologous links and Calegari and Gordon’s [2009] classification of
knots with small rational genus. More generally, recent work on the Berge con-
jecture has shown that the study of rationally null-homologous links is important
for understanding Dehn surgery questions; see, for example, [Hedden 2011; Baker
et al. 2008]. Rationally null-homologous knots are also interesting in a contact
geometric setting. For example, Baker and Etnyre [2012] generalized the defini-
tion of classical invariants for Legendrian knots to the case of rational homology
three-spheres and classified rational Legendrian unknots, and Cornwell [2012] has
studied Bennequin-type inequalities in lens spaces. Our interest in this topic was
also prompted by contact geometry [Licata and Sabloff 2010], but we hope the
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techniques developed in this paper will find applications within the wider context
of link theory in rational homology three-spheres.

Just as a link in R3 is often studied via the combinatorics of its planar projection,
we consider the projection of a link in a Seifert fibered space to its two-dimensional
orbifold base. As we show in Section 2A, labeling this projection with some ancil-
lary data permits the topological type of the link to be recovered. Turaev initiated
this “shadow” approach in the case of links in an S1 bundle over a surface, and the
extension to S1 bundles over orbifolds answers a question of his [Turaev 1992].

After discussing labeled link diagrams, we will introduce two further combina-
torial objects: a formal rational Seifert surface is an assignment of an integer to
each complementary component of the labeled link projection, while a compatible
fiber distribution is an assignment of integers to each quadrant around each double
point of a labeled diagram. The precise definitions are given in Section 3 and allow
us to state the following theorems:

Theorem 1.1. If L is rationally null-homologous in a Seifert fibered space, then
any labeled diagram for L admits a formal rational Seifert surface with a compat-
ible fiber distribution.

Theorem 1.2. If a labeled diagram for L admits a formal rational Seifert surface
with a compatible fiber distribution, then L bounds a rational Seifert surface in M.

It is clear that L bounding a rational Seifert surface implies that L is rationally
null-homologous; thus, these two theorems also show that the existence of a formal
rational Seifert surface with a compatible fiber distribution is equivalent to the
geometric condition that L is rationally null-homologous.

A key construction in this paper is a generalization of Seifert’s algorithm for
links in R3 to rationally null-homologous links in Seifert fibered spaces. This
algorithm, which provides the proof of Theorem 1.2, explicitly constructs a rational
Seifert surface in M from the given combinatorial data. The algorithm is described
in Section 4.

In the final section, we turn our attention to the special case of a Legendrian knot
in a Seifert fibered space equipped with a transverse, S1-invariant contact structure.
(This setting was studied in more detail in [Licata and Sabloff 2010].) As an ap-
plication of the algorithm defined in Section 4, we compute the rational classical
invariants of a Legendrian knot from its labeled diagram; this result generalizes the
familiar formulae for classical invariants in the standard contact R3.

Proposition 1.3. Let K be a rationally null-homologous Legendrian knot in a con-
tact Seifert fibered space. The rational rotation number of K may be computed di-
rectly from a formal rational Seifert surface, and the rational Thurston–Bennequin
number of K may be computed directly from a compatible fiber distribution.

See Proposition 5.1 for a more precise statement.
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2. Labeled diagrams

2A. Background. We view Seifert fibered spaces as S1 bundles over two-dimen-
sional orbifolds, following the notational conventions of [Lisca and Matić 2004;
Massot 2008].

Let 6′ be an orientable surface of genus g, possibly with boundary, with r + 1
discs removed from its interior. Orient the new components of ∂6′ as the boundary
of the missing disc, and let M ′ = 6′ × S1. The first homology groups of the
boundary tori of M ′ are generated by classes 〈mi , `i 〉, with

⋃
i mi = [∂6′×{pt}]

and `i = [{pt}× S1], oriented so that mi · `i = 1. This orients all the fibers in M .
For 1≤ i ≤ r , let αi and βi be relatively prime integers satisfying 0< βi < αi .

Glue a solid torus Wi to the i-th boundary component of M ′ so that the image of
a meridian represents the homology class αi mi +βi`i . To the remaining boundary
component, glue a solid torus so that the meridian is sent to a curve representing
the class of m0+ b`0. The fiber structure on the boundary of M ′ extends uniquely
to a fiber structure on the interior of the surgery solid tori, and the resulting iden-
tification space M is said to have Seifert invariants (g, b; (α1, β1), . . . , (αr , βr )).
Note if 6′ has boundary, then M has an S1-fibered boundary.

Every orientable Seifert fibered space with an orientable fiber space can be re-
alized via this construction; given two Seifert invariants, it is straightforward to
determine whether they correspond to the same Seifert fibered manifold [Orlik
1972]. The rational Euler number of a Seifert fibered space with Seifert invariants
(g, b; (α1, β1), . . . , (αr , βr )) is the rational number

e(M)=−b−
r∑

i=1

βi

αi
.

2B. Labeled diagrams. Let L be an oriented link in a Seifert fibered space M with
Seifert invariants (g, b; (α1, β1), . . . , (αr , βr )). We suppose throughout that L is
generic (everywhere transverse to the fibers and with transverse crossings), and we
let (6, 0L) denote the image of (M, L) under the quotient map π sending each
fiber to a point. To recover the isotopy class of L from this projection, we will use
a labeled diagram; this notion was introduced in [Sabloff 2003] and is similar to
Turaev’s notion of a shadow for a link in a circle bundle [Turaev 1992].

The fiber over a double point of 0L is separated by its intersections with L into
two oriented chords, and we systematically select a preferred chord at each crossing.
Near a crossing, there is a unique quadrant which is coherently and positively
oriented by L . Declare this quadrant and the opposite quadrant to be positive, and
declare the adjacent quadrants to be negative. When the oriented boundary of a
positive (respectively, negative) quadrant is lifted to segments of L connected by a
chord, the preferred chord is the one traversed positively (negatively).
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Given a region R in 6 \0L , let AR be the least common multiple of the orders of
the orbifold points (i.e., the αi ) in R; if R contains no orbifold points, set AR = 1.
Let SR be a compact surface with boundary, and let σR : SR→6 be an embedding
on its interior onto R. Consider the orbibundle σ ∗R M over SR . The subcurves of the
image of L in σ ∗R M which project to ∂SR may be concatenated with the preferred
chords over the corners to yield a closed curve L R in ∂σ ∗R M . Orient L R so that
the orientation induced on its projection to SR agrees with that of ∂SR . Let S̃R be
the AR-fold branched covering SR . Use the covering map to pull the bundle σ ∗R M
back to S̃R . This lifts L R to a closed 1-manifold L̃ R in an honest S1 bundle over
S̃R . From now on, we will deliberately conflate SR with R itself and refer to the
pullback bundles as MR over R and M̃R over R̃.

Let γ1 × · · · × γkR : S1 t · · · t S1→ S1 × ∂ R̃ denote the map whose image is
L̃ R . Choose a trivialization of S1 × R̃ and let ι : S1 × ∂ R̃ ↪→ S1 × R̃ denote the
inclusion. Finally, let p : S1× R̃→ S1 be projection to the first factor.

Definition 2.1. Given a region R, the defect n(R) of the region is

n(R)= 1
AR

kR∑
i=1

deg(p ◦ ι ◦ γi ).

It is immediate from the definition that n(R)= 0 if and only if the (multi)curve
L̃ R bounds a section of the S1 bundle. In fact, this implies that the defect is inde-
pendent of the chosen trivialization.

It follows from this definition that the defect is additive on regions. When R
contains no orbifold points, then the defect n(R) is an integer; in general, the defect
contains information about the Euler number of MR .

Lemma 2.2. The difference between the defect n(R) and the Euler number e(MR)

is an integer: n(R)− e(MR) ∈ Z.

Proof. Recall that each exceptional fiber F ′ can be viewed as the core of a solid
torus where Dehn surgery was performed on some regular fiber F . Let K be a
loop bounding a meridional disc in a regular neighborhood of F . After performing
(α, β) surgery, K intersects a meridian of the surgered torus−β times, so the defect
of the region bounded by K is −β/α.

Now let K1, . . . , Kl be small loops in R around the l exceptional fibers in MR .
The multicurve ∂R ∪ (⋃ Ki

)
bounds a region with no orbifold points, and hence

has an integral defect d . Since the defect is additive, we see that

n(R)= d −
l∑

i=1

βi

αi
= d ′+ e(MR)

for some d ′ ∈ Z. �
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Figure 1. Labeled Reidemeister moves.

We say that a diagram (6, 0L) is labeled when it is decorated with a defect in
each region and with the fiber invariants associated to each orbifold point. Abusing
notation, we will refer to both the projection and the labeled diagram by 0L . Iso-
topy of the link changes the labeled diagram in one of several ways. Figure 1 shows
labeled Reidemeister moves for links in a Seifert fibered space; these correspond
to isotopies of L in the complement of the exceptional fibers. When a strand of L
passes through an exceptional fiber of type (α, β) the labeled diagram changes by
a teardrop move which wraps 0 around the orbifold point α times. See Figure 2.

In order to label the new regions created by a teardrop, we assume that the
isotopy occurs in an arbitrarily small neighborhood of the exceptional fiber. The
defect is therefore completely determined by the preferred chords at the new cross-
ings. We may choose a local metric on the solid torus over the neighborhood of an
orbifold point so that each regular fiber has length 1 and the exceptional fiber has
length 1/α. With such a choice, the chords created by the teardrop have lengths in
the set {1/α, 2/α, . . . (α− 1)/α}.

The defect of a region is the signed sum of the lengths of the chords assigned to
its corners, where the sign is positive at coherent corners and negative otherwise.
Since the innermost region of the teardrop has a coherent corner, it follows from
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Figure 2. Labeled teardrop moves for α = 3. Left: Since the
defect of the innermost region is k/3 with k ≡ −1 modulo 3,
the length of the innermost chord is 2

3 . The defect of the next-
innermost region is an integer, so the length of the other preferred
chord satisfies −2− 2+ j ≡ 0 modulo 3. Right: The inner chord
has length 1

3 and the outer chord has length 2
3 .
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Lemma 2.2 that the defect of this region is (α − β)/α. The defects of the other
regions are determined by the signs of the corners and the requirement that the
defect of any region not containing an orbifold point is integral.

We say that two labeled diagrams are equivalent if they differ only by sequence
of surface isotopies in 6, labeled Reidemeister moves, or labeled teardrop moves.
The discussion above, together with the classical Reidemeister theorem, establishes
the following lemma:

Lemma 2.3. If two generic links in M are isotopic, then their labeled diagrams
are equivalent.

Remark 2.4. Although it is possible to define an inverse for the teardrop move, we
present it as unidirectional; passing the innermost strand of the teardrop back across
the fiber introduces a second teardrop, and a sequence of Reidemeister II moves
returns a projection isotopic to the original one. See Figure 3 for an example.

Figure 3. Composing two teardrop moves with Reidemeister II
moves (through the shaded regions) returns a diagram isotopic to
the original.

Next, we define a diagram move that preserves 0 but alters the defects of a pair
of adjacent regions. Following Turaev, we say fiber fusion is the operation that
replaces an oriented segment of L with a segment that has the same projection but
travels once around the fiber.

We define an action of H1(6) on the set of oriented generic links L(M) as
follows: let γ be a generic simple closed curve on 6 that represents a class [γ ] ∈
H1(6); in particular, we assume that γ intersects π(L) transversely in finitely
many points and misses the double points of π(L) and the orbifold points of 6.
Construct the link γ · L by performing fiber fusion on L in a neighborhood of each
point of γ ∩π(L), where the sign of intersection dictates the sign of the fusion.

Lemma 2.5. The isotopy type of the link γ ·L depends only on the class [γ ]∈H1(6).

Proof. The proof is the same as that in [Turaev 1992]. �

We note that the labeled diagrams associated to L and to γ · L have the same
defects; this follows from the fact that for each region R, the closed loop γ in-
tersects ∂R zero times algebraically. Consequently, a labeled diagram of genus
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greater than zero cannot determine an isotopy class of link. We show next that
each labeled diagram corresponds to an equivalence class of links related by this
H1(6) action.

Let α = (α1, α2, . . . αk) be a list of the orders of the orbifold points on 6. Pick
a list β = (β1, β2, . . . βk) such that (αi , βi ) are relatively prime and 1 ≤ βi < αi .
Let D(6, q, α, β) denote the set of labeled diagrams whose defects sum to q and
satisfy Lemma 2.2 in each region.

Theorem 2.6. Let M be a Seifert fibered space with exceptional fiber invariants
{(αi , βi )}. There is a bijective correspondence between the set D(6, e(M), α, β),
up to equivalence, and the set L(M), up to isotopy and the action of H1(6).

In the absence of exceptional fibers, we note that this result follows from a
theorem of Turaev which establishes a bijection between his “shadow links” and
isotopy classes of links in M , up to the action of H1(6). To see the theorem in
this special case, we describe a bijection between labeled diagrams and shadow
links. Let R be a region of 6 \0 with p(R) positive corners and q(R) negative
corners with respect to the preferred chords. In the notation of [Turaev 1992],
α = 2n(R)− p(R)+q(R) and β = p(R)+q(R). It follows that the “gleam” of R
is p(R)− n(R).

Proof of Theorem 2.6. As a first step, we show for a given labeled diagram in
D(6, e(M), α, β), one may always find a link L realizing this diagram.

Fix a labeled diagram (6, 0) ∈D(6, e(M), α, β). One may easily find a link L
in M which projects to 0, and by Lemma 2.2, the defect of any region will differ
from the Euler number of the bundle over that region by an integer. We induct on
the number of crossings to show that L may be modified so that its defect in each
region agrees with the given label. For the base case, consider a diagram consisting
of a collection of disjoint embedded circles. Selecting an arbitrary component of
6 \0 to be “outermost” defines a partial order on the components of 0 by counting
the minimal intersection number with 0 of an arc connecting a point on the chosen
component to a point in the outermost region. Perform fiber fusions on the curves
of L which project to the boundary of any innermost region in order to adjust its
defect to the given label. Proceed outward, region by region. Upon reaching the
outermost region, there will be no free edges available for fiber fusion, but since
each fusion operation preserves the sum of the labels, the defect of the outermost
region will automatically agree with the given label.

Now suppose that for any labeled diagram with fewer than n crossings, we can
find a link L⊂M whose defects agree with the labels. Let (6,0)∈D(6,e(M),α,β)
have n crossings. Resolve one crossing so as to preserve the orientation of 0 and
apply the inductive hypothesis to construct a link L ′ whose defects agree with the
labels. Replacing the crossing either preserves the number of regions, in which
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Figure 4. Given a labeled diagram (1), resolve a crossing of
(6, 0) in order to apply the inductive hypothesis (2). Replace
the crossing (3), noting that x + y = a+ c. Finally, perform fiber
fusions to L ′ until its defects are as desired (4, 5).

case we are done, or splits one region into two pieces. In the latter case, Figure 4
indicates how to perform fiber fusions to construct the desired L .

As in [Turaev 1992], the remainder of the proof of Theorem 2.6 follows from two
further steps. The first step shows that any two isotopy classes of links which corre-
spond to the same labeled diagram are related by the action of H1(6). The second
step establishes that two generic links corresponding to equivalent labeled diagrams
are related by a sequence of fiber fusions and isotopies. Turaev’s arguments apply
with little modification to both cases; in the second case, we additionally note that
any teardrop move on labeled diagrams can be realized by a local isotopy of the
link across an exceptional fiber. �

3. Combinatorics for rational Seifert Surfaces

In this section, we develop a combinatorial description of a rational Seifert surface
for a rationally null-homologous link L . The description has the form of two
decorations of the labeled diagram 0L of L: a “formal rational Seifert surface”
and a compatible “fiber distribution”. The two decorations will be used in the next
section to describe a generalization of the Seifert algorithm.

3A. Two decorations of labeled diagrams. A surface in a Seifert fibered space
is said to be horizontal if it is everywhere transverse to the fibers; we relax this
condition slightly and consider rational Seifert surfaces which are transverse ex-
cept near fibers over double points of 0. The idea of the first decoration is that
any such surface assigns a multiplicity to each region R. Conversely, we may
characterize the sets of multiplicities on 6 which are induced by such a surface
using the following combinatorial object:

Definition 3.1. A formal rational Seifert surface m of order r is an assignment of
an integral multiplicity m(R j ) to each region R j of 6\0 that satisfies the following
conditions.

(1) The least common multiple AR j of the orders of the orbifold points in R j

divides m(R j ).
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(2) If Rk and Rl share an edge oriented as ∂Rk , then

m(Rk)−m(Rl)= r.

(3) Summing over all regions,∑
j

m(R j )n(R j )= 0.

A formal rational Seifert surface may be viewed as a secondary labeling on a link
diagram, and we introduce a tertiary labeling as well. Let x i

j denote a corner of the
region R j at the i-th crossing. (It is possible for a single region to fill more than one
corner at a given crossing, but for notational convenience, we avoid introducing a
third index to distinguish them.)

Definition 3.2. Given a formal rational Seifert surface m for a labeled diagram 0,
a fiber distribution compatible with m is an assignment f of integers f (x i

j ) to the
corners of regions of 6 \0 which satisfies the following properties:

(1) For each region R j with corners x i
j for i ∈ CR = {i1, . . . , ikR },

m(R j )n(R j )+
∑
i∈CR

f (x i
j )= 0.

(2) For each crossing labeled i with incident regions R j1, . . . , R j4 ,
4∑

k=1

f (x i
jk )= 0.

Rational formal Seifert surfaces and their fiber distributions are best understood
in terms of a special cell decomposition of M , which is constructed in Section 3B.
As motivation, however, one may view the rational formal Seifert surface as de-
scribing how a surface interacts with the base orbifold 6, whereas a fiber distribu-
tion captures its interaction with the bundle structure of M .

Example 3.3. The figure shows a labeled diagram for a knot in L(5, 2), together
with a rational formal Seifert surface and fiber distribution.

−1

−1

2

−1

m = 1

m = 6 m = −4

f = 1

f = 3

f = 0

f = −4

Figure 5. A labeled diagram for K ⊂ L(5, 2), together with a
formal rational Seifert surface and a compatible fiber distribution.



208 JOAN E. LICATA AND JOSHUA M. SABLOFF

We will use this example to illustrate the generalized Seifert algorithm in Section 4.

3B. A cell decomposition for M. In this section, we construct a cell decomposi-
tion of M using data from the link L . We begin by enlarging the graph 0L so
that each complementary region is homeomorphic to a disc and contains at most
one orbifold point. If a region has nontrivial topology or contains more than one
orbifold point, subdivide it using a collection of arcs 00 ⊂6 whose endpoints lie
on 0L ; let 0̄ denote the graph 0L ∪00. Lift the arcs of 00 to arcs L0 in M whose
endpoints lie on L . The link L , the arcs L0, and the fibers over each vertex of 0̄
form a 1-complex in M .

The 2-cells of M are of two types. First, for each edge e of 0̄, let De be the
preimage of e in M , thought of as a disc whose boundary consists of the fibers
over the ends of the edge, together with two oppositely oriented copies of the
corresponding segment of L ∪ L0. Refer to this type of cell as vertical. Second,
for each region R of 6 \ 0̄, we construct the regional cell DR as follows. De-
note the fibers over double points in ∂R by {Fi }. The lifted curve L R satisfies
[AR L R−∑ bi Fi ] = 0 ∈ H1(M) for any bi such that

∑
bi = ARn(R). The 1-chain

AR L R −∑ bi Fi bounds a disc in MR , and we include this as the 2-cell DR .
The remainder of M consists of 3-balls that come from removing a meridian

disc from the solid torus over each region of 0̄.

3C. Proof of Theorem 1.1. Recall the statement of Theorem 1.1:

If L is rationally null-homologous in a Seifert fibered space, then any labeled
diagram for L admits a formal rational Seifert surface with a compatible fiber
distribution.

Proof. Suppose that L is rationally null-homologous with order r . The link L
has an obvious representative (which we shall also call L) as a 1-chain in the cell
decomposition described above. Hence, there exists a 2-chain S such that ∂S = r L .
For each region R j ∈ 6 \ 0̄, let c j denote the coefficient of D j in S. Assign the
multiplicity m(R j ) to be c j AR j .

We begin by verifying condition (1) of Definition 3.1. It is clearly satisfied on
disc components of6\0̄. Now suppose that R1 and R2 in6\0̄ are separated by the
edge e0 ∈ 00. The assumption that ∂S = r L implies that this edge has multiplicity
0 in ∂S, so m(R1) = m(R2). This shows that the multiplicities are well-defined
on components of 6 \ 0L . Since α j | m(R j ) for j = 1, 2 and m(R1) = m(R2),
condition (1) is satisfied on R1 ∪ R2, and an inductive argument shows that it holds
for all components of 6 \0L .

Adding a vertical 2-cell to a chain does not change the coefficient of any edge of
L in the boundary 1-chain. Each edge of L appears r times in ∂S, so the difference in
multiplicities between the two adjoining regional cells is r , establishing condition (2).
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Finally, we show that condition (3) of Definition 3.1 holds. By construction,
the boundary of each regional cell consists of AR j L R j and −AR j n(R j ) copies of
the fiber. Thus the total number of copies of the fiber coming from regional 2-
cells is

∑
j −m(R j )n(R j ). The addition of any vertical 2-cell preserves this sum,

and the assumption that ∂S = r L implies that the copies of the fiber must cancel
algebraically:

∑
j m(R j )n(R j )= 0.

To construct a compatible fiber distribution f , consider a quadrant x i
j of a cross-

ing i lying in the region R j . Suppose that this quadrant lies to the right of the
oriented edges E(x i

j ) of 0̄; note that this set may be empty and has at most two
elements. We then define f (x i

j ) to be

f (x i
j )=−c j bi +

∑
e∈E(x i

j )

εe fe,

where the integer bi comes from the construction of the regional cell DR j , fe is
the coefficient of the vertical cell De in S, and εe = ±1 is positive if and only if
the head of e is incident to the double point i .

Condition (1) of Definition 3.2 now follows from two facts. First, observe that
c j
∑

bi = c j AR j n(R j ) = m(R j )n(R j ). Second, note that each edge with R j on
its right contributes fe to the sum associated to the quadrant at its head and − fe to
the sum associated to the quadrant at its foot; thus, the contributions coming from
the vertical 2-cells cancel around any given region. Condition (2) holds because∑4

k=1 f (x i
jk ) is the coefficient of the fiber over the double point i in ∂S, but we

know that ∂S = r L , and hence this coefficient must vanish. �

Remark 3.4. One may show that every formal rational Seifert surface admits
a compatible fiber distribution, a fact which permits a stronger formulation of
Theorem 1.2. The proof is by induction on the number of double points of 0,
and we leave the details to the reader.

4. Seifert algorithm for links in S1 orbifold bundles

Given a formal rational Seifert surface m and a fiber distribution f for a rationally
null-homologous link of order r , we construct a rational Seifert surface of the
same order. The classical Seifert algorithm for links in R3 proceeds in three steps:
first, one resolves the crossings in a projection of the link to obtain a collection
of Seifert circles in the plane. Second, one views the Seifert circles as bounding
disjoint embedded disks. Finally, the Seifert disks are connected by twisted bands
at the crossings. The generalized algorithm for a link in a Seifert fibered space
parallels the classical algorithm. As a first step, we let Di denote a neighborhood
of the i-th double point of 0 and let Ui = π−1(Di ). We use m and f to resolve the
link into circles in M \⋃Ui (Section 4A). Next, we view these resolved circles
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as bounding embedded surfaces in M \Ui (Section 4B). Finally, we extend these
surfaces across the solid tori Ui (Section 4C). We begin by establishing notation
which will be useful throughout the algorithm.

For each double point of 0, parametrize the neighborhood Di as a unit disc and
let C i

t denote the S1 bundle over the circle of radius t . Dropping the superscript
when the crossing is obvious, we split the torus C1 into annuli denoted AI , AII,
AIII, and AIV according to the corresponding quadrants of 6; see Figure 6.

N

m1 L
m2

I

II

III

IV

Figure 6. Left: The disc Di near a double point of 0. Center:
S in a neighborhood of L away from a double point. Right: A
cross-section of N between regions with multiplicities m1 and m2,
where m1−m2 = r .

Let L0 be the arcs constructed in Section 3B. Near L ∪ L0 but away from the
double points of 0̄, the local behavior of any rational Seifert surface is dictated by
the multiplicities of the adjacent regions; note that the multiplicities on regions of
0 induce multiplicities on the regions of 0̄. Let N be a regular neighborhood of
L ∪ L0, and suppose that the projection of a segment of L ∪ L0 separates regions
with multiplicities m1 and m2. In this case, the rational Seifert surface S intersects
∂N mi times on each side. Correspondingly, to each side of a cross section of N
we draw mi parallel, transversely oriented lines. The endpoints of these lines trace
out mi parallel curve segments on ∂N as the cross-section varies; see Figure 6.

4A. Resolution into Seifert circles. The first step of the construction replaces L
with a collection of circles. Remove the interior of N and the fibered solid tori Ui

from M . As described above, the portions of ∂N away from the Ui and neighbor-
hoods of the intersection points L ∩ L0 are decorated with collections of parallel
curves. Near the intersection points L ∩ L0, we simply join the endpoints of corre-
sponding parallel curves. Near the solid tori Ui , we will use m and f to construct
a pattern of curves on C i

1 which connect the endpoints of the parallel curves.
Fix a crossing, and for convenience, cut the corresponding solid torus along a

meridional disc so that C1 becomes a cylinder composed of four rectangles still
labeled I, II, III, and IV. Orienting each rectangle as if viewed from t > 1, decorate
it with a pattern of multicurves as shown in Figure 7. Each curve is decorated with
an arrow indicating its transverse orientation and by an integer weight indicating its
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| f |

|m|−| f |
m

ǫ f

|m|−ǫ f

ǫ f < 0 f = 0 ǫ f > 0

Figure 7. The local models for f > 0. The circles on the side
edges are the intersections between C1 and N . Changing the sign
of f reverses the arrows. The sign of the formal rational Seifert
surface incident to C1 is labeled by ε.

I

II

III

IV

Figure 8. The intersection pattern on C1 for the unique crossing
in the knot from Example 3.3.

multiplicity. Reversing the arrow changes the sign of this weight. By construction,
the endpoints of these curves can be glued to the endpoints of the curves on ∂N .

The resulting pattern of curves on ∂
(
N ∪ (⋃i Ui

))
will serve as our Seifert

circles. Before proceeding, we note the following:

Lemma 4.1. The sum of the algebraic intersection numbers of the pattern curves
with the meridian of C1 is zero around each double point.

Proof. This follows from condition (2) of Definition 3.2. �
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4B. Surfaces bounded by Seifert circles. We begin the second step by construct-
ing surfaces in M \ (N ∪ (⋃i Ui

))
bounded by the Seifert circles.

Condition (1) of Definition 3.2 implies that all m(R)/AR Seifert circles over
the boundary of a given region R are null-homologous and hence bound horizontal
embedded discs in MR . By construction, the signed intersection number of each
curve pattern with ∂N ∩C1 is r ; see Figure 6.

To complete this step, we extend this surface over the cylinders N ∩ (M \⋃Ui
)
.

There are two cases to consider If the multiplicities of the adjoining regions have
the same sign, then we extend the embeddings of the surfaces as in Figure 9, left,
for an appropriate choice of k, l ≥ 0. In particular, if the regions in question are
separated by an edge of π(L0), then the multiplicities of the adjacent regions are
the same and we use k+l=m− in the figure. If, on the other hand, the multiplicities
of the adjoining regions have opposite signs, then the extension is as in Figure 9,
right; in this case, there is no choice to make.

k

m+

l

m− m+ m−

Figure 9. The extension of the rational Seifert surface across N if
the multiplicities of the adjoining regions have the same sign (left)
and if they have opposite signs (right).

4C. Extending across solid tori over crossings. We have now constructed a sur-
face in the complement of the crossing tori Ui . In this section, we extend the surface
across each Ui by describing how it intersects a collection of concentric cylinders
Ct of decreasing radius. Modifications to the intersection pattern describe changes
in the surface. In addition to surface isotopy of the curves, we allow the following
three primitive moves:

Finger moves. In the complement of Ct ∩ N , we may replace a curve segment
adjacent to Ct ∩ ∂N with a pair of curves ending on Ct ∩ ∂N ; these intersections
will have opposite signs. This move preserves the topology of the surface, but
pushes it locally into the neighborhood of L . See Figure 10.

Capping a circle. Any embedded circle may be removed from the intersection
pattern. This corresponds to capping off the corresponding component of S ∩Ct0
with a disc embedded in the solid torus defined by t < t0.
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Figure 10. Left: a finger move breaks a curve in the complement
of Ct ∩ N into two pieces; this corresponds to pushing the surface
into N . Right: an oriented saddle resolution.

Saddle moves. We may perform a saddle resolution between two curves with oppo-
site transverse orientations. This corresponds to reducing the Euler characteristic
of the surface by 1.

We will also make use of two consequences of these three moves.

Cancellation of parallel strands. Two oppositely oriented adjacent parallel strands
between components of N ∩Ct may be removed. See Figure 11.

Reconfiguration in N. Any two configurations that appear in Figure 9 are related
by a sequence of saddle moves. See Figure 11.

We now begin to extend the surface S across the solid torus Ui . Isotope all
the intersections of the Seifert circles with the meridian disc to the annulus AII.
Fixing these intersections, standardize the pattern of curves on Ct via isotopy, finger
moves, and cancellations of oppositely oriented parallel strands. Note that after
cancellation, the configurations inside N ∩Ct are again of the form in Figure 9.

Figure 11. Left: parallel strands with opposite orientations cancel.
Right: an oriented saddle move modifies the configuration inside N .
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Lemma 4.1 states that the algebraic intersection number of these curves with the
meridian is zero, and saddle resolutions between oppositely oriented curves reduce
the geometric intersection number to zero as well.

The resulting pattern may contain curves with both endpoints on the same com-
ponent of N ∩Ct ; these may be again be removed using sequences of the moves
above, especially capping circles.

As t → 0, the strands of L cross; this rotates a region containing two compo-
nents of N ∩Ct by π . Further finger moves, cancellations, and isotopies yield a
standard pattern consisting solely of horizontal curves. It is clear that these bound
a collection of discs, completing S. Note that reconfigurations inside N allow us to
match those configurations coming from opposite sides of the intersection of one
component of N ∩Ui . See Figure 12 for an example.

I II III IV

Figure 12. Continuing Example 3.3: a sequence of intersection
patterns for decreasing values of t .
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5. Legendrian invariants

In this section we use the use the generalized Seifert algorithm to compute the
rational classical invariants for a rationally null-homologous Legendrian knot from
a formal rational Seifert surface and fiber distribution.

5A. Contact Seifert fibered spaces. We will use the phrase contact Seifert fibered
space to denote an orientable Seifert fibered space over an orientable base, equipped
with a contact structure ξ transverse to the Seifert fibers. Such a contact structure
exists whenever the rational Euler number of a Seifert fibered space is negative
[Kamishima and Tsuboi 1991; Lisca and Matić 2004]. If we further specify a
contact form α for ξ with the property that its Reeb field points along the fibers (see
[Licata and Sabloff 2010]), then the defect defined in Section 2B can be interpreted
as an integral of the curvature form associated to α on the Reeb orbit space. We note
that the Legendrian condition precludes the Reidemeister I move of Section 2B.

A formal rational Seifert surface m and a compatible fiber distribution f may
be used to compute the rational classical invariants of a rationally null-homologous
Legendrian knot in a contact Seifert fibered space. We prove this using the rational
Seifert surfaces constructed in Section 4.

For each region R j ∈6 \0, let χorb(R j ) denote the orbifold Euler characteristic
of R j as a suborbifold of 6; recall that this quantity is defined to be

(5-1) χorb(R)= χ(R)+
r∑

j=1

(
1
α j
− 1

)
.

Let k j and l j denote the number of double points of 0 where R j fills one or three
quadrants, respectively. We restate Proposition 1.3 as follows:

Proposition 5.1. The rational classical invariants of a null-homologous Legen-
drian knot K maybe be computed from a formal rational Seifert surface m and a
compatible fiber distribution f using the following formulae:

rotQ(K )= 1
r

∑
regions R j

m(R j )
[
χorb(R j )+ 1

4(l j − k j )
]
,(5-2)

tbQ(K )= 1
r

∑
dble pts i

(−r − f i
II+ f i

IV).(5-3)

Here, f i∗ denotes the label assigned by the fiber distribution to the quadrant labeled
∗ at the i-th crossing.

The subsequent sections discuss these invariants and develop proofs of these
propositions.
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Example 5.2. The knot in Example 3.3 can be realized as a Legendrian knot whose
Lagrangian projection is shown in Figure 5. To see this, begin with the unknot with
maximal Thurston–Bennequin number in the standard contact S3. Performing 1
and 1

2 surgery on a pair of regular fibers yields the labeled diagram of Figure 5,
and the contact form may be extended across the surgery tori so that the induced
Reeb orbits are the Seifert fibers.

The results above show that this knot has rational rotation number

rotQ(K )= 1
5

[
6
( 1

4

)+ 1
( 1

2

)− 4
( 3

4

)]=− 1
5

and rational Thurston–Bennequin number

tbQ(K )= 1
5(−5− 3− 4)=− 12

5 .

5B. The rational rotation number. Baker and Etnyre [2012] defined the rational
rotation number of a rationally null-homologous knot by analogy with the classical
rotation number for a null-homologous knot. Let j : S ↪→ M be a rational Seifert
surface for K . Trivialize the pulled back contact bundle j∗ξ over S using a nonva-
nishing vector field v; since K is Legendrian, T K lies in the restriction of ξ to ∂S.
One may therefore define the winding number of j∗T K :

rotQ(K )= 1
r

windV ( j∗T K ).

To better understand a trivialization of j∗ξ , we will cut S along its intersec-
tion with the vertical tori ∂Ui . This creates a collection of disjoint surfaces with
boundary, denoted collectively by Ŝ; we compute the rotation of each component
individually and sum them to compute the rational rotation number of K . Note that
cutting introduces new segments to the boundary curves; although these could be
isotoped to be Legendrian, their contributions to the rotation will cancel under glu-
ing. We may therefore ignore these segments and compute only the contributions
to the rotation number of T (∂ Ŝ) by T K .

We begin by showing that the contribution of a component X of Ŝ lying in the
solid torus Ui to rotQ(K ) is zero. We may assume that the complex structure on
6 is chosen so that the arcs of 0 intersect the boundary of the neighborhood of
the double point orthogonally. Choosing the neighborhood of a fixed double point
small enough, we may trivialize T6 over the disc Di with vector fields {v, iv}
so that T K never coincides with the lines spanned by v and iv. Pull back this
trivialization to ξ |Ui , and then again to j∗ξ |X . With respect to this trivialization, it
is obvious that K ∩Ui contributes zero to the rotation number.

We now turn to the portions of S constructed from Seifert circles in Section 4B,
i.e., the components of j (S)∩ (MR \⋃Ui

)
. Recall that these components of Ŝ are

horizontal, and hence that we may identify T S and j∗ξ on these portions. The next
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lemma extends the existing trivialization of j∗ξ from j (S)∩ ∂Ui and describes the
contribution to rotQ(K ) coming from a single region R.

Lemma 5.3. Suppose that the region R has multiplicity m(R) in a formal rational
Seifert surface for K , and that k and l denote the number of double points in
∂R where R fills one and three quadrants, respectively. Then the contribution of
j (S)∩ (MR \

⋃
Ui
)

to rotQ(K ) is 1
r m(R)

[
χorb(R)+ 1

4(l − k)
]
.

Together with the discussion above, this lemma finishes the proof of the first
part of Proposition 5.1.

Proof of Lemma 5.3. As a consequence of trivializing ξ over the solid tori Ui ,
each truncated region may be replaced by the original region without affecting its
contribution to the rotation.

Let SR be a component of j (S)∩MR . Note that SR is an AR-fold branched cover
of R, branched over the orbifold points of R. We represent a trivialization of ξ |SR

by a nonvanishing vector field in T SR , and we use the Poincaré–Hopf theorem to
compute the winding number of T ∂SR with respect to this framing on the boundary.
Embed SR as a subsurface of a closed surface S̄R satisfying χ(S̄R) = χ(SR)+ 1.
Choose a vector field v on S̄R that extends the trivialization of ξ in the tori Ui and
which has the property that its unique critical point c lies in S̄R \ SR . Because SR

is a branched cover of R, we may use the Riemann–Hurwitz theorem to compute
the Euler characteristic of SR:

χ(SR)= AR

[
χ(R)+

r∑
i=1

( 1
αi
− 1

)]
.

The Poincaré–Hopf theorem implies that the index of v at the unique critical point c is

(5-4) indcv = 1+ AR

[
χ(R)+

r∑
i=1

( 1
αi
− 1

)]
.

We now compute the winding number of ∂SR as an embedded curve with corners
which encircles the singular point of the vector field (Figure 13). For simplicity,
consider the curve −∂SR (which bounds a neighborhood of the critical point pos-
itively). Identifying this neighborhood with a neighborhood of the origin in C,
and computing the winding number of the tangent to −∂SR with respect to the
translation-invariant page framing yields

(5-5) windpage(−∂SR)− AR

(k
4

)
+ AR

( l
4

)
= 1.

To convert the winding number with respect to the page framing to the winding
number with respect to v, subtract the index of c:

windv(−∂SR)= windpage(−∂SR)− indcv.
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α = 3 0

0

0

−1

4

Figure 13. Left: The boundary of the shaded region is oriented
as −∂R, with k = 1 and α = 3. Right: The boundary of a 3-
fold branched cover of R embedded on a sphere. In a neighbor-
hood of the index two critical point, windpage(−∂SR) = 7

4 and
windv(−∂SR)= −1

4 .

The Seifert surface is constructed locally using m(R)/AR copies of SR , so the
result follows from Equations (5-1), (5-4), and (5-5). �

5C. The rational Thurston–Bennequin number. In this final section, we use a
rational formal Seifert surface and a fiber distribution to compute the rational
Thurston–Bennequin invariant. Recall from [Baker and Etnyre 2012] that the ra-
tional Thurston–Bennequin number of a Legendrian knot K is defined to be the
rational linking number of K with a transverse push-off K ′ with respect to some
rational Seifert surface for K .

Since the fibers are transverse to the contact planes, we may take K ′ to be the
Legendrian push-off along the Reeb direction; we may think of K ′ as lying at
the bottom of ∂N . Away from the double points of 0, the conventions for how
a rational Seifert surface S interacts with N in Figure 6 imply that there will be
no intersection points. Thus, computing tbQ(K ) reduces to counting intersections
between S and K ′ in the solid tori over the double points of 0.

Proof of (5-3). As discussed above, it suffices to examine how the generalized
Seifert algorithm extends the Seifert surface S across a fibered neighborhood of a
double point of 0. The only interactions of S and K ′ will be when the generalized
Seifert algorithm uses finger moves to push S across the bottom of N . The sign
of these intersections may be computed combinatorially as in Figure 14. We need
to count (with sign) finger moves of S across the bottom of ∂N . It will be con-
venient to adopt the notation f∗ (respectively, m∗) to denote the value of the fiber
distribution (formal rational Seifert surface) on the quadrant (region) labeled ∗.

The first step in extending S requires sliding each intersection between the fiber
and the top edge of Ct into AII and then standardizing the resulting pattern. Isotope
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S
K

′

K

Figure 14. The intersection of K ′ with S for the finger move de-
picted here is positive. The sign of the intersection switches if the
central “•” is replaced by “×” or if the transverse orientation of S
is reversed.

the intersections from AIII and AIV to the left across discs where K is oriented to
point into the page, and isotope the intersections from AI to the right across a disc
where K is oriented to point out of the page. Figure 15 shows that moving all the
intersections and standardizing the resulting pattern contributes

2 fIV+ fIII+ fI

to the signed intersection number.

I II II III IV

Figure 15. Isotopy and standardization: The first step slides the
intersections of A∗ into AII, while the second standardizes the di-
agram via finger moves. In this case, f∗ > 0, so the contribution
from regions I and III is +1, while the contribution from region
IV is +2. If the sign of f∗ changes, so does the sign of the contri-
bution.
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Figure 16. Standardizing after the strands of K cross introduces
−mII+mIII intersections between K ′ and S.

Performing saddle moves to eliminate all the longitudinal curves in the pattern
does not change the intersection number. Furthermore, observe that the weight of
the curves intersecting each side of the N disc is preserved by the standardization
process.

When the strands of K cross, the two N discs on the edges of AII exchange
places. Standardizing the resulting pattern introduces an additional −mII+mIII =
−r intersections between S and K ′. Summing these with the previous intersections
and repeating the process at every solid torus yields the following formula for the
rational Thurston–Bennequin number:

tbQ(K )= 1
r

∑
i

(−r + f i
I + f i

III+ 2 f i
IV).

To make the formula more elegant, we repeat the same computation, but this
time isotope all the intersections to AIV instead. Counting intersections yields:

tbQ(K )= 1
r

∑
i

(−r − f i
III− f i

I − 2 f i
II).

We sum the two formulae for tbQ(K ) and divide by 2, which yields the desired
formula:

tbQ(K )= 1
r

∑
i

(−r − f i
II+ f i

IV). �
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