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Consider a nonparametric capillary or prescribed mean curvature surface
z= f (x) defined in a cylinder�×R over a two-dimensional region�whose
boundary has a corner at O with an opening angle of 2α. Suppose the con-
tact angle approaches limiting values γ1 and γ2 in (0, π) as O is approached
along each side of the opening angle. We will prove the nonconvex Concus–
Finn conjecture, determine the exact sizes of the radial limit fans of f at O

when (γ1, γ1) ∈ D±1 ∪ D±2 and discuss the continuity of the Gauss map.

1. Introduction

Let �⊂ R2 be a connected, open set. Consider the classical capillary problem in a
cylinder

N f = κ f + λ in �,(1)

T f · ν = cos γ (a.e.) on ∂�,(2)

and, more generally, the prescribed mean curvature problem in a cylinder

N f = H( · , f ( · )) in �,(3)

T f · ν = cos γ (a.e.) on ∂�,(4)

where T f = ∇ f/
√

1+ |∇ f |2, N f = ∇ · T f , ν is the exterior unit normal on
∂�, H(x, t) is a weakly increasing function of t for each x ∈ � and γ = γ (x)
is in [0, π]. We will let S f denote the closure in R3 of the graph of f over �.
When H(x, t)= κt + λ (i.e., f satisfies (1)–(2)) with κ and λ constants such that
κ ≥ 0, then the surface S f ∩ (�×R) represents the stationary liquid-gas interface
formed by an incompressible fluid in a vertical cylindrical tube with cross-section
� in a microgravity environment or in a downward-oriented gravitational field, the
subgraph U = {(x, t) ∈�×R : t < f (x)} represents the fluid filled portion of the
cylinder and γ (x) is the angle (within the fluid) at which the liquid-gas interface
meets the vertical cylinder at (x, f (x)); Paul Concus and Robert Finn have made
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fundamental contributions to the mathematical theory of capillary surfaces and have
discovered that capillary surfaces can behave in unexpected ways (cf. [Concus and
Finn 1996; Finn 1986; 1999; 2002b; 2002a]). For a function f ∈ C2(�), we let

En(X)= En f (X)= (∇ f (x),−1)√
1+|∇ f (x)|2 , X = (x, t) ∈�,

denote the downward unit normal to the graph of f ; when f is a solution of (1)–(2)
and κ ≥ 0, En represents the inward unit normal with respect to the fluid region. Of
interest here is the behavior of capillary surfaces and prescribed mean curvature
surfaces over domains � ⊂ R2 whose boundaries contain corners (e.g., [Concus
and Finn 1996; Finn 1996]).

Let us suppose O= (0, 0) ∈ ∂� and � is a connected, simply connected open
set in R2 such that ∂� \ {O} is a piecewise C1 curve, � has a corner of size
2α at O and the tangent cone to ∂� at O is L+ ∪ L−, where polar coordinates
relative to O are denoted by r and θ , L+ = {θ = α} and L− = {θ =−α}. We will
assume there exist δ∗ > 0, ρ∗ ∈ (0, 1] such that ∂+� = ∂�∩ B(O, δ∗)∩ T+ and
∂−�= ∂�∩B(O, δ∗)∩T− are connected, C1,ρ∗ arcs, where T+={x ∈R2 : x2≥ 0},
T− = {x ∈R2 : x2 ≤ 0} and B(O, ε)= {x ∈R2 : |x |< ε}; hence the tangent rays to
∂+� and ∂−� at O are L+ and L− respectively. Set �0 =�0(δ

∗)=�∩ B(O, δ∗).
Let γ+(s) and γ−(s) denote γ along the arcs ∂+�0 and ∂−�0, respectively, where
s = 0 corresponds to the point O; here we have parametrized ∂+�0 and ∂−�0 by,
for example, arclength s from O and write these parametrizations as x+ and x−
respectively. We will assume there exist γ1, γ2 ∈ (0, π) such that

(5) lim
∂+�3x→O

γ (x)= γ1 and lim
∂−�3x→O

γ (x)= γ2.

Suppose first that 2α ≤ π (i.e., the corner is convex or ∂� is C1 at O); such an
� is illustrated in Figure 1. Figure 2 can then be used to illustrate our knowledge

θ = α

θ = −α

∂−�

�

∂+�

Figure 1. � with 2α < π .
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Figure 2. The Concus–Finn rectangle for convex corners.

of the behavior of a solution f of (3)–(4) at the corner O; here let R, D±1 , D±2 be
the indicated open regions in the (open) square (0, π)× (0, π). If (γ1, γ2) is in
R ∩ (0, π)× (0, π), then f is continuous at O [Concus and Finn 1996, Theorem 1;
Lancaster and Siegel 1996b; 1996a, Corollary 4; Tam 1986]. If (γ1, γ2) ∈ D±1 , then
f is unbounded in any neighborhood of O and the capillary problem has no solution
if κ = 0 [Concus and Finn 1996; Finn 1996]. If (γ1, γ2) ∈ D±2 , then f is bounded
[Lancaster and Siegel 1996a, Proposition 1] but its continuity at O was unknown
until recently. Concus and Finn discovered bounded solutions of (1)–(2) in domains
with corners whose unit normals (i.e., Gauss maps) cannot extend continuously as
functions of x to a corner on the boundary of the domain [Finn 1988a, page 15;
1988b; 1996; Concus and Finn 1996, Example 2]. They formulated the conjecture
that the solution f of (1)–(2) must be discontinuous at O when (γ1, γ2) ∈ D±2 .
Writing the conditions required for a pair of angles to be in D±2 yields the following
formulation of their conjecture:

Concus–Finn conjecture. Suppose 0< α < π/2, that the limits (5) exist and 0<
γ1, γ2<π . If 2α+|γ1−γ2|>π , then any solution of (3)–(4), with H(x, z)= κz+λ,
κ ≥ 0, has a jump discontinuity at O.

This conjecture was proven for solutions of (3)–(4) (i.e., without the restriction
that H(x, z)= κz+ λ) in [Lancaster 2010].1

Thus, when 2α ≤ π , (γ1, γ2) ∈ D±2 , and f satisfies (3)–(4), f is discontinuous at
O and there is a countable set I⊂ (−α, α) such that the radial limit function of f at

1For convenience, we will abbreviate this reference as [L]. Similarly, [Lancaster and Siegel 1996a]
and [Lancaster and Siegel 1996b] will be abbreviated [LS a] and [LS b], respectively.
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Figure 3. � with 2α > π .

O, R f , defined by R f (α)= lim∂+�3x→O f (x), R f (−α)= lim∂−�3x→O f (x) and

(6) R f (θ)= lim
r↓0

f (r cos θ, r sin θ), −α < θ < α,

is well-defined and continuous on [−α, α] \I and behaves as in Proposition 1(i) of
[LS b]; if H(x, z) is strictly increasing in z [LS a, §5] or real-analytic [LS b] for x
in a neighborhood of O, then I=∅. (See [LS a], Step 3 of the proof of Theorem 1
and §5, and [LS b] regarding the sets I and cusp solutions.) We may assume for the
moment that (γ1, γ2) ∈ D+2 since the other case follows by interchanging x1 and
x2; then Theorems 1 and 2 of [LS a] and Proposition 1 and Theorem 1 of [LS b]
imply there is a countable set I⊂ [α1, α2] such that

R f is


constant on [α2, α],
strictly increasing on [α1, α2] \I,
constant on [−α, α1],

with α1 < α2, α−α2 ≥ γ1 and α1− (−α)≥ π − γ2. In fact, determining the exact
sizes of these radial limit fans when f is discontinuous at O follows easily from
[L]. (Notice that D±1 =∅ if 2α = π .)

Proposition 1.1. Let � be as above with 2α < π and f be a bounded solution
to (3)–(4). Suppose that (γ1, γ2) ∈ D±2 and that there exist constants γ ±, γ ±,
0< γ ± ≤ γ ± < π , satisfying

γ++ γ− > π − 2α and γ ++ γ − < 2α+π,

so that γ± ≤ γ±(s)≤ γ ± for all s, 0< s < s0, for some s0. Then R f (θ) exists for
θ ∈ [−α, α] \I and R f (θ) is a continuous function of θ ∈ [−α, α] \I, where I is
a countable subset of (−α, α).
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Case (I). If (γ1, γ2)∈ D+2 (i.e., γ1−γ2<2α−π ) then α1=−α+π−γ2, α2=α−γ1

and

R f is


constant on [α− γ1, α],
strictly increasing on [−α+ (π − γ2), α− γ1] \I,
constant on [−α,−α+ (π − γ2)],

where I is a countable subset of [−α+ (π − γ2), α− γ1].
Case (D). If (γ1, γ2)∈D−2 (i.e., γ1−γ2>π−2α) then α1=−α+γ2, α2=α−π+γ1

and

R f is


constant on [α− (π − γ1), α],
strictly decreasing on [−α+ γ2, α− (π − γ1)] \I,
constant on [−α,−α+ γ2],

where I is a countable subset of [−α+ γ2, α−π + γ1].
Proof. Using the information from [LS b] and [LS a] given above and assuming
(γ1, γ2) ∈ D+2 , we will argue by contradiction. Suppose that α2 < α− γ1. Let

�0 ⊂
{
(r cos θ, r sin θ) ∈� : r > 0, α2 < θ < α− γ1/2

}
.

be an open set whose boundary ∂�0 contains {θ = α − γ1/2} and is tangent to
{θ = α2} at O so that the appropriate analogue of [L, (43)] tends to zero. Then f is
continuous on � and, from Theorem 2.1 of [L], we obtain

lim
r↓0
En f
(
r cos(α− 1

2γ1), r sin(α− 1
2γ1)

)= (−sin(α− γ1), cos(α− γ1), 0
)
,(7)

lim
x→O

x∈∂�0\{θ=α− 1
2γ1}
En f (x)= (−sinα2, cosα2, 0).(8)

Notice that the limiting contact angles at O are 1
2γ1 (on θ = α− 1

2γ1) and π (on
θ = α2). Now, using Theorem 2.1 of [L], we see that the arguments in §3 of [L]
yield a contradiction to the assumption that α2 < α− γ1. (If γ2 = π were allowed
in Theorem 1.1 of [L], then a contradiction would follow immediately since 2α
= α−α2− 1

2γ1, |γ1− γ2| = π − 1
2γ1 and 2α+ |γ1− γ2| = π +α− γ1−α2 > π .)

In the case that α1 >−α+π − γ2 or (γ1, γ2) ∈ D−2 , the proof follows in a similar
manner. �

The focus of this note is to give a direct proof of the nonconvex Concus–Finn
conjecture and, when (γ1, γ1) ∈ D±1 ∪ D±2 , establish the exact sizes of radial limit
fans at reentrant corners and discuss the continuity of the Gauss map. We note that
Danzhu Shi assumes the (convex) Concus–Finn conjecture holds when γ1 ∈ {0, π}
or γ2 ∈ {0, π} and then, in her extremely interesting paper [Shi 2006], gives an
argument for the proof of the nonconvex Concus–Finn conjecture. Unfortunately,
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these cases (e.g., γ j ∈ {0, π}, j = 1, 2) are not covered in [L]. Our interest in proving
the nonconvex Concus–Finn conjecture arises from our need, when determining
the exact sizes of fans at reentrant corners, for the information developed during
its proof (e.g., analogs of Theorem 2.1 of [L]) and from a belief in the value of
presenting a proof which directly uses the ideas and techniques in [L].

2. The nonconvex Concus–Finn conjecture

The following theorem implies that the nonconvex Concus–Finn conjecture (cf.
[Shi 2006]) is true; the proof will be given in Section 2B.

Theorem 2.1. Let � and γ be as above with α ∈ [π2 , π]. Let

f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O})
be a bounded solution of (3)–(4) with

|H |∞ = sup
x∈�
|H(x, f (x))|<∞

for some δ > 0 and ρ ∈ (0, 1). Suppose (5) holds and γ1, γ2 ∈ (0, π). Then f is
discontinuous at O whenever |γ1− γ2|> 2α−π or |γ1+ γ2−π |> 2π − 2α (i.e.,
(γ1, γ2) ∈ D±1 ∪ D±2 ).

Throughout this section, we will consider f to be a fixed solution of (3)–(4) that
satisfies the hypotheses of this theorem. We may parametrize the graph of f as
in [LS a], using the unit disk E = {(u, v) : u2+ v2 < 1} as our parameter domain.
From Step 1 of the proof of Theorem 1 of [LS a] and §3 of [L], we see that there is
a parametric description X : E→ R3 of the closure S of S0 = {(x, f (x)) : x ∈�},

X (u, v)= (x(u, v), y(u, v), z(u, v)), (u, v) ∈ E,

such that:

(i) X ∈ C2(E : R3)∩W 1,2(E : R3).

(ii) X is a homeomorphism of E onto S0.

(iii) X maps ∂E onto {(x, f (x)) : x ∈ ∂�} ∪ ({O}× [z1, z2]), where

z1 = lim inf
�3x→O

f (x) and z2 = lim sup
�3x→O

f (x).

(iv) X is conformal on E : Xu · Xv = 0, |Xu| = |Xv| on E .

(v) Let H̃(u, v) = H(X (u, v)) denote the prescribed mean curvature of S f at
X (u, v). Then 4X := Xuu + Xvv = H̃ Xu × Xv.

(vi) X ∈ C0(E).
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Figure 4. The Concus–Finn rectangle for nonconvex corners.

(vii) Writing G(u, v) = (x(u, v), y(u, v)),G(cos t, sin t) moves clockwise about
∂� as t increases, 0≤ t ≤ 2π , and G is an orientation reversing homeomorphism
from E onto �; G maps E onto � and, if f is continuous at O, then G is a
homeomorphism from E onto �.

(viii) Let πS : S2→ C denote the stereographic projection from the North Pole and
define g(u+ iv)= πS(En f (G(u, v))), (u, v) ∈ E . Then

(9) |gζ̄ | = 1
2 |H̃ |(1+ |g|2)|Xu|,

where ζ = u + iv, ∂/∂ζ = 1
2

(
∂/∂u − i∂/∂v

)
and ∂/∂ζ̄ = 1

2

(
∂/∂u + i∂/∂v

)
. For

convenience when working with complex variables, set E1 = {ζ ∈ C : |ζ |< 1}.
(ix) The parametric Gauss map N : E → S2 is N = (Xu × Xv)/|Xu × Xv| and
satisfies N (u, v)= En f (G(u, v)), (u, v)∈ E ; the domain of N is taken as the largest
subset of E on which N extends continuously.

It is convenient to introduce some notation. Suppose V ⊂ R2 with O ∈ ∂V . For
t > 0, set Vt = {(x, y) ∈ V : x2+ y2 < t2}. Let s(V ) denote the set of sequences in
V that converge to O. If h ∈ C1(V ), we define 5h(V )=⋂t>0 Enh(Vt); then

5h(V )=
{
Y ∈ S2 : there exists (x j ) ∈ s(V ) such that Y = lim

j→∞
Enh(x j )

}
.

Without assuming that f is or is not continuous at O, we have:

Lemma 2.2. Let 3 be an open, connected, simply connected subset of � with O in
∂3 and suppose that there is a rotation M of R2 about O such that

{(M(y1, y2), y3) : Y ∈5 f (3)}
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is contained in a compact subset of {Y ∈ S2 : y2 > 0, y3 ≤ 0}. Let φ be a conformal
map from E to G−1(3) and define

(10) g̃(u+ iv)= πS(En f (G ◦φ(u, v))), (u, v) ∈ E .

Then there exists p > 2 such that

(11) g̃(ζ )= ψ(ζ )+ h(ζ ), ζ ∈ E1,

where ψ is a holomorphic function on E1 and h ∈ L∞(E1) is a Hölder continuous
function on E1 with Hölder exponent µ= (p− 2)/p.

Proof. In §3 of [L], the fact that the limits at O of the Gauss map are contained in a
compact subset of {Y ∈ S2 : y2 > 0, y3 ≤ 0} implies that (u, v) 7→ (z(u, v), x(u, v))
is quasiconformal and has a quasiconformal extension to R2; Gehring’s lemma and
the isothermal parametrization imply X ∈W 1,p for some p > 2 and the classical
literature implies g = ψ + h with ψ and h as above. We can argue as in §3 of [L];
we find that X ∈W 1,p(E : R3) for some p > 2 and

(12) g̃(ζ )= ψ(ζ )+ h(ζ ),

where ψ is a holomorphic function and h ∈ L∞(E1) is an uniformly Hölder contin-
uous function on E1 with Hölder exponent µ. �

Remark 2.3. Notice that g̃ = g ◦φ1, where φ1 is a conformal map from E1 onto
{u+ iv : (u, v) ∈ G−1(3)}.
2A. Image of the Gauss map. The (nonparametric) Gauss map on S f is the (down-
ward) unit normal map to S f when this is defined and equals En f on S f ∩ (�×R);
here we consider En f :�×R→ S2− by letting (x, t) 7→ En f (x). In this section, we char-
acterize in Theorems 2.4 and 2.5 the behavior of the limits at points of {O}×R of the
Gauss map for the graph of f when (γ1, γ2) /∈ R. Let S2−={ω∈R3 : |ω|=1, ω3≤0}
be the (closed) lower half of the unit sphere.

Theorem 2.4. Let 2α > π and � and γ be as in Section 1 and suppose (5) holds
with γ1, γ2 ∈ (0, π). Let β ∈ (−α, α) and (x j ) ∈ s(�) such that

(13) lim
j→∞

x j

|x j | = (cosβ, sinβ).

Let us write ω(θ)= (cos θ, sin θ, 0) for θ ∈ R.

(D+2 ) If (γ1, γ2) ∈ D+2 (i.e., γ1− γ2 < π − 2α) then

lim
j→∞
En f (x j )=


ω(α− γ1+ π

2 ) if β ∈ [α− γ1, α),
ω(β + π

2 ) if β ∈ [−α+ (π − γ2), α− γ1],
ω(−α− γ2+ 3π

2 ) if β ∈ (−α,−α+ (π − γ2)].
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(D−2 ) If (γ1, γ2) ∈ D−2 (i.e., γ1− γ2 > 2α−π ) then

lim
j→∞
En f (x j )=


ω(α+ γ1− 3π

2 ) if β ∈ [α+ γ1−π, α),
ω(β − π

2 ) if β ∈ [−α+ γ2, α+ γ1−π ],
ω(−α+ γ2− π

2 ) if β ∈ (−α,−α+ γ2].
Proof. Let us assume (γ1, γ2) ∈ D±2 . Let β ∈ (−α, α) and (x j ) be an arbitrary
sequence in � converging to O and satisfying (13). Since (En f (x j ) : j ∈ N) is a
sequence in the compact set S2−, there is a subsequence of (x j : j ∈N), still denoted
(x j : j ∈N), and θ ∈ (−π2 , 3π

2 ], τ ∈ [0, 1] such that (En f (x jk ) : k ∈N) is convergent
and

lim
k→∞
En f (x jk )= (τ cos θ, τ sin θ,−

√
1− τ 2).

Using [Jeffres and Lancaster 2008] and the techniques and arguments in §2 of
[L], we see that τ = 1, limk→∞ En f (x jk ) = ω(θ), and ω(θ) is normal to ∂P and
points into P, where ω(β) ∈ ∂P and P is given in Theorem 2.2 of [Jeffres and
Lancaster 2008]. (In §2 of [L], the function u(x)= f (x)−R f (β) is blown up about
(0, 0, 0); that is, the graphs of a subsequence of the sequence (u j ) in C2(�), where
u j is defined by u j (x)= ( f (ε j x)− R f (β))/ε j and ε j = |x j | for j ∈N, are shown
to converge to the intersection of �×R with a vertical plane π1. The (downward)
unit normal to π1 is shown to be normal to the vertical plane ∂P which contains
(cosβ, sinβ, 0) and point into P, where P satisfies Theorem 2.1 of [Jeffres and
Lancaster 2007].)

If (γ1, γ2) ∈ D+2 , then the conclusions of Theorem 2.4 follow from Corollary 2.4
of [Jeffres and Lancaster 2008]; Figure 5 illustrates the graph of the argument
of En(β) = limr↓0 En f (r cosβ, r sinβ). If (γ1, γ2) ∈ D−2 , then the conclusions of
Theorem 2.4 follow from Corollary 2.5 of [ibid.]. �

Suppose that α ∈ (π2 , π], γ1, γ2 ∈ (0, π) and γ1+ γ2 < 2α− π . Let us define
F= F(α, γ1, γ2) as follows: Set

F1 = [−α,−α− γ2+π ]× {−α− γ2−π/2},
F2 = [−α,−α+ γ2+π ]× {−α+ γ2−π/2},

F3 = [α− γ1−π, α]× {α− γ1− 3π/2},
F4 = [α+ γ1−π, α]× {α+ γ1− 3π/2},

F5 = {(β, β −π/2) : β ∈ [−α+ γ2, α+ γ1−π ]},
F6 = {(β, β − 3π/2) : β ∈ [−α+ γ2+π, α− γ1]},

F7 =
{
(β + t,−α+ γ2−π/2+ t) : β ∈ [−α+ γ2,−α+ γ2+π ]

t ∈ [0, 2α−π − γ1− γ2]
}
,

and define F=⋃7
j=1 F j = F1 ∪ · · · ∪F7 (see Figures 6, 7 and 8 for illustrations).
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Theorem 2.5. Let 2α > π and � and γ be as in Section 1 and suppose (5) holds
with γ1, γ2 ∈ (0, π). Let β ∈ (−α, α) and (x j ) ∈ s(V ) such that

(14) lim
j→∞

x j

|x j | = (cosβ, sinβ).

Continuing to write ω(θ)= (cos θ, sin θ, 0) for θ ∈ R, we see:

(i) Suppose (γ1, γ2) ∈ D+1 (i.e., γ1+ γ2 < 2α−π ), lim j→∞ En f (x j ) exists and

lim
j→∞
En f (x j )= ω(θ) for some θ ∈ R.

Then (β, θ) ∈ F.

(ii) Suppose (γ1, γ2) ∈ D−1 (i.e., γ1+ γ2 > 2α+π ), lim j→∞ En f (x j ) exists and

lim
j→∞
En f (x j )= ω(θ) for some θ ∈ R.

Then (−β, θ) ∈ F.

(iii) Connectedness at β: Suppose (γ1, γ2) ∈ D+1 and (x j ), (y j ) ∈ s(�) such that

lim
j→∞

x j

|x j | = lim
j→∞

y j

|y j | = (cosβ, sinβ),

lim
j→∞
En f (x j )= ω(θ1) and lim

j→∞
En f (x j )= ω(θ2),

for some θ1≤θ2 such that (β, θ1), (β, θ2)∈F. Then the set {θ ∈[θ1, θ2] : (β, θ)∈F}
must be connected.

(iv) Connectedness: Suppose (γ1, γ2) ∈ D+1 . Let β1, β2 ∈ (−α, α) with β1 ≤ β2.
Suppose (x j ), (y j ) ∈ s(�) such that

lim
j→∞

x j

|x j | = (cosβ1, sinβ1), lim
j→∞

y j

|y j | = (cosβ2, sinβ2),

lim
j→∞
En f (x j )= ω(θ1) and lim

j→∞
En f (x j )= ω(θ2),

for some θ1, θ2 such that (β1, θ1), (β2, θ2) ∈ F. Set L = [min{θ1, θ2},max{θ1, θ2}].
Then the set F∩ ([β1, β2]× L) must be connected.

Proof. The proof of Theorem 2.5 (i) and (ii) is essentially the same as that of
Theorem 2.4 with Corollaries 2.6 and 2.7 of [Jeffres and Lancaster 2008] replacing
Corollaries 2.4 and 2.5 respectively. Conclusion (iii) follows from (i) by standard
arguments (e.g., proof of Lemma 4.2). Conclusion (iv) follows from (i) by standard
arguments which take into account the specific geometry of F. �
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2B. Proof of Theorem 2.1. Assume (γ1, γ2) ∈ D±1 ∪ D±2 , f satisfies (3) in �
and (4) on B(O, δ∗)∩ ∂� \ {O} and f is continuous at O; then f is bounded in a
neighborhood of O. Since f is continuous at O, we have the following modifications
of (i)–(viii) in Section 2A:

(iii)′ X maps ∂E strictly monotonically onto {(x, f (x)) : x ∈ ∂�}.
(vi)′ X ∈ C0(E) and X (1, 0)= (0, 0, z0), where z0 = f (0, 0).

(vii)′ Continuing to write G(u, v)= (x(u, v), y(u, v)),G(cos t, sin t) moves clock-
wise about ∂� as t increases, 0 ≤ t ≤ 2π , and G is an orientation reversing
homeomorphism from E onto �.

We will prove Theorem 2.1 in the cases (γ1, γ2) ∈ D+2 and (γ1, γ2) ∈ D+1 ; this will
suffice to prove the lemma since the mapping

R3→ R3, (x1, x2, x3) 7→ (x1,−x2,−x3),

converts a D−2 corner into a D+2 corner and converts a D−1 corner into a D+1 corner.
Suppose (γ1, γ2) ∈ D+2 . Set θ1 = (π − (γ1+ γ2))/2 and let θ2 ∈ (α− γ1, α). By

choosing δ0 > 0 small, we may assume

�∗ = {(r cos θ, r sin θ) : 0< r < δ0, θ1 < θ < θ2} ⊂�.
Notice that Theorem 2.4 (D+2 ) implies

5 f (�
∗)= {(cos θ, sin θ, 0) : θ1+ 1

2π ≤ θ ≤ α− γ1+ 1
2π}.

Since α− γ1− θ1 = 1
2 (2α−π − γ1+ γ2) ∈ (2α−π, α)⊂ (0, π), the hypotheses

of Lemma 2.2 are satisfied (with M a rotation through an angle of π/2− α). If
φ is a conformal map from E onto G−1(�∗) which maps (1, 0) to (1, 0) and g̃ is
defined by (10), then Lemma 2.2 implies there exists p > 2 such that

(15) g̃(ζ )= ψ(ζ )+ h(ζ ),

where ψ is a holomorphic function and h ∈ L∞(E1) is a Hölder continuous function
on E1 with Hölder exponent µ= (p− 2)/p. The assumption that f is continuous
at O yields a contradiction as in §3 of [L] (i.e., the Phragmén–Lindelöf theorem is
violated).

Now suppose (γ1, γ2) ∈ D+1 . Let θ1 ∈ (−α,−α+ γ2) and θ2 ∈ (α− γ1, α) and
choose δ0 > 0 small enough that

�∗ = {(r cos θ, r sin θ) : 0< r < δ0, θ1 < θ < θ2} ⊂�.
Using Theorem 2.5, we see that

5 f (�
∗)⊂ {(cos θ, sin θ, 0) : β ∈ (−α, α), (β, θ) ∈ FL},
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where FL is one of the sets FA, FB or FC illustrated in Figures 9, 10 and 11
respectively. When FL is FA or FC , the proof is essentially that same as that above
for the case in which (γ1, γ2) ∈ D+2 . When FL is FB , the proof is essentially that
same as that in §3 of [L]. �
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3. The exact sizes of fans

We recall that a solution f ∈C2(�)∩C1,ρ(B(O, δ)∩�\{O}) of (3)–(4) is unbounded
if α < π/2 and (γ1, γ2) ∈ D±1 , for some δ > 0 and ρ ∈ (0, 1). The following lemma
justifies the definition of Em f : (−α, α)→ S2−, given by

Em f (β)= lim
j→∞
En f (x j ) whenever (x j ) ∈ s(�) with lim

j→∞
x j

|x j | = (cosβ, sinβ),

when (γ1, γ2) ∈ D±1 ∪ D±2 .

Lemma 3.1. Let � and γ be as in Section 1, with α ∈ [0, π]. For some ρ ∈ (0, 1)
and δ > 0, suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of
(3)–(4) with |H |∞ = supx∈� |H(x, f (x))|<∞. Suppose (5) holds, γ1, γ2 ∈ (0, π)
and (γ1, γ2) ∈ D±1 ∪ D±2 ; that is, either α ∈ [0, π2 ) and |γ1− γ2|> π − 2α holds or
α ∈ [π2 , π] and one of |γ1− γ2|> 2α−π or |γ1+ γ2−π |> 2π − 2α holds. Then
the Gauss map from S f to S2− is continuous on S f ∩ (�(ε)×R) for each ε > 0,
where �(ε) = {(r cos θ, r sin θ) ∈ � : r > 0, |θ | < α − ε}. In particular, Em f (β)

exists for all β ∈ (−α, α) and Em f ∈ C0((−α, α) : S2−).

Proof. Using Theorem 2.1 of [LS a] when α < π/2 and (γ1, γ2) ∈ D±2 and The-
orems 2.4 and 2.5 and the proof of Theorem 2.1 when α ≥ π/2 and (γ1, γ2) is
in D±1 ∪ D±2 , we see that the hypotheses of Lemma 2.2 are satisfied when ε > 0
and 3=�(ε). Therefore the restriction of the Gauss map to S f ∩ (�(ε)×R) is
continuous. �
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Figure 12. Radial limits: Side fans at a convex corner.

Now we wish to determine the exact sizes of the side fans (illustrated in Figure 12)
when (γ1, γ2) ∈ D±1 ∪ D±2 . From [LS a], Theorems 1 and 2, we know that if f is
discontinuous at O, then R f and the limits at O of the Gauss map behave in the
following ways; here I denotes a countable subset of the appropriate interval(s)
and ω(θ)= (cos θ, sin θ, 0) for θ ∈ R.

Case (I) R f is


constant on [α2, α],
strictly increasing on [α1, α2] \I,
constant on [−α, α1].

This case can only occur when (γ1, γ2) ∈ R ∪ D+2 ∪ D±1 . Theorem 2 of [LS a]
implies α2≤ α−γ1 and α1≥−α+π−γ2. If β ∈ (α1, α2) then Em f (β)=ω(β+ π

2 ).

Case (D) R f is


constant on [α2, α],
strictly decreasing on [α1, α2] \I,
constant on [−α, α1].
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This case can only occur when (γ1, γ2)∈ R∪D−2 ∪D±1 . Theorem 2 of [LS a] implies
α2 ≤ α−π + γ1 and α1 ≥−α+ γ2. If β ∈ (α1, α2), then Em f (β)= ω(β − π

2 ).

Case (DI) There exists θ0 ∈ (−α+ γ2, α− γ1−π) such that

R f is



constant on [α2, α],
strictly increasing on [θ0+π, α2] \I,
constant on [θ0, θ0+π ],
strictly decreasing on [α1, θ0] \I,
constant on [−α, α2].

This case can only occur when (γ1, γ2) ∈ D+1 . Theorem 2 of [LS a] implies α2 ≤
α− γ1 and α1 ≥−α+ γ2. If β ∈ (−α, α), then

Em f (β)=

ω(β + π

2 ) if β ∈ (θ0+π, α2),
ω(θ0− π

2 ) if β ∈ [θ0, θ0+π ],
ω(β − π

2 ) if β ∈ (α1, θ0).

Case (ID) There exists θ0 ∈ (−α+π − γ2, α+ γ1− 2π) such that

R f is



constant on [α2, α],
strictly decreasing on [θ0+π, α2] \I,
constant on [θ0, θ0+π ],
strictly increasing on [α1, θ0] \I,
constant on [−α, α1].

This case can only occur when (γ1, γ2) ∈ D−1 . Theorem 2 of [LS a] implies α2 ≤
α−π + γ1 and α1 ≥−α+π − γ2. If β ∈ (−α, α), then

Em f (β)=

ω(β − π

2 ) if β ∈ (θ0+π, α2),
ω(θ0+ π

2 ) if β ∈ [θ0, θ0+π ],
ω(β + π

2 ) if β ∈ (α1, θ0).

Theorem 3.2. Let� and γ be as in Section 1, with α ∈ [π2 , π]. For some ρ ∈ (0, 1)
and δ > 0, suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of
(3)–(4) with |H |∞<∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and (γ1, γ2)∈ D±1 ∪D±2 .
Then:

(i) In Case (I), α1 =−α+π − γ2 and α2 = α− γ1.

(ii) In Case (D), α1 =−α+ γ2 and α2 = α−π + γ1.

(iii) In Case (DI), α1 =−α+ γ2 and α2 = α− γ1.

(iv) In Case (ID), α1 =−α+π − γ2 and α2 = α−π + γ1.
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Proof. Suppose (γ1, γ2) ∈ D±2 ; the argument is the same when α < π/2 and when
α ≥ π/2. Let us assume (γ1, γ2) ∈ D+2 ; hence Case (I) holds. Then Figure 5
illustrates the conclusions of Theorem 2.1 of [L] and Theorem 2.4. Suppose there
exists α2 < α− γ1 (and α1 ≥−α+π − γ2) such that

R f is


constant on [α2, α],
strictly increasing on [α1, α2] \I,
constant on [−α, α1].

If we define

�′ = {(r cosβ, r sinβ) ∈� : 0< r < δ, α2 < β < π}

for δ > 0 sufficiently small, then f ∈ C0(�′) and we may apply the arguments in
the proof of Theorem 2.1, using �′ as our domain, to obtain a contradiction. If
α1 >−α+π − γ2, a similar argument yields a contradiction.

Now suppose (γ1, γ2) ∈ D+1 , Case (I) holds and there exist α2 < α − γ1 and
α1 ≥−α+π − γ2 such that

R f is


constant on [α2, α],
strictly increasing on [α1, α2] \I,
constant on [−α, α1].

Let θ1 ∈ (−α,−α1+π − γ2) and θ2 ∈ (α− γ1, α). By choosing δ0 > 0 small, we
may assume �∗ = {(r cos θ, r sin θ) : 0 < r < δ0, θ1 < θ < θ2} is a subset of �.
Set �′ = {(r cosβ, r sinβ) : 0< r < δ0, α2 < θ < θ2} and notice that f ∈ C0(�′).
Now Theorem 2.5, Lemma 3.1 and the fact that

lim
j→∞
En f (x j )= ω(β + π

2 )

when β ∈ (α1, α2) and (x j ) ∈ s(�) such that lim j→∞ x j/|x j | = (cosβ, sinβ)
implies that

5 f (�
∗)⊂ {ω(θ) : β ∈ [θ1, θ2], (β, θ) ∈ FC}

and Em f ( · ) ∈ C0((−α, α)). If Em f (α2) 6= ω(α − γ1 + π
2 ), then we may apply

the arguments in the proof of Theorem 2.1, using �′ as our domain, to get a
contradiction. If Em f (α2)= ω(α− γ1+ π

2 ), then Em f is discontinuous at α2, which
is a contradiction. Therefore α2 = α− γ1. The argument that α1 =−α+π − γ2 is
similar.

The proof of the theorem when (γ1, γ2) ∈ D+1 and one of Cases (D), (DI) or (ID)
occurs follows in a similar manner. The situation where (γ1, γ2)∈ D−1 follows from
this. �
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4. Continuity of the Gauss map

Notice that Lemma 3.1 and the proof of Theorem 3.2 imply that the (nonparametric)
Gauss map is continuous on S f ∩ (�ε ×R) for each ε > 0 and, in each case, we
have:

(I): limβ→α Em f (β)= ω(α2+π/2) and limβ→−α Em f (β)= ω(α1+π/2).
(D): limβ→α Em f (β)= ω(α2−π/2) and limβ→−α Em f (β)= ω(α1−π/2).

(DI): limβ→α Em f (β)= ω(α2+π/2) and limβ→−α Em f (β)= ω(α1−π/2).
(ID): limβ→α Em f (β)= ω(α2−π/2) and limβ→−α Em f (β)= ω(α1+π/2).

In order to conclude that the Gauss map is in C0(S f ∩(B(O, δ)×R) : S2−), it would be
sufficient to blow up the graph of u(x)= f (x)−R f (α) (or u(x)= f (x)−R f (−α))
about (0, 0, 0) tangent to ∂+� (or ∂−� respectively) and know that a subsequence
converges to an appropriate cone. If one is willing to accept this hypothesis, then
the claim that the Gauss map is in C0(S f ∩ (B(O, δ)×R) : S2−) can be proven.

Hypothesis (B±). For all (x j )∈ s(�) with lim j→∞ x j/|x j | = (cos(±α), sin(±α)),
there is a subsequence (x jk ) and a function u∞ : �∞→ [−∞,∞] such that the
subgraph U∞ = {(x, t) ∈ �∞ ×R : t < u∞(x)} of u∞ is a cone with respect to
(0, 0, 0), there exists Eξ ∈ S2− such that limk→∞ En(x jk )= Eξ = (ξ1, ξ2, ξ3),

lim
k→∞

dist
({(x, u jk (x)) ∈� jk (δ, b)}, ∂U∞ ∩� jk (δ, b)

)= 0

for each δ > 0 and b > 0, where ε j = |x j |, u j (x) = ( f (ε j x)− R f (±α))/ε j and
� j (δ, b)= {(x, t) ∈ R3 : x ∈ B(O, δ), ε j x ∈�, t ∈ (−b, b)} for j ∈ N, and

(a) if ξ3 < 0, then ∂U∞ = π1∩ (�∞×R), π1 is a nonvertical plane with downward
unit normal Eξ ∈ S2−, Eξ makes an angle of γ1 with the exterior unit normal to
∂+�∞ × R and an angle of γ2 with the exterior unit normal to ∂−�∞ × R and
Enu jk
→ Eξ uniformly on compacta in �×R as k→∞,

(b) if ξ3= 0, then ∂U∞= ∂P∩(�∞×R), P={(r cos θ, r sin θ) : r > 0, θ ∈2} and,
for each x ∈ ∂P∩�∞, Enu jk

(x)→ Eξ(x)×{0}, where P= {x ∈�∞ : u∞(x)=∞},
Eξ(x) is the interior (with respect to P) unit normal vector to ∂P at x and 2 is
one of the following sets: (α− γ1, α), (−α,−α+ γ2), (−α+π − γ2, α−π + γ1)

(provided (α − π + γ1)− (−α + π − γ2) ≥ π) or (−α,−α + γ2) ∪ (α − γ1, α)

(provided (α− γ1)− (−α+ γ2)≥ π ).

Theorem 4.1. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D±2 or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D±2 . Suppose that Hypotheses (B±) are
true. Then En f :S f × (�×R) extends to be continuous on S f ∩ (B(O, δ)×R)) and
N ∈ C0(E ∪ {(u, v) ∈ ∂E : G(u, v) ∈ ∂�∩ B(O, δ)}).
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The proof of this theorem will follow from the information at the beginning of this
section about the behavior of Em f and from Lemmas 4.2–4.5. Set

C(x)= {X ∈ S2
− : X · ν(x)= cos γ (x)},

01 = {X ∈ S2
− : X · (cos(α+ π

2 ), sin(α+ π
2 ), 0)= cos γ1},

02 = {X ∈ S2
− : X · (cos(−α− π

2 ), sin(−α− π
2 ), 0)= cos γ2},

EξA = ω(α− γ1+ π
2 ) ∈ 01, EξB = ω(α+ γ1− 3π

2 ) ∈ 01,

EξC = ω(−α− γ2+ 3π
2 ) ∈ 02, EξD = ω(−α+ γ2− π

2 ) ∈ 02,

�∞ = {(r cos(θ), r sin(θ)) : r > 0,−α < θ < α},
61
∞ = {(r cos(α), r sin(α)) : r > 0}, 62

∞ = {(r cos(α), −r sin(α)) : r > 0},
ν+∞ = (cos(α+ π

2 ), sin(α+ π
2 ), 0) and ν−∞ = (cos(−α− π

2 ), sin(−α− π
2 ), 0).

Lemma 4.2. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D+2 , so that R f behaves as in Case (I), or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D+2
and R f behaves as in Case (I) or Case (DI). Assume Hypothesis (B+) is true. Then

(16) lim
j→∞
En(x j )= (cos(α− γ1+π/2), sin(α− γ1+π/2), 0)= EξA

for every (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cosα, sinα).

Proof. Since γ (x)→ γ1 and ν(x)→ ν+∞ as x ∈ ∂+� converges to O, we see that
dist(C(x), 01)→ 0 as x ∈ ∂+� converges to O. Similarly, γ (x)→ γ2, ν(x)→ ν−∞
and dist(C(x), 02)→ 0 as x ∈ ∂−� converges to O. Thus

(17) dist(En(x+(s)), 01)→ 0 and dist(En(x−(s)), 02)→ 0

as s→ 0+.
Suppose that (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cosα, sinα); then there is

a subsequence, still denoted (x j ), and Eξ ∈ S2− such that lim j→∞ En(x j , y j )→ Eξ .
Notice that Eξ ∈ 01 since f ∈ C1,ρ(B(O, δ)∩� \ {O}) and (17) holds.

Assume first that Eξ = (ξ1, ξ2, ξ3) with ξ3 < 0. For each j ∈ N, define ε j = |x j |,
� j = {x ∈ R2 : ε j x ∈�} and u j ∈ C∞(� j )∩C1(� j \ {O}) by

(18) u j (x)= 1
ε j
( f (ε j x)− R f (α)).
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Let γ j be defined on ∂� j\{O} by γ j (x) = γ (ε j x) and let ν j denote the outward
unit normal to ∂� j . Then u j satisfies the prescribed mean curvature problem

Nu j (x)= ε j H(ε j x, f (ε j x)), x ∈� j ,(19)

T f j · ν j = cos γ j on ∂� j\{O}.(20)

Hypothesis (B+) implies that there is a nonvertical plane π1 with downward unit
normal Eξ which meets ∂+�∞ in an angle of γ1 and ∂−�∞ in an angle of γ2 in the
sense described in (a); however this is impossible since (γ1, γ2) ∈ D±1 ∪ D±2 . Thus
ξ3 = 0 and so either Eξ = EξA or Eξ = EξB . The intermediate value theorem implies that

if Eξ = EξA, then En(x)→ EξA as x ∈ ∂+� converges to O,(21)

if Eξ = EξB, then En(x)→ EξB as x ∈ ∂+� converges to O.(22)

Suppose (22) holds. Notice then that

(23) lim
s→0+

d
ds

f +(s)=−∞,

since (cosα, sinα, 0) · EξB =− sin(γ1) < 0, and so f +(s)= f (x+(s)) is a strictly
decreasing function of s for 0 ≤ s ≤ s0, where s0 > 0 is sufficiently small. Since
Em f (β)= ω(α− γ1+ π

2 ) when β ∈ [α− γ1, α), we have

(24) lim
r→0+

∇ f (r cosβ, r sinβ) · (cosβ, sinβ)=+∞ for β ∈ (α− γ1, α).

Since R f behaves as in Case (I) or (DI), we have

(25) R f (β) < R f (α)= f +(0) if β ∈ [α−π, α− γ1).

Let �H be the connected component of

{(r cosβ, r sinβ) ∈� : r > 0, α−π < β < 5π/4}
that contains {(r cosβ, r sinβ) : 0 < r < δ, α − γ1 < β < α − ε} for sufficiently
small ε, δ > 0. Consider the k = f +(0) (= R f (α)) level set of f in �H . From
(23), we see that there is a component C of {x ∈�H : f (x) < k} whose boundary
contains ∂+�∩ B(O, τ ) for τ > 0 sufficiently small; let cα be the component of
�H ∩∂C whose closure contains O. Then (23) and (24) imply that for every β1 <α

and β2 > α, there exists ε > 0 such that

cα ∩ B(O, ε)⊂ {(r cos θ, r sin θ) : 0< r < ε, β1 < θ < β2};
in this sense, cα is tangent to θ = α at O. Similarly, using (24) and (25), we see that
there is a k-level curve of f , denoted cα−γ1 , which is tangent to θ = α− γ1 at O in
the sense that for every β1 < α− γ1 and β2 > α− γ1, there exists ε > 0 such that

cα−γ1 ∩ B(O, ε)⊂ {(r cos θ, r sin θ) : 0< r < ε, β1 < θ < β2}.
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Now pick τ > 0 small enough that the region bounded by cα, cα−γ1 and {r = τ }
is well-defined, connected and simply connected; let us rotate this region about O

through an angle (π + γ1)/2− α and denote this open set as �τ , so that ∂�τ is
tangent to θ = (π±γ1)/2 at O. Notice that f̃ = f ◦ R−1 ∈C0(�τ ) if R denotes the
rotation above. We will let a particular portion of a suitable nodoid be the graph of
a comparison function h over a domain U τ ⊂�τ with B(O, ε)∩U τ = B(O, ε)∩�τ
for some ε > 0. Now ∂U τ will be consist of two disjoint, connected curves,
∂1U τ ⊂ ∂�τ \ {r = τ } and ∂2U τ , with O ∈ ∂1U τ and O /∈ ∂2U τ . The comparison
function h∈C0(U τ )∩C1(U τ∪∂1U τ )will have the properties h(O)=k, ∂h

∂x2
(O)<∞,

h ≥ k = f̃ on ∂1U τ , Nh ≤ infx∈� N f (x) on U τ and ∂h
∂η
=∇ f · η =+∞ on ∂2U τ ,

where η is the exterior unit normal to ∂2U τ . The comparison principle then implies
f̃ ≤ h on U τ . This yields a contradiction of (22) since (24) implies

lim
x2↓0

∂ f̃
∂x2

(0, x2)=+∞,

and the facts that f̃ (O)= h(O), ∂h
∂x2

(O) <∞ and f̃ ≤ h imply

lim inf
x2↓0

∂ f̃
∂x2

(0, x2) <∞.

This implies (21) holds and completes the proof of Lemma 4.2 except for the
construction of the comparison function h.

Let C be a nodary in {x ∈ R2 : x2 > 0} which, when rotated about the x1-axis,
generates a nodoid in R3 with constant mean curvature HD = |H |∞, which we
assume is positive; if not, set HD = 1. (See, for example, [Eells 1987; Mladenov
2002; Rossman 2005] for discussions of Delaunay surfaces and nodoids.) Let
the minimal and maximal radii of the nodary be r0 and R0 respectively, so that
r0 ≤ x2 ≤ R0 whenever (x1, x2) ∈C; we will assume (0, r0) ∈C. Now let D⊂C be
the particular open inner loop of the nodary which contains (0, r0) (i.e., (0, r0) ∈D

and D does not contain endpoints); notice that the unit normal to the nodary at the
endpoints of D are parallel to the axis of rotation of the nodoid and the surface

SD = {(x1, x2 cos θ, x2 sin θ) : (x1, x2) ∈ D,−π ≤ θ ≤ 0}
obtained by partially rotating D about the x1-axis has constant mean curvature−HD

with respect to its upward unit normal.
Now fix t , 0< t < r0, large enough that 81 = {(x1, x2+ t) : x ∈ ∂�τ ∩ R(cα)}

and 82 = {(x1, x2+ t) : x ∈ ∂�τ ∩ R(cα−γ1)} both intersect D. Let 6 denote the
component of81∪82\D that contains (0, t) and let W be the region bounded by6
and D. Set W τ = {(x1, x2) : (x1, x2+ t) ∈W }, ∂1W τ = {(x1, x2) : (x1, x2+ t) ∈6}
and ∂2W τ = ∂W τ \ ∂1W τ . Notice that ∂2W τ ⊂ {(x1, x2) : (x1, x2+ t) ∈ D}. Now
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define h ∈ C0(W τ )∩C1(W τ ∪ ∂1W τ ) by

h(x1, x2)= w(x1, x2+ t)−w(0, t)+ k

for x ∈W τ , where w :D→ R such that SD is the graph of w. It follows that h has
the properties mentioned previously. �

In a similar manner, we can prove each of the following lemmas.

Lemma 4.3. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D−2 , so that R f behaves as in Case (D), or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D−2
and R f behaves as in Case (D) or Case (ID). Assume Hypothesis (B+) is true. Then

(26) lim
j→∞
En(x j )= (cos(α+ γ1− 3π/2), sin(α+ γ1− 3π/2), 0)

for every (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cosα, sinα).

Lemma 4.4. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D+2 , so that R f behaves as in Case (I), or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D+2
and R f behaves as in Case (I) or Case (ID). Assume Hypothesis (B-) is true. Then

(27) lim
j→∞
En(x j )= (cos(−α− γ1+ 3π/2), sin(−α− γ1+ 3π/2), 0)

for every (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cos(−α), sin(−α)).
Lemma 4.5. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D−2 , so that R f behaves as in Case (D), or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D−2
and R f behaves as in Case (D) or Case (DI). Assume Hypothesis (B-) is true. Then

(28) lim
j→∞
En(x j )= (cos(−α+ γ1−π/2), sin(−α+ γ1−π/2), 0)

for every (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cos(−α), sin(−α)).
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