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GENERALIZED NORMAL RULINGS AND INVARIANTS OF
LEGENDRIAN SOLID TORUS LINKS

MIKHAIL LAVROV AND DAN RUTHERFORD

For Legendrian links in the 1-jet space of S1 we show that the 1-graded
ruling polynomial may be recovered from the Kauffman skein module. For
such links a generalization of the notion of normal ruling is introduced.
We show that the existence of such a generalized normal ruling is equiva-
lent to sharpness of the Kauffman polynomial estimate for the Thurston–
Bennequin number as well as to the existence of an ungraded augmentation
of the Chekanov–Eliashberg DGA. Parallel results involving the HOMFLY-
PT polynomial and 2-graded generalized normal rulings are established.

1. Introduction

In R3 interesting connections exist between the 2-variable knot polynomials and
invariants of Legendrian knots. With respect to the standard contact structure on
R3, Fuchs and Tabachnikov [1997] showed that an upper bound for the Thurston–
Bennequin number arises from the Kauffman and HOMFLY-PT knot polynomials.
Furthermore, when this estimate is sharp some nonclassical invariants exhibit nice
properties. Specifically, combining results from [Fuchs 2003; Fuchs and Ishkhanov
2004; Sabloff 2005; Rutherford 2006] we have:

Theorem 1.1. For a Legendrian link L ⊂R3 the following three statements are all
equivalent:

(1) The estimate tb(L) ≤ −dega FL (respectively tb(L) ≤ −dega PL ) is sharp,
where FL , PL ∈ Z[a±1, z±1

] denote the Kauffman and HOMFLY-PT polynomials.

(2) A front diagram for L has a 1-graded (respectively 2-graded) normal ruling.

(3) The Chekanov–Eliashberg DGA of L has a 1-graded (respectively 2-graded)
augmentation.

In this article, we establish analogous results for Legendrian knots in the 1-jet
space of the circle, J 1S1. The manifold J 1S1 is topologically an open solid torus
and carries a standard contact structure. Legendrian knots in J 1S1 have attracted
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a fair amount of attention in the literature; see [Ding and Geiges 2010; Ng and
Traynor 2004; Traynor 1997]. The 1-jet space setting comes with convenient pro-
jections from which Legendrian knots may be presented via front or Lagrangian
diagrams and Legendrian isotopy may be described in a combinatorial manner.
1-jet spaces also provide a natural setting for the use of generating families.

A convenient formal way to define a normal ruling, ρ, of L is as a family of
fixed-point-free involutions of the strands of the front diagram of L subject to
many restrictions. At least locally, this may be viewed as a decomposition of the
front diagram into pairs of paths. Chekanov and Pushkar [2005] introduced normal
rulings — albeit with different terminology — as well as related Legendrian isotopy
invariants which have become known as ruling polynomials. In connection with
augmentations, Fuchs independently defined normal rulings of knots in R3 and, in
the case of the Kauffman polynomial, already conjectured the equivalence of (1)
and (2) in [Fuchs 2003]. This conjecture was verified in [Rutherford 2006], where
it was shown that in fact the 1-graded and 2-graded ruling polynomials appear as
coefficients of the Kauffman and HOMFLY-PT polynomials respectively.

Relationships between the Kauffman/HOMFLY-PT invariants and Legendrians
knots in J 1S1 have already begun to be studied, and several factors make the situ-
ation more interesting. For instance, the HOMFLY-PT polynomial, PL , of a solid
torus link, L , belongs to a polynomial algebra over R = Z[a±1, z±1

] with a count-
ably infinite number of generators Ak, k ∈ Z\ {0}; the Kauffman polynomial has a
similar form. Chmutov and Goryunov [1997] proved Thurston–Bennequin number
estimates analogous to those appearing in (1) of Theorem 1.1 using these many
variable Kauffman and HOMFLY-PT polynomials. In the case of the HOMFLY-PT
polynomial, it was shown in [Rutherford 2011] that the 2-graded ruling polynomial
can be recovered from the HOMFLY-PT polynomial, but this requires first special-
izing via an R-module homomorphism R[A±1, A±2, . . .] → R. In the present
work we develop analogous results involving the 1-graded ruling polynomial and
the Kauffman skein module. (See Theorems 3.4 and 3.6.)

The need to specialize the Kauffman and HOMFLY-PT invariants in order to re-
cover the ruling polynomials has an interesting consequence. There are many solid
torus links where the Kauffman or HOMFLY-PT polynomial estimate is sharp, yet
the corresponding ruling polynomial vanishes. As a result, for Legendrians in J 1S1

some adjustment is required to statement (2) of Theorem 1.1. For this purpose, we
introduce a quite natural notion of generalized normal ruling where the fixed-point-
free condition is relaxed. Our main result is the following analog of Theorem 1.1:

Theorem 1.2. Let L ⊂ J 1S1 be a Legendrian link.

(1) The estimate tb(L)≤−dega FL (respectively tb(L)≤−dega PL ) is sharp if and
only if L has a 1-graded (respectively 2-graded) generalized normal ruling.
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(2) Suppose L has been assigned a Z/p-valued Maslov potential. The Chekanov–
Eliashberg DGA of L has a p-graded augmentation if and only if a front diagram
for L admits a p-graded generalized normal ruling.

Remark 1.3. (i) Aside from allowing the more general p-graded condition in (2),
it is natural to organize the three statements into these two equivalences. Even in
R3, the authors do not know of any proof of an implication between the statements
about the knot polynomial estimates and existence of augmentations which is able
to avoid using normal rulings. There are settings, for instance certain contact
lens spaces, where Legendrian contact homology [Licata 2011] and HOMFLY-
PT polynomial estimates [Cornwell 2012a; 2012b] for tb have been established
while an appropriate notion of normal ruling has yet to be formulated. For this
reason, establishing a more direct link between Bennequin type inequalities and
augmentations could prove interesting.

(ii) For Legendrians in R3, there is another interesting condition connected with
the equivalent statements in Theorem 1.1. Specifically, the existence of a 0-graded
normal ruling is equivalent to the existence of a linear at infinity generating family
for L; see [Chekanov and Pushkar 2005; Fuchs and Rutherford 2011]. This state-
ment remains true in J 1S1. However, it is interesting to ask if links with 0-graded
generalized normal rulings always admit reasonable (say, linear or quadratic at
infinity) generating families. To allow for fixed point strands, it seems necessary
to consider generating families F : E→R defined on bundles E→ S1 whose fiber
has nontrivial homology. As an example, the basic front Am defined in Section 2A
may be generated by a function on an m-fold cover of S1.

Organization. The article is arranged as follows: In Section 2, we provide the
necessary background about normal rulings and the Kauffman and HOMFLY-PT
invariants and also introduce generalized normal rulings.

Section 3 runs parallel to the results on the HOMFLY-PT skein module and
2-graded rulings from [Rutherford 2011]. We show how to recover the 1-graded
ruling polynomial from an appropriate specialization of the Kauffman skein mod-
ule. A natural basis for the Kauffman skein module is indexed by partitions, and
for this basis we provide an explicit formula for the specialization.

In Section 4 we prove part (1) of Theorem 1.2 by combining the results of
Section 3 (and of [Rutherford 2011] for the HOMFLY-PT case) with a linear inde-
pendence argument.

Section 5 deals with part (2) of Theorem 1.2. For the forward implication we
base all of our arguments on linear algebraic results from [Barannikov 1994], from
which the reason behind the normality conditions, with or without fixed points,
becomes clear.
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2. Background on Legendrian solid torus links

We assume familiarity with basic concepts about Legendrian knots such as front
projections, Legendrian Reidemeister moves, Thurston–Bennequin number, and
rotation number, at least for knots in R3. See, for instance, [Geiges 2008], and
also note that [Rutherford 2011] contains an alternate discussion of the case of
Legendrian knots in J 1S1.

We view the 1-jet space of the circle, J 1S1, as S1
×R2 equipped with the contact

structure ξ = ker(dz − y dx), where x is a circle-valued coordinate. We occa-
sionally refer to a (Legendrian) link L ⊂ J 1S1 as a (Legendrian) solid torus link.
The front projection of a Legendrian solid torus link consists of some number of
closed curves in the xz-annulus which we view as [0, 1]×R with the identification
(0, z)∼ (1, z). Generically, front projections are immersed and embedded except at
semicubical cusps and transverse double points, and two such projections represent
Legendrian isotopic links if and only if they are related by a sequence of Legendrian
Reidemeister moves.

We make the convention of extending the Thurston–Bennequin number to ho-
mologically nontrivial links by using the front projection formula

tb(L)= w(L)− c(L),

where w(L) denotes the writhe of L (a signed sum of crossings) and c(L) is half
the number of cusps of L .

Similarly, for a Legendrian knot L ⊂ J 1S1 we define the rotation number as

r(L)= 1
2(d(L)− u(L)),

where d(L) denotes the number of downward oriented cusps and u(L) the number
of upward oriented cusps.

2A. Products of basic fronts. Given two annular front diagrams, K and L , we
define the product, K ·L , by stacking K above L . In contrast to the case of smooth
knot diagrams, this product is noncommutative as the Legendrian isotopy types of
K · L and L · K will not agree in general; see [Traynor 1997; Rutherford 2011].

In this article the basic fronts, Am , will play an important role. Given m ∈ Z>0,
Am is the front diagram that winds m times around the annulus with m−1 crossings
and no cusps; see Figure 1. When it is necessary to pay attention to orientations,
for m > 0, we will use Am (respectively A−m) for the basic front oriented in the
direction of the positive (respectively negative) x-axis.

If λ=(λ1, . . . , λ`) is an `-tuple of positive integers we write Aλ= Aλ1 Aλ2 · · · Aλ`
for the product of basic fronts and A−λ for the product with all orientations re-
versed.



INVARIANTS OF LEGENDRIAN SOLID TORUS LINKS 397

Figure 1. The basic front A5.

2B. Kauffman polynomial in J1 S1. We now describe a generalization from [Tu-
raev 1988] of the Kauffman polynomial to smooth links (not necessarily Legen-
drian) in the solid torus. In practice, this invariant is computed by reducing a link
diagram to products of basic fronts via skein relations. Whenever appropriate, we
will view a front diagram of a Legendrian link as a smooth link diagram by placing
the strand with lesser slope on top at crossings and smoothing cusps.

Let D denote the set of regular isotopy classes of unoriented link diagrams
in the annulus. That is, we consider link diagrams up to the equivalence gen-
erated by Type II and Type III Reidemeister moves. Using the coefficient ring
R = Z[a±1, z±1

] we define the Kauffman skein module F as the quotient of the
free R-module RD by the submodule generated by the Kauffman skein relations

− = z

(
−

)
,(2-1)

= a ( ) , = a−1 ( ) and(2-2)

⊔
L =

(a−a−1

z
+ 1

)
· L .(2-3)

The product of diagrams gives a well defined product on F which is commu-
tative as we now consider diagrams of smooth links rather than front diagrams
of Legendrian links. Turaev [1988] showed that F is a polynomial R-algebra
in the basic fronts. Thus, to a link diagram L we may associate a polynomial
DL(a, z; A1, A2, . . .) according to

F∼= R[A1, A2, . . .], [L] ↔ DL .

The Kauffman polynomial of an oriented link L ⊂ J 1S1 is then defined by the
normalization FL = a−w(L)DL , where w(L) denotes the writhe of L .

Chmutov and Goryunov [1997] proved that for any Legendrian link L ⊂ J 1S1,

(2-4) tb(L)≤−dega FL .
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While Chmutov and Goryunov [1997] use a different projection annulus for com-
puting FL , a proof of (2-4) matching our conventions for FL may be given precisely
as in the case of the HOMFLY-PT polynomial addressed in Section 6.2 of [Ruther-
ford 2011].

Remark 2.1. (i) Recall that a possibly empty sequence λ= (λ1, . . . , λ`) of positive
integers is called a partition if λ1 ≥ . . . ≥ λ`. The integers λi are called the parts
of λ and we sometimes use the notation λ = 1 j12 j2 . . . n jn to indicate that λ is the
partition with jr parts equal to r , r = 1, . . . , n. We note that the collection of
products Aλ with λ a partition forms an R-module basis for F.

(ii) The HOMFLY-PT skein module is defined in a similar manner using oriented
link diagrams and an appropriate modification of the skein relations (2-1)–(2-3)
(see, for instance [Rutherford 2011]). The result is a polynomial algebra generated
by the oriented basic fronts [Turaev 1988]. For a given oriented link L ⊂ J 1S1 we
denote the corresponding HOMFLY-PT polynomial as

PL ∈ R[A±1, A±2, . . .].

2C. Normal rulings in J1 S1. Let L ⊂ S1
×R be the front projection of a Legen-

drian link in the solid torus satisfying the additional assumption that all crossings
and cusps have distinct x-coordinates none of which equals 0. A normal ruling
can be viewed locally as a decomposition of L into pairs of paths. We make some
notational preparation before giving the formal definition.

Denote by 6 ⊂ S1 those x-coordinates which coincide with a crossing or cusp
of L . We can write

S1
\6 =

M⊔
m=1

Im

with each Im an open interval (or all of S1 if 6 = ∅). Making the convention
that I0 = IM , we assume that the Im are ordered so that Im−1 appears immediately
to the left of Im and IM contains x = 0. On subsets of the form Im × R the
front projection L consists of some number of nonintersecting components which
project homeomorphically onto Im . We refer to these components as the strands
of L above Im , and we number them from top to bottom as 1, . . . , N (m). Finally,
for each m = 1, . . . ,M we choose a point xm ∈ Im .

Definition 2.2. A normal ruling of the front diagram L is a sequence of involutions
ρ = (ρ1, . . . , ρM),

ρm : {1, . . . , N (m)} → {1, . . . , N (m)}, (ρm)
2
= id,

satisfying the following restrictions:

(1) Each ρm is fixed-point-free.
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(2) If the strands above Im labeled k and k + 1 meet at a left cusp in the interval
(xm−1, xm), then ρm(k)= k+ 1 and when n /∈ {k, k+ 1},

ρm(n)=
{
ρm−1(n) if n < k,
ρm−1(n− 2) if n > k+ 1.

(3) A condition symmetric to (2) at right cusps.

(4) If strands above Im labeled k and k + 1 meet at a crossing on the interval
(xm−1, xm), then ρm−1(k) 6= k+ 1 and either

(a) ρm = (k k+1)◦ρm−1◦(k k+1), where (k k+1) denotes the transposition, or

(b) ρm = ρm−1.

In the second case we refer to the crossing as a switch of ρ. Finally, we have a
requirement at switches that is known as the normality condition.

(5) If there is a switch on the interval (xm−1, xm) then one of the following three
orderings holds:

ρm(k+ 1) < ρm(k) < k < k+ 1,

ρm(k) < k < k+ 1< ρm(k+ 1),

k < k+ 1< ρm(k+ 1) < ρm(k).

Remark 2.3. This definition is a slight variation on those found elsewhere in the
literature. Letting π : S1

×R→ S1 denote the projection, Chekanov and Pushkar
defined a normal ruling as a continuous, fixed-point-free involution of L \π−1(6)

that preserves the x-coordinate and is subject to some requirements for continuous
extension near crossings or cusps as well as a normality condition at switches. Such
an involution is recovered from our definition by viewing the set {1, 2, . . . , N (m)}
that ρm permutes as the set of strands above Im .

From this perspective, the fixed-point-free condition causes the ρm to divide the
strands above Im into pairs, and in our figures we will present normal rulings by
indicating this pairing. Beginning at x = 0 and working to the right, one may cover
the front diagram with pairs of continuous paths with monotonically increasing
x-coordinates, so that a given pair of paths corresponds to strands paired by the
involutions. If a path proceeds all the way around the annulus, then it will not
necessarily end up where it started. However, the division of the front diagram
into pairs of points at x = 0 and x = 1 should match up.

Paired paths are only allowed to meet at common cusp endpoints. In particular,
at any crossing the two paths of the ruling that meet should belong to different pairs
and, for values of x near the crossing, each will have a “companion path” located
somewhere above or below the crossing. The two paths can either follow the link
diagram and cross each other (this corresponds to (4) (a) above) or they may switch
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Figure 2. The normality condition.

strands by each turning a corner at the crossing. The normality condition provides a
restriction on the location of the companion paths near a switch; out of six possible
configurations for the switching strands and their companion strands only three are
allowed. See Figure 2 for the normality condition and the right half of Figure 4 for
an example of a normal ruling.

2D. Maslov potentials and graded normal rulings. Further grading restrictions
may be placed on a normal ruling after the introduction of a Maslov potential for
L . Let p be a divisor of 2r(L i ) for each component L i of a Legendrian link L . A
Z/p-valued Maslov potential µ for L is a function from L to Z/p that is constant
except at cusp points, where it increases by 1 when moving from the lower strand
to the upper strand. Note that a chosen orientation provides L with a Z/2-valued
Maslov potential by following the convention that strands oriented to the right
(respectively left) are assigned the value 0 (respectively 1) mod 2.

We say that a normal ruling ρ is p-graded with respect to a Z/p-valued Maslov
potential µ if whenever two strands S1 and S2 of L are paired by one of the ρm

with S1 above S2 we have µ(S1)= µ(S2)+ 1.

2E. Ruling polynomials. Suppose µ is a Z/p-valued Maslov potential for a Leg-
endrian link L . The p-graded ruling polynomial of L with respect to µ is

R p
(L ,µ)(z)=

∑
ρ

z j (ρ),

where the sum is over all normal rulings of L that are p-graded with respect to µ
and

j (ρ)= # switches− # right cusps.

The ruling polynomial does not depend on the choice of Maslov potential when
p = 1; p = 2 and L is oriented; or L is connected. In any of these cases we
denote the ruling polynomial simply as R p

L . The ruling polynomials are Legendrian
isotopy invariants [Chekanov and Pushkar 2005].

2F. Generalized normal rulings. In the following definition we relax the require-
ments from Definition 2.2 in a manner appropriate for Theorem 1.2 to hold.

Definition 2.4. A generalized normal ruling consists of a sequence of involutions
ρ = (ρ1, . . . , ρM) as in Definition 2.2 subject to the following modifications:
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(1) We remove the requirement that the ρm be fixed-point-free.

(2) If a crossing occurs in the interval (xm−1, xm) between the k and k+ 1 strands
above Im−1 with exactly one of these two strands a fixed point of ρm , then we decide
if the crossing is a switch precisely as in (4) of Definition 2.2. If the crossing is
indeed a switch then we require the additional normality condition that either

ρm(k)= k < k+ 1< ρm(k+ 1) or ρm(k) < k < k+ 1= ρm(k+ 1).

(See Figure 3.)

Figure 3. The normality condition for generalized rulings: The
strand pictured in bold is a fixed point of ρm .

Remark 2.5. (i) If a crossing involving the k and k+1 strands occurs on (xm−1, xm)

with both of the crossing strands fixed by the ruling, that is, ρm−1(k) = k and
ρm−1(k + 1)= k + 1, then ρm−1 = (k k+ 1) ◦ ρm−1 ◦ (k k+ 1). Consequently, we
will not consider such crossings to be switches.

(ii) In the presence of an appropriate Maslov potential, we can consider p-graded
generalized normal rulings precisely as in Section 2D.

(iii) The number of generalized normal rulings of a Legendrian link is not invariant
under Legendrian isotopy. However, in view of Lemma 2.6 below, the polynomials
R p

L·Aλ serve as some form of substitute for a “generalized ruling polynomial”.

For establishing (1) of Theorem 1.2 we will use the following equivalent char-
acterization of front diagrams that admit generalized rulings.

Lemma 2.6. A front diagram L has a 1-graded (respectively 2-graded) general-
ized normal ruling if and only if there exists partitions λ and µ so that R1

L·Aλ(z) 6= 0
(respectively R2

L·AλA−µ(z) 6= 0).

Proof. For simplicity, we treat the 1-graded case first. If R1
L·Aλ(z) 6= 0, then the

diagram L · Aλ has a normal ruling, ρ. This produces a generalized normal ruling
of L by restricting ρ to L and treating any strands of L which are paired with Aλ
as fixed point strands. The normality condition from Definition 2.4 follows from
that of Definition 2.2.

Now suppose that L has a generalized normal ruling. If one of the ρm has a
fixed point strand, then we can continuously follow the fixed point strand around
the diagram turning corners only at switches. The result is a portion of the front
diagram, Ci , without cusps that we suppose winds λi times around the annulus.
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There may be several fixed point components of this type. We may assume the λi

are ordered so that they form a partition, λ. The product L · Aλ has a normal ruling
where each Ci is paired with the component Aλi of λ. Such a ruling is completely
determined once we specify the pairing between Ci and Aλi at a single point of Ci .
Now, the normality condition of Definition 2.2 follows from that of Definition 2.4,
and the ordering of the factors of Aλ is not important here since we do not have
switches between any of the Ci ; see Remark 2.5 and Figure 4.

→

Figure 4. A generalized ruling with three fixed point strands pro-
ducing a normal ruling of L · Aλ with λ= (2, 1).

For the 2-graded case, observe that in a 2-graded ruling the orientation of strands
meeting at a switch must agree. Therefore, the Ci each have a consistent orienta-
tion, and we choose an orientation on the component Aλi accordingly. �

3. Kauffman polynomial and computation of 1-graded ruling polynomials

An analysis of how to compute 2-graded ruling polynomials of Legendrian solid
torus links from the HOMFLY-PT polynomial is done in [Rutherford 2011]. In this
section, we will perform a similar analysis of the 1-graded case. We will derive
formulas for the 1-graded ruling polynomial of Aλ, and then relate the general case
to a coefficient of an appropriate specialization of the Kauffman polynomial.

3A. Normal rulings of the product Aλ. Given a front diagram L with normal
ruling ρ we define the decomposition of L with respect to ρ as the Legendrian link
Lρ obtained by resolving the switches of L into parallel horizontal strands as

→ .

The involutions of the strands of L piece together to provide an involution, which
we also denote as ρ, now defined on all of Lρ . The involution ρ is continuous
where we now view Lρ as a subset of J 1S1 rather than just a front diagram, and its
only fixed points correspond to the cusps of the front projection of Lρ . (Compare
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with Remark 2.3.) The normal ruling of L induces a normal ruling of Lρ where
none of the crossings are switches.

We record some observations about normal rulings of the products Aλ.

Lemma 3.1. Suppose ρ is a normal ruling of L = Aλ.

(1) The decomposition, Lρ , is also a product of basic fronts.

(2) The involution ρ must take a component of Lρ isotopic to Am to another com-
ponent isotopic to Am .

(3) If components C1 and C2 of Lρ share a common switch of L , with C1 above C2

on the z-axis, then the vertical ordering of the four components C1, C2, ρ(C1), and
ρ(C2) must be one of

[ρ(C2), . . . , ρ(C1), . . . ,C1,C2],

[ρ(C1), . . . ,C1,C2, . . . , ρ(C2)],

[C1,C2, . . . , ρ(C2), . . . , ρ(C1)].

(4) The restriction of ρ to a pair of components of Lρ , C1 and C2 = ρ(C1), is
completely determined by its value at a single point, w∈C1. Moreover, if C1∼= Am

then there are precisely m choices for ρ(w) ∈ C2, and any one of them extends
continuously to all of C1.

(5) Two components of Lρ of the form C1 and ρ(C1) cannot correspond to subsets
of the same component of L.

Proof. Item (1) is clear; (2) follows from continuity of ρ; and (3) is a consequence
of the normality condition. The first assertion of (4) follows from continuity of ρ.
The second follows since ρ(w) and w must have the same x-coordinate and C2

also consists of m strands. That any such choice of ρ(w) extends to all of C1 is
easily seen.

We prove (5) by contradiction. Suppose C1 and ρ(C1) did come from the same
component of L , and without loss of generality assume ρ(C1) is below C1. They
cannot meet at a switch as this would violate the normality condition. Thus, there
is some other component C2 on the other end of the switch below C1. The only
possible position of ρ(C2) is then between C2 and ρ(C1). Then C2 and ρ(C2) also
came from the same component of L . They cannot meet at a switch, so there is
some further component C3 immediately below C2, which is paired with a com-
ponent ρ(C3) between C3 and ρ(C2). We can continue this argument to produce
arbitrarily many components of Lρ between C1 and ρ(C1). �

3B. Computing R1
Am Am

. The results in the previous section are sufficient to com-
pute the ruling polynomial for the simplest possible product, Am Am (the ruling
polynomial of a single basic front Am is 0 by (5) of Lemma 3.1). Although this
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agrees with R2
Am A−m

which is computed in Lemma 4.1 of [Rutherford 2011], the
form of the answer given here is simplified and the proof is quite different.

Lemma 3.2. The ruling polynomial of L = Am Am is

m−1∑
k=0

(
m+ k
2k+ 1

)
z2k .

Proof. Normal rulings of Am Am with 2k switches are in bijection with subdivisions
of m ordered objects into k+ 1 consecutive parts, with a marked object chosen in
each part.

The subdivision corresponds to choosing the location of k switches within the
first Am factor. Specifically, dividing m into parts (λ1, . . . , λk+1) corresponds to
choosing k switches so that in the decomposition, Lρ , the first Am factor becomes
Aλ1 . . . Aλk+1 . In Lρ , the Aλi must be paired with k+1 components of the same size
from the second Am factor, by parts (2) and (5) of Lemma 3.1. Then, Lemma 3.1(3)
determines the order of the components: they must be in the reverse order of the
components from the first factor. The total number of switches is 2k.

The choice of marked object within a part λi corresponds to choosing which
strand within the Aλi component is paired with the top strand of ρ(Aλi ) at x = 0.
These choices may be arbitrary, and they uniquely determine a ruling by part (4)
of Lemma 3.1. See Figure 5.

Figure 5. The bijection between rulings of A5 A5 with 2 switches,
divisions of 5 objects into 2 parts with a marked object in each part,
and compositions of 7 into 4 positive parts.

To complete the proof, observe that subdivisions of this type are in bijection with
compositions of m + (k + 1) into 2(k + 1) positive parts (a1, b1, . . . , ak+1, bk+1):
two consecutive parts of size ai and bi correspond to a part λi = ai + bi − 1 with
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the ai -th object marked in a subdivision of m. The number of ways to decompose
m+ k+ 1 objects into 2(k+ 1) parts of positive size is well-known to be(

(m+ k+ 1)− 1
2(k+ 1)− 1

)
=

(
m+ k
2k+ 1

)
.

This gives us the sum for the ruling polynomial. �

This formula will be used in the next section, so we will write 〈m〉 for the ruling
polynomial RAm Am (z), following the convention in [Rutherford 2011].

3C. A formula for arbitrary products of basic fronts. We will use the formula
for 〈m〉 to calculate the ruling polynomial of Aλ for an arbitrary λ.

Given a normal ruling ρ of L = Aλ, define the block Bi j to consist of those
components of the decomposition Lρ which originated in the i-th component of
L , and are paired by ρ with components that originated in the j-th component
of L . The size of the block, bi j , is the number of points in Bi j with some fixed
x-coordinate, away from crossings.

Lemma 3.3. Given a normal ruling of

L = Aλ = Aλ1 Aλ2 . . . Aλn ,

the blocks in the i-th component of L consist of vertically consecutive components
of Lρ , and are themselves vertically ordered as

Bi,i−1 Bi,i−2 . . . Bi,1 Bi,n Bi,n−1 . . . Bi,i+1,

where some blocks may be empty.

Proof. Suppose that when we resolve Aλi at switches, we get the components
C1,C2, . . . ,Ck , in that vertical order. If, for some j , ρ(C j ) is above C j , then the
normality condition demands that ρ(C j−1) is between ρ(C j ) and C j−1. Similarly,
if ρ(C j ) is below C j , then ρ(C j+1) must be between C j+1 and ρ(C j ).

As a result, if ρ(C j1) and ρ(C j2) come from the same component of L , then
ρ(C j ) for j1 ≤ j ≤ j2 are between ρ(C j1) and ρ(C j2). This implies each block is
made up of some number of consecutive components. And due to the normality
condition, the ordering of any two consecutive blocks must be either Bi, j+1 Bi, j ,
with j > i , or Bi, j−1 Bi, j , with j < i (with the caveat that some of the blocks may
be empty, if ρ does not pair two components of L at all). Putting this together
yields the block ordering above. �

This means that once we pick the sizes of the blocks bi,1, . . . , bi,n , the locations
of the blocks are determined. To complete the calculation of the ruling polynomial,
observe that the choice of a normal ruling of the blocks Bi j and B j i , with sizes
bi j = b j i = m, is equivalent to the choice of a normal ruling of Am Am .
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Theorem 3.4. Let 〈m〉 denote the ruling polynomial of Am Am , with 〈0〉 taken to
be z−2. Then the ruling polynomial of Aλ = Aλ1 Aλ2 . . . Aλn is given by

zn(n−2)
∑

(bi j )∈Mλ

∏
i< j

〈bi j 〉,

where Mλ is the set of all symmetric matrices (bi j ) with nonnegative integer entries
such that the row sums

∑n
j=1 bi j = λi and the trace tr (bi j )= 0.

Proof. The choice of a matrix in Mλ is equivalent to the choice of block sizes bi j .
By Lemma 3.3, this also fixes the locations of the blocks. A normal ruling of Aλ
is then completely determined by its restriction to pairs of blocks Bi j and B j i .

If the block size bi j is nonzero, then 〈bi j 〉 describes the possible restrictions of
the normal rulings to the union Bi j ∪ B j i . We take the product to combine these
normal rulings, but we have to account for the switches between the blocks. If
all block sizes are nonzero, then there will be n − 2 switches in each of the n
components of L , giving us a factor of zn(n−2). Any block Bi j of size 0 will reduce
this number by 1 in component j , but the corresponding block B j i will reduce
the number of switches by 1 in component i ; this gives a factor of z−2 which is
accounted for by the convention of 〈0〉 = z−2. �

Corollary 3.5. The 1-graded ruling polynomial is commutative in front diagram
products: that is, the ruling polynomials of

Aλ1 Aλ2 . . . Aλi Aλi+1 . . . Aλn and Aλ1 Aλ2 . . . Aλi+1 Aλi . . . Aλn

are equal.

Proof. There is an easy bijection between the possibilities for the matrix Mλ and
the new matrix Mλ′ : we simply exchange the i-th and (i+1)-th columns and rows;
the summands

∏
i< j 〈bi j 〉 do not change. �

3D. Calculating the ruling polynomial from the Kauffman polynomial. In R3,
the 1-graded and 2-graded ruling polynomial of arbitrary Legendrian links may be
easily recovered from the Kauffman and HOMFLY-PT polynomials. The second
author shows in [Rutherford 2011] that the 1-graded (respectively 2-graded) ruling
polynomial of a link L is the coefficient of a−tb(L) in the Kauffman polynomial
(respectively HOMFLY-PT polynomial) of L . In the case of Legendrian solid torus
links we first need to specialize the extra variables in a nonmultiplicative manner.

Using the notation of Section 2B, we consider the R-module homomorphism
9 : F ∼= R[A1, A2, . . .] → R determined by Aλ 7→ R1

Aλ(z) when λ is a partition.
(Compare with Remark 2.1.) Given a link diagram L , we let D̂L(a, z) = 9(DL),
and F̂L(a, z)= a−w(L) D̂L(a, z).
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Theorem 3.6. Let L⊂ J 1S1 be any Legendrian solid torus link. Then the 1-graded
ruling polynomial R1

L(z) is equal to the coefficient of a−tb(L) in F̂L(a, z).

This result is analogous to Theorem 6.3 of [Rutherford 2011], where it is shown
that we can recover the 2-graded ruling polynomial from such a specialization
of the HOMFLY-PT polynomial. The proof, via induction on a certain measure
of complexity of a front diagram, carries through in the 1-graded case as well.
The base case consists of all products of basic fronts where the result follows
from the crucial Corollary 3.5. Next, it is observed that the ruling polynomial and
the coefficient of a−tb(L) in F̂L share common skein relations that are Legendrian
analogs of equations (2-1)–(2-3) (see [Rutherford 2006; Rutherford 2011]). Then,
just as in [Rutherford 2011], the inductive step is completed by an algorithm which
uses these skein relations to evaluate the invariants in terms of front diagrams of
lesser complexity.

Example. Consider the Legendrian knots L1 and L2 = L1 · A2 A1 pictured in
Figure 4, and suppose orientations are chosen so that all strands are oriented to the
right when they pass through the vertical line x = 0. The Kauffman polynomials
are given by

FL1 = A1×
[
a−1(−z− z3)+ a−2z4

+ a−3(z+ 2z3)+ a−4z2]
+A3×

[
a−1(z+ z3)+ a−2(−z2

− z4)+ a−3(−z− z3)
]

+A2 A1×
[
a−1(1+ z2)− a−2z3

− a−3z2] ,
and FL2 = a−1 A2 A1 FL1 . We have tb(L1)= 1 and tb(L2)= 2, so in both cases the
estimate (2-4) is sharp.

Theorem 3.4 gives R1
A(2,1,1)(z) = z, R1

A(3,2,1)(z) = 2z + z3, and R1
A(2,2,1,1)(z) =

2+ 3z2. This allows us to compute

F̂L2=a−2(2+6z2
+5z4
+z6)+a−3(−4z3

−5z5
−z7)+a−4(−3z2

−4z4
−z6)+a−5z3,

and Theorem 3.6 gives R1
L2
(z)= 2+6z2

+5z4
+ z6, which can be verified directly.

4. Generalized normal rulings and the Thurston–Bennequin estimates

In this section we establish the equivalence (1) of Theorem 1.2 which follows from
Lemma 2.6 together with the following:

Theorem 4.1. Let L be a Legendrian link in the solid torus. Then the equality

tb(L)=−dega FL

holds if and only if there exists a partition λ so that L · Aλ has a normal ruling.
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Proof of Theorem 4.1. One direction is straightforward. Suppose that, for some λ,
L ′ = L · Aλ has a normal ruling. Then the ruling polynomial of L ′ is nontrivial,
so the coefficient of a−tb(L) is nonzero. Therefore tb(L ′) ≥ −dega FL ′ which,
combined with the inequality (2-4), gives us an equality tb(L ′)=−dega FL ′ . How-
ever, tb(L ′) = tb(L · Aλ) = tb(L)+w(Aλ), since Aλ has no cusps. In addition,
DL ′ = Aλ · DL , so FL ′ = a−w(Aλ)Aλ · FL , and we compute

−dega FL =−w(Aλ)− dega(FL ′)=−w(Aλ)+ tb(L ′)= tb(L).

Now suppose tb(L)=−dega FL . We will find a λ such that L · Aλ has a normal
ruling.

Let
∑

µ pµ(z)Aµ be the coefficient of a−tb(L) in FL , where the pµ(z) are poly-
nomials in z and z−1. This coefficient is nonzero, or else the degree equality would
not hold, so pµ(z) 6= 0 for at least one µ. Let k be the smallest integer such that at
least one pµ has a nonzero coefficient of zk .

By Theorem 3.6, the ruling polynomial of L · Aλ is∑
µ

pµ(z)RAµAλ(z).

We will prove that for some λ, this polynomial is nonzero (and therefore a normal
ruling exists) by looking at the zk coefficient of this polynomial. Since RAµAλ(z)
is a polynomial in z with no terms of z−1 or lower degree, the only way to get
a zk coefficient is from the product of pµ(z)[zk

] and RAµAλ(z)[z
0
] for some µ

(here, f (z)[zi
] denotes the coefficient of zi in f (z)). Denote pµ(z)[zk

] by aµ, and
RAµ(z)[z

0
] (which is the number of switchless rulings of Aµ) by C(µ).

The quantity C(µ) is easy to calculate. Without switches, each component of
size k must simply be paired with another component of size k in one of k ways.
In particular, this is only possible if there is an even number of each component
size. Define the double factorial by

(2k− 1)!! = (2k− 1)(2k− 3)(· · · )(3)(1)= (2k)!/(2kk!).

It counts the number of ways to divide 2k objects into pairs. It is clear that

C(µ)=
{∏n

k=1 kak (2ak − 1)!! if µ= 12a122a2 . . . n2an ,

0 else.

We wish to prove that for some λ,
∑

µ aµC(µ · λ) 6= 0. Here, if

µ= 1a12a2 . . . nan and λ= 1b12b2 . . . nbn ,

we will denote by µ · λ the partition

1a1+b12a2+b2 . . . nan+bn .
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Let M be the collection of all partitions such that:

(1) The parts of the partition are all no larger than n, for some n.

(2) Parts of each size occur between 0 and 2m− 1 times, for some m.

We choose the parameters m and n such that we include all partitionsµwith aµ 6=0.
Let V be a n2m-dimensional real vector space with basis vectors eλ for λ ∈ M .

For each µ ∈ M , consider the vectors

vµ =
∑
λ∈M

C(µ · λ)eλ

in V . We will show that these vectors also form a basis of V , and are therefore
linearly independent. From there, observe that∑

λ∈M

(∑
µ∈M

aµC(µ · λ)
)

eλ =
∑
µ∈M

aµ
(∑
λ∈M

C(µ · λ)eλ
)
=

∑
µ∈M

aµvµ.

If the coefficients aµ on the right are not all 0, then because the vµ are linearly
independent the resulting sum is a nonzero vector of V . Therefore the coefficients
in terms of eλ are not all 0 as well — that is, for some λ,

∑
µ aµC(µ · λ) 6= 0. So

once we have the result of linear independence, we are done.
From the formula for C(µ), it’s easy to calculate that C(µ ·λ) can be written as

a product of C(kak ·kbk ), over all k, where ak and bk are the number of parts of size
k in λ and µ respectively. Suppose we write V as the tensor product

⊗n
i=1 R2m ,

identifying the basis vector e j1⊗ e j2⊗· · ·⊗ e jn on the left with the basis vector eλ
on the right, where λ= 1 j12 j2 . . . n jn . Here we use a slightly nonstandard basis of
R2m : it is 0-indexed and consists of {e0, e1, . . . , e2m−1}, for ease of notation.

Then, if µ= 1a12a2 . . . nan ,

vµ =
∑
λ∈M

C(µ · λ) eλ =
∑

1b1 ···nbn∈M

( n∏
i=1

C(iai · ibi )
)( n⊗

i=1

ebi

)

=

∑
1b1 ···nbn∈M

( n⊗
i=1

C(iai · ibi ) ebi

)
=

n⊗
i=1

(2m−1∑
j=0

C(iai · i j ) e j

)
.

Therefore, rather than prove that the vectors vµ are a basis of V , it suffices to
prove that the vectors uk =

∑2m−1
j=0 C(ik

· i j )e j , as k goes from 0 to 2m− 1, are a
basis of R2m . There are three simplifying observations to be made:

(1) C(ik
· i j ) = 0 if k 6≡ j (mod 2). Therefore uk is a linear combination only

of the odd-indexed e j if k is odd, and only of the even-indexed e j if k is even.
Furthermore, C(ik

·i j )=C(ik−1
·i j+1), so u2k and u2k−1 have the same coefficients,

just shifted over by one index. As a result, we will only show the independence of
the vectors u0, u2, . . . , u2m−2 — the result for u1, u3, . . . , u2m−1 is similar.
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(2) By the first observation, we have

u2k =

m−1∑
j=0

C(i2k
· i2 j )e2 j = ik

m−1∑
j=0

C(12k
· 12 j )(i j e2 j ).

This corresponds to starting in the case i = 1, then scaling both the u2k and the e2 j

by powers of i – a scaling which doesn’t change the question of linear independence
one way or the other. Therefore it suffices to consider the case i = 1.

(3) Finally, we can scale each u2k by C(12k) (which, too, doesn’t affect linear
independence). Now we want to look at

u′2k =

m−1∑
j=0

C(12k
· 12 j )/C(12k)e2 j =

m−1∑
j=0

( j∏
`=1

(2k+ 2`− 1)
)

e2 j .

If we put the coefficients of u′2k as columns of a matrix, (that is, j indexes the
rows and k indexes the columns), we get

1 1 . . . 1
1 3 . . . 2m− 1

1 · 3 3 · 5 . . . (2m− 1)(2m+ 1)
...

...
. . .

...

1 · 3 · · · (2m− 1) 3 · 5 · · · (2m+ 1) . . . (2(m− 1)+ 1)(· · · )(4(m− 1)− 1)


Here, the entries in the j-th row are given by f j (k) =

∏ j
`=1(2k + 2`− 1), which

is a degree j polynomial function. In particular, f j (k) can be written as (2k) j plus
lower-order terms; these lower-order terms are necessarily a linear combination of
f1(k), . . . , f j−1(k). Therefore, we can use row operations to eliminate the lower-
order terms, so that the resulting matrix is

1 1 . . . 1
1 2 . . . m
1 4 . . . m2

...
...

. . .
...

1 2m−1 . . . mm−1


This is a Vandermonde matrix whose determinant is

∏
j 6=k( j − k) 6= 0. Therefore

the vectors u′2k (and u2k) form a basis of R2m , which completes the proof. �

4A. The 2-graded case and the HOMFLY-PT estimate. A similar approach ap-
plies in the case of the HOMFLY-PT polynomial, PL . The proof of the reverse
implication is identical. For the forward implication, we suppose tb(L)=−dega PL

and consider the coefficient of the lowest power zk that appears in the a−tb(L) term
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of PL , ∑
α,β

b(α,β)AαA−β .

Fix parameters m and n so that the set

M =
{
(µ, ν)

∣∣ µ= 1a1 · · · nan , ν = 1b1 · · · nbn , 1≤ ai , bi ≤ m
}

contains all (α, β) such that b(α,β) 6= 0.
Using Theorem 6.3 in [Rutherford 2011], for any (µ, ν) ∈ M the coefficient of

zk in the 2-graded ruling polynomial of L · AµA−ν is given by∑
α,β

b(α,β)R2
Aα·µA−β·ν (0).

It suffices to show that the coefficient matrix

A =
(
R2

Aα·µA−β·ν (0)
)
(α,β),(µ,ν)∈M

is nonsingular. Writing α = 1a1 . . . nan , β = 1b1 . . . nbn , µ = 1c1 . . . ncn , and ν =
1d1 . . . ndn , one has

R2
Aα·µA−β·ν (0)=

n∏
k=1

δak+ck ,bk+dk kak+ck (ak + ck)!.

Thus, A is a tensor product (Kronecker product) of matrices

Ak =
(
δa+c,b+dka+c(a+ c)!

)
(a,b),(c,d) .

Due to the Kronecker delta, each Ak is a direct sum (block matrix) of matrices Bl ,
l ∈Z∩[−n, n] obtained from keeping rows and columns satisfying a−b=d−c= l.

The proof is completed by showing that each Bl is nonsingular. We treat the
case l ≥ 0 as l < 0 is similar. Then, l ≤ a, d ≤ n and Bl =

(
ka+d−l(a+ d − l)!

)
.

Dividing rows by ka−l and columns by kd
· d! leaves

(a+ d − l)!
d!

= ( fa(d)) ,

where fa(x) =
∏a−l

j=1( j + x) is a polynomial of degree a − l. Elementary row
operations reduce this to a nonsingular Vandermonde matrix. �

5. Augmentations and generalized normal rulings

In this final section we complete the proof of Theorem 1.2 by establishing that:

For any Legendrian link L ⊂ J 1S1 with Z/p-graded Maslov potential, µ, the
following are equivalent:

(A) The Chekanov–Eliashberg algebra (A(L), d) admits a p-graded augmentation.

(B) The front projection of L has a p-graded generalized normal ruling.
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We begin by briefly recalling the aspects of the Chekanov–Eliashberg DGA that
are important for the proof. The reader is referred to [Ng and Traynor 2004] for
the original, more detailed treatment of this DGA in the J 1S1 setting.

Given a Legendrian knot or link L ⊂ J 1S1, the Lagrangian projection πxy(L)
of L to the xy-annulus is an immersed curve. The Chekanov–Eliashberg DGA
(A(L), d) is a graded algebra A(L) with a degree −1 differential d , defined via a
generic Lagrangian projection of L .

After a small Legendrian isotopy, we may assume πxy(L) to have only finitely
many transverse double points which we label as q1, . . . , qn . Then the algebra
A(L) is the free associative Z/2-algebra with unit generated by the double points
q1, . . . , qn . The set of monic noncommutative monomials in the qi forms a linear
basis for A(L). If L is connected, then A(L) has a Z/2r(L) grading. In general,
the grading depends on a choice of Maslov potential for L . The differential d
is defined by counting certain immersed discs in the xy-annulus with boundary
mapped to the Lagrangian projection of L .

Definition 5.1. An augmentation of (A(L), d) is an algebra homomorphism

ε :A(L)→ Z/2

satisfying

(i) ε(1)= 1, and

(ii) ε ◦ d = 0.

In addition, ε is p-graded if ε(qi ) 6= 0 implies |qi | = 0 mod p.

The existence of an augmentation of (A(L), d) is a property that is invariant
under Legendrian isotopy. This follows from the fact that the “stable tame iso-
morphism type” (see [Chekanov 2002; Ng and Traynor 2004]) of (A(L), d) is
unchanged by a Legendrian isotopy. Therefore, in establishing the equivalence of
(A) and (B) we may work with the Chekanov–Eliashberg algebra of a Legendrian
isotopic link L ′. The links L ′ which we will consider have a standard form so that
(A(L ′), d) may be described in a formulaic manner from the front projection of L ′

(and this front projection is combinatorially the same as that of L). For this reason
we do not present the differential or the grading of the Chekanov–Eliashberg DGA
in full generality here.

5A. The DGA of a resolved front diagram with splashes. Given a Legendrian
L ⊂ J 1S1 we begin by modifying the front diagram of L via (a slight variation
of) the resolution procedure of Ng and Traynor [2004]. Beginning near x = 0
and working from left to right, we alter the front projection of L by an isotopy in
the xz-annulus as follows. We arrange so that, except for intervals near x = 1 or
immediately prior to a crossing or right cusp, the slopes of the strands are constant
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and strictly decreasing as we move from the top to bottom. Further, we will assume
that all strands usually have nonpositive slope. It is no problem to produce these
conditions after a left cusp, but with crossings and right cusps the slopes of the two
relevant strands will need to be interchanged prior to the crossing or cusp. As the
y-coordinate is given by the slope dz/dx , this has the effect of producing double
points on the Lagrangian projection corresponding to (but located to the left of)
the crossings and right cusps of the front projection of L . Finally, when we near
x = 1 the strands have become very spread out and moved below their original z
values at x = 0. Beginning with the top strand and then proceeding successively
to the lowest strands, we return each strand back to its initial position via a steep
upward step. This creates several new crossings on the Lagrangian projection; see
Figure 6.

Figure 6. The front projection (left) and Lagrangian projection
(right) of L ′ in an interval immediately to the left of x = 1.

Next, we add “splashes”. This is a variant of a technique introduced in [Fuchs
2003]; see Remark 5.2. We view the S1 factor of J 1S1 as [0, 1] with 0 and 1
identified. In notation similar to that of Section 2, let 0= x0< x1< · · ·< xM = 1 be
a partitioning of the interval [0, 1] such that no xm coincides with the x-coordinate
of a crossing or cusp and each interval (xm−1, xm) contains exactly one crossing or
cusp. For each m=1, . . . ,M−1, we add a miniature version of the steps appearing
in the part of the resolution procedure near x = 1 into a small interval centered at
xm . That is, beginning at the top strand and then working downward add a brief
but steep (smooth) upward step into the diagram. This has a minimal effect on
the front projection but alters the Lagrangian projection at each xm by replacing
what had been several parallel lines with a collection of crossings similar to those
pictured in the right half of Figure 6. Denote the Legendrian link resulting from
the combination of these two procedures as L ′.

We now give a complete description of the Chekanov–Eliashberg DGA of L ′.
For each 1≤m ≤ M , let N (m) denote the number of intersection points of L with
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the plane x = xm . The generators of A(L ′) come from two sources. First, we have
generators corresponding to the crossings and right cusps of the front projection
of L via the resolution procedure. In addition, for each 1 ≤ m ≤ M we have two
upper triangular matrices worth of generators, xm

i j and ym
i j with 1≤ i < j ≤ N (m).

These correspond to the double points created by the splashes and the final step of
the resolution procedure.

The grading. If L is equipped with a Z/p-graded Maslov potential, µ, then A(L ′)
is Z/p-graded. We will describe the degree |qi | ∈ Z/p assigned to the generators
of A(L ′); degrees then extend additively as |x · y| = |x | + |y|.

In the following, µ(m, i) denotes the value of the Maslov potential on the i-th
strand at xm . (As in Section 2, we label strands from top to bottom.) The generators
of A(L ′) coming from splashes have degrees

(5-1) |xm
i j | = µ(m, i)−µ(m, j) and |ym

i j | = µ(m, i)−µ(m, j)− 1.

In addition, a crossing bm between the k and k+1 strands occurring in the interval
(xm−1, xm) has |bm | = µ(m, k+ 1)−µ(m, k), and all right cusps have degree 1.

The differential. Formulas for the differential d are most efficiently provided by
placing the generators xm

i j and ym
i j into strictly upper triangular matrices

Xm = (xm
i j ) and Ym = (ym

i j )

for each m. (Here, xm
i j = ym

i j = 0 if i ≥ j .) As the x-coordinate is S1-valued, it is
important to make the convention that X0 = X M and Y0 = YM . Then, applying the
differential to each entry, we have the formulas

(5-2)
dYm = (Ym)

2 and

d Xm = Ym(I + Xm)+ (I + Xm−1)Ỹm−1

with I an identity matrix of the appropriate size. The precise form of Ỹm−1 depends
on the tangle appearing on the interval (xm−1, xm) and is described presently.

Suppose that (xm−1, xm) contains a crossing, bm , between the strands labeled k
and k+ 1. Then

dbm = ym−1
k,k+1 and Ỹm−1 = Bk,k+1Ŷm−1 B−1

k,k+1,

where Bk,k+1 and B−1
k,k+1 agree with the identity matrix except for a 2× 2 block

along the diagonal in rows k and k+1, having the form
[ 0

1
1

bm

]
for Bk,k+1 and

[ bm
1

1
0

]
for B−1

k,k+1, and Ŷm−1 is the matrix Ym−1 with 0 replacing the entry ym−1
k,k+1.

Next, we suppose (xm−1, xm) contains a single left cusp between the strands
labeled k and k+ 1 at xm . Then,

Ỹm−1 = JkYm−1 J T
k + Ek,k+1,
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where Jk is the N (m)× N (m) identity matrix with columns k and k+ 1 removed
and Ek,k+1 is a matrix with a single nonzero entry in the k, k+ 1 position.

Finally, we suppose (xm−1, xm) contains a single right cusp, cm , between the
strands labeled k and k+ 1 at xm−1. Then

dcm = 1+ ym−1
k,k+1,

and the matrix Ỹm−1 is most easily described entry by entry. Let

τ : {1, . . . , N (m)} → {1, . . . , N (m− 1)}, τ (i)=
{

i if i < k,
i + 2 if i ≥ k.

The i, j entry of Ỹm−1 is given by ỹm−1
i j = ym−1

τ(i),τ ( j)+ ai j , where

ai j = ym−1
i,k+1 ym−1

k,τ ( j)+ ym−1
i,k cm ym−1

k,τ ( j)+ ym−1
i,k+1 cm ym−1

k+1,τ ( j)+ ym−1
i,k+1(cm)

2 ym−1
k+1,τ ( j)

when i < k ≤ j and ai j = 0 otherwise.

Remark 5.2. The technique of adding some variation of splashes to simplify the
differential first appeared in [Fuchs 2003] and has been used in several places in the
literature. The version employed here is the same as that of [Fuchs and Rutherford
2011], to which we refer the reader for more details. For an alternate approach,
we expect that a DGA of the same form would arise from iterating the “bordered
Chekanov–Eliashberg algebra” construction introduced in [Sivek 2011].

5B. Proof of Theorem 1.2(2). We begin by introducing notation. Given an invo-
lution τ of {1, . . . , N }, τ 2

= id, we let Bτ = (bi j ) denote the N × N matrix with
entries

bi j =

{
1 if i < τ(i)= j,
0 else.

(B)⇒ (A). Suppose that L the diagram admits a generalized normal ruling ρ =
(ρ1, . . . , ρm). An augmentation ε of the algebra A(L ′) is defined as follows: on
all right cusps cm , ε(cm) = 0; at crossings bm , ε(bm) is 1 if bm is a switch and 0
otherwise; for all m, ε(Ym)= Bρm ; and ε(xm

i, j )= 0 for all i, j except when a switch
occurs between xm−1 and xm . Assume the switch involves the k and k+1 strands.
If one of the switching strands is also a fixed point strand, then of the generators
xm

i j augment only xm
k,k+1. Else, note that due to the normality condition, near the

switch the intervals connecting the switching strands and their companion strands
(Remark 2.3) are either disjoint or nested. Assume that the switch occurs between
the strands labeled k and k + 1. If the switch is disjoint, augment only xm

k,k+1. If
the switch is nested, augment xm

k,k+1 and also xm
τ(k),τ (k+1) or xm

τ(k+1),τ (k), depending
on whether τ(k) < τ(k+ 1) or τ(k+ 1) < τ(k).
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It is straightforward to verify from the formulas of the previous section that ε is
an augmentation. If ρ is p-graded with respect to a Maslov potential µ, then ε is
as well.

(A)⇒ (B). The proof of the reverse implication is based on some canonical form
results from linear algebra due to Barannikov [1994].

Definition 5.3. An M-complex, (V,B, d) is a vector space V over a field F with
a chosen ordered basis B = {v1, . . . , vN } together with a differential d : V → V ,
d2
= 0, of the form dvi =

∑
i< j ci jv j .

Proposition 5.4. If (V,B, d) is an M-complex, then there exists a triangular
change of basis {ṽ1, . . . , ṽN }, with ṽi =

∑
i≤ j ai jv j , and an involution

τ : {1, . . . , N } → {1, . . . , N }

such that

d ṽi =

{
ṽ j if i < τ(i)= j,
0 else.

Moreover, the involution τ is unique.

Remark 5.5. (i) Suppose in addition that the basis elements vi are assigned degrees
|vi | ∈Z/p so that V is Z/p-graded and d has degree−1. Then, the change of basis
may be assumed to preserve degree. Hence, if i < τ(i)= j , then |vi | = |v j | + 1.

(ii) The classes [ṽi ] such that τ(i)= i form a basis for the homology H(V, d).

(iii) Proposition 5.4 has the following matrix interpretation: There is a unique
function, D 7→ τ(D) which assigns to every strictly upper triangular N×N matrix
D with D2

= 0 an involution τ = τ(D) such that there exists an invertible upper
triangular matrix P so that P D P−1

= Bτ . Notice that the uniqueness assertion
implies that τ(Q DQ−1)= τ(D) if Q is nonsingular and upper triangular.

Proposition 5.6 [Barannikov 1994]. Suppose that (V,B, d) is an M-complex, and
k ∈ {1, . . . , N } is such that dvk =

∑
k+1< j ck jv j so that the triple (V,B′, d) with

B′ = {v1, . . . , vk+1, vk, . . . , vN } is also an M-complex. Then, the associated invo-
lutions τ and τ ′ are related as follows.

(1) It is always possible to have τ ′ = (k k + 1) ◦ τ ◦ (k k + 1), where (k k + 1)
denotes the transposition.

(2) In the following cases, it is also possible to have τ ′ = τ :
(a) If τ(k+ 1) < τ(k) < k < k+ 1, or

τ(k) < k < k+ 1< τ(k+ 1), or
k < k+1< τ(k+1) < τ(k).

(b) If τ(k) < k < k+ 1= τ(k+ 1) or τ(k)= k < k+ 1< τ(k+ 1).
(c) If τ(k)= k < k+ 1= τ(k+ 1).
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Remark 5.7. (i) From the matrix perspective, Proposition 5.6 puts restrictions
on τ(Pk,k+1 D Pk,k+1) when Pk,k+1 is the permutation matrix of the transposition
(k k+ 1) and the k, k+ 1-entry of D is 0.

(ii) Propositions 5.4 and 5.6 are essentially the same as Lemma 2 and Lemma 4 of
[Barannikov 1994]. Proposition 5.6 is proven quite directly by considering cases.

Proof of (A)⇒ (B). Suppose now that ε is an augmentation of A(L ′).
For each m, the matrix ε(Ym) is strictly upper triangular and satisfies

[ε(Ym)]
2
= ε ◦ d(Ym)= 0.

Letting τm = τ(ε(Ym)) as in Remark 5.5 produces a sequence, τ1, . . . , τM , with
τm an involution of {1, . . . , N (m)}. We show that τ = (τ1, . . . , τM) satisfies the
requirements of a generalized normal ruling. This requires establishing that the
restrictions provided by Definitions 2.2 and 2.4 on consecutive involutions τm−1

and τm are satisfied.
Recall that each interval (xm−1, xm) contains a single crossing or cusp.

If (xm−1, xm) contains a left cusp, then (5-2) and the definition of augmentation
allow us to compute

(5-3) ε(Ym)= (I + ε(Xm))ε(Ỹm−1)(I + ε(Xm))
−1.

Using Remark 5.5 we conclude that

τm = τ(ε(Ym))= τ(ε(Ỹm−1)).

The M-complex associated with ε(Ỹm−1) is related to that of ε(Ym−1) by adding
two new generators vk and vk+1 to B. The complex is the split extension of that of
ε(Ym−1) by span{vk, vk+1} with the differential dvk = vk+1. It can then be checked
from the definition that the involutions τm−1 and τm satisfy Definition 2.2(2).

If (xm−1, xm) contains a right cusp, let

C= (Vm−1,B= {vi | i = 1, . . . , N (m− 1)}, d)

denote the M-complex associated with the matrix ε(Ym−1) by the formula

(5-4) dvi =
∑
i< j

ε(ym−1
i j )v j .

Note that τm−1 is precisely the involution associated to C by Proposition 5.4. From
0= ε ◦ d(cm) we deduce that 1= ε(ym−1

k,k+1), and it follows that τm−1(k)= k+ 1.
Next, one observes that ε(Ỹm−1) is the matrix of the M-complex

C̃=
(
Ṽm−1, B̃= {[vi ] | i 6= k, k+ 1}, d̃

)
,
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where Ṽm−1 is the quotient of Vm−1 by the subcomplex

{vk + ε(cm)vk+1, d(vk + ε(cm)vk+1)}

and d̃ is the differential induced by d . If {ṽi } is a triangular change of basis for
C satisfying the conditions of Proposition 5.4, then {[ṽi ] | i 6= k, k + 1} will be
such a basis for C̃, so that the involution associated with ε(Ỹm−1) is related to τm−1

as required in Definition 2.2(3). Finally, we get τm = τ(ε(Ym)) = τ(ε(Ỹm−1)) by
using (5-3).

If (xm−1, xm) contains a crossing bm , we have 0 = ε ◦ d(bm) = ε(ym−1
k,k+1). Thus,

ε(Ŷm−1) = ε(Ym−1) with both matrices having 0 as their (k, k + 1) entry. Then,
compute that

ε(Bk,k+1)ε(Ŷm−1)ε(B−1
k,k+1)

= Pk,k+1[I + ε(bm)Ek,k+1]ε(Ym−1)[I + ε(bm)Ek,k+1]Pk,k+1.

Regardless of the value of ε(bm), the (k, k+ 1)-entry of

[I + ε(bm)Ek,k+1]ε(Ym−1)[I + ε(bm)Ek,k+1]

is 0, so the matrix A = ε(Bk,k+1)ε(Ŷm−1)ε(B−1
k,k+1) is strictly upper triangular and

τ(A) is related to

τ
(
(I + ε(bm)Ek,k+1)ε(Ym−1)(I + ε(bm)Ek,k+1)

)
= τ(Ym−1)= τm−1

as in Proposition 5.6. It follows that

τm = τ(ε(Ym))= τ((I + ε(Xm))A(I + ε(Xm))
−1)= τ(A)

and τm−1 satisfy the requirements near crossings (including the normality condi-
tions) of Definition 2.4.

The statement that τ is p-graded if ε is p-graded follows from (i) of Remark 5.5.
As in (5-4), ε(Ym) is the matrix of an M-complex with basis v1, . . . , vN (m) corre-
sponding to the strands of L at xm . If ε is p-graded with respect to µ, then we can
assign a grading by |vi | = µ(m, i) and the differential will have degree −1. �
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