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Let G=GLn be the general linear group over an algebraically closed field k,
and let g= gln be its Lie algebra. Let U be the subgroup of G that consists
of the upper unitriangular matrices. Let k[g] be the algebra of polynomial
functions on g, and let k[g]G be the algebra of invariants under the con-
jugation action of G. For certain special weights, we give explicit bases for
the k[g]G-module k[g]Uλ of highest-weight vectors of weight λ. For five of
these special weights, we show that this basis is algebraically independent
over k[g]G and generates the k[g]G-algebra

⊕
r≥0 k[g]Urλ. Finally, we for-

mulate the question whether in characteristic zero, k[g]G-module genera-
tors of k[g]Uλ can be obtained by applying one explicit highest-weight vector
of weight λ in the tensor algebra T (g) to varying tuples of fundamental
invariants.

Introduction

Let GLn be the general linear group over an algebraically closed field k, and let
gln be its Lie algebra. We are interested in explicit formulas for highest-weight
vectors in the ring k[gln] of polynomial functions on gln under the conjugation
action. It is natural to take into account the fact that the highest-weight vectors of
a given weight form a module over the invariant algebra k[gln]

GLn . A crude method
would be to map the highest-weight vectors in the tensor algebra T (gln) (see, for
example, [Benkart et al. 1994]) into the symmetric algebra S(gln), which is GLn-
equivariantly isomorphic to k[gln]. Mostly one will be projecting to zero. For
example, in [Premet and Tange 2005, Section 5, Corollary 2], it was shown that
the lowest degree in k[gln] where the irreducible of highest weight n$1 occurs
is n(n − 1)/2. But the lowest degree in T (gln) where this irreducible occurs is
n−1. Our method involves differentiation of the fundamental invariants and applies
to any relevant weight, although we can only prove that it provides a k[gln]

GLn -
module basis for a special family of weights.
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Kostant [1963] showed that, for any reductive group G over C, the coordinate
rings of the fibres of the adjoint quotient are all isomorphic as G-modules to
the space H of harmonic functions, and determined the multiplicities of the ir-
reducibles in H . Hesselink [1980] obtained a completely general formula for the
graded character of H (or the coordinate ring of the nilpotent cone). For more
results on multiplicities in the tensor, symmetric and exterior algebra of the Lie
algebra we refer the reader to [Hanlon 1985; Stembridge 1987; Gupta 1987; Brylin-
ski 1989; Reeder 1997; Bazlov 2001] and the references in there.

The paper is organised as follows. In Section 1, we introduce some basic nota-
tion and recall some results from the literature. Section 2 contains the main results:
Theorem 1 gives explicit k[gln]

GLn -module bases for the space of highest-weight
vectors for a family of 2(n − 1)− 1 weights, and Theorem 2 extends this to all
the multiples of 5 of these weights. Theorems 1 and 2 generalise the results in
[Premet and Tange 2005, Section 5] for the weight n$1. See also [Dixmier 1976,
lemme 3.4] for the case of the universal enveloping algebra of sln . In Section 3,
we briefly consider the example GL3. Here one can actually determine k[gln]

GLn -
module bases for the space of highest-weight vectors for all relevant weights; that
is, one can completely determine the algebra k[gln]

Un , where Un consists of the
upper unitriangular matrices. In Section 4, we formulate the question whether
in characteristic zero, k[gln]

GLn -module generators of k[gln]
U
λ can be obtained by

applying one explicit highest-weight vector of weight λ in the tensor algebra T (gln)

to varying tuples of fundamental invariants.

1. Preliminaries

Throughout this paper k is an algebraically closed field and G =GLn , n ≥ 2, is the
general linear group of invertible n×n matrices. Its natural module is V = kn and
its Lie algebra is g= gln

∼= V ⊗V ∗. The standard basis elements of V are denoted
by e1, . . . , en and the dual basis elements are denoted by e∗1, . . . , e∗n . We identify
g= gln with End(V ), the endomorphisms of the vector space V . We denote by Ei j

the matrix which is 1 on position (i, j) and 0 elsewhere. Under the isomorphism
g∼= V ⊗V ∗, Ei j corresponds to ei ⊗ e∗j . The elements of the dual basis of Ei j are
denoted by ξi j . So the algebra k[g] of polynomial functions on g is a polynomial
algebra in the ξi j . The group G acts on g via the adjoint action (conjugation) and
therefore also on k[g]. For any group H and any k H -module W we denote the
space of H -fixed vectors in W by W H .

The Borel subgroup of G which consists of the invertible upper triangular ma-
trices is denoted by B and its unipotent radical, which consists of the upper unitri-
angular matrices, by U . We denote by T the maximal torus of G which consist of
the invertible diagonal matrices. The character group of T is denoted by X and its
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standard basis elements are denoted by ε1, . . . , εn . Recall that the positive roots
relative to B are the roots εi − ε j for i < j , and that λ ∈ X is dominant if and only
if λ1≥ λ2≥ · · · ≥ λn . Furthermore, λ∈ X occurs in the root lattice if and only if its
coordinate sum is 0. The all-zero and the all-one vector in X are denoted by 0 and
1 respectively. For i ∈ {1, . . . , n−1} the i-th fundamental weight $i ∈Q⊗Z X is
defined by

$i =

i∑
j=1

ε j −
i
n

1=
1
n

(
(n− i)

i∑
j=1

ε j − i
n∑

j=i+1

ε j

)
.

The Z-span of the fundamental weights contains the root lattice. For λ ∈ X and W
a T -module the weight space Wλ is defined by

Wλ = {x ∈W | t · x = λ(t)x for all t ∈ T }.

We denote the irreducible GLn(C)-module of highest weight λ by LC(λ). The
Weyl group of G relative to T is the symmetric group Symn which permutes the
coordinates. We denote the longest Weyl group element by w0. We have w0(εi )=

εn−i+1, put differently, w0(λ) is the reversed tuple of λ.
For i ∈ {1, . . . , n} we define si ∈ k[g] by

si (x)= tr
∧i
(x),

where
∧i
(x) denotes the i-th exterior power of x . Then the si are up to sign

the coefficients of the characteristic polynomial. Note that s1 = tr and sn = det.
Furthermore, the si are algebraically independent generators of k[g]G . See, e.g.,
[Jantzen 2004, Section 7].

The reader who only wants to understand the precise statements of the main
results can now continue to Section 2, read definitions (1) and (2) and then Theo-
rems 1 and 2.

We now state some auxiliary results that will be needed for the proofs of the
main results. The result below was mentioned to me by S. Donkin.

Lemma 1. dim k[g]U = dim B = n(n+ 1)/2.

Proof. For m ∈ {1, . . . , n} put

1m = det
(
(ξi j )n−m+1≤i≤n, 1≤ j≤m

)
.

Then 1m ∈ k[g]U for all m ∈ {1, . . . , n} and k[g][1−1
1 , . . . ,1−1

n ] = k[Bw0 B]. It
follows that

k[g]U [1−1
1 , . . . ,1−1

n ] = k[Bw0 B]U

and dim k[g]U = dim k[Bw0 B]U . Now k[Bw0 B]U ∼= k[B] via the isomorphism
that sends f ∈ k[B] to the function uw0b 7→ f (bu). �
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We recall the graded Nakayama lemma. For its proof we refer to [Passman
1991, Chapter 13], Lemma 4, Exercise 3, Lemma 3.

Lemma 2 [Passman 1991, Chapter 13]. Let S =
⊕

i≥0 Si be a positively graded
ring with S0 a field, let M be a graded S-module and let (xi )i∈I be a family of
homogeneous elements of M. Put S+ =

⊕
i>0 Si .

(i) If the images of the xi in M/S+M span the vector space M/S+M over S0,
then the xi generate M.

(ii) If M is projective and the images of the xi in M/S+M form an S0-basis of
M/S+M , then (xi )i∈I is an S-basis of M.

The closed subvariety of g which consists of the nilpotent matrices is denoted by
N. Since N is G-stable, G acts on the algebra k[N] of regular functions on N. The
two results below are actually valid, under some mild assumptions, for arbitrary
reductive groups, but we will not need this generality.

Proposition 1 [Kostant 1963, Theorem 11; Jantzen 2004, Section 7; Donkin 1988,
Theorem 2.2; Donkin 1990, Proposition 1.3b(i)].

(i) The vanishing ideal of N in k[g] is generated by s1, . . . , sn and for each λ the
restriction k[g]Uλ → k[N]Uλ is surjective and has kernel (k[g]G)+k[g]Uλ .

(ii) We have k[g]Uλ 6= 0 if and only if λ is dominant and lies in the root lattice.

(iii) If λ is dominant and lies in the root lattice, then dim k[N]Uλ = dim LC(λ)0 and
k[g]Uλ is a free k[g]G-module of rank dim LC(λ)0.

Note that dim LC(λ)0 = dim LC(−w0(λ))0, since the nondegenerate pairing be-
tween LC(λ) and LC(−w0(λ)) = LC(λ)

∗ restricts to one between LC(λ)0 and
LC(−w0(λ))0.

We will call a weight λ ∈ X primitive if it is nonzero, dominant, occurs in the
root lattice and cannot be written as the sum of two such weights. Note that k[g]
is a unique factorisation domain, since it is isomorphic to a polynomial ring.

Lemma 3. Let u ∈ k[g] be nonzero. Assume that its top degree term does not
vanish on N and is a B-semi-invariant of primitive weight λ. Then u is irreducible.

Proof. If the top degree term of u is irreducible, then so is u. So we may assume that
u is homogeneous. We now finish with the arguments from part 3 of the proof of
[Premet and Tange 2005, Proposition 3]. Let u = um1

1 · · · u
mr
r be the factorisation

of u into irreducibles. Then the ui are homogeneous. By a standard argument
using the uniqueness of the prime factorisation and the connectedness of B, we
get that the ui are B-semi-invariants. Let λ1, . . . , λr be their weights. Then these
are dominant by [Jantzen 2003, Proposition II.2.6] and we have λ =

∑r
i=1 miλi .

So, by the primitivity of λ, we get that for precisely one i , λi 6= 0 and for this i
we have mi = 1. We may assume i = 1. Then λ1 = λ and λ2 = · · · = λr = 0. So
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u2, . . . , ur are B-invariants and therefore G-invariants. Since u is nonzero on N,
we have by Proposition 1(i) that r = 1. �

2. The basic semi-invariants

For t ∈ {1, . . . , n− 1} we define the weights

(1)

λt
=

n∑
i=n−t+1

(ε1− εi )= (t, 0, . . . , 0,−1, . . . ,−1),

µt
=

t∑
i=1

(εi − εn)= (1, . . . , 1, 0, . . . , 0,−t) .

Note that λt and µt are dominant and in the root lattice. We have λ1
=µ1

= ε1−εn

and µt
=−w0(λ

t). Furthermore, we have λt
= t$1+$n−t and µt

=$t+ t$n−1.
A weight

∑n−1
i=1 mi$i occurs in the root lattice if and only if n |

∑n−1
i=1 imi . From

this we easily deduce that λt and µt are primitive.
All (Young) tableaux that we consider will have entries in {1, . . . , n}. Recall

that a tableaux is called standard if the entries in the rows are increasing (i.e., non-
decreasing) from left to right and if the entries in the columns are strictly increasing
from top to bottom.

Lemma 4. Let t ∈ {1, . . . , n− 1}.

(i) We have dim k[N]U
λt = dim k[N]U

µt =
(n−1

t

)
.

(ii) Assume t = 1 or n ≥ 3 and t ∈ {1, n − 2, n − 1}, let r ≥ 0 be an integer and
put s =

(n−1
t

)
. Then dim k[N]Urλt = dim k[N]Urµt =

(r+s−1
r

)
.

Proof. (i) We only have to consider the case of λt . The given dimension is by
Proposition 1 equal to dim LC(λ

t)0. Put ν := λt
+ 1 = (t + 1, 1, . . . , 1, 0, . . . , 0),

where the number of zeros is t . Then LC(ν)= det⊗LC(λ
t). So it suffices to show

that dim LC(ν)1 =
(n−1

t

)
. This dimension is well-known to be equal to the number

of standard tableaux of shape ν and weight 1, that is, each integer in {1, . . . , n}
must occur precisely once. The shape ν is a hook diagram as shown:

︷ ︸︸ ︷t + 1 boxes
n− t
boxes

1 . . .

...



502 RUDOLF TANGE

Clearly the box in the top left corner must contain 1 and the tableaux is completely
determined by the choices for the other boxes in the first column. So our standard
tableaux are in one-one correspondence with the n− t − 1-subsets of {2, . . . , n}.

(ii) We only have to consider the case of λt . By the same arguments as in (i), it
suffices to show that the number of standard tableaux of shape ν and weight r1 is(r+s−1

r

)
, where ν := rλt

+r1. So each integer in {1, . . . , n} must occur precisely r
times. First assume t = 1. Then s = n− 1 and the shape ν is a diagram as shown:

︷ ︸︸ ︷2r boxes
n− 1
boxes

︸ ︷︷ ︸
r boxes

1 . . . 1 . . .

. . .
...

...
. . .

Clearly the first r boxes in the top row must contain 1. If we ignore the first row,
then each column is a strictly increasing subsequence of {2, . . . , n} of length n−2.
So it is determined by an integer from {2, . . . , n} (the one that does not occur). If
we write these in the order of the columns, then the standardness implies that we
get an increasing sequence. This sequence is what goes in the final r boxes in the
first row and it determines the tableaux completely. The number of such sequences
is the same as the number of monomials of degree r in n−1 variables, so it equals(n+r−2

r

)
.

Now assume that t = n − 2. Then s = n − 1 and the shape ν is a diagram as
shown below. ︷ ︸︸ ︷(n− 1) r boxes

︸ ︷︷ ︸
r boxes

1 . . . 1 . . . . . .

. . .

Again the first r boxes in the top row must contain 1. Now the diagram is com-
pletely determined by the second row, which is an increasing subsequence of
{2, . . . , n}. So again we get

(n+r−2
r

)
standard tableaux. The case t = n − 1 is

trivial, since the shape ν is then a single row of length nr . �

We now define some basic B-semi-invariants in k[g]. For t ∈ {1, . . . , n−1} and
I ⊆ {2, . . . , n} with |I | = t we define

ut,I := det
(
(∂1i s j )n−t+1≤i≤n, j∈I

)
,

vt,I := det
(
(∂ins j )1≤i≤t, j∈I

)
.

(2)
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Here the indices from I are taken in their natural order and ∂i j is the partial deriv-
ative ∂/∂ξi j . Note that ut,I and vt,I are homogeneous of degree

(∑
j∈I j

)
− t .

Define the involution ϕ of the vector space g by ϕ(A) = P AT P , where P is
the permutation matrix corresponding to w0 and AT denotes the transpose of A.
Then ϕ(g · A) = P(g−1)T P · ϕ(A), where the dot denotes conjugation action. If
we denote the corresponding automorphism of k[g] also by ϕ, then this formula
also holds with A replaced by f ∈ k[g]. So ϕ(k[g]Uλ )= k[g]U

−w0(λ)
. In accordance

with this we have ϕ(ut,I )=±vt,I .
We set up some notation which will give another, more general, way to construct

the elements ut,I and vt,I . This will make clear why they are B-semi-invariants
(see the proof of Theorem 1(ii) below). If λ is a partition, then we denote its length
by l(λ). For λ+, λ− ∈ X we put [λ+, λ−] := λ+−w0(λ

−). It is easy to see that for
any λ∈ X dominant there exist unique partitions λ+ and λ− with l(λ+)+l(λ−)≤ n
and λ= [λ+, λ−]. In the sequel, when λ+ and λ− are introduced after λ, they are
supposed to have these properties. Let λ be a partition of t . We define the tableau
Tλ of shape λ by Tλ(i, j)=

(∑i−1
l=1 λl

)
+ j . Furthermore we define the subgroup Cλ

of the symmetric group Symt as the column stabiliser of Tλ. Define the element Aλ
in the group algebra k〈Symt 〉 by Aλ =

∑
π∈Cλ sgn(π)π . Finally, define eλ ∈ V⊗t

and e∗λ ∈ V ∗⊗t by

eλ =
l(λ)⊗
i=1

e⊗λi
i and e∗λ =

l(λ)⊗
i=1

e∗n−i+1
⊗λi .

Then, as is well-known (see, e.g., [Benkart et al. 1994]), Aλ · eλ and Aλ · e∗λ are
highest-weight vectors of weight λ and −w0(λ) respectively.

Now let λ = [λ+, λ−] be dominant and in the root lattice. Then λ+ and λ−

are partitions of the same number, t say and we define Eλ ∈ g⊗t as the element
corresponding to Aλ+ · eλ+ ⊗ Aλ− · e∗λ− ∈ V⊗t

⊗ V ∗⊗t under the isomorphism
g⊗t ∼= V⊗t

⊗ V ∗⊗t . By the above, Eλ is a highest-weight vector of weight λ.
For each x ∈ g we can extend the evaluation at x , considered as a linear map

g∗→ k⊆ k[g], to a derivation of degree−1 of the algebra k[g]. Then the evaluation
at Ei j extends to the derivation ∂i j . So we obtain a G-equivariant linear map
g→ End(k[g]) and therefore also a G-equivariant linear map

ψt : g
⊗t
→ End(k[g]⊗t) .

We denote the G-equivariant multiplication map k[g]⊗t
→ k[g] by ϑ .

Theorem 1. Let t ∈ {1, . . . , n−1} and let λt , µt , ut,I , vt,I be given by (1) and (2).

(i) The ut,I , I ⊆ {2, . . . , n} with |I | = t , form a basis of the k[g]G-module k[g]U
λt .

The same holds for the vt,I and µt .



504 RUDOLF TANGE

(ii) Any nontrivial k-linear combination of the ut,I , I ⊆ {2, . . . , n} with |I | = t ,
is an irreducible B-semi-invariant of weight λt . The same holds for the vt,I

and µt .

Proof. (i) Using the involution ϕ we see that we only have to prove the assertion
for µt and the vt,I . By Proposition 1 and Lemmas 2 and 4(i) it suffices to show that
the restrictions of the vt,I to N are linearly independent. For 31,32 ⊆ {1, . . . , n}
and A= (ai j )1≤i, j≤n ∈ g set A31,32 = (ai j )(i, j)∈31×32 , where the indices are taken
in their natural order. Furthermore, put X = (ξi j )1≤i, j≤n . If |31| = |32|, then we
have, as in [Premet and Tange 2005], the following basic fact which follows from
the Laplace expansion formulae for the determinant:

(3) ∂i j
(
det(X31,32)

)
=

{
± det(X31\{i}, 32\{ j}) when (i, j) ∈31×32,

0 when (i, j) /∈31×32.

For l ≤ n we have sl =
∑

3 det(X3,3) where the sum ranges over all l-subsets 3
of {1, . . . , n}.

For a sequence σ = (σ1, . . . , σs) of distinct integers in {1, . . . , n}we define Aσ ∈
End(V ) by Aσ (eσi )= eσi−1 for i ∈ {2, . . . , s} and Aσ (ei )= 0 for i /∈ {σ2, . . . , σs}.
Then Aσ is nilpotent and its restriction to the span of the eσi , 1≤ i ≤ s, is regular.

If 31,32 ⊆ {1, . . . , n} with |31| = |32|> 0 and det(X31,32)(Aσ ) 6= 0, then

• 31 ⊆ {σ1, . . . , σs−1} and 32 ⊆ {σ2, . . . , σs},

• σ j ∈31⇒ σ j+1 ∈32 for all j ∈ {1, . . . , s− 1},

• σ j ∈32⇒ σ j−1 ∈31 for all j ∈ {2, . . . , s}.

(4)

Let σ be as above with σ1 = n. Let i ∈ {1, . . . , n}, let 3 ⊆ {1, . . . , n} with
|3| = l and assume that

(
∂in det(X3,3)

)
(Aσ ) 6= 0. Then it follows from (3) and

(4) that i = σl , that 3 = {σ1, . . . , σl} and that
(
∂in det(X3,3)

)
(Aσ ) = ±1. So for

such a σ we have (∂insl)(Aσ ) 6= 0⇒ l ≤ s, i = σl and (∂insl)(Aσ )=±1.
So for σ = (σ1, . . . , σs) and τ = (τ1, . . . , τt) sequences of distinct integers in
{1, . . . , n} and π ∈ Symt with σ1 = n and (∂π1nsτ1) · · · (∂πt nsτt )(Aσ ) 6= 0 we have

(a) τi ≤ s for all i ∈ {1, . . . , t},

(b) σ ◦ τ = π ,

(c) (∂π1nsτ1) · · · (∂πt nsτt )(Aσ )=±1.

Note that (a) implies that σ({τ1, . . . , τt })= {1, . . . , t}, so the set {τ1, . . . , τt } is
determined by σ .

Now we choose for each subset I = {i1 > · · · > it } of {2, . . . , n} a sequence
σ(I ) of i1 ≥ t+1 distinct integers in {1, . . . , n} with σ(I )1= n and σ(I )i j = j for
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all j ∈ {1, . . . , t}. Then we get for I, J ⊆ {2, . . . , n} with |I | = |J | = t that

vt,I (Aσ(J ))=
{
±1 if I = J,
0 otherwise.

So the linear map f 7→ f (Aσ(J ))J : k[N]→ k(
n−1

t ) sends the family (vt,I |N)I to
a basis and therefore the restrictions of the vt,I to N are linearly independent.

(ii) Let I ⊆ {2, . . . , n} with |I | = t and write I = {i1 < · · ·< it }. Then it follows
immediately from the definitions that ut,I = ϑ(ψt(F) · si1 ⊗ · · ·⊗ sit ), where

F =
∑
π

sgn(π) E1,πn−t+1 ⊗ · · ·⊗ E1,πn ,

the sum over all permutations π ∈ Sym({n − t + 1, . . . , n}). Now λ+t = tε1 and
λ−t = ε1+ · · · + εt . So Aλ+t = id and Aλ−t =

∑
π∈Symt

sgn(π)π for eλ+t = e⊗t
1 and

eλ−t = e∗n−t+1⊗· · ·⊗e∗n . It follows that, under the isomorphism g⊗t ∼= V⊗t
⊗V ∗⊗t ,

F corresponds to Aλ+t · eλ+t ⊗ Aλ−t · e
∗

λ−t
. So F = Eλt . Similarly, we get vt,I =

ϑ(ψt(Eµt ) · si1 ⊗ · · · ⊗ sit ). Since the si are invariants, this shows that ut,I and
vt,I are B-semi-invariants of the given weights. Since λt and µt are primitive, the
assertion follows from Lemma 3 and the linear independence proved in (i). �

Remarks 1. 1. Kostant [1963, Remark 26] gave an explicit basis for the isotypic
component of the space of harmonics H corresponding to the highest root. So the
statement of Theorem 1 in the case of λ1 extends to all complex reductive groups.

2. Assume k =C, let t ≤ s and let λ= [λ+, λ−] be dominant and in the root lattice
with λ+ and λ− partitions of t . Then

(g⊗s)Uλ
∼= (V⊗s

⊗ V ∗⊗s
)Uλ

is a simple module for the walled Brauer algebra Bs,s(n), see [Benkart et al. 1994].
Note that in the definition of the vectors tτ,m,n in Definition 2.4 of that reference,
the symmetrisation can be omitted. Above we only considered the case s = t , the
lowest tensor power of g which contains LC(λ). Then (g⊗s)Uλ is an irreducible
Symt × Symt -module and the ideal of Bt,t(n) spanned by the diagrams with at
least one horizontal edge acts as 0.

3. Another natural definition of eλ and e∗λ is

eλ =
l(λ′)⊗
i=1

λ′i⊗
j=1

e j and e∗λ =
l(λ′)⊗
i=1

λ′i⊗
j=1

e∗n− j+1,

where λ′ denotes the partition of t whose shape is the transpose of that of λ. In
the definition of Aλ one then has to replace Tλ by its transpose (or Cλ by the row
stabiliser Rλ). Then Aλ · eλ and Aλ · e∗λ are again highest-weight vectors of weight
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λ and −w0(λ) and one can define Eλ as before. Note that this Eλ is Symt×Symt -
conjugate to the original one.

4. Assume k = C. Theorem 1 answers the so-called first occurrence question
for k[g] and the weights λt and µt : The lowest degree where LC(λ

t) (or LC(µ
t))

occurs in k[g] is
(∑t+1

i=2 i
)
− t = t (t + 1)/2.

Theorem 2. Assume t = 1 or n ≥ 3 and t ∈ {1, n − 2, n − 1}. Then the ut,I ,
I ⊆{2, . . . , n} with |I | = t , are algebraically independent over k[g]G and generate
the k[g]G-algebra

⊕
r≥0 k[g]Urλt . Furthermore, the same holds for the vt,I and µt .

Proof. Using the involution ϕ we see that we only have to prove the assertion
for µt and the vt,I . By Proposition 1 and Lemmas 2 and 4(ii) it suffices to show
that the restrictions of the vt,I to N are algebraically independent. If t = n − 1,
then this follows from the fact that vn−1,{2,...,n}|N is nonzero by Theorem 1(i) and
of degree > 0. Now we observe the following. If f1, . . . , fl ∈ k[N], then the
morphism ( f1, . . . , fl) :N→ kl is dominant if and only if the fi are algebraically
independent and its differential at a point x ∈ N is surjective if and only if the
differentials at x of the fi are linearly independent. So, by [Borel 1991, AG 17.3],
it suffices to show that the differentials of the vt,I |N are linearly independent at
some smooth point x ∈ N. For x ∈ N we have that Tx(N) is the intersection of
the kernels of the differentials dx si and x is a smooth point of N if and only if the
dx si are linearly independent. So it suffices to show that the differentials of the si

and the vt,I at some nilpotent element x are together linearly independent. We will
take x = A = Aσ , where σ = (n, n−1, . . . , 1) and the notation is as in the proof
of Theorem 1(i). Put

α =
(
(1, 1), . . . , (1, n), (n, 1), . . . , (n, n−2), (2, 1)

)
.

Let M be the Jacobian matrix of s1, . . . , sn and the vt,I and let Mα be the (2n−1)-
square submatrix of M consisting of the columns with indices from α. We will
show that det(Mα)(A)=±1. This will prove the required linear independence.

From (3) and (4) we deduce easily that (∂ni s j )(A) = 0 and (∂21s j )(A) = 0
for all i ∈ {1, . . . , n − 2} and j ∈ {1, . . . , n} and that (∂1i s j )(A) = ±δi j for all
i, j ∈ {1, . . . , n}. So it suffices to show that the matrix (∂αivt,J )(A)n+1≤i≤2n−1,J

is diagonal with the diagonal entries equal to ±1, when the subsets J are suitably
ordered.

Assume t = n− 2. For j ∈ {2, . . . , n} put w j = vt,{2,...,n}\{ j}. Put

τ( j)= (2, . . . , j − 1, j + 1, . . . , n).

Then we have

(5) ∂αmw j = ∂αm

∑
±(∂π1,nsτ( j)1) · · · (∂πn−2,nsτ( j)n−2) ,
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where the sum is over all π ∈ Sym({1, . . . , n−2}). We can expand this further by
applying the product rule for differentiation. Then each term in (5) produces n−2
terms, the differentiation ∂αm being applied to each factor in turn. As in the proof
of Theorem 1 we have

(6) (∂insl)(A) 6= 0 ⇒ (∂insl)(A)=±1 and i = σl = n− l + 1.

Now assume j ≥ 3, i.e., σ j ≤ n− 2. Then στ( j)1 = σ2 = n− 1. Since π never
takes the value n− 1, the only term in the expanded form of

(7) ∂αm

(
(∂π1,nsτ( j)1) · · · (∂πn−2,nsτ( j)n−2)

)
that can be nonzero at A is

(
∂αm (∂π1,ns2)

)
(∂π2,nsτ( j)2) · · · (∂πn−2,nsτ( j)n−2). By (6)

we must then have πi = στ( j)i for all i ∈ {2, . . . , n− 2} and π1 = σ j . Finally (3)
and (4) give us then that αm = (n, σ j ) and that the value of the term is ±1.

Now assume that j = 2. Then τ(2)= (3, . . . , n). So for a term in the expanded
form of (7) to be nonzero at A we must, by (6), have πi = στ(2)i for all but one
and therefore for all i ∈ {1, . . . , n − 2}. So π = (n − 2, . . . , 1). Now we check
that

(
∂nl(∂πi ,nsτ(2)i )

)
(A) = 0 for all l, i ∈ {1, . . . , n − 2} by considering a term

det(A3\{πi ,n},3\{l,n}) for 3 ⊆ {1, . . . , n} with |3| = τ(2)i = i + 2. Assume first
1 ∈ 3. Then πi = 1, since otherwise the first row of A3\{πi ,n},3\{l,n} would be
zero. So i = n − 2 and 3 = {1, . . . , n}. But then the column of index n − 1 in
A3\{πi ,n},3\{l,n} is zero. So 1 /∈ 3. The cases l < πi and l = πi are now easily
dealt with using (3) and (4). So assume πi < l. Then we get, using (3) and (4),
3 = {πi , . . . , l, n}. Then i + 2 = |3| = l − n + i + 3, so l = n − 1, which is
impossible. Finally we check that

(
∂2,1(∂πi ,nsi+2)

)
(A) = ±δi,n−2, by considering

a term det(A3\{2,πi },3\{1,n}) for 3 ⊆ {1, . . . , n} with |3| = i + 2. Since 1 ∈ 3
we must have πi = 1, so i = n− 2 and 3 = {1, . . . , n}. The value of this term is
then ±1.

In conclusion we have shown that, for m ∈{n+1, . . . , 2n−1} and j ∈{2, . . . , n},
(∂αmw j )(A)=±δm−n,w0( j).

Now assume t = 1. Then we put w j = vi,{ j} = ∂1,ns j and we show that, for
m ∈ {n+ 1, . . . , 2n− 1} and j ∈ {2, . . . , n}, (∂αmw j )(A)=±δm−n, j−1. Since this
case is much easier we leave it to the reader. �

Remarks 2. 1. Assume k = C, let t ∈ {1, n − 2, n − 1} and let r ≥ 0. Then,
by Theorem 2, the lowest degree where LC(rλt) (or LC(rµt)) occurs in k[g] is
r
(
(
∑t+1

i=2 i)− t
)
= r t (t + 1)/2.

2. Computer calculations suggest that, for t /∈ {1, n − 2, n − 1} and r ≥ 2,
dim k[N]Urλt <

(r+s−1
r

)
, where s = dim k[N]U

λt . So for such t one cannot expect
the ut,I to be algebraically independent over k[g]G , but one could still conjecture
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that they generate the k[g]G-algebra
⊕

r≥0 k[g]Urλt . Similar remarks apply to µt

and the vt,I .

3. With a bit more effort one can show that the matrix Mα(A) from the proof of
Theorem 2 is diagonal with the diagonal entries equal to ±1.

3. The case of GL3

In this section we describe the algebra k[g]U in the case of GL3. So throughout
this section n= 3, G=GL3 and g= gl3. We have λ1

=µ1
=$1+$2, λ2

= 3$1=

(2,−1,−1) and µ2
= 3$2 = (1, 1,−2). Note that a weight l1$1+ l2$2 is in the

root lattice if and only if 3 | (l1− l2). Put X = (ξi j )1≤i, j≤3. For i, j ∈ {1, 2, 3} we
denote by X(i, j) the matrix X with the i-th row and j-th column omitted and we
denote its determinant by |X(i, j)

|. We put

d1 = ξ21|X
(1,3)
| + ξ31|X

(1,2)
| = −u2,{2,3} ,

d2 = ξ31|X
(2,3)
| + ξ32|X

(1,3)
| = v2,{2,3} .

Lemma 5. Let λ = l1$1 + l2$2 be dominant and in the root lattice. Put a =
min(l1, l2). Then dim LC(λ)0 = a+ 1.

Proof. Put b = (l1 + 2l2)/3 and ν = λ + b1 = (l1 + l2, l2, 0). Then LC(ν) =

detb⊗LC(λ). So it suffices to show that there are a+1 standard tableaux of shape
ν and weight b1. This we leave as an exercise for the reader. One has to distinguish
the cases l1 ≥ l2 and l2 ≥ l1. �

Proposition 2. (i) Let λ= l1$1+l2$2 be dominant and in the root lattice and put
a = min(l1, l2). Put d = d(l1−l2)/3

1 if l1 ≥ l2 and put d = d(l2−l1)/3
2 otherwise. Then

the elements d ξ i
31|X

(1,3)
|
a−i , 0≤ i ≤ a, form a basis of the k[g]G-module k[g]Uλ .

(ii) The k-algebra k[g]U is generated by s1, s2, s3, ξ31, |X(1,3)|, d1 and d2. A defin-
ing relation is given by

d1d2− |X
(1,3)
|
3
− ξ31|X

(1,3)
|
2s1− ξ

2
31|X

(1,3)
|s2− ξ

3
31s3 = 0 .

Proof. (i) By Proposition 1 and Lemmas 2 and 5 it suffices to show that the given
elements are independent on N. Since they all have different degrees, it suffices to
show they are nonzero on N. One easily checks that they are all nonzero on0 0 0

1 0 0
1 1 0

 .
(ii) By (i) the 7 given elements generate k[g]U and by Lemma 1 dim k[g]U = 6. A
straightforward computation shows that the given equation holds and it is clearly
irreducible (by Gauss’s lemma, for instance). �
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Remark 3. Proposition 2 also shows that the k-algebra k[N]U is generated by ξ31,
|X(1,3)|, d1 and d2 with defining relation d1d2− |X

(1,3)
|
3
= 0.

4. The method in general

As the reader may have noticed after reading the proof of Theorem 1(ii) our method
for producing highest-weight vectors applies to any dominant weight in the root
lattice. So one may wonder whether we always get k[g]G-module generators. We
formulate this as a question. We assume that k=C and use the notation of Section 2
before Theorem 1.

Question. Let λ = [λ+, λ−] be dominant and in the root lattice with λ+ and λ−

partitions of t . Do the elements ϑ
(
ψt(Eλ) · si1 ⊗ · · · ⊗ sit

)
for 2 ≤ i1, . . . , it ≤ n

generate the k[g]G-module k[g]Uλ ? Equivalently, do their restrictions to N span
k[N]Uλ ?

Note that the only thing that varies here is the tuple (i1, . . . , it). Note also that
we allow repetitions in the arguments si j . As an example we consider the case n=4
and λ = 2$2 = (1, 1,−1,−1), a primitive weight. Then the Hesselink–Peterson
formula [Hesselink 1980] shows that k[N]Uλ has dimension 2 with a generator in
degree 2 and one in degree 4. We have

ϑ
(
ψt(Eλ) · si1 ⊗ si2

)
=±

∑
sgn(σ ) sgn(τ ) ∂σ1τ3si1 ∂σ2τ4si2 ,

where the sum is over all σ ∈ Sym({1, 2}) and all τ ∈ Sym({3, 4}). It follows that
ϑ
(
ψt(Eλ)·s2⊗s2

)
=±2 det(X{3,4},{1,2}), where X{3,4},{1,2} is defined as in the proof

of Theorem 1. Clearly this is nonzero on the nilpotent cone. Note that the choice
(s2, s2) is the only choice that gives the degree 2 generator. One can check that
(s3, s3) and (s2, s4) both produce semi-invariants of degree 4 that are nonzero on
N. In the case (s2, s4) it is nonzero on N in any characteristic.

By Theorem 1 the answer to our question is affirmative for the weights λt andµt .
The basis elements of the spaces k[g]Urλt and k[g]Urµt , r > 1 and t ∈ {1, n−2, n−1},
from Theorem 2 are not formed in accordance with our question.

One can probably formulate a more complicated question for k of arbitrary char-
acteristic, where one divides the expression ϑ

(
ψt(Eλ) ·si1⊗· · ·⊗sit

)
by a suitable

integer in case of repeated arguments.
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