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CONVERGENCE OF AXIALLY SYMMETRIC
VOLUME-PRESERVING MEAN CURVATURE FLOW

MARIA ATHANASSENAS AND SEVVANDI KANDANAARACHCHI

We study the convergence of axially symmetric hypersurfaces evolving by
volume-preserving mean curvature flow. Assuming the surfaces do not de-
velop singularities along the axis of rotation at any time during the flow,
and without any additional conditions, as for example on the curvature, we
prove that the flow converges to a hemisphere, when the initial hypersurface
has a free boundary and satisfies Neumann boundary data, and to a sphere
when it is compact without boundary.

1. Introduction

Consider n-dimensional hypersurfaces Mt , defined by a one-parameter family of
smooth immersions xt : Mn→ Rn+1. The hypersurfaces Mt are said to move by
mean curvature if xt = x( · , t) satisfies

(1-1) d
dt

x(p, t)=−H(p, t)ν(p, t), p ∈ Mn, t > 0,

where ν(p, t) denotes a smooth choice of unit normal on Mt at x(p, t) (outer normal
in case of compact surfaces without boundary), and H(p, t) the mean curvature
with respect to this normal.

If in addition the evolving compact surfaces Mt are assumed to enclose a pre-
scribed volume V , the corresponding evolution equation is

(1-2) d
dt

x(p, t)=−(H(p, t)− h(t)
)
ν(p, t), p ∈ Mn, t > 0,

where h(t) is the average of the mean curvature,

h(t)=
∫

Mt
Hdgt∫

Mt
dgt

,

and gt denotes the metric on Mt . As under the flow (1-1), the surface area |Mt |
of the hypersurface is known to decrease under (1-2), while the enclosed volume
remains constant in the latter; see [Athanassenas 1997].
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We are interested in an axially symmetric surface, enclosing a given volume V ,
and which has a nonempty boundary contained in a plane 5 that is perpendicular
to the axis of rotation. Motivated by the fact that the stationary solution to the
associated variational problem satisfies a Neumann boundary condition, we also
assume the surface to meet that plane5 at right angles along its boundary. Assuming
the surface to be smooth, it will also intersect the axis of rotation orthogonally.

We consider the case where the evolving hypersurfaces do not develop singulari-
ties, in particular they do not pinch off along the axis of rotation during the flow,
having only one intersection with that axis at the point that is the furthest from the
supporting plane 5, and prove that the flow converges to a half-sphere.

The methods we use apply also in the case of evolving axially symmetric hyper-
surfaces without boundary having a similar lower height bound, and in that case
we prove in Section 8 that the flow converges to a sphere.

The results in this paper make use of the axial symmetry, but no additional
conditions on the curvature of the surface are assumed. Convergence to spheres
has been previously proved for the volume flow in [Huisken 1987], for compact,
uniformly convex initial surfaces, while Li [2009] assumes bounds on the traceless
second fundamental form.

Our results can be seen as complementing the work in [Athanassenas 1997;
2003], and in the PhD dissertation [Kandanaarachchi 2011]: in the case of the
surface behaving like a “bridge” between two parallel surfaces, if one were able to
flow through singularities, the axially symmetric volume-preserving flow would
converge to a number of spheres and (possibly) two hemispheres on the parallel
planes, like beads strung along the axis of rotation.

2. Notation, definitions and assumptions

In the case of the surface Mt intersecting the obstacle 5, we will at different stages
divide it into two parts as in [Altschuler et al. 1995]: one adjacent to the plane and
one containing the (only) intersection with the axis of rotation.

Let 5 = {(x1, . . . , xn+1) ∈ Rn+1 : x1 = 0} and let Mt be contained in the right
half-space, Mt ⊂ {x1 > 0}. We use Rt as the generic notation for the part of the
surface closest to the plane, and Ct for the rest — the cap that intersects the axis of
rotation — and we will introduce various superscripts depending on the situation
that will be made clear in the text.

We denote by P(t)= (d(t), 0) the pole: the point of intersection of Mt with the
axis of rotation. We assume that there are no singularities developing, so that P(t)
is the only point of intersection of Mt with the axis of rotation for all time. We are
interested in those solutions where the generating curve of the initial hypersurface
is smooth and can be written as a graph over the x1 axis except at the pole.
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We use the notation

ρt : [0, d(t)] → R

for the radius function of the surface of revolution.
Let i1, . . . , in+1 be the standard basis in Rn+1 and let i1 be the direction of the

axis of rotation. We denote the quantities associated with the cap with a tilde ˜, and
in this context we work with the vertical graph equation [Altschuler et al. 1995].

Furthermore we define the following quantities on Mt :
Let ω= x̂/|x̂| ∈Rn+1, x̂ = (0, x2, . . . , xn+1), denote the outer unit normal to the

cylinder intersecting Mt at the point x(p, t). We call u = 〈x, ω〉 the height function
of Mt , and set v = 〈ν, ω〉−1. Note that v corresponds to

√
1+ ρ̇2; it will be used to

obtain gradient estimates.
The corresponding quantities on the cap Ct are the height measured from the

plane 5, ũ = 〈x, i1〉 and ṽ = 〈ν, i1〉−1.
We divide the hypersurface into two regions using a plane Lα(t), which is parallel

to 5 and intersects the surface at points where 〈ν, i1〉|Lα(t)∩Mt = 1/α, with α > 1
being a constant. We define the cap, determined by the inclination angle, as the
connected component of Mt containing the pole P ,

Cα
t = {x(p, t) ∈ Mt : 1/α < 〈ν, i1〉 ≤ 1},

and we call Rαt = Mt\Cα
t the cylindrical part of the surface. Note that Lα(t) is

chosen such that the specific inclination angle is achieved nowhere else between
that plane and the pole P(t). As long as the flow is smooth, Cα

t is by definition a
graph over the x1 axis except at the pole. We denote by lα(t) the x1 coordinate of
Lα(t), so Lα(t)= {x1 = lα(t)}.

Assumption 2.1. We assume that for any α > 1 there exists a constant c(α) > 0,
depending only on α, such that u|Rαt > c(α), that is, we assume a lower height
bound in Rαt , independent of time, dependent on α.

Thus P(t) is assumed to be the only point of intersection of Mt with the axis of
rotation for all time. The assumption prevents singularities from developing on the
axis of rotation.

For an axially symmetric surface the mean curvature is given by

H =− ρ̈

(1+ρ̇2)3/2
+ n−1
ρ(1+ρ̇2)1/2

,

while the principal curvatures are k =−ρ̈/(1+ ρ̇2)3/2 and p = 1/(ρ
√

1+ ρ̇2).
We also introduce another quantity, q = 〈ν, i1〉 u−1; thus p2+ q2 = u−2.
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3. Height estimates

In this section we prove that Mt satisfies uniform height bounds: both the height
function u defined above and the height when measured as distance from the obstacle
5, denoted by ũ, are bounded. That is then used to show that the length of the
generating curve of the surface remains bounded.

Lemma 3.1. The evolving surfaces Mt satisfy the uniform height bound

u ≤ R = (|M0|/ωn
)1/n

.

Proof. We follow a method used in [Athanassenas 1997] to get bounds for u.
Given R > 0, assume that uMt ≥ R at some given time t . Since the surface area is
decreasing under the flow, and by comparing to the projection of the surface onto
the plane 5, we have

|M0| ≥ |Mt |> ωn Rn,

where ωn is the volume of the n dimensional unit ball. Therefore R> (|M0|/ωn)
1/n

would contradict the fact that the evolution decreases the surface area. �

Lemma 3.2. There is a constant l such that the evolving surfaces Mt satisfy the
height bound ũ ≤ l, that is, the distance from the plane 5 is uniformly bounded.

Proof. Here α = 1/cos θ ,

Cα
t = {x(p, t) ∈ Mt : 1/α < 〈ν, i1〉 ≤ 1},

and Rαt = Mt\Cα
t . From Assumption 2.1, we know that u > c(α) in Rαt . As

u|∂Cα
t ≤ R by Lemma 3.1 and |ρ̇| ≥ tan(π2 − θ)= 1/

√
α2− 1 in Cα

t , we have

d(t)− ũ|∂Cα
t ≤ R tan θ = R

√
α2− 1.

b
θ

i1

ν

Lα(t)

c(α)

x1

xn+1

d(t)
bb

Figure 1. The cylinder of radius c(α).
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Assume there exists a length l1 such that ũ|Rαt > l1. Then

|M0| ≥ |Mt |> nωncn−1(α)l1,

where now we compared |Mt | to the surface area of an n dimensional cylinder of
radius c(α) and length l1. Having

l1 >
|M0|

nωncn−1(α)

would contradict the fact that the evolution decreases the surface area. Therefore

ũ < |M0|
nωncn−1(α)

+ R
√
α2− 1=: l. �

Next we show that the length of the generating curve is bounded.

Lemma 3.3. Assume Mt to be smooth, axially symmetric hypersurfaces, evolving
by (1-2) and with a radius function satisfying ρ(x1, t) > 0 for x1 ∈ [0, d(t)). Then
there exists a constant c∗, independent of time, such that∫ d(t)

0

√
1+ ρ̇2 dx1 ≤ c∗.

Proof. Let us divide Mt into Rαt and Cα
t for any α > 1. As the surface area is

decreasing under the flow, |Mt | ≤ |M0|, we have

2π
∫ d(t)

0
ρn−1

√
1+ ρ̇2 dx1 ≤ |M0|,

2π
∫ lα(t)

0
ρn−1

√
1+ ρ̇2 dx1 ≤ 2π

∫ d(t)

0
ρn−1

√
1+ ρ̇2 dx1 ≤ |M0|.

From Assumption 2.1,

2πcn−1(α)

∫ lα(t)

0

√
1+ ρ̇2 dx1 ≤ |M0| and

∫ lα(t)

0

√
1+ ρ̇2 dx1 ≤ |M0|

2πcn−1(α)
.

We can estimate the length of the generating curve of the cap Cα
t by l+R. Therefore∫ d(t)

0

√
1+ ρ̇2 dx1 ≤ |M0|

2πcn−1(α)
+ l + R =: c∗. �

4. Estimates on h

We now derive a priori estimates for h(t) for solutions of the graphical equation.

Lemma 4.1. Assume Mt to be smooth, axially symmetric hypersurfaces, evolving
by (1-2) and with a radius function satisfying ρ(x1, t) > 0 for x1 ∈ [0, d(t)). Then
there is a constant c1 such that 0≤ h(t)≤ c1 throughout the flow.
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Proof. Following [Athanassenas 2003] we parametrize Mt by its radius function
ρ ∈ C∞([0, d(t))), then clearly

H =− ρ̈

(1+ρ̇2)3/2
+ n−1
ρ(1+ρ̇2)1/2

.

From Lemma 3.3, we know that
∫ d(t)

0

√
1+ ρ̇2dx1≤ c∗. Our proof follows the ideas

of [Athanassenas 1997], the difference being the boundary term when integrating
by parts. For the sake of completeness we include it here. For the second term of

h(t)= 1
|Mt |

∫
Mt

(
k+ (n− 1)p

)
dgt , t ∈ [0, T ),

we have

0≤ n−1
|Mt |

∫ d(t)

0
ρn−2(x1, t) dx1 ≤ (n−1)Rn−2l

|Mt | ,

since ρ ≤ R and d(t)≤ l by Lemmas 3.1 and 3.2.
For the first term note that ρ̈/(1+ ρ̇2)= d

dx1
(arctan ρ̇). Therefore

(4-1)
∫

Mt

kdgt =−
∫ d(t)

0

d
dx1

(arctan ρ̇)ρn−1dx1

= (arctan ρ̇)ρn−1|x1=0− (arctan ρ̇)ρn−1|x1=d(t)

+(n− 1)
∫ d(t)

0
(arctan ρ̇)ρ̇ρn−2dx1

= (n− 1)
∫ d(t)

0
(arctan ρ̇)ρ̇ρn−2dx1,

because arctan ρ̇ = 0 when x1 = 0, and we have ρ(d(t)) = 0 at the pole. Since
0≤ (arctan ρ̇)ρ̇ ≤ π

2 |ρ̇| ≤ π
2

√
1+ ρ̇2, we obtain

0≤ 1
|Mt |

∫
Mt

kdgt ≤ (n−1)
|Mt |

π

2

∫ d(t)

0

√
1+ ρ̇2ρn−2dx1

≤ (n−1)Rn−2

|Mt |
π

2

∫ d(t)

0

√
1+ ρ̇2dx1 ≤ (n−1)c∗Rn−2

|Mt |
π

2
,

where we have used Lemma 3.3.
From the isoperimetric inequality and the fact that the flow decreases surface

area we know that

V n/(n+1) < c|Mt | ≤ c|M0|.
Combining these arguments we conclude that 0≤

∫
Hdg∫
dg
≤ c1. �
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5. Evolution equations and gradient estimates

The maximum principle for noncylindrical or time dependent domains is discussed
in [Lumer and Schnaubelt 1999]. We use that version of the maximum principle in
this paper.

Lemma 5.1. For the flow (1-2) we have the following evolution equations:

(i)
( d

dt −1
)

u = h/v− (n− 1)/u.

(ii)
( d

dt −1
)

ũ = h/ṽ.

(iii)
( d

dt −1
)
v =−|A|2v+ (n− 1)v/u2− (2/v)|∇v|2.

(iv)
( d

dt −1
)
ṽ =−|A|2ṽ− (2/ṽ)|∇ṽ|2.

(v)
( d

dt −1
)

H = (H − h)|A|2.
(vi)

( d
dt −1

) |A|2 =−2|∇A|2+ 2|A|4− 2hC.

(vii)
( d

dt −1
)

p = |A|2 p+ 2q2(k− p)− hp2.

(viii)
( d

dt −1
)

k = |A|2k− 2(n− 1)q2(k− p)− hk2.

where C = gi j gkl gmnhikhlmhnj , with gi j denoting the components of the inverse of
the first fundamental form, and hi j those of the second fundamental form.

Proof. (i) and (iii) are proved in [Athanassenas 1997]; (v) and (vi) in [Huisken
1987].

(ii) For ũ = 〈x, i1〉 we have

d
dt

ũ =
〈 d
dt

x, i1

〉
=−(H − h)〈ν, i1〉 and 1ũ = 〈1x, i1〉 = −H〈ν, i1〉,

so that ( d
dt
−1

)
ũ = h〈ν, i1〉.

(iv) For ṽ = 〈ν, i1〉−1 we have

d
dt
ṽ =−ṽ2

〈 d
dt
ν, i1

〉
=−ṽ2〈∇H, i1〉 .

The evolution equation follows from the well-known identity [Ecker and Huisken
1989]

1ṽ =−ṽ2〈∇H, i1〉+ ṽ|A|2+ 2ṽ−1∇ṽ2 .

(vii) Using the same approach as in [Huisken 1990], we start with

d
dt

p = d
dt
(u−2− q2)1/2

=1p+ p−1|∇ p|2+ p−1|∇q|2− 3p−1u−4|∇u|2+ p−1u−4

− qp−1 (|A|2q + q(p2− q2− 2kp)
)− hu−2+ hq2.
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Equation (vii) follows then from the relations

∇i u = δi1qu, ∇1〈ν, i1〉 = kpu, ∇i q = δi1(q2+ kp),(5-1)

∇i p = δi1q(p− k), |A|2 = k2+ (n− 1)p2, u−4 = p4+ 2p2q2+ q4.(5-2)

(viii) The evolution equation for H was derived in [Huisken 1987], and (viii) follows
from (v), (vii), and the fact that H = k+ (n− 1)p. �

We proceed to obtain gradient estimates in the different parts of the surface: for
the cap by using the vertical graph equation and part (iv) from Lemma 5.1 above,
and for the cylindrical part away from the cap by using the evolution equation (iii)
in Lemma 5.1.

The quantities ũ and ṽ are used on the cap.

Lemma 5.2. Assume Mt to be axially symmetric surfaces as described in Section 2
that evolve by (1-2). Then the gradient estimate ṽ ≤ α holds on the cap Cα

t . In
addition, there is a constant c2(α) such that v ≤ c2(α) for the cylindrical part Rαt .

Proof. Note that ( d
dt
−1

)
ṽ ≤ 0,

so that by the maximum principle ṽ ≤max(maxCα
0
ṽ,max∂Cα

t ṽ). By definition in
Cα

t we have ṽ ≤ α, and this is supported by the evolution equation!
From the assumption we know that u > c(α) in Rαt . As in [Athanassenas 1997,

Proposition 4] we calculate( d
dt
−1

)
u2v=−|A|2u2v+ (n−1)v+ 2uh−2(n−1)v− 2v|∇u|2− 2

v
∇v∇(u2v)

≤ 2hu− (n− 1)v.

If v > 2c1 R/(n− 1) the right side is negative, and proceeding as in [Athanassenas
1997] we conclude v ≤ c2(α) in Rαt . It is important to note that on the boundary of
Rαt , either v = 1 (along the intersection with 5), or v = α/√α2− 1. Thereby, we
have bounds for v and ṽ in Rαt and Cα

t respectively. �

Remark 5.3. (i) The gradient bounds from Lemma 5.2 guarantee that Rαt remains
a graph. As Cα

t remains a graph for all α > 1, we see that Mt\P(t) remains a
graph throughout the flow.

(ii) As the height of the graph is bounded we find a lower bound for the minimum
d(t) from

V =
∫ d(t)

0
ωnρ

n(x) dx1 ≤ ωn Rn
∫ d(t)

0
dx1 = ωn Rn d(t).
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x0(t)
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b(t)
x1

xn+1
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b

Figure 2. x0(t)— the boundary point of C
√

2
t .

Lemma 5.4. Assume the Mt to be axially symmetric surfaces as described in
Section 2 and to evolve by (1-2). Let x0(t) be a boundary point of C

√
2

t , which we
can assume without loss of generality to lie on the generating curve and be such that
〈ν(x0(t)), i1〉 = 1/

√
2 (with some abuse of notation for the corresponding normal

ν(x0(t))). Then H(x0(t))≥ 0 for 0≤ t ≤ Tmax ≤∞.

Proof. Suppose H(x0(t)) < 0, then by continuity there is a connected region
C
√

2,H−
t ⊂ C

√
2

t , with x0(t) ∈ ∂C
√

2,H−
t , which clearly can be chosen to be axially

symmetric, and such that H|C
√

2,H−
t < 0. Let x1(t) denote the other boundary

point along the generating curve in C
√

2,H−
t ⊂ C

√
2

t , and let a(t) = 〈x0(t), i1〉 and
b(t)= 〈x1(t), i1〉 denote the x1 coordinate of x0(t), x1(t), respectively. Then

0>
∫

C
√

2,H−
t

Hdg =
∫ b(t)

a(t)

(
− ρ̈

1+ρ̇2ρ
n−1+ (n− 1)ρn−2

)
dx1 .

The second term being positive means that the first is negative, and given the bounds
on the radius we find∫ b(t)

a(t)

(
− ρ̈

1+ρ̇2

)
dx1 =

∫ b(t)

a(t)

(
− d

dx1
(arctan ρ̇)

)
dx1 < 0 .

This results in

arctan ρ̇(a(t)) < arctan ρ̇(b(t)) and − π
4
< arctan ρ̇(b(t)),

by the choice of a(t). But this is not possible in C
√

2
t , where −π2 ≤ arctan ρ̇ <−π4 ,

contradicting our assumption and therefore H(x0(t))≥ 0. �
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6. Curvature estimates

Proposition 6.1. Assume Mt to be axially symmetric surfaces as described in
Section 2 that evolve by (1-2). Then there is a constant c2 depending only on the
initial hypersurface, such that the principal curvatures k and p satisfy k/p < c2,
independently of time.

Proof. We calculate from Lemma 5.1 that

d
dt

(
k
p

)
=1 k

p
+ 2

p
∇i p∇i

(
k
p

)
+ 2

q2

p2 (p− k)
(
(n− 1)p+ k

)+ hk
p
(p− k).

If k/p ≥ 1 then (hk/p) (p− k) < 0. This implies that

(6-1) k
p
≤max

(
1,max

M0

k
p

)
.

Note that for this consideration, the smooth function k/p is defined over the whole
surface, and in view of the orthogonality on the boundary, via a reflection argument
there are no boundary data involved. �

Proposition 6.2. Assume Mt to be axially symmetric surfaces as described in
Section 2 that evolve by (1-2) and let A be the second fundamental form. Then there
exists a constant c3, independent of time, such that |A|2 ≤ c3.

Proof. We proceed as in [Ecker and Huisken 1991] and [Athanassenas 1997] and
calculate the evolution equation for the product g = |A|2ϕ(v2) in R

√
2

t , where
ϕ(r)= r/(λ−µr), with v = 〈ν, ω〉−1 and appropriately chosen constants λ,µ > 0.
From the evolution equation of g we find the inequality( d

dt
−1

)
g

≤−2µg2−2λϕv−3∇v·∇g− 2λµ
(λ−µv2)2

|∇v|2g−2hCϕ(v2)+2(n−1)
u2 v2ϕ′|A|2.

We estimate the second last term as in [Athanassenas 1997] using Young’s inequality
and obtain

−2hCϕ(v2)≤ 2h|A|3ϕ(v2)

≤ 3
2 |A|4ϕ(v2)+ 1

2 h4ϕ−2(v2)= 3
2 g2+ 1

2 h4ϕ−2(v2).

We choose µ > 3
4 and λ > µmax v2. As ϕ′v2 = λ

(λ−µv2)2
ϕ we have

2(n−1)
u2 v2ϕ′|A|2 = 2(n−1)λ

u2(λ−µv2)
g.

As u > c(1/
√

2)= c0 in R
√

2
t we get

2(n−1)λ
u2(λ−µv2)

g ≤ c4g.
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Therefore we have( d
dt
−1

)
g ≤−c5g2+ c6g− c7∇v · ∇g+ c8(h,max v)

≤−c5

(
g− c6

2c5

)2− c7∇v · ∇g+ c9.

The right side of this inequality is negative at a maximum of g, where

g >
c6

2c5
+
√

c9

c5
.

On ∂R
√

2
t we have H = k + (n− 1)p ≥ 0 by Lemma 5.4. Also, as k/p < c2, we

get |k|/p < c on this boundary and thus we have

|A|2 = k2+ (n− 1)p2 ≤ (c2+ n− 1)p2 ≤ Cρ−2 ≤ Cc−2
0

on ∂R
√

2
t . By the maximum principle,

g ≤max
(
max
R
√

2
0

g,max
∂R
√

2
t

|A|2ϕ(v2)
)
.

Since v ≤ c2(
√

2) and ϕ(v2) is bounded, we have a bound for g in R
√

2
t .

The evolution equation for g̃ = |A|2ϕ(ṽ2) on C
√

2
t is the same as the one for g

without the last term on the right side. Thereby we obtain a bound for g̃ in the same
way as above. �

Proposition 6.3. Assume Mt to be axially symmetric surfaces as described in
Section 2 that evolve by (1-2). Then for each m ≥ 1 there is a Cm such that

|∇m A|2 ≤ Cm ,

uniformly on Mt , for 0≤ t ≤ Tmax ≤∞.

Proof. Having obtained uniform bounds on |A|2 and h the proof is a repetition of
that of Theorem 4.1 in [Huisken 1987]. �

Thus we have long-time existence for the flow:

Corollary 6.4. Let Mt be axially symmetric surfaces as described in Section 2 that
evolve by (1-2). Then

Tmax =∞.

7. Convergence to surfaces of constant mean curvature

Having long-time existence, Proposition 8 of [Athanassenas 1997] gives conver-
gence to a constant mean curvature surface, which in our case is axially symmetric.
By the classification of the Delaunay surfaces [1841] it has to be a half-sphere.
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8. Other convergence results

Using the same estimates with very few changes one can show that a compact,
axially symmetric surface without boundary, which encloses a volume V and
intersects the axis only at two endpoints throughout the flow by (1-2), will converge
to a sphere. We will only explain the parts that are different from the previous
result.

We denote the surface again by Mt . We split it into a cylindrical part Rαt and two
caps C (α,i)

t , for i = 1, 2, in this case. The left side cap, C (α,1)
t , intersects the axis of

rotation at x1 = e(t), while the (only other) intersection on the right for C (α,2)
t is

located at x1 = d(t). Assumption 2.1 holds on Mt .

Height estimates. The height estimates of Lemmas 3.1 and 3.2 change as follows:

Lemma 8.1. Assume Mt to be axially symmetric, compact without boundary and
evolving by (1-2). Then the height function u satisfies u < R = (|M0|/2ωn)

1/n .

Proof. Given R > 0 assume that uMt ≥ R at some given time t . Take a plane
perpendicular to the x1-axis and intersecting the surface. This plane divides the
surface into two parts, and by projecting both parts onto it we find

|M0| ≥ |Mt |> 2ωn Rn.

Taking R >
( |M0|

2ωn

)1/n
would contradict the fact that the evolution decreases the

surface area. �

The next lemma gives an estimate for the diameter of Mt in the x1 direction.

Lemma 8.2. Assume Mt to be smooth, axially symmetric, compact without bound-
ary and evolving by (1-2). Then

d(t)− e(t) < l = |M0|
nωncn−1

0

+ 2R.

Proof. As in Lemma 3.2 let α = 1/cos θ . From Assumption 2.1 we know that
u > c(α) in Rαt . As u|∂Cα,i

t
≤ R and |ρ̇| ≥ tan

(
π
2 − θ

)
in Cα,i

t for i = 1, 2, we have

d(t)− ũ|∂Cα,1
t
≤ R tan θ = R

√
α2− 1,

ũ|∂Cα,2
t
− e(t)≤ R tan θ = R

√
α2− 1.

Assume there exists a length l1 such that ũ|Rαt > l1. Then by the previous argument,

|M0| ≥ |Mt |> nωncn−1(α)l1,

where now we compared |Mt | to the surface area of an n dimensional cylinder of
radius c(α) and length l1. If l1 > |M0|/(nωncn−1(α)) this would contradict the fact
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that the evolution decreases the surface area. Therefore

ũ < |M0|
nωncn−1

0

+ 2R
√
α2− 1. �

Again we can estimate the length of the generating curve throughout the flow:

Lemma 8.3. Assume Mt to be smooth, axially symmetric, compact without bound-
ary, evolving by (1-2) and with a radius function satisfying ρ(x1, t) > 0 for x1 in
(e(t), d(t)). Then there exists a constant c∗, independent of time, such that∫ d(t)

0

√
1+ ρ̇2 dx1 ≤ c∗.

Proof. The proof is the same as that of Lemma 3.3 after taking into account the
two caps on either side. Here we have∫ d(t)

e(t)

√
1+ ρ̇2 dx1 ≤ |M0|

2πcn−1(α)
+ 2l + 2R =: c∗. �

Lemma 8.4 (estimates on h). Assume Mt to be smooth, axially symmetric, com-
pact without boundary, evolving by (1-2) and with a radius function that satisfies
ρ(x1, t) > 0 for x1 ∈ (e(t), d(t)). Then there is a constant c1 such that 0≤ h(t)≤ c1

throughout the flow.

Proof. The only change to the proof of Lemma 4.1 is in the boundary values when
integrating by parts in (4-1). Here the new boundary values are

(arctan ρ̇)ρn−1|x1=a(t)− (arctan ρ̇)ρn−1|x1=b(t).

As ρ(a(t)) = ρ(b(t)) = 0, the boundary terms disappear and we get the same
estimate for h. �

Lemma 8.5 (gradient estimates). Under the above assumptions, the gradient esti-
mate |ṽ| ≤ α holds on the caps Cα,i

t , i = 1, 2. In addition there is a constant c, such
that v ≤ c for the cylindrical part Rαt .

Proof. The gradient estimates are as in Lemma 5.2, but in this setting instead of
one cap Cα

t we have two caps on either side, and the same estimate holds for both
caps. �

Concluding this section, we remark that H ≥ 0 at points where the caps C
√

2,i
t ,

i = 1, 2, meet the cylindrical part R
√

2
t of the surface. The proof is using the same

arguments as the one for Lemma 5.4 after the appropriate adjustments of the sign
of arctan ρ̇ for the cap on the left of the surface. The results on curvature estimates
and the convergence to a limiting surface of constant mean curvature follow along
the same lines as previously proved. In this case the limit surface is a sphere.
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