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ON THE HOROBOUNDARY AND THE GEOMETRY OF RAYS
OF NEGATIVELY CURVED MANIFOLDS

FRANÇOISE DAL’BO, MARC PEIGNÉ AND ANDREA SAMBUSETTI

We study the Gromov compactification of quotients X/G of a Hadamard
space X by a discrete group of isometries G, pointing out the main differ-
ences with the simply connected case. We prove a criterion for the Buse-
mann equivalence of rays on these quotients and show that the “visual” de-
scription of the Gromov boundary breaks down, producing examples for the
main pathologies that may occur in the nonsimply connected case, such as:
divergent rays having the same Busemann functions, points on the Gromov
boundary that are not Busemann functions of any ray, and discontinuity of
the Busemann functions with respect to the initial conditions. Finally, for
geometrically finite quotients X/G, we recover a simple description of the
Gromov boundary, and prove that in this case the compactification is a sin-
gular manifold with boundary, with a finite number of conical singularities.

1. Introduction

The problem of understanding the geometry and dynamics of geodesics and rays
(that is, distance-minimizing half-geodesics) on Riemannian manifolds dates back
at least to Hadamard [1898], who studied the qualitative behavior of geodesics on
nonpositively curved surfaces of R3. In particular, he first distinguished between
different kinds of ends on such surfaces and introduced the notion of asymptote,
with which we are concerned in this paper.

Half a century later, Busemann in his seminal book [1955] introduced an amaz-
ingly simple notion for measuring the “angle at infinity” between rays (now known
as the Busemann function) as a tool to develop a theory of parallels on geodesic
spaces. The Busemann function of a ray α is the two-variable function

Bα(x, y)= lim
t→+∞

d(x, α(t))− d(α(t), y),

and has played an important role (far beyond the purposes of its creator) in the
study of complete noncompact Riemannian manifolds.
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It has been used to derive fundamental results in nonnegative curvature, such as
Cheeger, Gromoll, and Meyer’s soul theorem and Toponogov’s splitting theorem
[Shiohama 1984], and in the function theory of harmonic and noncompact symmetric
spaces [Anderson and Schoen 1985; Ji and MacPherson 2002]; and it has a special
place in the geometry of Hadamard spaces and in the dynamics of Kleinian groups.
The main reason for this importance is that any simply connected, nonpositively
curved space X (a Hadamard space) has a natural, “visual” compactification whose
boundary X (∞) is easily described in terms of asymptotic rays; and, when X is
given a discrete group G of motions, the Busemann functions of rays appear as the
densities at infinity of the Patterson–Sullivan measures of G [Roblin 2003; Sullivan
1979].

The simple visual picture of the compactification of a Hadamard space unfortu-
nately breaks down for general, nonsimply connected manifolds; but Busemann
functions (or more precisely, their direct generalizations known as horofunctions)
have inspired Gromov to define a natural, universal compactification (the horofunc-
tion compactification), whose properties, however, are more difficult to describe.
The aim of this paper is to investigate how far the visual description of this boundary
and the usual properties of rays carry over in the negatively curved, nonsimply
connected case, and to stress the main differences.

Let us start by describing a first, naïf approach to the problem of finding a
“good” geometric compactification of a general complete Riemannian manifold.
The first idea is to add all “asymptotic directions” to the space, similarly to En ,
which can be compactified as the closed ball Bn

= En
∪ Sn by adding the set of all

oriented half-lines modulo (orientation-preserving) parallelism. Now, on a general
Riemannian manifold, we have at least two elementary notions of asymptoticity for
rays α, β : R+→ X , with origins a, b respectively:

• Distance asymptoticity: we say that d∞(α, β)<∞ if supt d(α(t), β(t))<∞,
and then we say that α and β are distance-asymptotic (or simply asymptotic).

• Visual asymptoticity: we say that α tends visually1 to β, and write it α � β,
if there exist minimizing geodesic segments

βn = [b, α(tn)]

such that βn→ β (that is, the angle 6 β, βn→ 0); it is also current to say in
this case that β is a coray to α (β ≺ α), following Busemann [1955]. Then,
we say that α and β are visually asymptotic if α � β and β � α (α ≺� β).

1To avoid an unnatural, too-restrictive notion of visual asymptoticity, the correct definition is
slightly weaker (see Section 2.2, Definition 13): one allows that βn = [bn, α(tn)] for some bn→ b.
Take, for instance, a hemispherical cap, with pole N , attached to an infinite flat cylinder: two meridians
issuing from the pole N (to which we obviously want to assign the same asymptotic direction) would
never be corays if we did not allow the origins of the βn to be moved slightly.
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It is classical that these two notions of asymptoticity coincide for Hadamard
spaces. For a Hadamard space X , we then define the visual boundary X (∞) as the
set of rays R(X)modulo asymptoticity and give to X= X∪X (∞) a natural topology
that coincides on X with the original one and makes of it a compact metrizable
space: we refer to X as to the visual compactification of X (see [Eberlein 1996]
and Section 3.1).

The idea of proceeding analogously for a general Riemannian manifold is tempt-
ing but disappointing. The first reason is that apart from the case of Hadamard
spaces, the relation ≺ is known to be generally not symmetric, and the relation
≺� is not an equivalence relation (except for rays having the same origin, as
Theorem 16 shows). Some indirect2 examples of the asymmetry can be found in
the literature about surfaces with variable curvature [Innami 1985], or about graphs
[Papadopoulos 2005]. We give in Section 6 an example of a hyperbolic surface
(the asymmetric hyperbolic flute) that makes evident the general asymmetry of the
coray relation, which can be interpreted in terms of the geometrical asymmetry of
the surface itself. More difficult is to exhibit a case where ≺� is not an equivalence
relation: Theorem 16 and Example 44(a) (the hyperbolic ladder) make it explicit.
The problem that visual asymptoticity is not an equivalence relation has been
bypassed by some authors [Lewis 1972; Nasu 1955] by taking the equivalence
relation generated by ≺ (this means partitioning all the corays to some ray α into
maximal packets each of which contains only rays that are corays to each other):
this exactly coincides with taking rays with the same Busemann function (see [Kim
and Jeon 2004] and Section 2), which explains the original interest of Busemann in
this function. We will see in Section 2.2 that the condition Bα = Bβ geometrically
simply means that we can see α(t) and β(t), for t� 0, under a same direction from
any point of the manifold.

The second reason is that distance and visual asymptoticity (even in this stronger
form) are strictly distinct relations on general manifolds: there exist rays staying
at bounded distance from each other having different Busemann functions, and
also, more surprisingly, diverging rays defining the same Busemann function. This
already happens in constant negative curvature:

Theorem 1 (the hyperbolic ladder, Example 44, and the symmetric hyperbolic flute,
Example 41). There exist hyperbolic surfaces S1, S2 and rays αi , α

′

i on Si such that

(i) d∞(α1, α
′

1) <∞ but Bα1 6= Bα′1 and

(ii) Bα2 = Bα′2 but d∞(α2, α
′

2)=+∞.

Worst, trying to define a boundary Xd(∞) or Xv(∞) from R(X) by identifying
rays under any of these asymptotic relations generally leads to a non-Hausdorff

2[Innami 1985] concerns the construction of a maximal coray that is not a maximal ray; this
property implies that the coray relation is not symmetric.
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space, because these relations are not closed (with R(X) endowed with the topology
of uniform convergence on compacts):

Theorem 2 (the twisted hyperbolic flute, Example 42). There exist a hyperbolic
surface X and rays αn→ α on X such that:

(i) d∞(αn, αm) <∞ but d∞(αn, α)=∞ for all n,m;

(ii) Bαn = Bαm but Bαn 6= Bα for all n,m.

This prevents the use of any reasonable measure theory, such as Patterson–
Sullivan theory, on any compactification built out of Xd(∞), Xv(∞). A remarkable
example where this problem occurs is the Teichmuller space Tg, which, endowed
with the Teichmuller metric, has a non-Hausdorff visual boundary for g ≥ 2 [Mc-
Carthy and Papadopoulos 1999].

Gromov’s idea of compactification overrides the difficulty of using asymptotic
rays by considering the topological embedding

b : X ↪→ C(X)/R, P 7→ [d(P, · )]

of any Riemannian manifold X in the space of real continuous functions on X
(with the uniform topology), up to additive constants. He defines X as the closure
of b(X) in C(X)/R, and its boundary as ∂X = X − b(X), obtaining a compact,
Hausdorff (even metrizable) space in which X sits. We call X the horofunction
compactification3 of X , and ∂X the horoboundary of X .

The points of ∂X are commonly called horofunctions; Busemann functions then
naturally arise as particular horofunctions. Actually, for points of X diverging along
a ray Pn = α(n), we have that

b(Pn)= [d(Pn, · )] = [d(x, Pn)− d(Pn, · )] −→ [Bα(x, · )]

in C(X)/R; see Section 2 for details. Accordingly, the Busemann map

B :R(X)→ ∂X

is the map that associates to each ray the class of its Busemann function. For
Hadamard manifolds, it is classical that B induces a homeomorphism between the
visual boundary X (∞) and the horoboundary ∂X (see Section 2).

The properties of the Busemann map for general nonpositively curved Riemann-
ian manifolds are the second object of our interest in this paper. The main questions
we address are:

3This construction first appeared, as far as we know, in [Gromov 1981] (see also, for instance,
[Ballmann et al. 1985; Bridson and Haefliger 1999]), and therefore is also known as the Gromov
compactification (or also as the Busemann or metric compactification) of X . We stick to the name
“horofunction compactification,” keeping the other for the well-known compactification of Gromov-
hyperbolic spaces.
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(a) The Busemann Equivalence: when do the Busemann functions of two distinct
rays coincide?

Actually, the equivalence relation generated by the coray relation is difficult to test
in concrete examples. In Section 4, we discuss several notions of equivalence of rays
related to the Busemann equivalence; then we give a characterization (Theorem 28)
of the Busemann equivalence for rays on quotients of Hadamard spaces, in terms
of the points at infinity of their lifts, which we call weak G-equivalence. For rays
with the same origin, it can be stated as follows:

Criterion 3. Let X =G\X̃ be a regular quotient of a Hadamard space. Let α, β be
rays based at o, with lifts α̃, β̃ from õ ∈ X̃ , and let Hα̃, Hβ̃ be the horoballs through
õ centered at the respective points at infinity α̃+, β̃+. Then

Bα = Bβ ⇐⇒ there exist (gn), (hn) ∈ G

such that
{

gnα̃
+
→ β+,

d(g−1
n õ, Hα̃)→ 0

and
{

hnβ̃
+
→ α+,

d(h−1
n õ, Hβ̃)→ 0 .

This reduces the problem of the Busemann equivalence for rays α, β on quotients
of a Hadamard space to the problem of approaching the limit points (of their lifts)
α̃+, β̃+ with sequences gnβ̃

+, hnα̃
+ in the respective orbits, keeping control at the

same time of the dynamics of the inverses g−1
n , h−1

n .

(b) The surjectivity of the Busemann map: is any point in the horoboundary of X
equal to the Busemann function of some ray?

From this perspective, it is natural to extend the Busemann map B to the set
qR(X) of quasirays (half-lines α : R+ → X that are only almost-minimizing;
see Definition 8); we then define the Busemann boundary BX = B(qR(X)). The
problem whether BX equals ∂X has been considered by several authors for surfaces
with finitely generated fundamental group [Shioya 1991; Yim 1995]. In [Yim 1995],
there are examples of nonnegatively curved surfaces admitting horofunctions that
are not in BX , and even of surfaces where the set of Busemann functions of rays
emanating from one point is different from that of rays emanating from another
point4. This explains our interest in considering rays with variable initial points,
instead of keeping the base point fixed once and for all.

Ledrappier and Wang [2010] started to develop Patterson–Sullivan theory on
nonsimply connected manifolds, and the question naturally arises whether an orbit
accumulates to a limit point that is a true Busemann function. The theorem below

4For surfaces with finite total curvature, Yim uses the terminology convex and weakly convex
at infinity, which is suggestive of the meaning of the value of 2πχ(X)−

∫
X KK (to be interpreted,

for surfaces with boundary, as the convexity of the boundary). However, this can be misleading,
suggesting the possibility of joining any two points at infinity with bi-infinite rays. As our manifolds
are generally infinitely connected, we do not adhere to this terminology.
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shows that, in this context, Patterson–Sullivan theory must take into account limit
points that are not Busemann functions, and that some paradoxical facts already
happen in the simplest cases.

Theorem 4 (the hyperbolic ladder, Example 44). There exists a Galois covering
X→62 of a hyperbolic surface of genus 2, with automorphism group 0 ∼= Z, such
that:

(i) BX consists of 4 points, while ∂X consists of a continuum of points.

(ii) the limit set L0 = 0x0 ∩ ∂X depends on the choice of the base point x0, and
for some x0 it is included in ∂X −BX.

The problem of surjectivity and the interest in finding Busemann points in the
horoboundary seem to have been revitalized due to recent work on Hilbert spaces
[Walsh 2007; 2008], on the Heisenberg group [Klein and Nicas 2009], and on
word-hyperbolic groups and general Cayley graphs [Bjorklund 2010; Webster and
Winchester 2006]. A construction similar to that of Theorem 4 is discussed in
[Bridson and Haefliger 1999] as an example where the boundary of a Gromov-
hyperbolic space does not coincide with the horoboundary (notice, however, that
the notion of boundary for Gromov-hyperbolic spaces differs from BX , as it is
defined up to a bounded function).

(c) The continuity of the Busemann map: how do the Busemann functions change
with respect to the initial direction of rays?

This is crucial to understanding the topology of the horofunction compactification
and, beyond the simply connected case, it has not been much investigated in the
literature so far. Busemann himself seemed to exclude it in full generality.5

We see that, in general, the dependence on the initial conditions is only lower-
semicontinuous:

Theorem 5 (Proposition 30 and the twisted hyperbolic flute, Example 42). Let
X = G\X̃ be the regular quotient of a Hadamard space.

(i) For any sequence of rays αn→ α, we have limn→∞ Bαn ≥ Bα.

(ii) There exist X = G\H2 and rays αn→ α such that limn→∞ Bαn > Bα. (Con-
vergence of rays always means uniform convergence on compacts.)

The example of the twisted hyperbolic flute 42 is the archetype where a jump
between limn→∞ Bαn and Bα occurs; we explain this geometrically, producing
the discontinuity in terms of a discontinuity in the limit of the maximal horoballs
associated to the αn in the universal covering; see Definition 20 and Remark 43.
Interpreting e−Bα(o,· ) as a reparametrized distance to the point at infinity of α, the

5Busemann [1955] wrote: “It is not possible to make statements about the behaviour of the function
Bα under general changes of α [. . . ]”.
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Figure 1. Geometric realization of flutes and ladders.

jump can be seen as a hole suddenly appearing in a limit direction of a hyperbolic
sky.

We stress that the problem of continuity makes sense only for rays αn (whose
velocity vectors yield minimizing directions): it is otherwise easy to produce a
discontinuity in the Busemann function of a sequence of quasirays tending to some
limit curve that is not minimizing (and for which the Busemann function may be
not defined); see Example 29 in Section 4 and the discussion therein.

It is noticeable that all the possible pathologies in the geometry of rays that we
describe above already occur for hyperbolic surfaces belonging to two basic classes:
flutes and ladders (see Section 6). These are surfaces with infinitely generated funda-
mental group whose topological realizations are, respectively, infinitely-punctured
spheres and Z-coverings of a compact surface of genus g ≥ 2 (see Figure 1).

On the other hand, limiting ourselves to the realm of surfaces with finitely
generated fundamental group, all the above pathologies disappear, and we recover
the familiar picture of rays on Hadamard manifolds. More generally, in Section 5,
we consider properties of rays and the Busemann map for geometrically finite
manifolds: these are the geometric generalizations, in dimension greater than 2,
of the idea of negatively curved surfaces with finite connectivity (that is, finite
Euler–Poincaré characteristic). The precise definition of this class and much of
these manifolds is due to Bowditch [1995]; we summarize the necessary definitions
and properties in Section 5. We prove:

Theorem 6 (Propositions 33, 34, 35, 36 and Corollary 37). Let X = G\X̃ be a
geometrically finite manifold.

(i) Every quasiray on X is finally a ray (that is, it is a preray; see Definition 8).

(ii) d∞(α, β) <∞⇔ Bα = Bβ ⇔ α ≺ β, for rays α, β on X.

(iii) The Busemann map R(X)→ ∂X is surjective and continuous.

As a consequence, X (∞)=R(X)/(Busemann eq.) is homeomorphic to ∂X and:
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• If dim(X)= 2, then X is a compact surface with boundary.

• If dim(X) > 2, then X is a compact manifold with boundary, with a finite
number of conical singularities (one for each class of maximal parabolic
subgroups of G).

In this regard, it is of interest to recall that the question whether any geometrically
finite manifold has finite topology (that is, is homeomorphic to the interior of a com-
pact manifold with boundary) was asked by Bowditch [1995], and recently answered
by Belegradek and Kapovitch [2006]. However, Belegradek and Kapovitch’s proof
yields a natural topological compactification whose boundary points are less related
to the geometry of the interior than in the horofunction compactification. According
to [Belegradek and Kapovitch 2006], any horosphere quotient is diffeomorphic to a
flat Euclidean vector bundle over a compact base, so a parabolic end can be seen as
the interior of a closed cylinder over a closed disk-bundle. On the other hand, in
the horofunction compactification, a parabolic end is compactified as a cone over
the Thom space of this disk-bundle (see Corollary 37 and Examples 38): one pays
for the geometric content of the horofunction compactification with the presence of
(topological) conical singularities.

The problem of relating the ideal boundary and the horoboundary for geometri-
cally finite groups has also been considered by Ji and MacPherson [2002]; they prove
that, in the case of arithmetic lattices of symmetric spaces, both compactifications
coincide with the Tits compactification, and they also discuss the relation with the
Martin boundary.

Overview of the paper. Section 2 is preliminary: we report some generalities about
the Busemann functions and the coray relation.

From Section 3 on, we focus on nonpositively curved manifolds. We briefly recall
the classical visual properties of rays on Hadamard spaces, and then we turn our
attention to their quotients X = G\X̃ . The difference between rays and quasirays
is deeply related to the different kinds of points at infinity of their lifts to X̃ ; that is
why we review a dictionary between limit points of G and corresponding quasirays
on X . Then we prove a formula (Theorem 24) expressing the Busemann function
of a ray α on X in terms of the Busemann function of a lift α̃ of α to X̃ . We use this
formula to translate the Busemann equivalence in terms of the weak G-equivalence
above; this turns out to be the key tool for constructing examples having Busemann
functions with prescribed behavior.

In Section 4, we discuss the properties of the Busemann map on general quotients
of Hadamard spaces; here we prove Criterion 3 and lower semicontinuity. Section 5
is devoted to geometrically finite manifolds and contains the proof of Theorem 6.
Finally, we collect in Section 6 the main examples of the paper (the asymmetric,
symmetric and twisted hyperbolic flutes and the hyperbolic ladder).
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In the Appendix we report, for the convenience of the reader, proofs of those
facts that are either classical but essential to our arguments, or not easily found in
the literature.

We always assume that geodesics are parametrized by arc length, and we use
the symbol [p, q] for a minimizing geodesic segment connecting two points p, q.
Moreover, we often use, in computations, the notations x .ε y for x ≤ y+ ε and
x hε y for |x − y| ≤ ε, and abbreviate d(x, y) with xy.

2. Busemann functions on Riemannian manifolds

2.1. Horofunctions and Busemann functions. Let X be any complete Riemann-
ian manifold (not necessarily simply connected). The horofunction compactification
of X is obtained by embedding X in a natural way into the space C(X) of real
continuous functions on X , endowed with the C0-topology (of uniform convergence
on compact sets)

b : X ↪→ C(X), P 7→ −d(P, · ),

and then defining X .
= b(X) and ∂X .

= X − b(X).
An (apparently) more complicated version of this construction has the advantage

of making the Busemann functions naturally appear as boundary points. For fixed P ,
define the horofunction cocycle as the following function of x, y:

bP(x, y)= d(x, P)− d(P, y).

Then consider the space of functions in C(X) up to an additive constant (with the
quotient topology) and the same map,

b : X→ C(X)/R, P 7→ [−d(P, · )] = [d(x, P)− d(P, · )] = [bP(x, · )]

(which is independent from the choice of x). The following properties hold, in all
generality, for any complete Riemannian manifold, and can be found, for instance,
in [Ballmann 1995] or [Bridson and Haefliger 1999]:

(i) b is a topological embedding, that is, an injective map that is a homeomorphism
when restricted to its image.

(ii) X is a compact, second-countable, metrizable space.

Definition 7 (horoboundary and horofunctions). The horofunction compactification
of X and the horoboundary of X are respectively the sets X .

= b(X) and ∂X .
=

X − b(X). A horofunction is an element ξ ∈ ∂X that is the limit of a sequence
[bPn ] for Pn ∈ X going to infinity; we write ξ = B(Pn).

Notice that, as bP(x, y)− bP(x ′, y) = bP(x, x ′), saying that (Pn)→ ξ ∈ ∂X
is equivalent to saying that, for any fixed x , the horofunction cocycle bPn (x, · )
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converges uniformly on compacts for n→∞ (to a representative of ξ ). Concretely,
we see a horofunction ξ = B(Pn) as a function of two variables (x, y) satisfying:

(i) Cocycle condition: B(Pn)(x, y)− B(Pn)(x
′, y)= B(Pn)(x, x ′), or, equivalently,6

B(Pn)(x, x ′)+ B(Pn)(x
′, y)= B(Pn)(x, y).

The following properties follow right from the definitions:

(ii) Skew-symmetry: B(Pn)(x, y)=−B(Pn)(y, x).

(iii) 1-Lipschitz: B(Pn)(x, y)≤ d(x, y).

(iv) Invariance by isometries: B(g Pn)(gx, gy)= B(Pn)(x, y), for all g ∈ Isom(X).

(v) Continuous extension: the cocycle bP(x, y) can be extended to a continuous
function B : X×X×X→R; that is, Bξ (x, y)= limn→∞ bPn (x, y) if (Pn)→ ξ .

(vi) Extension to the boundary: every g ∈ Isom(X) naturally extends to a homeo-
morphism g : ∂X→ ∂X .

The simplest way of diverging, for a sequence of points {Pn} on an open manifold
X , is to go to infinity along a geodesic. As we deal with nonsimply connected
manifolds, we need to distinguish between geodesics and minimizing geodesics:

Definition 8 (excess and quasirays). The length excess of a curve α defined on an
interval I is the number

1(α)= sup
t,s∈I

`(α; t, s)− d(α(t), α(s))

that is the greatest difference between the length of α between two of its points,
and their effective distance. Accordingly, we say that a geodesic α in a manifold X
is quasiminimizing if 1(α) <+∞, and ε-minimizing if 1(α)≤ ε.

A quasiray is a quasiminimizing half-geodesic α : R+→ X . For a quasiray α,
there are three possibilities:

• either α is minimizing (that is, 1(α)= 0), and α is a true ray;

• or α|[t0,+∞] is minimizing for some a > 0, and we call α a preray;

• or 1(α) <∞, but α|a,+∞ is never minimizing, for any a ∈ R; in this case,
following [Haas 1996], we call α a rigid quasiray.

We denote by R(X) and qR(X) the sets of rays and quasirays of X (and those
with origin o by Ro(X) and qRo(X), respectively), with the uniform topology
given by convergence on compact sets.

There exist, in the literature, examples of all three kinds of quasirays. An
enlightening example is the modular surface X = PSL(2,Z)\H2 (though only an

6This formulation is very suggestive, for when thinking of horofunctions as reparametrized distance
functions from points at infinity, we see that the usual triangular inequality becomes an equality for
all points at infinity.
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orbifold). X has a 6-sheeted, smooth covering X̂ = 0(2)\H2
→ X , with finite

volume; the half-geodesics α of X̂ with infinite excess are precisely the bounded
geodesics and the unbounded, recurrent ones (those that come back infinitely often
in a compact set); their lifts in the half-plane model of H2 correspond to the half-
geodesics α̃ having extremity α̃+ ∈ R−Q. Moreover, α is bounded if and only if
α̃+ is a badly approximated number (that is, its continued fraction expansion is a
sequence of bounded integers); see [Dal’Bo 2007]. In this case, all half-geodesics
α with 1(α) <∞ (corresponding to lifts α̃ with rational extremity) are minimizing
after some time; that is, they are prerays.

On the other hand, in [Haas 1996], one can find examples and classification of
rigid quasirays on particular (undistorted) hyperbolic flute surfaces.

For future reference, we report here some properties of the length excess:

Properties 9. Let α, αk : [0,+∞]→ X be curves with origins a, ak , respectively:

(i) If 1(α) <∞, then for every ε > 0 there exists Tε � 0 such that

1(α|[Tε ,+∞])≤ ε and 1(α|[0,Tε ])≥1(α)− ε.

(ii) If αk→ α uniformly on compacts, then 1(α)≤ lim infk→∞1(αk). In particu-
lar, any limit of minimizing geodesics segments is minimizing.

(iii) Assume now that the universal covering of X is a Hadamard space. If α̃ is a
lift of α to X̃ with origin ã, then

1(α)= lim
t→+∞

d(ã, α̃(t))− d(a, α(t)).

Proof. Item (i) follows from the fact that the excess is increasing with the width of
intervals. For (ii), pick Tε as in (i) for α, and k � 0 such that d(αk(t), α(t)) ≤ ε
for all t ∈ [0, Tε]; then

akαk(Tε).2ε aα(Tε).ε Tε −1(α)= `(αk)−1(α),

and therefore 1(αk) ≥ 1(α)− 3ε. By passing to the limit for k →∞, as ε is
arbitrary, we deduce that lim infk→∞1(αk) ≥ 1(α). Finally, if X̃ is Hadamard,
then d(ã, α̃(t))= t = `(α; 0, t) for all t ; hence, by monotonicity of the excess on
intervals,

1(α)= lim
t→+∞

`(α; 0, t)− d(a, α(t))= lim
t→+∞

d(ã, α̃(t))− d(a, α(t)). �

Proposition 10. Let α : R+ → X be a quasiray. Then the horofunction cocycle
bα(t)(x, y) converges uniformly on compacts to a horofunction for t→+∞.
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Definition 11 (Busemann functions). Given a quasiray α, the cocycle bα(t)(x, y)
is called a Busemann cocycle, and the horofunction Bα(x, y)= limt→∞ bα(t)(x, y)
is called a Busemann function; the Busemann function of α is also denoted by α+.

The Busemann map is the map

B : qR(X)→ ∂X, α 7→ Bα.

The image of this map, denoted by BX , is the subset of Busemann functions that
is those particular horofunctions associated to quasirays. We denote by Bo X the
image of the Busemann map restricted to qRo(X).

The proof of Proposition 10 relies on the following item:

Property 12 (monotonicity of the Busemann cocycle). Let α be a quasiray from a;
for all ε > 0 and s > t > Tε , there exists Tε such that bα(s)(a, y)&2ε bα(t)(a, y).

Actually, if 1(α)=1, by Property 9(i) we have, for s, t ≥ Tε ,

bα(s)(a, y)− bα(t)(a, y)= [aα(s)−α(s)y] − [aα(t)−α(t)y]

&2ε [`(α|[0,s])−α(s)y] − [`(α|[0,t])−α(t)y]

≥ `(α|[t,s])−α(t)α(s)≥ 0.

Notice that this is a true monotonicity property when α is a ray.

Proof of Proposition 10. Since bP(x, y) − bP(x ′, y) = bP(x, x ′), the cocycle
bα(t)(x, y) converges for t → ∞ if and only if bα(t)(x ′, y) converges; we may
therefore assume that x = a is the origin of α. The Lipschitz functions bα(t)(a, · )
are uniformly bounded on compacts, and hence a subsequence bα(tn) of them
converges uniformly on compacts, for tn→∞; then Property 12 easily implies that
bα(t) must also converge uniformly for t→∞ to the same limit, and uniformly. �

2.2. Horospheres and the coray relation. If ξ is a horofunction and x ∈ X is fixed,
then the sup-level set

Hξ (x)= {y | ξ(x, y)≥ 0}

(resp. the level set ∂Hξ (x) = {y | ξ(x, y) = 0}) is called the horoball (resp. the
horosphere) centered at ξ , passing through x .

If Hξ , H ′ξ are horoballs centered at ξ ∈ ∂X , we define the signed distance to a
horoball as

ρ(x, Hξ )=
{

d(x, ∂Hξ ) if x 6∈ Hξ (y),
−d(x, ∂Hξ ) otherwise;

ρ(Hξ , H ′ξ )=
{

d(∂Hξ , ∂H ′ξ ) if Hξ ⊃ H ′ξ ,
−d(∂Hξ , ∂H ′ξ ) otherwise.

By the Lipschitz condition, we always have Bξ (x, y)≤ ρ(Hξ (x), Hξ (y)).
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On the other hand, notice that when α is a ray and x = α(t), y = α(s) are points
on α with s > t , we have

Bα(x, y)= d(x, y)= ρ(Hα+(x), Hα+(y)).

It is a remarkable rigidity property that the equality holds precisely for points that
lie on rays that are corays to α:

Definition 13 (corays). The definition of the coray formalizes the idea of seeing
(asymptotically) two rays under the same direction, from the origin of one of them.
A half-geodesic α with origin a is a coray7 to a quasiray β in X — or, equivalently,
β tends visually to α (in symbols: α≺β) — if there exists a sequence of minimizing
geodesic segments αn=[an, bn]with an→a and bn=β(tn)→∞ such that αn→α

uniformly on compacts; or equivalently, such that α′n(0)→ α′(0).
If α ≺ β and β ≺ α, we write α ≺� β and say that they are visually asymptotic.

We say that α, β are visually equivalent from o if there exists a ray γ with origin o
such that γ ≺ α and γ ≺ β (that is, if we can see α and β under a same direction
from o).

Given x, y ∈ X , we denote by −→xy a complete half-geodesic that is the continuation
beyond y of a minimizing geodesic segment [x, y].

Proposition 14. For any quasiray β, we have Bβ(x, y) = d(x, y) ⇔ −→xy ≺ β. In
particular, if Bβ(x, y) = d(x, y), then the extension of any minimizing segment
[x, y] beyond y is always a ray.

Remarks 15. It follows that:

(i) any coray α ≺ β (and β itself, if it is a ray) minimizes the distance between
the β-horospheres that it meets;

(ii) for any quasiray β, we have the equality Bβ(x, y)= ρ(Hβ(x), Hβ(y)) (as it
is always possible to define a coray α to β intersecting Hβ(x) and Hβ(y), and
Bβ increases exactly as t along α(t)).

Theorem 16. Assume that α, β are rays in X with origins a, b, respectively. The
following conditions are equivalent:

(a) Bα(x, y)= Bβ(x, y) for all x, y ∈ X ;

(b) α ≺� β and Bα(a, b)= Bβ(a, b);

(c) α and β are visually equivalent from every o ∈ X.

Proposition 14 is well known (under the unnecessary, extra assumption that −→xy
is a ray), and it is already present in [Busemann 1955]. Theorem 16 (a)⇔(c) is a
reformulation in terms of visibility of the equivalence, proved in [Kim and Jeon

7We stress the fact that, by Property 9(ii) of the excess, every coray is necessarily a ray.
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2004], between Busemann equivalence and the coray relation generated by ≺; part
(a)⇔(b) stems from the work of Busemann [1955] and Shiohama [1984], but we
were not able to find it explicitly stated anywhere. For these reasons, we report the
proofs of both results in the Appendix.

Remarks 17. (i) The coray relation is not symmetric and the visual asymptoticity
is not transitive, in general, already for (nonsimply connected) negatively curved
surfaces, as we see in Examples 40 and 44. On the other hand, visual asymptoticity
is an equivalence relation when restricted to rays having all the same origin, by
Theorem 16.

(ii) The condition Bα(a, b) = Bβ(a, b) is not just a normalization condition. In
Example 44, we show that there exist rays α, β satisfying α ≺� β, but such that
Bα and Bβ are unequal and do not differ by a constant.

(iii) Horospheres are generally not smooth, as Busemann functions and horofunc-
tions generally are only Lipschitz [Eberlein 1996; Yim 1995]. This explains the
possible existence of multiple corays, from one fixed point, to a given ray α, as well
as the asymmetry of the coray relation; actually, in every point of differentiability
of Bα, the direction of a coray to α necessarily coincides with the gradient of Bα,
by Proposition 14.

3. Busemann functions in nonpositive curvature

3.1. Hadamard spaces. Let X̃ be a simply connected, nonpositively curved man-
ifold (that is, a Hadamard space). In this case, every geodesic is minimizing;
moreover, as the equation of geodesics has solutions that depend continuously on
the initial conditions, R(X̃) can be topologically identified with the unit tangent
bundle S X̃ .

Proposition 18. Let X̃ be a Hadamard space.

(i) If α, β are rays, then d∞(α, β) <∞⇔ Bα = Bβ ⇔ α ≺ β.

Moreover, two rays with the same origin are Busemann equivalent if and only
if they coincide, so the restriction of the Busemann map Bo : Ro(X̃) → ∂ X̃ is
injective. Accordingly, we denote by [o, ξ ] the only geodesic starting at o with point
at infinity ξ .

(ii) For any o ∈ X̃ , the restriction of the Busemann map Bo : Ro(X̃)→ ∂ X̃ is
surjective, and hence BX̃ =Bo X̃ = ∂ X̃ .

(iii) The Busemann map B :R(X̃)→ ∂ X̃ is continuous.

The space Ro(X̃)∼= So(X̃) being compact, the map Bo gives a homeomorphism
So(X̃)∼= ∂ X̃ for any o. (For this reason, the topology of the horoboundary ∂ X̃ for
Hadamard manifolds is also known as the sphere topology).
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Also notice that Proposition 14, together with item (i) above, implies the following
fact, which we frequently use:

(iv) If Bβ(x, y)= d(x, y) for some x 6= y, then −→xy+ = β+.

These properties of rays in a Hadamard space are well-known [Ballmann 1995;
Eberlein 1996; Bridson and Haefliger 1999]; we give in the Appendix a unified
proof of (i), (ii) and (iii) for the convenience of the reader. Here we just want to
stress that the distinctive feature of a Hadamard space that makes this case so special:
the Busemann function Bα(x, y) is approximated on compacts by its Busemann
cocycle bα(t)(x, y) uniformly with respect to the ray α. That is:

Lemma 19 (uniform approximation lemma). Let X̃ be a Hadamard space. For any
compact set K and ε > 0, there exists a function T (K , ε) such that for any x, y ∈ K
and any ray α issuing from K , we have |Bα(x, y)− bα(t)(x, y)| ≤ ε, provided that
t ≥ T (K , ε).

In fact, properties (ii) and (iii) follow directly from the above approximation
lemma, while (i) is a consequence of convexity of the distance function on a
Hadamard manifold and of standard comparison theorems (see Section A.2 for
details).

A uniform approximation result such as Lemma 19 does not hold for general
quotients of Hadamard spaces: actually, from a uniform approximation of the
Busemann functions by the Busemann cocycles, one easily deduces surjectivity and
continuity of the Busemann map as in the proof of (ii) and (iii) in Subsection A.2,
whereas Example 44 shows that for general quotients of Hadamard spaces, the
Busemann map is not surjective.

3.2. Quotients of Hadamard spaces. Let X = G\X̃ be a nonpositively curved
manifold, that is, the quotient of a Hadamard space by a discrete, torsionless group
of isometries G (we call it a regular quotient). In this section we explain the relation
between the Busemann function of a quasiray α of X and the Busemann function
of a lift α̃ of α to X̃ , which is crucial for the following sections.

Let us recall some terminology:

Definition 20. Let G be a discrete group of isometries of a Hadamard space X̃ .
The limit set of G is the set LG of accumulation points in ∂ X̃ of any orbit Gx̃ of G;
the set Ord G = ∂ X̃ − LG is the discontinuity domain for the action of G on ∂ X̃ ,
and its points are called ordinary points. A point ξ ∈ LG is called:

• a radial point if one (and hence, every) orbit Gx̃ meets an r -neighborhood of
[x, ξ ] (for some r depending on x̃) infinitely many times;

• a horospherical point if one (and hence, every) orbit Gx̃ meets every horoball
centered at ξ , that is, supg∈G Bξ (x̃, gx̃)=+∞, for every x̃ ∈ X̃ .
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Radial points clearly are horospherical points, and correspond to the extremities
of rays α̃ whose projections α to X come back infinitely many times into some
compact set (so 1(α) = ∞). A simple example of a nonhorospherical point is
the fixed point of a parabolic isometry of a Fuchsian group8 (a parabolic point).
For finitely generated Fuchsian groups, it is known that all horospherical points
are radial; but starting from dimension 3, there exist examples of horospherical
nonradial (even parabolic) points [Dal’Bo 2007; Dal’Bo and Starkov 2000].

If ξ is nonhorospherical, then for every x̃ there exists a maximal horoball

H max
ξ (x)= {ỹ ∈ X̃ | Bξ (x̃, ỹ)≥ sup

g∈G
Bξ (x̃, gx̃)},

only depending on ξ and on the projection x of x̃ on X = G\X̃ , whose interior
does not contain any point of Gx̃ . For Kleinian groups, there is great freedom
in the orbital approach of the maximal horosphere, which leads to the following
distinction:

Definition 21. Let ξ be a nonhorospherical point of G, and let x̃ ∈ X̃ .

• ξ is a x̃ -Dirichlet point if x̃ ∈ H max
ξ (x), that is, supg∈G Bξ (x̃, gx̃)= 0.

• ξ is a x̃ -Garnett point if it is not gx̃-Dirichlet for all g ∈ G, which means that
Bξ (x̃, gx̃) < supg∈G Bξ (x̃, gx̃) <+∞ for all g ∈ G.

• ξ is universal Dirichlet if for all x̃ ∈ X̃ , there exists g ∈ G such that ξ is
gx̃-Dirichlet, and a Garnett point otherwise.

In literature, one can find examples of limit points that are x̃-Dirichlet points but
x̃ ′-Garnett for x̃ ′ 6= x̃ , and also of points that are x̃-Garnett for all x̃ [Nicholls 1980;
Nicholls and Waterman 1990]. Notice that Dirichlet points may be ordinary or limit
points; on the other hand, any ordinary point is universal Dirichlet (because if there
exists a sequence gn ∈ G such that d(gn x̃, H max

ξ (x))→ 0, then ξ is necessarily a
limit point). We meet another relevant class of universal Dirichlet points in Section 5
(the bounded parabolic points). Notice that we have, by definition,

LG = LhorG t Lu.dirG t LgarG,

a disjoint union of the subsets of horospherical, universal Dirichlet, and Garnett
points.

Consider now the closed Dirichlet domain of G centered at x̃ ∈ X̃ :

D(G, x̃)= {y ∈ X̃ | d(y, x)≤ d(y, gx̃) for all g ∈ G}.

8On the other hand, in dimension n ≥ 3, parabolic points can be horospherical [Starkov 1995].
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This is a convex, locally finite9 fundamental domain for the G-action on X̃ ; we
denote by

∂D(G, x̃)= D(G, x̃)∩ ∂ X̃

its trace at infinity. Then we have the following characterization, which explains
the name “Dirichlet point”:

Proposition 22 (characterization of Dirichlet points). Let ξ ∈ ∂ X̃ and x̃ ∈ X̃ . Then
ξ is x̃-Dirichlet if and only if ξ belongs to ∂D(G, x).

Proof. Let γ̃ =[x̃, ξ ]. As the Dirichlet domain is convex, we have that ξ ∈ ∂D(G, x̃)
if and only if γ̃ (t) ∈ D(G, x̃) for all t , which means that

(1) d(γ̃ (t), x̃)≤ d(γ̃ (t), gx̃) for t ≥ 0 and for all g ∈ G.

On the other hand, condition (1) is equivalent to

(2) sup
g∈G

Bξ (x̃, gx̃)≤ 0, that is, ξ is x̃-Dirichlet.

In fact, we obtain (2) from (1) by passing to the limit for t→+∞. Conversely, (2)
implies that x̃ ∈ H max

ξ (x), and because we know that the direction γ̃ is the shortest
to travel out of the horoball from γ̃ (t), we deduce (1). �

The relation with the excess is explained by the following excess lemma:

Lemma 23. Let X = G\X̃ be a regular quotient of a Hadamard space X̃ . Assume
that α is a half-geodesic in X with origin a, and lift it to α̃ in X̃ with origin ã. Then

1(α)= sup
g∈G

Bα(ã, gã)= d(ã, H max
α̃+ (a)).

Proof. We have, for any g ∈ G,

1(α)= lim
t→∞

d(ã, α̃(t))−d(a, α(t))≥ lim
t→∞

d(ã, α̃(t))−d(α̃(t), gã)= Bα̃(ã, gã),

so 1(α)≥ supg∈G Bα̃(ã, gã). On the other hand, for arbitrary ε > 0, let t� 0 such
that 1(α|[0,t])hε 1(α), and let gt ∈ G such that d(a, α(t))= d(gt ã, α̃(t)). Then,
by the monotonicity of the Busemann cocycle (Property 12), we have, for s > t ,

1(α)hε d(ã, α̃(t))− d(α̃(t), gt ã)≤ d(ã, α̃(s))− d(α̃(s), gt ã).

Letting s→+∞, we get 1(α).ε Bα̃(ã, gt ã), and, as ε is arbitrary, we deduce the
converse inequality, 1(α)≤ supg∈G Bα̃(ã, gã).

To show that supg∈G Bα(ã, gã)= d(ã, H max
α̃+

(a)), we just notice that, if ỹ is the
point cut on [a, α̃+] by H max

α̃+
(a), then by Proposition 14,

d(ã, H max
α̃+ (a))= d(ã, ỹ)= Bα̃(ã, ỹ)= sup

g∈G
Bα̃(ã, gã). �

9That is, for any compact set K ⊂ X̃ , one has gD(G, x̃)∩ K 6=∅ only for finitely many g ∈ G.
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Theorem 24. Let X =G\X̃ be a regular quotient of a Hadamard space X̃ . Assume
that α is a quasiray on X with origin a, and lift it to α̃ in X̃ , with origin ã. Then for
all x, y ∈ X , we have

(3) Bα(x, y)= ρ
(
H max
α̃+ (x), H max

α̃+ (y)
)
.

In the particular case where x = a, the formula becomes

(4) Bα(a, y)= sup
g∈G

Bα̃(ã, gỹ)−1(α)= ρ(ã, H max
α̃+ (y))−1(α),

and, if α is a ray,

(5) Bα(a, y)= sup
g∈G

Bα̃(ã, gỹ)= ρ(ã, H max
α̃+ (y)).

Notice that, in the particular case of a ray α, formula (4) is quite natural, if
we interpret Bα(a, y) as a (renormalized, sign-opposite) “distance to the point at
infinity” α+ in ∂X ; in fact, the distance on the quotient manifold X = G\X̃ can
always be expressed as d(a, y)= infg∈G d(ã, gỹ).

Proof of Theorem 24. We first prove formula (4). Since

`(α; 0, t)− d(a, α(t))≤1(α) for all t,

we get

Bα(a, y)= lim
t
[d(a, α(t))− d(α(t), y)]

≥ lim
t
[`(α; 0, t)−1(α)− inf

g∈G
d(α̃(t), gỹ)]

≥ lim
t
[d(ã, α̃(t))− d(α̃(t), gỹ)] −1(α)= Bα̃(ã, gỹ)−1(α),

for all g ∈ G. To prove the converse inequality, pick for each t > 0 a preimage ỹt

of y in X̃ such that d(α(t), y) = d(α̃(t), ỹt). By monotonicity and Property 9(i),
we have, for all s > t � 0,

d(ã, α̃(s))− d(α̃(s), ỹt)≥ d(ã, α̃(t))− d(α̃(t), ỹt)

&ε d(a, α(t))+1(α)− d(α(t), y).

Therefore, letting s→+∞, we get

sup
g∈G

Bα̃(ã, gỹ)≥ Bα(ã, ỹt)&ε bα(t)(a, y)+1(α),

and as ε is arbitrarily small, for t→+∞, this yields (4). Then (3) follows from (4)
and the cocycle condition, because for any x̃ ′ ∈ ∂H max

α̃+
(x) and ỹ′ ∈ ∂H max

α̃+
(y),

Bα(x, y)= Bα(a, y)− Bα(a, x)= Bα(ã, ỹ′)− Bα(ã, x̃ ′)= Bα̃(x̃ ′, ỹ′),
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and this is precisely the signed distance between the two maximal horospheres,
by Remark 15(ii). The second inequalities in (4) and (5) are just geometric refor-
mulations, because for ỹ′ ∈ H max

α̃+
(y), we have supg∈G Bα̃(ã, gỹ) = Bα̃(ã, ỹ′) =

d(ã, H max
α̃+

(y)). �

We conclude the section by mentioning the relation between boundary points
and types of quasirays, which is an immediate corollary of Properties 9 and the
excess lemma (Lemma 23). This was first pointed out by Haas [1996], for Kleinian
groups of Hn:

Corollary 25. Let π : X̃→ X = G\X̃ and ξ ∈ ∂ X̃ .

(i) ξ is nonhorospherical if and only if for all x̃ ∈ X̃ , the projection π([x̃, ξ ]) is a
quasiray.

(ii) ξ is x̃-Dirichlet if and only if π([x̃, ξ ]) is a ray.

(iii) ξ is x̃-Garnett if and only if for all g ∈ G, the curve π([gx̃, ξ ]) is a quasiray
but not a ray.

We shall see in Section 5 a special class of manifolds where every quasiray is a
preray: the geometrically finite manifolds.

4. The Busemann map

4.1. The Busemann equivalence. We consider several different types of equiva-
lence between rays and quasirays on quotients of Hadamard spaces. The main
motivation for this is to find workable criteria to know when two rays α, β are
Busemann equivalent, that is, when Bα = Bβ . We first consider the most natural
notion of asymptoticity:

Definition 26 (distance asymptoticity). For quasirays α, β on a general manifold X ,
we define

d∞(α, β)= 1
2 lim sup

t→+∞

[
d(α(t), β)+ d(α, β(t))

]
,

and we say that α, β are asymptotic if d∞(α, β) <∞ (resp. strongly asymptotic if
d∞(α, β)= 0); we say that α, β are diverging, otherwise.

Notice that strongly asymptotic quasirays define the same Busemann function,
since for all ε > 0, there exist t, s� 0 such that |bα(t)(x, y)− bβ(s)(x, y)|< ε.

On Hadamard spaces, we know by Proposition 18(i) that two rays are Busemann
equivalent precisely when they are asymptotic (moreover, for Hadamard spaces of
strictly negative curvature, the notions of asymptoticity and strong asymptoticity
coincide). Unfortunately, this easy picture is false in general: Example 44 in
Section 6 exhibits, in particular, two asymptotic rays on a hyperbolic surface
yielding different Busemann functions; on the other hand, in Example 41, we
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produce a hyperbolic surface with two diverging rays defining the same Busemann
function.

This leads us to describe the Busemann equivalence in a different way. For
quotients X = G\X̃ of Hadamard manifolds, we can characterize Busemann-
equivalent rays in terms of the dynamics of G on the universal covering of X . Recall
that, by property (v) after Definition 7, the action of G on X̃ extends in a natural
way to an action by homeomorphisms on ∂ X̃ , which is properly discontinuous on
Ord G.

Definition 27 (G-equivalent and weakly G-equivalent rays). Let α, β be quasirays
with origins a, b, and lift them to rays α̃, β̃ in X̃ , with origins ã, b̃.

• We say that α and β are G-equivalent (α ≈G β) if α̃+ ∈ Gβ̃+;

• We say that α is weakly G-equivalent to β (α≺G β) if there is a sequence gn ∈G
such that gnβ̃

+
→ α̃+ and the quasirays αn = π [ã, gnβ̃

+
] have 1(αn)→ 0.

This is equivalent10 to asking whether there exists a sequence (gn) such that

gnβ̃
+
→ α̃+ and Bβ̃(b̃, g−1

n ã)→ Bβ(b, a),

where the second condition geometrically means that d(g−1
n ã, H max

β̃+
(a))→ 0.

We say that α and β are weakly G-equivalent (α≺G� β) if α≺G β and β ≺G α.

Obviously, G-equivalent rays are always weakly asymptotic (as they admit lifts
with common point at infinity); the converse is false in general, as Example 44
in Section 6 shows. Further, notice that G-equivalent rays α, β define the same
Busemann function; in fact, if α+ = gβ+, then according to Theorem 24,

Bα(x, y)= ρ
(
H max
α̃+ (x), H max

α̃+ (y)
)
= ρ

(
gH max

β̃+
(x), gH max

β̃+
(y)
)
= Bβ(x, y);

but we see that, in general, two Busemann-equivalent rays need not be G-equivalent
(Example 41).

Interest in the weak G-equivalence is explained by the following:

Theorem 28. Let X = G\X̃ be a regular quotient of a Hadamard space. Let α, β
be rays in X with origins a, b. Then:

(i) α ≺ β if and only if α ≺G β.

(ii) Bα=Bβ if and only if α≺G�β and Bα(a, b)= Bβ(a, b).

As a corollary, for rays with the same origin o, we obtain Criterion 3.

10As αn = π [ã, gn β̃
+
] = π [g−1

n ã, β̃+], the excess condition says that d(g−1
n ã, Hmax

β̃+
(a))→ 0;

by formula (3), this means that B
β̃
(b̃, g−1

n ã)→ ρ
(
Hmax
β̃+

(b), Hmax
β̃+

(a)
)
= Bβ (b, a).
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Proof of Theorem 28. Lift α, β to α̃, β̃ on X̃ with origins ã, b̃. By Proposition 14,
we know that α ≺ β if and only if Bβ(a, α(t))= Bα(a, α(t))= t for all t . On the
other hand, we have

Bβ(a, α(t))= Bβ(a, b)+ Bβ(b, α(t))

= Bβ(a, b)+ supg∈G
[
Bβ̃(b̃, gã)+ Bβ̃(gã, gα̃(t))

]
≤−Bβ(b, a)+ supg∈G Bβ̃(b̃, gã)+ supg∈G Bg−1β̃(ã, α̃(t))

≤ d(ã, α̃(t))= t,

so α ≺ β precisely if there exists a sequence gn ∈ G such that

Bβ̃(b̃, gn ã)→ Bβ(b, a) and Bg−1
n β̃(ã, α̃(t))→ d(ã, α̃(t))= Bα(a, α(t)),

that is, g−1
n β̃+→ α̃+. This shows (i). Part (ii) follows from Theorem 16(b). �

4.2. Lower semicontinuity. The behavior of Busemann functions with respect to
the initial directions of quasirays is intimately related with the excess.

On the one hand, a limit of quasiminimizing directions does not usually give a
direction for which the Busemann function is defined: for instance, if X = G\X̃
and the limit set LG contains at least a Dirichlet point ζ and a radial point ξ , then
(as LG is the minimal G-invariant closed subset of ∂ X̃ ) there also exists a sequence
ζn = gnζ→ ξ ; the projections αn on X of rays [õ, ζn] give a family of G-equivalent
quasirays, all defining the same Busemann function, while the limit curve α is the
projection of [õ, ξ ], and is a recurrent geodesic for which the Busemann function is
not defined.

Even when the limit curve is a ray or a quasiray, with no control of the excess of
the family, we cannot expect any continuity, as the following example shows:

Example 29. Let G < Is(H2) be a discrete subgroup generated by two parabolic
isometries p, q with distinct, fixed points ζ , ξ , and assume they are in Schottky
position, that is

(
H2
− D(〈p〉, õ)

)
∩
(
H2
− D(〈q〉, õ)

)
=∅, for some õ ∈ H2.

For instance, we can take the group 0(2), generated by p(z)= z/(2z+ 1) and
q(z)= z+ 2 in the Poincaré half-plane model, with õ= i . In this case, LG = ∂H2

and ∂D(G, õ) consists of two parabolic fixed points ζ = 0, ξ = ∞ and two G-
equivalent points ω =−1 and ω′ = 1. The quotient surface X = G\H2 has three
cusps corresponding to ζ , ξ , and ω′= p(ω)=q(ω), and only four rays with origin õ:
the projections α, β, γ and γ ′ of, respectively, [õ, ζ ], [õ, ξ ], [õ, ω] and [õ, ω′], only
the last two of which are Busemann equivalent.

By the minimality of LG, there exists a sequence ζn = gnζ→ ξ ; then the projec-
tions αn on X of the rays [õ, ζn] are all G-equivalent quasirays (by Corollary 25, the
ζn being horospherical) that tend to β. However, Bαn = Bα for all n, and therefore
their limit is Bα, while the Busemann function of the limit curve is Bβ 6= Bα.
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Notice that in the above examples, the excess of the αn tends to infinity (by
Property 9(ii) in the first case, and by direct computation or Proposition 30 in
Example 29). Keeping control of the length excess yields at least lower semiconti-
nuity of the Busemann function with respect to the initial directions:

Proposition 30. Let X = G\X̃ be a regular quotient of a Hadamard space.

(i) For any sequence of rays αn→ α uniformly on compacts, we have

lim inf
n→+∞

Bαn (x, y)≥ Bα(x, y).

(ii) For any sequence of quasirays αn→ α with 1(αn)→1(α)+ δ, we have

lim inf
n→+∞

Bαn (x, y)≥ Bα(x, y)− δ.

Proof. Part (i) is a particular case of (ii). So let α̃n , α̃ be lifts of the quasirays αn ,
α to X̃ , with origins ãn, ã with ãn → ã, projecting respectively to an , a. By the
cocycle condition, we may assume that x = a. By (4), we deduce

Bαn (a, y)≥ Bα̃n (ã, gỹ)−1(αn)− 2d(a, an)

for all g ∈ G. As α̃+n tends to α̃+ in ∂ X̃ , we have convergence on compacts of Bα̃n

to Bα̃; hence, taking limits for n→∞ yields

lim inf
n→∞

Bαn (a, y)≥ Bα̃(ã, gỹ)−1(α)− δ

for all g, and again we conclude by using (4). �

Lower semicontinuity is the best we can expect, in general, for the Busemann
map: Example 42 gives a case where the strict inequality Bα < lim infn→+∞ Bαn

holds, for a sequence of rays αn→ α.

5. Geometrically finite manifolds

We recall the definition and some properties of geometrically finite groups. Let G be
a Kleinian group, that is, a discrete, torsionless group of isometries of a negatively
curved, simply connected space X̃ with −a2 < k(X̃)≤−b2 < 0.

Let C̃G ⊂ X̃ be the convex hull of the limit set LG; the quotient CG := G\C̃G is
called the Nielsen core of the manifold X = G\X̃ . The Nielsen core is the relevant
subset11 of X where the dynamics of geodesics take place.

The group G (equivalently, the manifold X ) is geometrically finite if some (any) ε-
neighborhood of CG in X has finite volume. The simplest examples of geometrically
finite manifolds are lattices, that is, Kleinian groups G such that vol(G\X̃) <+∞.
In dimension 2, the class of geometrically finite groups coincides with that of

11CG coincides with the smallest closed and convex subset of X containing all the geodesics that
meet infinitely often any fixed compact set.



HOROBOUNDARY AND GEOMETRY OF RAYS OF NEGATIVELY CURVED MANIFOLDS 77

finitely generated Kleinian groups; in dimension n > 2, geometric finiteness is
a condition strictly stronger than being finitely generated [Apanasov 1982]. The
following proposition sums up most of the main properties of geometrically finite
groups that we use:

Proposition 31 [Bowditch 1995]. Let X = G\X̃ be a geometrically finite manifold.

(i) LG is the union of its radial subset L radG and of a set Lb.parG =
⊔l

i=1Gξi made
up of finitely many orbits of bounded parabolic fixed points; this means that each
ξ ∈ Lb.parG is the fixed point of some maximal parabolic subgroup P of G acting
cocompactly on LG− ξ ; equivalently, P preserves every horoball Hξ centered at ξ
and acts cocompactly on ∂Hξ ∩ C̃G .

(ii) (Margulis’ lemma). There exist closed horoballs Hξ1, . . . , Hξl centered at
ξ1, . . . , ξl , such that gHξi ∩ Hξ j =∅ for all 1≤ i , j ≤ l, and g ∈ G− Pi .

Accordingly, geometrically finite manifolds fall in two classes:

• either CG is compact, in which case G (and X ) is called convex-cocompact;

• or CG is not compact, in which case it can be decomposed into a disjoint union
of a compact part C0 and finitely many “cuspidal ends” C1, . . . ,Cl : each Ci

is isometric to the quotient, by a maximal parabolic group Pi ⊂ G, of the
intersection between C̃G ∩ Hξi , where Hξi is a horoball preserved by Pi and
centered at ξi .

This yields a first topological description of geometrically finite manifolds;
for more details on the topology of a horosphere quotient, see [Belegradek and
Kapovitch 2006]. In the sequel, we always assume that X is noncompact.

We also repeatedly use the following facts:

Lemma 32. Let X = G\X̃ be a geometrically finite manifold, and let ξ ∈ LG be a
bounded parabolic point, fixed by some maximal parabolic subgroup P < G.

(i) ξ is nonhorospherical and universal Dirichlet.

(ii) There exists a subset Gξ ⊂ G of representatives of P\G such that ξ 6∈ Gξ x̃ ,
for every x̃ ∈ X̃ .

Proof. By Proposition 31(i), we know that ξ = gξi for some g ∈ G, ξi ∈ Pi , and
that P = gi Pi g−1

i . Consider the family of horoballs Hξi given by Margulis’ lemma,
let Hξ = gHξi , and choose a point x̃0 ∈ ∂Hξ , projecting to x0 ∈ X . By Margulis’
lemma, we know that there is no point of the orbit Gx̃0 inside Hξ , and hence
H max
ξ (x0)= Hξ and ξ is nonhorospherical.
To see (ii), fix a compact fundamental domain K for the action of G on LG− ξ ;

then, define the subset Gξ by choosing the identity of G as representative of the
class P and, for every g ∈ G− P , a representative ĝ ∈ Pg such that ĝξ ∈ K . Since
K is compact in LG − ξ , it is separated from ξ by an open neighborhood UK of
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K in X , with ξ 6∈ UK . Now, as ξ is universal Dirichlet, for every fixed x̃ we can
find g ∈ G such that ξ ∈ ∂D(G, gx̃); by construction, the orbit Gξξ accumulates
to K and, as the Dirichlet domain is locally finite, the domain D(G, gx̃) as well.
Since d(x̃, gx̃) <∞, we also deduce that the subset Gξ x̃ is included (up to a finite
subset) in UK ; this shows that ξ 6∈ Gξ x̃ . �

Proposition 33. Let X = G\X̃ be a geometrically finite manifold: then, every
quasiray of X is a preray.

Proof. Let α be a quasiray of X with origin a, and lift it to a ray α̃ of X̃ , with
origin ã. Assume that α is not a preray: then by Property 9(i), we would have a
positive, strictly decreasing sequence 1n =1(α|[tn,+∞)), tending to zero, for some
tn→+∞. Since α̃+ is a nonhorospherical point, it is either ordinary or bounded
parabolic; either way, it is a universal Dirichlet point by Lemma 32, so for each n
we can find gn such that g−1

n α̃(tn) ∈ ∂H max
α̃+

(α(tn)).
Let P be the maximal parabolic subgroup fixing ξ = α̃+, and let ĝn = pngn be

the representative of gn ∈ Gξ given by Lemma 32, for pn ∈ P . We have

1(α)≥ Bα̃(ã, g−1
n ã)= Bα̃(ã, ĝ−1

n ã)

= Bα̃(ã, α̃(tn))+ Bα̃
(
α̃(tn), ĝ−1

n α̃(tn)
)
+ Bα̃

(
ĝ−1

n α̃(tn), ĝ−1
n ã

)
≥ tn +1n − Bĝn α̃(ã, α̃(tn)),

which, since the excess of α is finite, shows that ĝnα̃
+
→ α̃+ necessarily, for n→∞.

By the local finiteness of the Dirichlet domain, we deduce that ĝn ã→ α̃+ as well,
which contradicts (ii) of Lemma 32. �

For geometrically finite manifolds, the equivalence problem is answered by:

Proposition 34. Let X = G\X̃ be a geometrically finite manifold, and let α, β be
rays. The following conditions are equivalent:

(i) Bα = Bβ; (ii) α ≈G β; (iii) α ≺ β; (iv) d∞(α, β) <∞.

Proof. Let a, b be the origins of the two rays α, β, and let α̃ and β̃ be the lifts
of α, β to X̃ , with origins ã, b̃, respectively. Now assume that α ≺ β. Consider
the quasiray β ′ that is the projection of β̃ ′ = [ã, β̃+] to X , and fix a t0 > 0. Since
α ≺ β ≈G β

′, we have, by Proposition 14 and Theorem 28,

Bβ ′(a, α(t0))= Bβ(a, α(t0))= d(a, α(t0))= t0.

As G is geometrically finite, β̃+ is universal Dirichlet and there exists g0 such that
g0α̃(t0) ∈ ∂H max

β̃+
(α(t0)). Then, by Theorem 24 and the excess lemma (Lemma 23),

t0 = Bβ ′(a, α(t0))= Bβ̃ ′(ã, g0ã)+ Bβ̃ ′(g0ã, g0α̃(t0))−1(β ′)

≤ Bg−1
0 β̃ ′(ã, α̃(t0))≤ d(ã, α̃(t0))= t0.
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Then Bg−1
0 β̃ ′(ã, α̃(t0))= d(ã, α̃(t0)), and hence g−1

0 β̃+ = g−1
0 β̃ ′+ = α̃+. Therefore

α ≈G β, which implies Bα = Bβ . As (i) implies (iii), this shows that the first
three conditions are equivalent. To conclude, let us show that (ii) and (iv) are
equivalent. We already remarked that G-equivalence implies asymptoticity. So,
assume now that d∞(α, β)<+∞. Up to replacing β with the G-equivalent quasiray
β ′ defined above, which still has d∞(α, β ′)≤ M <+∞, we can assume that their
lifts α̃ and β̃ have the same origin ã. Then, let tk, t ′k → +∞ and gk ∈ G such
that d

(
α(tk), β(t ′k)

)
= d

(
α̃(tk), gk β̃(t ′k)

)
≤ M ; this implies that gkβ

+
→ α+. Now,

if the gk’s form a finite set, then gk β̃
+
= α̃+ for some k, and the rays are G-

equivalent. Otherwise, since G acts discontinuously on ∂ X̃ − LG, we deduce
that α̃+ ∈ LG; moreover, as α̃+ is a Dirichlet point, it necessarily is a bounded
parabolic point of G. We deduce analogously that β̃+ is parabolic. But now, if
β̃+ 6∈ Gα̃+, Margulis’ lemma yields horoballs Hα̃+, Hβ̃+ , respectively containing
α̃(tk) and β̃(tk) for k � 0, such that Hα̃+ ∩ gHβ̃+ = ∅ for all g ∈ G. Then
d
(
α̃(tk), gk β̃(tk)

)
≥ d(α̃(tk), Hα̃+)→+∞, which contradicts our assumption. �

Proposition 35. Let X = G\X̃ be a geometrically finite manifold. For any o ∈ X ,
the Busemann map Bo :Ro X→ ∂X is surjective, that is, BX = ∂X. More precisely,
let (xn) be a sequence of points converging to a horofunction B(xn). If x̃n are lifts of
the xn in a Dirichlet domain D(G, õ), accumulating to some ξ ∈ ∂D(G, o), then
B(xn) = Bα, where α is the ray projection of [õ, ξ ] to X.

Proof. First notice that we have d(o, xn)−d(xn, x)≥ d(õ, x̃n)−d(x̃n, gx̃) for every
g, and by taking limits, we get B(xn)(o, x)≥ Bξ (õ, gx̃), as the x̃n accumulate to ξ ;
therefore, B(xn)(o, x)≥ supg Bξ (õ, gx̃)= Bα(o, x), by (5).

To show the converse inequality, let x be fixed, and for each n choose gn such
that d(x, xn)= d(gn x̃, x̃n). We show that there exists ĝ ∈ G such that

(6) d(gn x̃, x̃n)− d(ĝx̃, x̃n)→ 0 as n→∞

up to a subsequence; then, from this we deduce that

[d(o, xn)− d(xn, x)] − [d(õ, x̃n)− d(x̃n, ĝx̃)] → 0,

and as the first summand tends to B(xn)(o, x) and the second to Bξ (õ, ĝx̃), we can
conclude that B(xn)(o, x)= Bξ (õ, ĝx̃)≤ supg Bξ (õ, gx̃)= Bα(o, x).

Let us then show (6). Notice that this is evident when the set of the gn is finite.
So, assume that the set is infinite; then gn x̃ accumulates to some limit point η. If
η 6= ξ , let ϑ0 = ξ̂ õη > 0; then, by comparison geometry, there exists c = c(ϑ0)

(also depending on the upper bounds of the sectional curvature of X̃ ) such that for
n� 0,

d(gn x̃, x̃n)∼c(ϑ0) d(gn x̃, õ)+ d(õ, x̃n);
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but, as d(gn x̃, õ)→+∞, this contradicts the fact that d(õ, x̃n)− d(x̃n, gn x̃) con-
verges. Therefore gn x̃ → ξ ∈ LG ∩ ∂D(G, õ), and ξ is necessarily a bounded
parabolic point. Then, let P be the maximal parabolic subgroup fixing ξ , and let
ĝn = pngn be the representative of gn in the subset Gξ given by Lemma 32, for
pn ∈ P . We again have pnxn→ ξ up to a subsequence; in fact, xn tends to ξ within
D(G, õ), so either the pn’s form a finite set and pnxn= pxn→ pξ = ξ , or the whole
pn D(G, õ) converges to ξ (the Dirichlet domain being locally finite). We now infer
that the set of ĝn is finite: otherwise, the points ĝn x̃ = pngn x̃ would accumulate to
some η other than ξ (by Lemma 32); and the same comparison argument as above
would give

d(x, xn)= d(gn x̃, x̃n)= d(ĝn x̃, pn x̃n)∼c(ϑ0) d(ĝn x̃, x̃)+ d(x̃, pn x̃n)� d(x, xn)

for n large enough, which is a contradiction. Thus, the set of ĝn is finite, and we
may assume that gn = ĝ definitely. Now

(7) [d(õ, x̃n)− d(õ, pn x̃n)] + [d(x̃n, p−1
n ĝx̃)− d(x̃n, ĝx̃)]

(8) = [d(õ, x̃n)− d(x̃n, ĝx̃)] − [d(õ, pn x̃n)− d(pn x̃n, ĝx̃)] → 0,

as we know that both x̃n and pn x̃n tend to ξ , so both terms in (8) tend to Bξ (õ, ĝx̃).
The first summand [d(õ, x̃n)−d(õ, pn x̃n)] in (7) is nonpositive, since the x̃n belong
to D(G, õ); the second summand in (7) also is nonpositive, because for all g ∈ G,

d(x̃n, p−1
n ĝx̃)= d(x̃n, gn x̃)≤ d(x̃n, gx̃)

by assumption; therefore, by (8) we deduce that d(x̃n, gn x̃)−d(x̃n, ĝx̃)→ 0, which
proves (6) and concludes the proof. �

For the next result, we need to recall the Gromov–Bourdon metric on ∂ X̃ . This is
a family of metrics indexed by the choice of a base point õ ∈ X̃ : for any x̃ ∈ [η, ξ ],

Dõ(η, ξ)= e−(1/2)|Bη(õ,x̃)+Bξ (õ,x̃)|.

The exponent corresponds to minus the length of the finite geodesic segment cut on
[η, ξ ] by the horospheres Hη(õ), Hξ (õ). The fundamental property of these metrics
is that any isometry of X̃ acts by conformal homeomorphisms on ∂ X̃ with respect
to them; moreover, the conformal coefficient can be easily expressed in terms of
the Busemann function [Bourdon 1995]:

(9) Dõ(gη, gξ)=
√

g′(η)
√

g′(ξ)Dõ(η, ξ), where g′(ζ )= eBζ (õ,g−1õ).

Proposition 36. Let X = G\X̃ be a geometrically finite manifold, and let αn be
a sequence of rays converging to α. Then Bαn (x, y) → Bα(x, y) uniformly on
compacts.
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Proof. Notice that the limit curve α still is a ray by Properties 9. Also, notice
that if a is the origin of α, then by the cocycle condition it is enough to show that
Bαn (a, x) converges uniformly on compacts to Bα(a, x). Then, let α̃, α̃n be rays of
X̃ with origins ã, ãn projecting respectively to α and αn , and let εn = d(ã, ãn)→ 0.
Now choose any point x ∈ X . Since G is geometrically finite, α+ and α+n are either
ordinary or bounded parabolic points; either way, they are universal Dirichlet, so
let x̃ and gn x̃ be lifts of x such that

Bα(a, x)= Bα̃(ã, x̃), Bαn (an, x)= Bα̃n (ãn, gn x̃),

by Theorem 24. If α̃+ is parabolic, let P be its maximal parabolic subgroup and let
ĝn = pngn be the representative of gn modulo P given by Lemma 32, with pn ∈ P ;
if α̃+ is ordinary, just set ĝn = gn and pn = id. Then, consider the set F of all
the ĝn’s: we claim that F is finite. In fact, first notice that

Dã(pnα̃
+

n , α̃
+)=

√
p′n(α̃

+
n )Dã(α̃

+

n , α̃
+)≤ e2εn Dã(α̃

+

n , α̃
+),

as Bα̃+n (ã, p−1
n ã)≤ 2εn , αn being a ray from an with d(a, an)= εn; therefore, we

deduce that pnα̃
+
n → α̃+. Moreover, we have

(10) −d(a, x)≤ Bαn (a, x)= Bα̃n (ã, p−1
n ã)+Bα̃n (p

−1
n ã, gn x̃).2εn Bpn α̃n (ã, ĝn x̃).

If F is infinite, we deduce ĝn x̃→ ξ 6= α̃+ by Lemma 32, so Bpn α̃n (ã, ĝn x̃)→−∞,
contradicting (10). So, F is finite and we may assume that ĝn = ĝ definitely. But
then, passing to limits in (10), we get

lim
n→+∞

Bαn (a, x)≤ Bα̃(ã, ĝx̃)≤ Bα(a, x).

By the lower semicontinuity (Proposition 30), we deduce that Bαn (a, x) converge
pointwise to Bα(a, x); but as Bαn (a, x) are a family of 1-Lipschitz functions of x ,
this implies uniform convergence on compacts. �

Corollary 37. Let X = G\X̃ be a geometrically finite, n-dimensional manifold.
For any õ ∈ X̃ projecting to o ∈ X , the horoboundary ∂X of X is homeomorphic to

(11) Ro(X)/(Busemann eq.) ∼= G\∂D(G, õ),

and the horofunction compactification of X is X ∼= G\D(G, õ).
If n = 2 or G has no parabolic subgroups, then X is a topological manifold with

boundary. If n≥ 3 and G has parabolic subgroups, then X is a topological manifold
with boundary with a finite number of conical singularities, each corresponding to
a conjugate class of maximal parabolic subgroups of G.
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Here, we call a conical singularity a point ξ with a neighborhood homeomorphic
to the cone over some topological manifold (with or without boundary) Y :

C(Y, ξ)= (Y ×[0, 1])/(y,1)=ξ, y∈Y ,

and we say that X is a topological manifold with conical singularities if X has a
discrete subset S={ξk} of conical singularities such that X−S is a usual topological
manifold (with or without boundary).

Proof. By Property 9(ii), for any o ∈ X , the set of rays from o can be topologically
identified to a closed subset of the tangent sphere So X at o, and hence it is compact.
Then, by Propositions 35 and 36, we deduce that the restriction of the Busemann
map Bo :Ro(X)/(Busemann eq.)→ ∂X is a homeomorphism. Moreover, the set of
rays of X with origin o consists of all projections of half-geodesics from õ in X̃
staying in the Dirichlet domain, that is, whose boundary points belong to ∂D(G, õ).
Since by Proposition 34 the Busemann equivalence is the same as G-equivalence,
this establishes the bijection (11). Notice that this is a homeomorphism, as the
uniform topology on Ro(X) corresponds to the sphere topology on (the subset of
minimizing directions of) So X . Then, as G\D(G, õ)∼= X , the map b of Section 2.1
establishes the homeomorphism G\D(G, õ) ∼= X . Let us now make precise the
structure of X at its boundary points.

We know that ∂D(G, õ) is made up of ordinary points of Ord G and finitely
many orbits of bounded parabolic points ξk ; let ∂ord D(G, õ) the subset of ordinary
points on the trace of the Dirichlet domain. Every ordinary point ξ ∈ Ord G has a
neighborhood homeomorphic to a neighborhood of a boundary point of the closed,
unitary Euclidean ball in To X centered at 0, and the action of G on Ord G is proper.
So the space

X ′ = G \(X̃ ∪Ord G)= G \
[
D(G, õ)∪ ∂ord D(G, õ)

]
has a structure of ordinary topological manifold with boundary. This structure
coincides with the uniform topology of the horofunction compactification, as a
sequence (xn) in D(G, õ) tends to an ordinary point ξ if and only if bxn → Bξ ,
by Proposition 35. Now, X ′ has a finite number of ends Ek , corresponding to the
classes modulo G of the bounded parabolic points ξk ; we use the description of such
ends, due to Bowditch, to figure out their horofunction compactification. Let Pk

be the maximal parabolic subgroup associated with ξk , let Hk be some horosphere
centered at ξk , with quotient Yk = Pk\Hξk , and let Xk = Pk\X̃ . Xk is a geometrically
finite manifold, with one orbit of parabolic points corresponding to ξk , and the
manifold with boundary

X ′k = Pk\(X̃ ∪Ord Pk)= Pk\
[
D(Pk, õ)− ξk

]
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has one end isometric to the end Ek ; see [Bowditch 1995]. Topologically, we have
X ′k = Yk×[0,∞). By [Belegradek and Kapovitch 2006], Yk is a vector bundle over
a compact manifold Mk , so let D(Yk) and S(Yk) be the associated closed disk and
sphere bundles. The horofunction compactification of the end Ek , by (11), has just
one point at infinity corresponding to ξk , and is homeomorphic to

C(T(Yk), ξk)=
D(Yk)×[0,∞]

(S(Yk)×[0,∞])∪ (D(Yk)×{∞})
=

T(Yk)×[0,∞]
T(Yk)×{∞}

,

the cone over the Thom space T(Yk)=D(Yk)/S(Yk) of Yk , with vertex ξk ; actually,
every sequence of points diverging in the end yields the same horofunction (the
Busemann function of the projection to Xk of [õ, ξk], by Proposition 35). Notice
that, on each fiber of Yk over m ∈ Mk , the space

Dm(Yk)×[0,∞]
(Sm(Yk)×[0,∞])∪ (Dm(Yk)×{∞})

is homeomorphic to the cone C(Dm(Yk), ξm(k))with base Dm(Yk) and vertex ξm(k);
it follows that

C(T(Yk), ξk)∼=

⋃
m∈Mk

C(Dm(Yk), ξm(k))⋃
m∈Mk

ξm(k)
∼=

D(Yk)×[0,∞]
D(Yk)×{∞}

= C(D(Yk), ξk)

is homeomorphic to the cone over the closed manifold (with boundary) D(Yk).
Clearly, T(Yk) = D(Yk) = Yk = Mk if n = 2, and in this case C(D(Yk), ξk) is a
closed topological disk; on the other hand, in dimension n ≥ 3, this cone is always
singular at ξk (since Yk is not simply connected, the subset C(D(Yk), ξk)− ξk is not
locally simply connected). �

Examples 38 (the horofunction compactification of an unbounded cusp).

(i) Let X = P\H3, where P is generated by a parabolic isometry p with fixed
point ξ . In the Poincaré half-space model, assume that ξ is the point at infinity,
fix some horosphere Hξ , and choose an origin õ. The Dirichlet domain D(P, õ) is
an infinite vertical corridor, with parallel vertical walls W1,W2 paired by p. X is
homeomorphic to an open cylindrical shell, which is the product of the horosphere
quotient Y = P\Hξ̃ = Cyl (a flat infinite cylinder) with R∗

+
:

X = P\D(P, õ)∼= Cyl×(0,∞).

We may take Cyl∼= S1
×(−1, 1)with closure Cyl= S1

×[−1, 1]. Then the manifold
X ′ is

X ′ = P
∖[

H3
∪Ord P

]
= P

∖[
D(P, õ)− ξ

]
∼= Cyl×[0,∞),

the end of which corresponds to a neighborhood of the bases B± = S1
×{±1} of

the cylinder and of the internal boundary Cyl∞ = Cyl×{∞} of the shell (a solid
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hourglass). The horofunction compactification is

X ∼= Cyl×[0,∞]/
(B+=B−=Cyl

∞
)
,

that is, a spindle solid torus whose center corresponds to the unique singular point
at infinity of the compactification.

(ii) Let X = G\H3, where G = 〈p, h〉 is the free group generated by a parabolic
isometry p and a hyperbolic isometry h in Schottky position. In this case, the Dirich-
let domain is the same vertical corridor as above, minus two hemispherical caps
(the attractive and repulsive domains of h), and the horofunction compactification
is the above spindle solid torus with a solid handle attached.

6. Examples

We present in this section some examples of two basic classes of complete, nonge-
ometrically finite hyperbolic surfaces presenting the pathologies described in the
Introduction (Theorems 1, 2, 4, and 5):

• Hyperbolic ladders: these are Z-coverings of a hyperbolic closed surface 6g

of genus g ≥ 2, obtained by infinitely many copies of the base surface 6g cut
along g simple, nonintersecting closed geodesics of a fundamental system,
glued along the corresponding boundaries; see Figure 2.

• Hyperbolic flutes: these are, topologically, spheres with infinitely many punc-
tures ei accumulating to one limit puncture e; the surface thus has one end for
each puncture ei (called its finite ends), and an end corresponding to e, the
infinite end of the flute. Geometrically, each end ei other than e must be either
a cusp (the quotient of a horoball Hξ of H2 by a parabolic subgroup Pξ fixing
the center ξ of Hξ ) or a funnel (the quotient of a half-plane of H2 by an infinite
cyclic group of hyperbolic isometries).

Figure 2. Construction of ladders.
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We obtain workable models of flutes via infinitely generated Schottky groups.
Define the attractive and repulsive domains A(g, õ), A(g−1, õ) of a parabolic or
hyperbolic isometry g, with respect to some point õ ∈ H2, respectively as

A(g±1, õ)= {x ∈ H2
| d(x, õ)≥ d(x, g±1õ)}.

We say that G is an infinitely generated Schottky group if it is generated by countably
many hyperbolic isometries S = (gn), in Schottky position with respect to some
õ ∈ H2, that is, A(gεn, õ)∩ A(gε

′

m , õ)=∅ for all n,m and all ε, ε′ ∈ {±1}.
By a ping-pong argument, it follows that G is discrete and free over the generating

set S; moreover, its Dirichlet domain with respect to õ is

D(G, õ)= H2 ∖ ⋃
gn∈S

(
A(gn, õ)∪ A(g−1

n , õ)
)o
.

If the axes of the hyperbolic generators do not intersect and the domains A(g±1
n , õ)

accumulate to one boundary point ζ (or to different boundary points E = {ζk},
all defining the same end of the quotient X = G\H2), then the resulting surface
X =G\H2 is a hyperbolic flute: it has a cusp for every parabolic generator, a funnel
for every hyperbolic generator, and an infinite end corresponding to ζ (or to the
set E). For the construction of Schottky groups, we repeatedly make use of the
following (see Section A.3 for a proof):

Lemma 39. Let õ ∈ H2, and let C,C ′ be two ultraparallel geodesics (that is, with
no common point in H2

∪ ∂H2) such that d(õ,C)= d(õ,C ′). Then:

(i) There exists a unique hyperbolic isometry g with axis perpendicular to C,C ′

and such that g(C)= C ′.

(ii) g−1õ and gõ are obtained, respectively, by the hyperbolic reflections of õ with
respect to C,C ′.

(iii) The Dirichlet domain D(g, õ) has boundary C ∪C ′.

Example 40 (the asymmetric hyperbolic flute). We construct a hyperbolic flute
X = G\H2 with two rays α, α′ having the same origin, such that:

(a) α′ ≺G α 6≺G α
′ (that is, α′ ≺ α 6≺ α′); therefore, α 6≈G α

′ and Bα 6= Bα′ ;

(b) d∞(α, α′)=∞.

We use the disk model for H2 with origin õ. Let õ′ =−i/10, and consider the
geodesics α̃ = [õ,−i], α̃′ = [õ, i]. Then let R be the reflection with respect to
the real axis, and consider the horoballs H = Hα̃+(õ) and H ′ = Hα̃′+(õ′)⊃ R(H);
finally, choose some positive sequence εk ↘ 0.

Let [õ, ζ1] be a ray making angle ϑ1 with α̃, let õ1 be the point on [õ, ζ1] such that
d(õ1, H)= ε1, and let C1 be the hyperbolic perpendicular bisector of the segment
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Figure 3. Asymmetric and twisted flutes.

[õ, õ1], with extremities c1,+ and c1,−; see Figure 3(a). Notice that, as ε1 > 0, the
circle C1 does not intersect α̃ (the extremity c1,+ closest to α̃+ coincides with α̃+

if and only if õ1 ∈ ∂H ). Then, consider R(C1) and rotate it clockwise around õ
until it is tangent to H ′: call this new geodesic C ′1 and its extremities c′1,+, c′1,−.

Now let g1 be the hyperbolic isometry given by Lemma 39, with axis g̃1 perpen-
dicular to C1,C ′1, and such that g1(C1)= C ′1 and g−1

1 (õ)= õ1. Then, construct g2

analogously; that is, choose a ray [õ, ζ2], for some ζ2 between α̃+ and c1,+, making
angle ϑ2 < ϑ1 with α̃; call õ2 the point on [õ, ζ2] with d(õ2, H)= ε2; and then let
C2, C ′2, g̃2 etc. be as before. Repeating this construction inductively, we obtain the
infinitely generated group G = 〈g1, g2, . . . , gk, . . . 〉.

Moreover, choosing ϑk+1 � ϑk , we can make the following conditions be
satisfied:

A(gεn, õ)∩ A(gτm, õ)=∅ for all n 6=m and ε, τ ∈ {±1},(12)

Un(α̃ ∪ α̃
′)∩ A(gεn, õ)=∅ for all n ∈ N and ε ∈ {±1},(13)

where Un(α̃ ∪ α̃
′) is the tubular neighborhood of α̃ ∪ α̃′ of width n.

Condition (12) says that G is a discrete Schottky group. The quotient manifold
X = G\H2 is a hyperbolic flute, with infinite end corresponding to the set E =
{α̃+, α̃′+}. Let α and α′ be projections of α̃, α̃′ to X , with common origin o: they
are rays, as their lifts stay in D(G, õ) by construction.

Proof of Properties 40(a) and 40(b). By construction, α �G α
′ as gnα̃

+
→ α̃′+

and Bα̃(õ, g−1
n õ)→ 0. On the other hand, for every sequence hk ∈ G such that
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hk α̃
′+
→ α̃+, the points h−1

k õ definitely lie in some of the attractive domains
A(gn, õ), which are exterior to H ′: thus, Bα̃′(õ, h−1

k õ)≥ 1
10 and does not tend to 0.

This proves that α 6≺G α
′. The other assertions in (a) follow from the construction

of G and Theorem 28. For (b), assume that d∞(α, α′) < M : then we could find
arbitrarily large t, t ′ and gt ∈ G such that d(α̃(t), gt α̃

′(t ′)) < M . Let then gn(t) be
the generator such that gt α̃

′
⊂ A(gεn(t), õ), for some ε ∈ {±1}. By (13), we deduce

that d(α̃(t), gt α̃
′(t ′))≥ d(α̃, A(gεn(t), õ))≥ n(t), which shows that we necessarily

have n(t)= n for infinitely many, arbitrarily large t . Hence

lim sup
t→+∞

d(α̃(t), gt α̃
′(t ′))≥ lim sup

t→+∞
d(α̃(t), A(gεn, õ))=∞,

a contradiction. �

Example 41 (the symmetric hyperbolic flute). We construct a hyperbolic flute
X = Ĝ \H2 with two rays α, α′ having the same origin, such that:

(a) α ≺Ĝ� α
′ (that is, α ≺� α′); therefore, Bα = Bα′ .

(b) α 6≈G α
′.

(c) d∞(α, α′)=∞.

Let G = 〈g1, . . . , gn, . . . 〉 be the group constructed in Example 40, and let S be the
symmetry with respect to õ. Then, for every n, consider the hyperbolic translation
ĝn having axis S[g̃n] and attractive/repulsive domains A(ĝ±1

n , õ)= S[A(g±1
n , õ)],

and define Ĝ = 〈g1, ĝ1, . . . , gn, ĝn, . . . 〉.
Notice that, by symmetry, all these generators again satisfy the conditions (12)

and (13), so Ĝ is a discrete Schottky group. Again, the quotient manifold X = Ĝ\H2

is a hyperbolic flute with infinite end corresponding to the set E = {α̃+, α̃′+}, and
with the same notations as above, the projections α and α′ on X are rays.

Proof of Properties (a)–(c) in Example 41. We deduce as before that α �Ĝ α
′; but

now we also have the sequence ĝn such that ĝnα̃
′+
→ α̃+ and Bα′(õ, ĝ−1

n õ)→ 0,
so α′ �Ĝ α too. As the rays α and α′ have a common origin, Theorem 28 implies
that Bα = Bα′ . Again, assertion (b) follows by construction, and (c) is proved as
before. �

Example 42 (the twisted hyperbolic flute). We construct a hyperbolic flute X =
G\H2 with a family of rays αn having same origin and converging to a ray α such
that:

(a) αn ≈G αm for all n,m; therefore, d∞(αn, αm) <∞ and Bαn = Bαm .

(b) d∞(αn, α)=∞ for all n.

(c) Bα0 = limn→+∞ Bαn 6= Bα.
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Again, in the disk model for H2 with origin õ, consider a sequence of boundary
points ζ0 = i , ζn = eiϑn , for a decreasing sequence π/2≥ ϑn ↘−π/2. Then, for
every n ≥ 1, choose a pair of ultraparallel geodesics Cn,C ′n such that d(õ,Cn)=

d(õ,C ′n) = dn , both contained in the disk sector [ζn−1, õ, ζn], and with points at
infinity respectively equal to ζn−1, ζn . Finally, let gn be the hyperbolic isometry
with gn(Cn) = C ′n whose axis is perpendicular to Cn,C ′n , given by Lemma 39 —
see Figure 3(b) — and set α̃n = [õ, ζn], α̃ = [õ,−i].

Moreover, if H ′ = Hα̃+(õ′) for õ′ = i/10, we can choose the dn � 0 in order
that the following condition be satisfied:

(14) H ′ ∩ A(g±1
n , õ)=∅, for all n.

Define G as the group generated by all the gn . Again, G is an infinitely generated
Schottky group, and the quotient manifold X = G \H2 is a flute whose infinite end
corresponds to the set E = {α̃+, α̃+n | n ≥ 0}. The projections αn and α of all the
α̃n, α̃ on X are rays, by construction, such that αn→ α.

Proof of Properties 42(a) and 42(c). The rays αn are all G-equivalent by construc-
tion, as α̃+n = gnα̃

+

n−1 for all n. The other assertions in (a) follow from the discussion
after Definition 27 (actually, as we are in strictly negative curvature, we have
d∞(αn, αm)= 0). On the other hand, by (14), all the images by G of α̃n are exterior
to the horoball H ′, except for α̃n itself; thus if s� 0, we have d(gα̃n, α̃(s)) > s for
all g. It follows that d∞(αn, α) ≥

1
2 lim sups→+∞ infg∈G d(gα̃n, α̃(s))=+∞. To

conclude, we have to prove that Bα0 6= Bα , and by Theorem 28, it is enough to show
that α 6�G α0. But for any sequence hn with hnα̃

+
→ α̃+0 , we have Bα̃(õ, hn õ)<− 1

10 ,
since by construction this is true for all nontrivial g in G. �

Remark 43. The discontinuity (c) can be interpreted geometrically as follows.
Consider the maximal horoballs H max

α̃+
(o′), H max

α̃+n
(o′), for the projection o′ of õ′. It

is easy to see that H max
α̃+

(o′) = Hα̃+(õ′), as all the gõ′, for g 6= 1, stay far away
from H ′, by construction. Moreover, since o′ ∈ α0 and α0 is a ray, we also deduce
that

H max
α̃+0

(o′)= Hα̃+0 (õ
′)

precisely. Now Bαn (o, o′)= Bα0(o, o′), so formula (5) shows that

d(õ, H max
α̃+n

(o′))= d(õ, H max
α̃+0

(o′));

then, by rotational symmetry, H max
α̃+n

(o′) is the horoball centered at α̃+n having the
same Euclidean radius as Hα̃+0 (õ

′). Therefore, the discontinuity can be read in terms
of a discontinuity in the limit of the maximal horoballs: in fact, the H max

α̃n
(o′)’s

converge for n → ∞ to Hα̃+(−õ′), which is strictly smaller than the maximal
horoball Hα̃+(õ′) of the limit ray.
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Example 44 (the hyperbolic ladder). We construct a hyperbolic ladder that is a
Galois covering X→62 of a hyperbolic surface of genus 2, with automorphism
group 0 ∼= Z, such that:

(a) X has distance-asymptotic rays α, α′ with α ≺� α′, but Bα 6= Bα′ .

(b) BX consists of 4 points.

(c) ∂X consists of a continuum of points.

(d) The limit set L0 = 0x0 ∩ ∂X depends on the choice of the base point x0, and
for some x0 it is included in ∂X −BX .

We construct X by gluing infinitely many pairs of hyperbolic pants. The following
properties of hyperbolic pants are well-known:

Lemma 45 [Fathi et al. 1979; Thurston 1997]. Let H+, H− be two identical right-
angled hyperbolic hexagons, with alternating edges labeled by a±, b±, c± and
opposite edges by α±, β±, γ±. Let P be the hyperbolic pant obtained by gluing
them along a±, b±, c±; the identified edges a, b, c are called the seams of P , and
the resulting boundaries α = α+∪α−, β = β+∪β−, γ = γ+∪γ− of P are closed
geodesics called the cuffs. The seams are the shortest geodesic segments connecting
the cuffs of P and, reciprocally, the cuffs are the shortest ones connecting the seams.

Now, we start from infinitely many copies Pn , P ′n , for n ∈ Z, of the same pair
of pants P , and we assume that `(b) = `(c) = L > ` = `(a). We glue them, as
in Figure 4, by identifying via the identity the cuffs αn with α′n , and the cuffs βn ,
β ′n with γn−1, γ ′n−1 respectively (with no twist), obtaining a complete hyperbolic
surface X = N \H2. Note that, if 62 = G \H2 is the hyperbolic surface obtained
from P0 ∪ P ′0 by identifying α0 to α′0 and β0, β ′0 respectively to γ0, γ ′0, there is a
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Figure 4. The hyperbolic ladder.
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natural covering projection X → 62, with automorphism group 0 ∼= Z ∼= G/N .
The group 0 acts on X by “translations” Tk , sending Pn ∪ P ′n into Pn+k ∪ P ′n+k .

We define α =
⋃

k≥0 ak , α− =
⋃

k<0 ak , α′ =
⋃

k≥0 a′k , and α′
−
=
⋃

k<0 a′k , and
set A= α ∪α−, and A′ = α′ ∪α′

−
. Notice that the surface X is also endowed of:

• A natural flip symmetry, denoted ′, obtained by sending a point in Pk to the
corresponding point in P ′k ; let F= Fix(′) and call the top and the bottom of X
the (closure of) the two connected components of X −F interchanged by ′.

• A natural mirror symmetry S, obtained by interchanging each point on a pant
Pk (resp. P ′k) with the corresponding point lying on the same pant, but on the
opposite hexagon; if M=

⋃
k∈Z bk∪b′k∪ck∪c′k , we have Fix(S)=A∪A′∪M,

and we call the back and the front of X the closure of the two connected
components of X −Fix(S) interchanged by S.

• A group of reflections Rn with respect to βn ∪ β
′
n , exchanging Pn+k ∪ P ′n+k

with Pn−k−1 ∪ P ′n+k−1.

Lemma 46. (i) No minimizing geodesic crosses A, A′, F, or M twice.

(ii) Every quasiray is strongly asymptotic to one of the four rays α, α−, α′, α′−.

Proof. (i) Assume that γ is a minimizing geodesic between x and y, crossing A

twice, at two points x1, y1. Break it as γ = γ1 ∪ [x1, y1] ∪ γ2, where [x1, y1] is the
subsegment between x1 and y1. Then, using the mirror symmetry S, we would
obtain a curve γ̂ = γ1 ∪ S[x1, y1] ∪ γ2 of the same length, still connecting x to y,
but singular at x1 and y1; hence, it could be shortened, which is a contradiction.
The proof is the same for A′,M, and using the flip symmetry ′, one analogously
proves that a minimizing geodesic cannot twice cross F.

For (ii), let us first show that, if γ is a quasiray included, say, in the top-front of X ,
then either d∞(γ, α)= 0 or d∞(γ, α−)= 0. Actually, assume that pn = γ (tn) is a
sequence such that d(pn,A) > ε, for n ≥ 0 and tn→∞. Consider the projections
qn of pn on A, which we may assume to be at distance d(qn, qn+1)� 0; as γ is
included in a simply connected open set of X containing the bi-infinite geodesic A,
we can use hyperbolic trigonometry (see Lemma 49 in Section A.3) to deduce that
`(γ |[tn,tn+1])≥ qnqn+1+ δ(ε), for a universal function δ(ε) > 0.

As p0 pn ≤ q0qn + 2 diam P , we obtain

1(γ |[t0,tN ])≥

N−1∑
n=0

qnqn+1+ Nδ(ε)− q0qN − 2 diam P = Nδ(ε)− 2 diam P,

which diverges as N → ∞; so 1(γ ) is not bounded, a contradiction. As ε is
arbitrary, this shows that γ is strongly asymptotic either to α or to α−. Finally, if γ
is a quasiray that is not included in the top-front of X , we can use the symmetries S
and ′ to define, from γ , a curve γ̂ fully included in the top-front of X , by reflecting
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the subsegments that do not lie in the top-front of X . This new curve still has
bounded excess (as it has the same length as γ on every interval, and the distance
between endpoints is reduced by at most 2 diam P), so as just proved, it is strongly
asymptotic either to α or to α−. In particular, γ̂ finally does not intersect C ; so
γ |[t0,+∞] for some t0� 0 is included in an ε-neighborhood of A, for arbitrary ε,
and therefore it is strongly asymptotic to one of the four rays α, α−, α′, α′−. �

Proof of Properties (a)–(d) in Example 44. The geodesic segments an are the shortest
curves connecting the cuffs βn, γn of Pn: this implies that α cannot be shortened, so
it is a ray; similarly for α′. Let now x0=a0∩β0, xn= Tn(x0) and let x ′n be their flips;
finally, consider a sequence of minimizing segments ηn = [x0, x ′2n] and their inverse
paths−ηn . By (i) above, we know that ηn is included in the front (or the back) of X ;
moreover, it can be broken as ηn = η

t
n∪η

b
n , where ηt

n, η
b
n are subsegments in the top

and bottom of X , respectively, meeting at some pn ∈ F. Therefore, each of these
segments stays in a simply connected open set of X , isometric to an open set of
H2; then, since d(pn, α)= d(pn, α

′) < diam P , we can apply standard hyperbolic
trigonometry to deduce that ηn makes an angle ϑn with either α or α′, such that

tanϑn ≤
tanh(diam P)

sinh(n`)
→ 0, for n→∞.

By possibly replacing ηn with Rn(−ηn)
′, we find a sequence of minimizing segments

[x0, x ′2n] → α, and hence α′ � α. The converse relation α � α′ is analogous. Let
us now show that Bα 6= Bα′ . It is enough to show that Bα(x0, x ′0) > 0; then clearly,
by the flip symmetry, we deduce Bα′(x0, x ′0) = Bα(x ′0, x0) < 0. Let us compute
Bα(x0, x ′0) = limn→∞ x0xn − xnx ′0. Let νn = [xn, x ′0] be a minimizing segment
intersecting F at some p ∈ α̂k , and break it as νn = ν

t
n ∪ ν̂n ∪ ν

b
n , where ν̂n is the

maximal subsegment of νn included in Pk ∪ P ′k ; then

xnx ′0 ≥ `(ν
t
n)+ d(γk, β

′

k)+ `(ν
b
n )≥ (n− 1)`+ 2L ≥ (n+ 1)`,

while clearly x0xn = n`; so Bα(x0, x ′0)≥ `.

(b) One proves analogously that α− and α′
−

are rays defining different Busemann
functions, while it is clear that Bα and Bα′ are different from Bα−, Bα′− . Therefore,
BX has at least four points. On the other hand, by Lemma 46(ii), every quasiray in
X is strongly asymptotic to one of the four above, thus defining the same Busemann
function. This shows that BX has precisely four points.

(c), (d) Clearly, the orbits 0x0 and 0x ′0 accumulate to Bα and Bα′ . Let now x(t)
be a continuous curve from x0 = x(0) to x ′0 = x(1), and set xn(t) = Tn(x(t)).
For any fixed t , let B(xn)(t) be the limit of (a subsequence of) xn(t) for n→∞.
The family B(xn)(t) defines a continuous curve in ∂X connecting Bα to Bα′ , as
‖B(xn)(t) − B(xn)(s)‖∞ ≤ 2d(xn(t), xn(s)); since it is nonconstant, its image is an
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uncountable subset of ∂X . It remains to exhibit an orbit accumulating to a point of
∂X \BX . Let y0 ∈ α0: we affirm that yn = Tn y0 is such an orbit. Actually, if yn

converged to one of the four Busemann functions, say Bα , then we would also have
yn = y′n→ Bα′ , as the flip symmetry preserves the orbit and exchanges α with α′.
Hence we would get Bα = Bα′ , a contradiction. �

Remark 47. The surface X is quasi-isometric to Z, and hence it is a Gromov-
hyperbolic metric space. Its boundary as a Gromov-hyperbolic space X g(∞)

[Bridson and Haefliger 1999; Papadopoulos 2005] consists of two points. So the
Busemann boundary and the horoboundary prove to be finer invariants than X g(∞)

(as they are not defined up to bounded functions, so they are not invariant by
quasi-isometries).

Appendix

A.1. Rays on Riemannian manifolds.

Lemma 48. Let β be a quasiray and let x, y ∈ X be such that Bβ(x, y)= d(x, y).
Then:

(i) x and y minimize the distance between the horospheres Hβ+(x) and Hβ+(y);

(ii) y is the only projection to Hβ+(y) of every z ∈ [x, y], except possibly for x.

Proposition 14. For any quasiray β, we have Bβ(x, y) = d(x, y) ⇔ −→xy ≺ β. In
particular, if Bβ(x, y) = d(x, y), then the extension of any minimizing segment
[x, y] beyond y is always a ray.

Theorem 16. Assume that α, β are rays in X with origins a, b, respectively. The
following conditions are equivalent:

(i) Bα(x, y)= Bβ(x, y) for all x, y ∈ X ;

(ii) α ≺� β and Bα(a, b)= Bβ(a, b);

(iii) α and β are visually equivalent from every o ∈ X.

Proof of Lemma 48. (i) follows from the fact that any two points x ′, y′ in Hβ+(x),
Hβ+(y), respectively, satisfy d(x ′, y′) ≥ Bβ(x ′, y′) = Bβ(x, y) = d(x, y). In par-
ticular, y is a projection to Hβ+(y) of any point z ∈ [x, y], as

xz+ zy = xy = d(x, Hβ+(y))≤ xz+ d(z, Hβ+(y)).

Moreover, let z ∈ [x, y] and z 6= x and assume that q is a projection of z on Hβ(y)
other than y. Then the angle between [x, z] and [z, q] would be different from π ;
hence xq < xz+ zq and

d(x, Hβ+(y)) < xz+ zq = xz+ zy = d(x, Hβ+(y)),

a contradiction. �
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Proof of Proposition 14. Let α = −→xy with x = α(0), y = α(s̄). Assume α ≺ β.
Then there exist minimizing geodesic segments αn = [an, bn] → α such that an =

αn(0)→ x and bn = αn(sn) = β(tn)→ β+, for sequences sn, tn → +∞. Let s
be fixed and ε arbitrary. There exists N (s, ε) such that d(αn(s), α(s)) < ε and
d(an, x) < ε for n > N (s, ε); therefore

Bβ(x, α(s))= lim
n→∞

xbn − bnα(s)hε lim
n→∞

xbn − bnαn(s)= s,

and as ε is arbitrary, this shows that Bβ(x, α(s)) = s = d(x, α(s)) for all s, and
hence Bβ(x, y)= d(x, y). Conversely, assume that Bβ(x, y)= d(x, y). Then

s = s̄− (s̄− s)≤ Bβ(x, y)− Bβ(α(s), y)= Bβ(x, α(s))≤ s,

for all s ∈ [0, s̄], and we deduce that Bβ(x, x ′)= d(x, x ′) for all x, x ′ on α between
x and y. Now, fix 0 < ε < s̄ and consider minimizing geodesic segments αεn =
[α(ε), β(n)]; up to a subsequence, they converge, for n→∞, to a ray αε that is,
by definition, a coray of β. So (as we previously proved)

Bβ(α(ε), αε(s))= Bαε (α(ε), αε(s))= s,

for all s > 0. But then, for s > ε, α(s) and αε(s− ε) are both projections of α(ε)
to the horosphere Hβ+(α(s)) and, by Lemma 48(ii), we know that they coincide.
This shows that αε = α|ε,+∞ and that αε ′n (0) tend to α′(ε), for every fixed ε > 0; by
a diagonal argument, we then build a sequence of minimizing geodesic segments
αk = α

εk
nk , for εk→ 0 and nk→+∞, such that αk→ α. Thus α ≺ β. �

Proof of Theorem 16. Let us show that (a)⇒ (b). Assume that Bα = Bβ , and let
b=β(0), y=β(t). As Bα(b, y)= Bβ(b, y)=d(b, y), we deduce by Proposition 14
that β ≺ α. One proves that α ≺ β analogously.

Conversely, let us show that (b)⇒ (a). Assume that α ≺ β, so we have geodesic
segments αn = [an, bn]→ α with an = αn(0)→ a and bn = β(tn)= αn(sn)→ β+;
moreover, let N (s, ε) as before such that d(αn(s), α(s)) < ε for n > N (s, ε). Then,
for every x and n > N (s, ε),

aα(s)−α(s)x hε s−αn(s)x ≤ s− (bnx − bnαn(s)),

and, as bnαn(s)= sn − s, we deduce that

aα(s)−α(s)x .ε sn − bnx = (sn − tn)+ (tn − bnx)≤ Bβ(an, b)+ Bβ(b, x),

by monotonicity of the Busemann cocycle. Taking limits for s→∞, we deduce
that Bα(a, x).ε Bβ(a, x) for all x and, as ε is arbitrary, Bα(a, x)≤ Bβ(a, x). From
β ≺ α, we deduce analogously that Bβ(b, x)≤ Bα(b, x). Therefore,

Bβ(b, x)≤ Bα(b, x)= Bα(b, a)+ Bα(a, x)≤ Bα(b, a)+ Bβ(a, b)+ Bβ(b, x),
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and since Bα(b, a)= Bβ(b, a), we get the conclusion.
Let us now prove that (a)⇒ (c). Assume again that Bα = Bβ , and let o ∈ X . Let

γ be a limit of (a subsequence of) geodesic segments γn = [o, α(n)]; then γ is a
ray (by Properties 9) and, by definition, is a coray to α. Then, by Proposition 14,

Bβ(o, γ (t))= Bα(o, γ (t))= d(o, γ (t)),

which, by the same proposition, also implies that γ ≺ β.
Finally, let us show that (c) ⇒ (a). The functions Bα(a, · ) and Bβ(b, · ) are

Lipschitz, and hence differentiable almost everywhere. Let o be a point of differen-
tiability for both Bα(a, · ) and Bβ(b, · ), and let γ be a ray from o that is a coray to
α and β. Then Bα(o, γ (t))= d(o, γ (t))= Bβ(o, γ (t)) for all t , which implies that
grado Bα(a, · ) = γ ′(0) = grado Bβ(b, · ). So Bα(a, · ) and Bβ(b, · ) are Lipschitz
functions whose gradient is equal almost everywhere, and hence they differ by a
constant and Bα = Bβ . �

A.2. Rays on Hadamard spaces.

Proposition 18. Let X̃ be a Hadamard space.

(i) If α, β are rays, then d∞(α, β) <∞⇔ Bα = Bβ ⇔ α ≺ β.

Moreover, two rays with the same origin are Busemann equivalent if and only if
they coincide, so the restriction of the Busemann map Bo :Ro(X̃)→ ∂ X̃ is injective.

(ii) For any o ∈ X̃ , the restriction of the Busemann map Bo : Ro(X̃)→ ∂ X̃ is
surjective, and hence BX̃ =Bo X̃ = ∂ X̃ .

(iii) The Busemann map B is continuous.

Lemma 19 (uniform approximation lemma). Let X̃ be a Hadamard space. For any
compact set K and ε > 0, there exists a function T (K , ε) such that for any x, y ∈ K
and any ray α issuing from K , we have |Bα(x, y)− bα(t)(x, y)| ≤ ε, provided that
t ≥ T (K , ε).

Proof of Lemma 19. First notice that, by the cocycle condition (holding for bα(t) as
well as for Bα), we can assume that x = α(0)= a. Then, let z = α(t) and z′ = α(t ′)
for t ′ > t , and let us estimate bz′(a, y)− bz(a, y)= (yz+ zz′)− yz′. Assume that
K ⊂ B(a, r), denote by y′ the projection of y on α, and consider ϑ = ŷza. The right
triangle [y, y′, z] has catheti yy′ ≤ r and zy′ ≥ t − r (as ay′ ≤ r); by comparison
with a Euclidean triangle, we deduce that 0< ϑ ≤ ϑ0 < π with tanϑ0 = r/(t − r).
Comparing now the triangle [y, z, z′] with a Euclidean triangle [y0, z0, z′0] such
that

ŷ0z0z′0 = π −ϑ0

and y0z0 = yz, z0z′0 = zz′, we deduce that yz′ ≥ y0z′0. So

(15) bz′(a, y)− bz(a, y)= (yz+ zz′)− yz′ ≤ (y0z0+ z0z′0)− y0z′0.
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Now a straightforward computation in the plane shows that this tends to zero
uniformly on y ∈ K , for t →∞. Actually, consider the projection y′0 of y0 on
the line containing z0, z′0, and set r0 = y0 y′0, s0 = z0z′0 and ρ0 = y′0z0. Then, for r
fixed and t tending to infinity, we have t + r ≥ yz ≥ ρ0 = yz cosϑ0→+∞ while
r0 = ρ0 tanϑ0 ≤ r(t + r)/(t − r) stays bounded. Therefore,

(y0z0+ z0z′0)− y0z′0 =
√

r2
0 + ρ

2
0 + s0−

√
r2

0 + (ρ0+ s0)2 ≤
2r2

0√
r2

0 + ρ
2
0 + ρ0

≤ ε,

for t > T (r, ε). As y′ = α(t ′) with t ′ arbitrarily greater than t , taking the limit in
(15) for t ′→∞ proves the lemma. �

Proof of Proposition 18. Let us first prove (iii). Let α, β be rays with origins a, b and
initial conditions u=α′(0), v=β ′(0), and let K be any fixed compact set containing
a, b. We have to show that, for any arbitrary δ > 0, if u is sufficiently close to v,
then |Bα(x, y)− Bβ(x, y)|< δ for all x, y ∈ K . Now, the uniform approximation
lemma ensures that we can replace Bα(x, y) and Bβ(x, y) with bα(t)(x, y) and
bβ(t)(x, y), making an error smaller than δ/3, by taking any t > T (K , δ/3). But
the difference between these two functions is smaller than 2d(α(t), β(t)); and this,
for any fixed t , tends to zero as u→ v, on any Riemannian manifold.

Let us now prove (ii). Assume that (Pk)→ ξ = B(Pk)(o, · ). Then, consider the
geodesic segments αk = [o, Pk] and their velocity vector uk = α

′

k(0). Up to a
subsequence, the uk’s converge to some unitary vector u ∈ So X̃ . As before, for any
fixed compact set K , the uniform approximation lemma ensures that bαk(t)(x, y)'ε
Bαk (x, y), for any t ≥ T (K , ε) and for all x, y ∈ K ; in particular, bPk (x, y) 'ε
Bαk (x, y) if tk = d(o, Pk) > T (K , ε). On the other hand, Bαk (x, y)'ε Bα(x, y) if
k�0, by (iii); so passing to limits for k→∞, we deduce that B(Pk)(x, y)= Bα(x, y)
on K and, as K is arbitrary, B(Pk) = Bα.

We now prove the first equivalence in (i): d∞(α, β)<∞⇔ Bα = Bβ . Let a= α(0),
b = β(0) be the origins of α, β. If d∞(α, β) <∞, by convexity of the distance in
nonpositive curvature, we deduce that there exist points ak, bk tending to infinity
respectively along α and β, such that

lim
k→∞

akbk = d = d(α, β).

Clearly, the angles âakbk and b̂bkak tend to π/2. Now let y be arbitrarily fixed,
with D = d(a, y). By comparison with the Euclidean case, the tangent of the angle
âak y is smaller than D/(aak − D), which goes to zero for k→∞, so the angle
ϑk = ŷakbk→ π/2. Now we know, by comparison geometry, that

(bk y)2 ≥ (ak y)2+ (akbk)
2
− 2ak y · akbk · cosϑk,
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and hence lim infk→∞ bk y−ak y ≥− limk akbk cosϑk = 0. One proves analogously
that lim infk→∞ ak y− bk y = 0, and hence we deduce that limk→∞ bk y− ak y = 0.
As y is arbitrary, this shows that Bβ = Bα.

Conversely, assume that d∞(α, β) = ∞. Up to possibly extending α and β
beyond their origins, we may assume that a is the projection of b over α and,
moreover, that for t � 0,

âbβ(t)≥ π
2
.

In fact, let α̃ and β̃ be the bi-infinite geodesics extending α and β: then either
lim supt→−∞ d(α̃(t), β̃(t)) is unbounded and thus, by convexity, there exists a
minimal geodesic segment between α̃ and β̃ (orthogonal to both α̃ and β̃); or
lim supt→−∞ d(α̃(t), β̃(t)) is bounded, so the angle

̂
α̃(t)aβ̃(t)→ 0,

and [a, b, β̃(t)] tends to the limit triangle α̃|R− ∪ [a, b] ∪ β̃|R− for t→−∞; as the
sum of its angles cannot exceed π , we deduce that for t � 0,

âbβ(t)≥ π
2
.

So, now consider the triangle [a, b, β(t)] for t � 0. The angle ̂α(t)aβ(t) does not
tend to zero for t → +∞, for otherwise α|R+ ∪ [a, b] ∪ β|R+ would be again a
limit triangle, whose sum of angles necessarily would be π ; thus, it would be flat
and totally geodesic, and limt→+∞ d(α(t), β(t)) would be bounded. Therefore,

̂α(t)aβ(t)≥ ϑ0 > 0 for t→+∞. By comparing [a, α(s), β(t)], for s, t ≥ 0, with
a Euclidean triangle, we then get

(16) (α(s)β(t))2 ≥ s2
+ (aβ(t))2− 2s · aβ(t) · cosϑ0,

so Bβ(a, α(s))= limt→+∞ aβ(t)− β(t)α(s)) ≤ s cosϑ0 < s = Bα(a, α(s)). This
shows that Bα 6= Bβ .

We now prove the second equivalence in (i): Bα = Bβ ⇔ α ≺ β. One implication
is true on any Riemannian manifold, as we have seen in Theorem 16. So, assume
that α ≺ β: let αn =

−−→
anbn→ α with an→ a, bn = β(tn)= αn(sn) for tn, sn→+∞.

Let K be a compact set containing a, b, the an , and points x, y, and let ε > 0; then,
choose n� 0 such that sn, tn > T (K , ε) of Lemma 19 and such that Bαn hε Bα on
K , by (iii). By Lemma 19 and the monotonicity of the Busemann cocycle, we get

Bα(x, y)hε Bαn (x, y)hε bαn(sn)(x, y)= bβn(tn)(x, y)hε Bβ(x, y),

and as ε is arbitrary, we deduce that Bα(x, y)= Bβ(x, y).

Finally, if two rays α and β with common origin o make angle ϑ0 6= 0, then the
function d(α(s), β(t)) grows, at least a fast as in the Euclidean space, according to
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formula (16), and hence the rays are not Busemann equivalent, so the restriction of
the Busemann map Ro(X)→ ∂X is injective. �

A.3. Hyperbolic computations.

Lemma 39. Let õ ∈ H2, and let C,C ′ be two ultraparallel geodesics (that is, with
no common point in H2

∪ ∂H2) such that d(õ,C)= d(õ,C ′). Then:

(i) There exists a unique hyperbolic isometry g with axis perpendicular to C,C ′

and such that g(C)= C ′.

(ii) g−1õ and gõ are obtained, respectively, by the hyperbolic reflections of õ with
respect to C,C ′.

(iii) The Dirichlet domain D(g, õ) has boundary C ∪C ′.

Proof. By the convexity of the distance function, there exists a unique common
perpendicular g̃ to C,C ′, so g is the unique hyperbolic translation along g̃ sending
C to C ′. Let 1(g) be the displacement of g, let õ0 be the projection of õ on g̃, and
let p=C∩ g̃. By symmetry,1(g)=d(C,C ′)= 2õ0 p. Now consider the hyperbolic
reflection R with respect to C , and define c̃= R(õ), c̃0 = R(õ0) and q = [õ, c̃]∩C .
Since g̃ is perpendicular to C , R preserves g̃; we deduce that [c̃, c̃0] = R([õ, õ0]) is
also perpendicular to g̃. As õ0c̃0 = 2õ0 p =1(g), it follows that g−1õ= c̃. Then C
is one of the two boundaries of D(g, õ), as it is the perpendicular bisector of [õ, c̃].
The verification for gõ and C ′ is the same. �

Lemma 49. There exists a positive function δ(t, ε) for t, ε > 0, increasing in t ,
with the following property. Let α be any geodesic of H2 and assume that p1, p2

are points with projections q1, q2 on α such that d(q1, q2)= t : if d(p1, α)= ε, then
d(p1, p2)≥ t + δ(t, ε).

Proof. Consider the projection p′1 of p1 on the geodesic containing p2, q2, and let
d = p1 p′1 ≤ p1 p2. Let c = p1q2 and β = p̂1q2q1. By the sine and cosine formulas
applied, respectively, to the triangles [p1, p′1, q2] and [p1, q1, q2], we find

sinh d = sinh c · cosβ = cosh c · tanh t,

and by Pythagoras’s formula we deduce that sinh d = cosh ε sinh t . This shows that
d = t + δ(t, ε), for a positive function δ(t, ε) when t, ε > 0. To see that δ(t, ε) is
increasing with t , we just compute the derivative:

∂t δ(t, ε)= d(t)′− 1= cosh ε cosh t
cosh d

− 1= cosh c
cosh d

− 1> 0,

as c > d for ε > 0. �
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