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MAHLO CARDINALS AND THE TORSION PRODUCT OF
PRIMARY ABELIAN GROUPS

PATRICK W. KEEF

Nunke’s problem asks when the torsion product of two abelian p-groups
is isomorphic to a direct sum of cyclic groups. A complete solution to the
problem is given using a new invariant, denoted by LG , whose values are
certain collections of finite sets of uncountable regular cardinals. This is a
refinement of a previous approach to the problem that only worked up to
the first cardinal that is weakly Mahlo. The multiplicative properties of LG

are then related to the generalized continuum hypothesis.

Introduction and terminology

A fundamental question of Nunke asks when the torsion product of two abelian
p-groups is isomorphic to a direct sum of cyclic groups. Early work on the problem
included [Hill 1983b; Keef 1988; 1990; 1991; 1993; Nunke 1964; 1967a; 1967b].
More recently, the paper [Keef 2008] presented a new approach that unfortunately
had two drawbacks: it was rather complicated, and it only worked for groups whose
cardinality did not exceed the first regular limit cardinal. Still more recently, in
[Balof and Keef 2009] a second approach was presented. This refinement was more
straightforward and also had the advantage of working up to the first weakly Mahlo
cardinal, which is substantially larger than the first regular limit cardinal. (The
definitions of these terms will be reviewed later.) The purpose of this paper is to
give a complete solution to Nunke’s problem. In so doing, we will show that the
limitations of the techniques of [Balof and Keef 2009] are unavoidable.

We stress that, except where explicitly stated, the results in this paper are valid in
ZFC; that is, they do not depend upon special set-theoretic assumptions such as the
axiom of constructibility (V= L) or the generalized continuum hypothesis (GCH).

To begin, by the term “group” we will mean an abelian p-group, where p is a
fixed prime. Our terminology and notation will generally follow [Fuchs 1970; 1973],
and we will on occasion refer the reader to [Eklof and Mekler 2002] or [Jech 2003]
for set-theoretic material. A group will be said to be 6-cyclic if it is isomorphic to
a direct sum of cyclic groups. We will denote the torsion product of the groups G
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and H by the (admittedly nonstandard) G5 H . This notation is considerably more
compact than the usual Tor(G, H) and will make our computations significantly
clearer.

To answer Nunke’s problem we need to find an invariant that gives positive
answers to the following two questions:

(N1) Does this invariant tell us when a group is 6-cyclic?

(N2) Does this invariant behave well with respect to the torsion product?

Before describing two such possible invariants, which we designate by KG

and LG , we first introduce some set-theoretic terminology.
Suppose R is the class of uncountable regular cardinals, and let R f denote the

class of finite subsets of R. By an R f -antichain we mean a set M of finite subsets
of R (that is, a subset of R f ) such that whenever S, T ∈ M and S ⊆ T , then S = T .
Given an R f -antichain M , let A be the class of all T ∈ R f such that S ⊆ T for
some S ∈ M . We call such a class an R f -invariant and we say M generates A.
Note that if A is an R f -invariant, then the set of minimal elements of A under
the inclusion ordering is precisely M , and if S ∈A and S ⊆ T ∈R f , then T ∈A.
In other words, R f -antichains and R f -invariants are two terms for essentially the
same phenomenon.

What we have just defined as an R f -invariant was called an RK -invariant in
[Balof and Keef 2009]. The reason for the difference is that we define below another
R f -invariant, LG , in addition to the R f -invariant KG from the earlier work.

We now point out two special, and extreme, cases of the above notions. Clearly,
0R := ∅ is the R f -invariant generated by M = ∅, and 1R := R f is the R f -
invariant generated by M = {∅}. Inclusion, ⊆, is clearly reflexive, antisymmetric
and transitive on R f -invariants; and under this ordering, 0R and 1R are the least
and greatest R f -invariants, respectively.

If κ is a regular uncountable cardinal, then C ⊆ κ is a CUB if it is closed and
unbounded in the order topology; W ⊆ κ is stationary if W ∩C 6=∅ for all CUB
subsets C ⊆ κ . Further, κ is weakly Mahlo if κ∩R={ τ <κ : τ ∈R } is stationary in
κ . Let M denote the class of all weakly Mahlo cardinals; if M is nonempty, let δm be
its smallest element, and otherwise, let δm =∞. A regular cardinal κ is Mahlo if it
is weakly Mahlo and strongly inaccessible (that is, γ < κ implies 2|γ | < κ). Clearly,
in the context of the generalized continuum hypothesis (GCH), every weakly Mahlo
cardinal is, in fact, Mahlo.

Consider first the degree to which KG answered question (N1).

Theorem 0.1 [Balof and Keef 2009, Theorems 3(b) and 6]. Suppose G is a group.

(a) If G is 6-cyclic, then KG = 0R.

(b) If KG = 0R and the final rank of G is strictly less than δm , then G is 6-cyclic.
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So, at least for groups of cardinality less than δm , KG can be used to characterize
when they are direct sums of cyclics. One of our goals is to show that the cardinality
restriction in Theorem 0.1 is truly necessary. In our first main result, Theorem 1.2,
we show that in the context of the constructible universe (V = L), if there is a
(weakly) Mahlo cardinal, then there is, in fact, a group G such that KG = 0R that
is not 6-cyclic.

On the other hand, our new R f -invariant LG will be much better at answering
question (N1). In Theorem 1.6, we show that for any group of whatever cardinality,
G is 6-cyclic if and only if LG = 0R. So, when it comes to the first of the two
questions, LG is a definite improvement over KG .

We now consider the second question, (N2). If A and B are R f -invariants, define

A ·B= { S ∪ T : S ∈A, T ∈B, S ∩ T =∅ }.

Clearly, this very natural product is associative and commutative, 0R ·A= 0R and
1R ·A=A. The following result states that KG answered (N2) perfectly.

Theorem 0.2 [Balof and Keef 2009, Theorem 4]. If G and H are any two groups,
then

KG5H = KG · K H .

The obvious question is whether LG5H also always agrees with LG · L H . We
do verify that this is the case in the situation of relevance to Nunke’s problem. In
Theorem 2.2 we show that G 5 H is 6-cyclic if and only if LG5H = 0R if and
only if LG · L H = 0R. Again, this is a theorem in ZFC; it means that G 5 H is
6-cyclic if and only if for every S ∈ LG and T ∈ L H , the intersection S ∩ T is
nonempty. In particular, in some sense, the invariant LG is sufficient to “solve”
Nunke’s problem. However, as will be seen, calculating LG , even for some very
familiar groups, quickly involves undecidable questions of cardinal arithmetic.

Next, we show that the full statement that LG5H = LG · L H is true for all G and
H cannot be decided in ZFC. This statement does follow from GCH (Corollary 2.4).
However, if it is consistent with ZFC that there is a weakly Mahlo cardinal, then it is
consistent with ZFC that there are groups G and H for which it fails (Corollary 3.5).
Surprisingly, this example is simply where G and H are copies of the standard
torsion-complete group B, where B =

⊕
n<ω Zpn . This dramatically illustrates the

point that computing KG or LG , even for well-known groups such as B, can depend
upon questions of set theory and cardinal arithmetic.

Although the solution to Nunke’s problem does necessitate going from the
invariant KG to the new invariant LG , it is not true that LG is in all ways superior to
KG . We have already noted that it is undecidable if Theorem 0.2 can be generalized
to LG . In addition, by [Balof and Keef 2009, Theorem 3(a)], KG behaves very
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nicely with respect to direct sums. In Theorem 3.6 we show that the same holds for
LG if and only if there are no weakly Mahlo cardinals.

We close the paper by noting a few of the results from [Balof and Keef 2009]
that we can generalize to groups of arbitrary cardinality using LG . For example,
in Theorem 3.8 we show that a group G is a “5-zero divisor” (that is, there is
a group H which is not 6-cyclic such that G 5 H is 6-cyclic) if and only if it
is “5-nilpotent” (that is, for some positive integer n, Gn

= G 5 G 5 · · · 5 G is
6-cyclic); in [Balof and Keef 2009] we were only able to verify this for groups of
cardinality less than δm .

1. The first question: KG , LG and 6-cyclic groups

We begin with a few elementary definitions regarding elements of R f . If T ∈R f ,
let ν(T ) be the number of elements in T , so ν(T ) is a nonnegative integer. In
addition, let µ(∅) = ℵ0, and if T is nonempty, let µ(T ) be its largest element;
further, let T ′ = T −{µ(T )}.

We now review the definition of KG given in [Balof and Keef 2009]. The
following formulation is clearly equivalent to that given in the earlier work, but it
will be more convenient for our purposes, especially when we want to introduce LG .
Given T ∈R f , we answer the question of whether to place it in KG by a traditional
induction on ν(T ). First, the base case:

(K0) If ν(T )= 0 (that is, T =∅), then T ∈ KG if and only if pωG 6= {0}.

Next, suppose n is a positive integer and for all groups H and all S ∈R f with
ν(S) < n we have defined when S ∈ K H . Let T ∈R f have n elements; note that
since ν(T ′) = n− 1, for all groups H we have already answered the question of
when T ′ ∈ K H . We now let T ∈ KG if and only if either

(K1) T ′ ∈ KG , or

(K2) G has a subgroup A of cardinality κ :=µ(T )∈R with a filtration A={Ai }i<κ

such that
0T ′(A) := { i < κ : T ′ ∈ K A/Ai }

is stationary in κ .

Recall that to say A = {Ai }i<κ is a filtration of A means that it is a smoothly
ascending chain of subgroups, its union is all of A and each Ai has cardinality
less than κ . In (K2) we are only concerned with whether 0T ′(A) is stationary in
κ . If A′ is another filtration of A, it follows that A and A′ will agree on a CUB
subset of κ so that the property that 0T ′(A) is stationary does not depend upon
which filtration is chosen. As a result, we will often, without extensive comment,
replace one filtration by another, e.g., one composed of pure subgroups.
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We now review a useful realization theorem from [Balof and Keef 2009]. If κ is
a cardinal, then a group G is said to be κ-6-cyclic if all its subgroups of cardinality
strictly less than κ are 6-cyclic. If T ∈R f , then the R f -invariant generated by the
antichain {T } is called T -principal.

Lemma 1.1 [Balof and Keef 2009, Lemma 9]. (V = L) Suppose that T ∈ R f ,
T ∩M = ∅ and κ = µ(T ). Assuming the axiom of constructibility, there is a
κ-6-cyclic group G of cardinality κ such that KG is T -principal.

The following shows that KG is inherently limited with respect to answering
question (N1):

Theorem 1.2. Assuming the axiom of constructibility, there is a group G which is
not 6-cyclic such that KG = 0R if and only if there exists a weakly Mahlo cardinal.

Proof. Certainly, if there are no weakly Mahlo cardinals, then δm = ∞ and the
result follows from Theorem 0.1. (Note that this direction does not use V = L.)
Suppose, then, that δm <∞. Let Rm =R∩δm , so Rm is stationary in δm . If κ ∈Rm ,
let T ∈R f be chosen so that T ⊆R−M and µ(T )= κ (e.g., T = {κ}) and Gκ be
a group defined as in Lemma 1.1 so that KGκ

is T-principal. In particular, since
KGκ
6= 0R, Gκ will not be 6-cyclic.

We define a chain of 6-cyclic groups {Ai }i<δm satisfying the following:

(0) For all n < ω, f Ai (n), the n-th Ulm–Kaplansky invariant of Ai , is |i | · ℵ0.

(1) If i < j , then Ai is a pure subgroup of A j .

(2) If j is a limit, then
⋃

i< j Ai = A j (that is, the chain is smoothly ascending).

(3) If i < j and i 6∈Rm , then Ai is a summand of A j .

(4) If i ∈Rm , then Ai+1/Ai ∼= Gi .

Let A0 = {0}. Suppose Ai has been defined for all i < j ; we then describe how
to construct A j . If j is a limit, then (2) forces the definition of A j ; note that (0), (1)
and (4) follow easily. To verify that (3) continues to hold when i 6∈Rm , suppose first
that j ∈Rm . Since j < δm , it is not weakly Mahlo, so there is a CUB subset C ⊆ j
such that C ∩Rm = ∅. Let {αl}l< j be an increasing enumeration of C ; there is
clearly no loss of generality in assuming that α0 = i . Since by induction on j , for
all l < j , Aαl is a summand of Aαl+1 , it follows that

A j ∼= Ai ⊕

(⊕
l< j

Aαl+1/Aαl

)
.

On the other hand, if j 6∈Rm , then let λ be the cofinality of j . Define a closed
and unbounded subset C ′ = {βl}l<λ ⊆ j starting with β0 = i , β1 > λ, such that if
l > 0 is isolated, then so is βl . We again claim that C ′ ∩Rm =∅. Clearly, if l is
isolated, then so is βl , so that βl 6∈Rm . And if l is a limit, then cf(βl)≤ l < λ < βl



122 PATRICK W. KEEF

so that again, βl 6∈Rm . It again follows that A j ∼= Ai⊕
(⊕

l<λ Aβl+1/Aβl

)
. (The last

two paragraphs are usually summarized by saying Rm is a nonreflecting stationary
subset of κ .)

Suppose next that j = l + 1 is isolated. If l 6∈ Rm , we merely let A j = Al ⊕(⊕
m<ω Zpm

)
. Clearly, (0) and (1) hold, (2) and (4) say nothing new and (3) holds

for j because it holds for l.
Finally, suppose j = l+1 and l ∈Rm . In this case, we let A j be a 6-cyclic group

containing Al as a pure subgroup such that A j/Al ∼= Gl ; such a group can easily
be constructed from a pure-projective resolution of Gl . Clearly (4) holds for l, (1)
follows from the transitivity of purity and (2) does not involve any new conditions.
Since Gl has cardinality l and for all n < ω we have f A j (n)= f Al (n)+ fGl (n), it
follows that (0) holds for A j .

With regards to (3), assume i 6∈ Rm and i < j ; in particular, i < l. Note that
{Ai }i<l is a filtration of Al . Similarly, there is a filtration {Si }i<l of A j consisting
of summands. By a standard “back-and-forth” argument, there is an ordinal i ′ such
that i < i ′ < l and Ai ′ = Si ′ ∩ Al . Note that Ai ′ will be pure in A j so that it is also
pure in Si ′ . In addition, Si ′/Ai ′ has cardinality less than l, and it maps injectively
into A j/Al ∼= Gl . Since Gl is l-6-cyclic, it follows that Si ′/Ai ′ is also 6-cyclic.
Therefore, Ai ′ will be a summand of Si ′ . Since Ai is a summand of Ai ′ by induction
on (3) and Si ′ is a summand of A j by construction, Ai will be a summand of A j ,
as required.

Let G=
⋃

i<δm
Ai . We first claim that G is not6-cyclic. To verify this, recall that

{Ai }i<δm is a filtration of G and Rm is a stationary subset of δm . For every i ∈Rm ,
the quotient G/Ai contains a subgroup, Ai+1/Ai ∼= Gi , which is not 6-cyclic.
It follows that G/Ai also fails to be 6-cyclic. This means that G cannot be 6-
cyclic since that would imply that it has a filtration consisting of subgroups (that is,
summands) such that these quotients are all 6-cyclic.

We now need to verify that KG = 0R. If this fails, then let T be a minimal
subset of KG . Because G clearly has no nonzero element of infinite height, we
can conclude that T is nonempty. Let κ = µ(T ); by the minimality of T , (K2) and
not (K1) must pertain. So there is a subgroup of A of G of cardinality κ such that
0T ′(A) is stationary; it follows that κ ≤ δm .

Suppose first that κ < δm . Since {Ai }i<δm is a filtration of G and δm is regular,
we can conclude that A ⊆ Ai for some i < δm . However, Ai is 6-cyclic, so
K Ai = 0R =∅. This contradicts the fact that T ∈ K A ⊆ K Ai .

We may therefore assume that κ = δm . It follows that there is a stationary
subset W ⊆ δm such that T ′ ∈ KG/Ai for all i ∈ W (see [Balof and Keef 2009,
Lemma 2(b)], for example). Let λ= µ(T ′) < δm , and let i ∈W be chosen so that
λ< i <δm . It follows that T ′ ∈ K X for some subgroup X ⊆G/Ai such that |X | = λ.
We will show, however, that this X must be 6-cyclic so that K X =∅.
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Since δm is regular, we can conclude that X ⊆ Ai ′/Ai for some i < i ′<δm . Since
i + 1 6∈R, by (3) we have that Ai+1 is a summand of Ai ′ so that

Ai ′/Ai ∼= (Ai ′/Ai+1)⊕ (Ai+1/Ai ).

Clearly, X ⊆ X1⊕ X2, where X1 ⊆ Ai ′/Ai+1, X2 ⊆ Ai+1/Ai and |X1|, |X2| ≤ λ.
Since Ai ′/Ai+1 is 6-cyclic, it follows that X1 is as well. In addition, Ai+1/Ai

is either 6-cyclic (if i 6∈ Rm) or i-6-cyclic (if i ∈ Rm). Since |X2| ≤ λ < i , we
can conclude that X2 is also 6-cyclic. This shows that X must be 6-cyclic and
completes the argument. �

Again, the last result illustrates that in the presence of Mahlo cardinals, the
invariant KG is insufficiently robust to answer question (N1) for arbitrarily large
groups. To address this, we amend it significantly, concentrating on how it behaves
at weakly Mahlo cardinals. We begin with some notation. If T ∈R f and i <µ(T )
is an ordinal, let Ti be Ti = T ′ ∪ {i} whenever i is an uncountable regular cardinal,
and otherwise, let Ti = T ′, so µ(Ti )= (i or µ(T ′)) < µ(T ).

Given a group G, we define LG ⊆R f not, as in the case of KG , by traditional
induction on ν(T ) but rather by transfinite induction on µ(T ). Suppose T ∈ R f

and we want to decide if T ∈ LG . We begin with the same base case.

(L0) If µ(T )=ℵ0 (that is, T =∅), we again let T ∈ LG if and only if pωG 6= {0}.

Next, suppose for all groups H we have defined all the elements S ∈ L H such that
µ(S) < κ := µ(T ). In order to define when T ∈ LG , we first observe that for any
group H we have defined when Ti ∈ L H for any i < κ . Replacing condition (K1),
we say

(L1) T ∈ LG when
ϒT (G) := { i < κ : Ti ∈ LG }

is stationary in κ .

Replacing condition (K2), we also say

(L2) T ∈ LG when G has a subgroup A of cardinality κ with a filtration A={Ai }i<κ

such that
3T (A) := { i < κ : Ti ∈ L A/Ai }

is stationary in κ .

As in the definition of KG , in this definition we are only concerned with whether
ϒT (G) and 3T (A) are stationary in κ , and this property does not depend upon
which particular filtration is chosen. Similarly, when we write something like
3T (A) ⊆ 3T (G), we mean that 3T (G)−3T (A) is not stationary in κ , which
again does not depend upon exactly which filtrations are used for A and G.
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Since T ′ ⊆ Ti for all T ∈R f and ordinals i < µ(T ), an easy induction shows
that KG ⊆ LG for all groups G. On the other hand, suppose that κ ∈ R is not
weakly Mahlo. It follows that there is a CUB subset C ⊆ κ such that C ∩R=∅. If
κ = µ(T ), then for all i ∈ C we have Ti = T ′. This means that, away from weakly
Mahlo cardinals, the two definitions agree. We state this more formally, as follows:

Proposition 1.3. If G is a group, T ∈R f and T ∩M=∅, then T ∈ LG if and only
if T ∈ KG .

By [Balof and Keef 2009, Theorem 10], whose proof uses the above Lemma 1.1,
and the last result, assuming the axiom of constructibility (V = L), if A is an
R f -invariant whose minimal sets contain no weakly Mahlo cardinals, then there is
a group G such that LG = KG =A. The proof of this uses stationary sets that are
nonreflecting. In particular, such sets are plentiful in the constructible universe if
one steers clear of weakly Mahlo cardinals (see [Eklof and Mekler 2002, Theorem
VI, 3.13], for example). It is not clear what such a realization result would look
like outside of V= L and in the presence of weakly Mahlo cardinals.

It is consistent with ZFC that there are no weakly Mahlo cardinals (in fact, it
is consistent that there are no regular limit cardinals at all). In any such model,
Proposition 1.3 says that KG = LG for all groups G. We pause for some straight-
forward observations that parallel facts about KG from [Balof and Keef 2009].

Lemma 1.4. Suppose G and H are groups and S, T ∈R f .

(a) If S ∈ LG and S ⊆ T , then T ∈ LG .

(b) LG = 1R if and only if G has elements of infinite height.

(c) If G is a subgroup of H , then LG ⊆ L H .

(d) If G is a subgroup of H and |G| = |H | = µ(T ), then 3T (G)⊆3T (H).

(e) LG⊕H = LG ∪ L H .

(f) If T ∈ LG , then there is subgroup A ⊆ G such that |A| ≤ µ(T ) and T ∈ L A.

(g) If T ∈ LG is minimal under inclusion, then µ(T )≤ |G|.

Proof. Consider (a); we prove this by induction on κ := µ(T ).
If κ = ℵ0, then T =∅, and so therefore T = S ∈ LG . Suppose now that κ > ℵ0,

S ⊆ T and S ∈ LG , so T 6=∅. Suppose first that κ 6∈ S. If i < κ , then S ⊆ Ti , so
by induction, for all such i , we have Ti ∈ LG . In particular, ϒT (G) is stationary,
and (L1) is satisfied.

Suppose next that κ ∈ S. It follows that for all i < κ , Si ⊆ Ti . Therefore, by
induction on κ , ϒS(G)⊆ ϒT (G). Also, if A is a subgroup of G of cardinality κ ,
then 3S(A)⊆3T (A). For S, one of these two sets must be stationary in κ , so the
same must hold for T .
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Now (b) follows from (a) since LG = 1R if and only if ∅ ∈ LG if and only
if pωG 6= {0}.

Turning to (c), we again show that if T ∈ LG , then T ∈ L H by induction on µ(T ).
If µ(T ) = ℵ0, then T = ∅. This means G has elements of infinite height, so the
same holds for H , and T ∈ L H , as required. Suppose now that this holds for all
sets S ∈R f with µ(S) < κ := µ(T ). By induction on κ , ϒT (G)⊆ ϒT (H), so if
(L1) holds for G, it holds for H . On the other hand, if A is a subgroup of G of
cardinality κ such that 3T (A) is stationary in κ , then A is equally a subgroup of H ,
so again T ∈ L H .

Next, in (d), if {Bi }i<κ is a filtration of H , then letting Ai = G ∩ Bi gives a
filtration of G. For all i <κ , G/Ai embeds in H/Bi , and the result follows from (c).

Turning to (e), the containment ⊇ follows from (c). We therefore need to show
that every T ∈ LG⊕H is in LG ∪ L H , which we again do by our usual induction
on κ := µ(T ). If κ = ℵ0, then T =∅, and G⊕ H has elements of infinite height.
So either G or H has elements of infinite height; that is, T ∈ LG or T ∈ L H .

Suppose now that this holds for all sets S ∈ R f with µ(S) < κ := µ(T ). By
induction on κ , ϒT (G⊕H)=ϒT (G)∪ϒT (H). Therefore, if (L1) holds for G⊕H ,
one of the latter two sets is stationary, and appealing again to (L1) gives the result.

If (L2) pertains, then there is a subgroup C ⊆ G ⊕ H of cardinality κ such
that 3T (C) is stationary in κ . Note that C is contained in a subgroup of the
form C ′ = A⊕ B for some subgroups A ⊆ G and B ⊆ H , where |C ′| = κ . By (d),
3T (C ′) will also be stationary. Replacing C by C ′, there is no loss of generality in
assuming that C = A⊕ B.

If |A| = κ , let {Ai }i<κ be a filtration of A, and otherwise, let each Ai = A;
define {Bi }i<κ similarly. Clearly, {Ai ⊕ Bi }i<κ is a filtration of C . If |A|< κ , then
eventually C/Ci ∼= B/Bi so that 3T (B) is stationary. This shows T ∈ L H , which
completes the proof. Similarly reasoning applies if |B|<κ , so assume |A|= |B|=κ .

By induction on κ , we can conclude that 3T (C)=3T (A)∪3T (B). It follows
that if (L2) holds for C , then it holds for either A or B, proving (e).

For (f), ifµ(T )=ℵ0, then G has elements of infinite height. So G has a countable
subgroup with elements of infinite height, which is what is being asserted.

Next, if W := ϒT (G) is stationary in κ , then by induction, for all i ∈ W there
is a subgroup Ai of cardinality at most |i | such that Ti ∈ L Ai . We need only
let A = 〈 Ai : i ∈W 〉. On the other hand, if (L2) holds, then we need only let A be
the subgroup mentioned there.

Finally, (g) is equivalent to the statement that if T ∈ LG and |G|<µ(T ), then T
is not minimal in LG . Observe first that if µ(T )=ℵ0, then G is finite. In particular,
G has no elements of infinite height so that T 6∈ LG . Next, for the induction step,
(L2) is clearly prohibited by |G| < µ(T ). Therefore, (L1) must hold. Choose
some i ∈ ϒT (G) such that |G|< i < µ(T ). By induction, there is a T0 ⊆ Ti such
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that T0 ∈ LG and µ(T0)≤ |G|. But this second condition implies that T0 ⊆ T ′ ⊆ T ,
contradicting the minimality of T . �

Part (e) of Lemma 1.4 can be generalized to much larger direct sums. However, we
will show later that it does not generalize to arbitrary direct sums, showing again that,
in some respects at least, the invariant KG is better behaved than the invariant LG .

The following minor variation on Fodor’s lemma (see [Jech 2003, Theorem 8.7],
for example) will be crucial:

Lemma 1.5. Suppose κ ∈R and W ⊆ κ is a stationary subset. If f :W →R f is a
function such that f (i)⊆ i for all i ∈W , then there is a stationary subset W ′ ⊆W
such that f (i)= f ( j) for all i, j ∈W ′.

Proof. If U0={ i ∈W : f (i)=∅ } is stationary in κ , then we are clearly done. If not,
let V0=W −U0, so V0 is also stationary. For every i ∈ V0, let φ1(i)=µ( f (i))∈R.
It follows that φ1 is a regressive function, so by Fodor’s lemma, there is an α1 ∈ κ

and a stationary subset W1 ⊆ V0 ⊆W such that φ1(i)= α1 for all i ∈W1.
We start the process over again. If U1 = { i ∈ W1 : f (i) = {α1} } is stationary

in κ , then we are clearly done. Otherwise, let V1 = W1 − U1, so V1 is also
stationary. For every i ∈ V1, let φ2(i) = µ( f (i)− {α1}) ∈ R. It follows that φ2

is a regressive function, so by Fodor’s lemma, there is an α2 ∈ κ and a stationary
subset W2 ⊆ V1 ⊆W1 such that φ2(i)= α2 for all i ∈W2. Clearly, α1 > α2.

Once again, if U2 = { i ∈ W2 : f (i) = {α1, α2} } is stationary in κ , then we
are clearly done. Continuing in this way, we keep constructing stationary subsets
W ⊇W1 ⊇W2 ⊇ · · · ⊇Wk and ordinals α1 > α2 > · · ·> αk . Since this sequence
of ordinals cannot continue indefinitely, at some point we must have constructed
the desired W ′. �

Using an obvious extension of the usual terminology, we will call a function f
as in Lemma 1.5 regressive. We have now arrived at one of our main results. Again,
observe that it is valid for groups of arbitrarily large cardinality.

Theorem 1.6. A group G is 6-cyclic if and only if LG = 0R.

Proof. Suppose first that G is 6-cyclic. We again show by induction on κ := µ(T )
that T 6∈ LG . If T = ∅, then T 6∈ LG since G has no elements of infinite height.
Suppose S 6∈ LG whenever µ(S) < µ(T ). Since µ(Ti ) < κ for every i < κ , by
induction we can conclude ϒT (G)=∅ so that (L1) does not hold and T 6∈ LG .

Next considering (L2), let A be any subgroup of G of cardinality κ and let
{Ai }i<κ be a filtration of A. Since A will also be 6-cyclic, we may assume that
each Ai is a summand of A. It follows by induction that for all i < κ , Ti 6∈ L A/Ai ;
that is, 3T (A)=∅, and this implies that T 6∈ LG , as required.

For the converse, we show by induction on κ := |G| that if LG = 0R, then G is
6-cyclic. If κ = ℵ0, then G will be a countable group without elements of infinite
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height (since ∅ 6∈ LG). However, a countable group is 6-cyclic if and only if it
has no nonzero elements of infinite height, so the result holds in this case (see
[Fuchs 1970, Theorem 17.3], for example). Next, assume the result holds for all
groups of cardinality less than κ > ℵ0 and that LG = 0R. If A is a subgroup of G
with |A|< κ , then by Lemma 1.4(c) we can conclude that L A = 0R. By induction,
then, G is κ-6-cyclic.

Suppose first that κ is singular. In this case, a variation of Shelah’s “Singular
Compactness Theorem” (see [Keef 1990, Lemma 3.1], for example) implies that G
is 6-cyclic, as required.

Suppose now that κ is regular. Let {Ai }i<κ be a filtration of G consisting of pure
subgroups; there is clearly no loss of generality in assuming that |Ai | = ℵ0 · |i | for
all i < κ .

We claim that
C := { i < κ : G/Ai is κ-6-cyclic }

contains a CUB subset of κ . If we can establish this, and we enumerate this subset
by {β j } j<κ , then it follows that

G ∼= A0⊕

(⊕
j<κ

Aβ j+1/Aβ j

)
,

and as all the terms in this decomposition are 6-cyclic, the result follows.
Observe that if C does not contain a CUB subset of κ , then

W := κ −C = { i < κ : G/Ai is not κ-6-cyclic }

must be stationary in κ . We assume this holds and derive a contradiction. There is
clearly no loss of generality in assuming that every element of W is infinite so that
for all i ∈W , |Ai | = |i |.

If i ∈W , then since G/Ai is not κ-6-cyclic, we can find a subgroup X ⊆ G/Ai

with |X | < κ that is not 6-cyclic. Let Y be the subgroup of G defined by the
equation Y/Ai = X . Since G is κ-6-cyclic and |Y | < κ , it follows that Y is 6-
cyclic. Note that Ai is contained in a summand Z of Y such that |Z | = |Ai | = |i |.
This means that X = Y/Ai ∼= (Y/Z)⊕ (Z/Ai ). Observe that Y/Z is 6-cyclic so
that Z/Ai fails to be 6-cyclic. Since |Z/Ai | ≤ i < κ , by induction, L Z/Ai 6= 0R.
Therefore, if T i is some minimal element in L Z/Ai , then by Lemma 1.4(g), we
have µ(T i )≤ |i |.

Define f : W → R f by f (i) = T i
− {i}, so f (i) = T i unless i is actually a

regular cardinal that is the largest element of T i , in which case f (i)= (T i )′. By
Lemma 1.5, there is a stationary subset W ′ ⊆W and U ∈R f such that f (i)=U
for all i ∈W ′. The result then follows from the next statement, which contradicts
the assumption that LG = 0R.



128 PATRICK W. KEEF

Claim. V :=U ∪{κ} ∈ LG . Indeed, let i ∈W ′. If i 6∈R, then Vi =U = T i
∈ LG/Ai .

And if i ∈ R, then Vi = U ∪ {i} = T i
∪ {i} ∈ LG/Ai . Therefore, W ′ ⊆ 3V (G) so

that V ∈ LG , completing the proof. �

The example constructed in the proof of Theorem 1.2 (assuming V = L and
the existence of Mahlo cardinals) has KG = 0R, but since it is not 6-cyclic, we
have LG 6= 0R. In particular, it is not the case that in all conceivable models of set
theory, KG = LG for all groups G.

2. The second question: Does LG5H = LG · L H?

In this section we investigate the question of whether LG5H always agrees with
LG · L H . One containment is straightforward.

Theorem 2.1. If G and H are groups, then LG · L H ⊆ LG5H .

Proof. As usual, if T ∈ LG · L H , we show T ∈ LG5H by induction on κ = µ(T ).
Clearly, if κ =ℵ0, then T =∅; however, this implies that ∅=∅∪∅ is in both LG

and L H . It then follows that both G and H have elements of infinite height. This,
in turn, implies that G5 H also has elements of infinite height (see [Fuchs 1970,
62.4]) and T =∅ ∈ LG5H . So assume the result holds for all groups G and H and
all S ∈R f such that µ(S) < κ = µ(T ).

By definition, T is the disjoint union of U ∈ LG and V ∈ L H . Without loss of
generality, assume κ ∈U ; let γ = µ(V ) < κ .

Consider the reason why U ∈ LG . Since κ ∈U , it is nonempty, so (L0) does not
apply. Next, suppose (L1) holds so that ϒU (G) is stationary in κ . Since whenever
γ < i < κ , Ti is the disjoint union Ui ∪ V , it follows by transfinite induction that

ϒU (G)∩ (κ − γ )⊆ ϒT (G5 H).

This shows that T ∈ LG5H , as required.
Now suppose that B is a subgroup of G of cardinality κ such that 3U (B) is

stationary; let B = {Bi }i<κ be a pure filtration of B. By Lemma 1.4(f) there is a
subgroup C of H such that |C | ≤ γ < κ and V ∈ LC . Note that {Bi 5C}i<κ is a
filtration of B5C and for all i < κ we have a pure exact sequence

0→ Bi 5C→ B5C→ (B/Bi )5C→ 0

(see [Fuchs 1970, 63.2], for example). By transfinite induction, for all γ < i < κ ,
if i ∈3U (B), then Ti =Ui ∪ V ∈ L B/Bi · LC implies

Ti ∈ L [(B/Bi )5C] = L [(B5C)/(Bi5C)].

However, this means that T ∈ L B5C ⊆ LG5H , as required. �

This brings us to our next major result.
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Theorem 2.2. If G and H are groups, then G 5 H is 6-cyclic if and only if
LG5H = 0R if and only if LG · L H = 0R.

Proof. The first equivalence is an immediate consequence of Theorem 1.6. For
the second, note first that if G 5 H is 6-cyclic, then LG · L H ⊆ LG5H = 0R by
Theorem 2.1 so that LG · L H = 0R. For the converse, unlike the case of KG , we do
not actually show that LG5H ⊆ LG · L H for all groups G and H . We do, however,
prove the following, which shows that if LG · L H is empty, then so is LG5H :

Claim. If T ∈ LG5H , then there is an S ∈ LG · L H such that µ(S)≤ µ(T ).
Once again, we prove this by a transfinite induction on µ(T )= κ . Note first that

if κ = ℵ0, then G5 H has nonzero elements of infinite height. Therefore, both G
and H also have such elements. We can then let S =∅=∅∪∅ ∈ LG · L H .

So assume the result holds for all groups G and H and all finite sets of regular
cardinals R with µ(R) < κ = µ(T ).

Suppose first that ϒT (G5H) is stationary in κ . If i is in this set, then µ(Ti ) < κ

so that by induction there is an S ∈ LG · L H such that µ(S)≤ µ(Ti ) < κ .
Next, suppose there is a subgroup A of G5H of cardinality κ such that3T (A) is

stationary. After possibly expanding A a bit, we may assume A = B5C , where B
and C are subgroups of G and H , respectively, and max(|B|, |C |)= κ . We will be
done if we can find an S ∈ L B · LC ⊆ LG · L H with µ(S)≤ κ .

Define {Bi }i<κ as follows: if |B| < κ , let each Bi = B; otherwise, let it be a
filtration of B consisting of pure subgroups. Define {Ci }i<κ in C in an analogous
fashion. It follows that {Bi 5Ci }i<κ is a pure filtration of B5C . For each i < κ ,
the kernel of the obvious map

B5C→ [(B/Bi )5C]⊕ [B5 (C/Ci )]

is
(Bi 5C)∩ (B5Ci )= Bi 5Ci

(see [Nunke 1967b, Lemma 7], for example) so that there is an embedding

(B5C)/(Bi 5Ci )→ [(B/Bi )5C]⊕ [B5 (C/Ci )].

Let W = 3T (B 5 C), so W is a stationary subset of κ . If i ∈ W , then Ti is
in L(B5C)/(Bi5Ci ), and it follows from Lemma 1.4(c) that Ti is either in L(B/Bi )5C or
L B5(C/Ci ). Without loss of generality, then, we may suppose that Ti is in L(B/Bi )5C

for all i in a stationary subset Y ⊆ W ; replacing Y by Y ∩ (µ(T ′), κ), we may
assume µ(T ′) < i for all i ∈ Y . For each i ∈ Y , by transfinite induction there are
disjoint sets U i

∈ L B/Bi and V i
∈ C such that µ(U i

∪ V i )≤ µ(Ti )≤ i .
Observe that if |B|< κ , then B/Bi = {0} for all i ∈ Y . But this would mean that

L B/Bi = 0R, which contradicts that U i
∈ L B/Bi . We can conclude that |B| = κ and

that {Bi }i<κ actually is a filtration of B.
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Consider the function Y→R f given by f (i)=U i
∩ i = { x ∈U i

: x < i }. Since
f is clearly regressive, by Lemma 1.5 there is a stationary subset Z ⊆ Y such that
for all i ∈ Z we have f (i)= P ′ for some fixed set P ′ ∈R f .

If we let P = P ′ ∪ {κ}, then Z ⊆ 3P(B) so that P ∈ L B . Choose any i ∈ Z ,
and set Q := V i

∈ LC ; then κ 6∈ Vi , P ⊆ {κ} ∪U i and Ui ∩ Vi = ∅ implies that
P ∩ Q =∅. Therefore, S := P ∪ Q ∈ LG · L H , and µ(S)= κ , as required. �

Let MA be the class of weakly Mahlo cardinals that are accessible. So a weakly
Mahlo cardinal is, in fact, Mahlo if and only if it is not in MA. Note that in the
presence of the generalized continuum hypotheses, MA is empty. Let R′ =R−MA

and R′f be the class of finite subsets of R′. The following states that our product
works fine as long as we stay clear of MA:

Theorem 2.3. If G and H are groups, then

LG5H ∩R′f = LG · L H ∩R′f .

Proof. Basically, we preserve the notation of the proof of Theorem 2.2 and show how
to amend the argument to fit the present circumstances. By Theorem 2.1 we have
the containment ⊇; for the reverse, we perform our usual induction. If µ(T )= ℵ0,
then T =∅. So if T ∈ LG5H , then G5 H has elements of infinite height, so the
same is true of G and H so that T ∈ LG · L H . Again, suppose the result holds for
all S ∈R′f such that µ(S) < κ := µ(T ) and T ∈ LG5H ∩R′f .

Suppose first that (L1) holds so that ϒT (G 5 H) is stationary in κ . If there is
an i ∈ ϒT (G 5 H)−R, then T ′ = Ti ∈ LG5H . By induction, T ′ ∈ LG · L H , and
this gives T ∈ LG · L H , as required.

We may therefore assume that ϒT (G5 H)⊆R; in particular, this means that
κ is a weakly Mahlo cardinal. Since T ∩MA =∅, κ must actually be Mahlo, that
is, strongly inaccessible. If we consider the function f : κ→ κ given f (α)= 2|α|,
then there is a CUB subset E ⊆ κ such that E ∩µ(T ′) = ∅ and for all β ∈ E , if
α < β, then 2|α| < β. Clearly any element of E is strongly inaccessible. So any
element of E that is weakly Mahlo is actually Mahlo; that is, E ∩MA =∅.

Note that F :=ϒT (G5H)∩E will also be stationary in κ . If i ∈ F , then Ti ∈R′f ,
so by transfinite induction, Ti =U i

∪V i , where U i
∈ LG and V i

∈ L H are disjoint.
For every i ∈ F , either i ∈U i or i ∈ V i . Without loss of generality, assume i ∈U i

for a stationary subset F ′ ⊆ F . By Lemma 1.5, there is a stationary subset F ′′ ⊆ F ′

such that U ′ :=U i
−{i} and V := V i are constant for all i ∈ F ′′. Note that if we

let U =U ′∪{κ}, then F ′′ ⊆ϒU (G) so that U ∈ LG . Since V = V i
∈ L H and T is

the disjoint union of U and V , we can conclude that T ∈ LG · L H .
On the other hand, if (L2) holds, then there is a subgroup A of G 5 H of

cardinality κ such that W :=3T (A) is stationary. Again, we may assume A= B5C ,
where B and C are subgroups of G and H , respectively, and max(|B|, |C |) = κ .
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We define {Bi }i<κ and {Ci }i<κ as before, so in particular, they are always pure
subgroups of B and C , respectively.

Continuing the argument as in Theorem 2.1 by using exact sequences for the
torsion product, by transfinite induction we may assume there is a stationary sub-
set Y ⊆ W such that Y ∩µ(T ′) = ∅ and for all i ∈ Y , Ti = U i

∪ V i for disjoint
subsets U i

∈ L B/Bi and V i
∈ LC . And further, that |B| = κ and {Bi }i<κ actually is

a filtration of B.
Appealing again to Lemma 1.5, we can find a stationary subset Z ⊆ Y such that

for all i ∈ Z , U i
∩i always agrees with some fixed set P and V i

∩i always agrees with
some fixed set Q. In particular, this means that T is the disjoint union P ∪ Q ∪{κ}.

We now divide the argument into two possibilities.

Case 1: Z1 := { i ∈ Z : V i
= Q } is stationary in κ .

If i ∈ Z1, then since i 6∈ V i , it follows that i ∈U i exactly when i ∈R. Therefore,
if S := P ∪ {κ} and i ∈ Z1, it follows that Si will coincide with U i

∈ L B/Bi . This
means Z1 ⊆ 3S(B) so that S ∈ L B ⊆ LG . On the other hand, if i ∈ Z1, then
Q = Vi ∈ LC ⊆ L H , and T is the disjoint union of Q and S, completing this case.

This brings us to the more interesting possibility.

Case 2: Z2 := { i ∈ Z : V i
6= Q } is stationary in κ .

Observe that if i ∈ Z2, then i ∈ V i
⊆ R; that is, Z2 ⊆ R. This means that

κ must be a (weakly Mahlo and hence) Mahlo cardinal. If R := Q ∪ {κ}, then
Ri = Q ∪{i} = V i

∈ L H for all i ∈ Z2, so it follows from (L1) that R ∈ L H . Since
T is the disjoint union R ∪ P , the result follows from the next statement.

Claim. P ∈ LG .
Let µ= µ(P) < κ . Again, {Bi }i<κ is a pure filtration of B, and we may clearly

assume that |Bi | = |i | · ℵ0. For every i ∈ Z2, i 6∈ U i , so P = U i
∈ L B/Bi . This

means that B/Bi has a subgroup Fi of cardinality µ such that P ∈ L Fi . Now for
each i ∈ Z2, let Di be a subgroup of B of cardinality µ such that Fi = (Bi+Di )/Bi .
If i ∈ Z2 ⊆R, then i is a regular cardinal, and since i ∈ Z , we have P = i ∩U i so
that µ< i . Therefore, whenever i ∈ Z2 there is an f (i)< i such that Bi∩Di ⊆ B f (i).
By Fodor’s lemma, there is a stationary subset Z3 ⊆ Z2 such that f is constant
on Z3. Let α = f (i) for all i ∈ Z3. For i ∈ Z3, let Ei = Bα + Di . Clearly Bα is a
pure subgroup of Ei since it is a pure subgroup of B. Note that

Ei/Bα = (Bα + Di )/Bα ∼= Di/(Bα ∩ Di )= Di/(Bi ∩ Di )∼= (Bi + Di )/Bi = Fi

and so |Ei/Bα| = |Fi | = µ.
Suppose M1 is a divisible hull of Bα and M2 is a divisible group of rank µ, and

set N := M1⊕M2. For every i ∈ Z3, the inclusion Bα ⊆ M1 extends to an injective
homomorphism φi : Ei→ N . Note that |N | = |Bα| ·µ< κ , so N has only 2|N | < κ
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subsets (since κ is strongly inaccessible). On the other hand, |Z3| = κ . It follows
that there are distinct i, j ∈ Z3 such that φi (Ei )= φ j (E j ); assume j < i . Consider
the homomorphism ρ : Ei → B given by 1Ei −φ

−1
j ◦φi . Since φi and φ j are both

the identity on Bα, it follows that Bα is contained in the kernel of ρ.
But if π : B→ B/Bi is the canonical epimorphism, then since B j ⊆ Bi , we have

π ◦ ρ = π − π ◦ φ−1
j ◦ φi = π . It follows that the kernel of ρ is contained in the

kernel of π , that is, Bi . However, Bi ∩ Ei = Bi ∩ (Bα+Di )= Bα+ (Bi ∩Di )= Bα
so that Bα must, in fact, be the kernel of ρ.

Therefore, ρ induces an isomorphism between Ei/Bα ∼= Fi and a subgroup F of
B. And since i ∈ Z3 ⊆ Z2, we know that P ∈ L Fi = L F ⊆ LG . This established
the claim and so completes the proof of the theorem. �

Corollary 2.4. Assuming the generalized continuum hypothesis, if G and H are
any groups, then

LG5H = LG · L H .

Proof. This follows directly from Theorem 2.3 since GCH implies that every regular
limit cardinal is strongly inaccessible so that MA =∅. �

3. Applications and an independence result

The following is essentially [Keef 2008, Theorem 16] stated in terms of the invari-
ants KG and LG . It shows that, though in the presence of weakly Mahlo cardinals
KG and LG may differ at times, they will always agree for torsion-complete groups.

Proposition 3.1. If G is a torsion-complete group of final rank γ , then KG = LG is
generated by the R f -antichain { {κ} : κ ∈ R, κ ≤ γ }. In other words, it is the
R f -invariant consisting of those T ∈R f such that T ∩ γ+ 6=∅.

Proof. Let B denote a basic subgroup of G. Consider a decomposition G ∼= X⊕G ′,
where X is bounded. Since L X = K X = 0R, we can replace G by G ′; that is, we
may assume that G has the same cardinality and final rank. Similarly, we may
assume that B has the same cardinality and final rank.

Claim. If κ ∈R and κ ≤ γ , then {κ} ∈ KG .
We split the argument into two cases. Suppose first that |B| < κ . It follows

that G/B ∼=
⊕

J Zp∞ , where |J | = γ . If I ⊆ J with |I | = κ , then define A by
the equation A/B ∼=

⊕
I Zp∞ . Let {Ai }i<κ be a filtration of A; we may certainly

assume that A0 = B. It follows that A/Ai will always be an epimorphic image
of A/B, so A/Ai will always be divisible. This shows that 0∅(A) = κ , and in
particular, it is stationary. This implies that {κ} ∈ KG .

Next, suppose |B| ≥ κ . Let B ′=
⊕

j<κ C j be a summand of B such that each C j

is a countable, unbounded 6-cyclic group. Let E be the set of all limit ordinals
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in κ of countable cofinality. If i ∈ E , let X i be a countable subgroup of G such that
there are proper containments⋃

l<i

⊕
j<l

C j ⊂ X i +
⋃
l<i

⊕
j<l

C j ⊂
⊕
j<i

C j

and such that Di =
(
X i +

⊕
j<i C j

)
/
(⊕

j<i C j
)

is divisible. (In other words, X i is
in the p-adic closure of

⊕
j<i C j but not in the p-adic closure of

⊕
j<l C j for

any l < i ; the existence of such a subgroup follows from the countable cofinality of
i ∈ E .)

For all i < κ , let Ei = { k ∈ E : k < i } and Ai =
(⊕

j<i C j
)
+ (
∑

k∈Ei
Xk).

Clearly, {Ai }i<κ is a filtration of A :=
⋃

i<κ Ai and |A| = κ . Now, if i ∈ E , then we
assert that A/Ai has elements of infinite height: to see this, note that

⊕
j<i C j ⊆ Ai

and X i ⊆ A, so there is a homomorphism Di → A/Ai , and since X i is not a
subgroup of Ai ⊆

⋃
l<i
⊕

j<l C j , the image of this map is nonzero, establishing
the assertion.

We have shown that E ⊆ 0∅(A). Since E is a stationary subset of κ , we can
conclude that {κ} ∈ KG . This proves the claim.

Note that if T ∈R f is minimal in LG , then by Lemma 1.4(g), we can conclude
that µ(T )≤ γ . So if we choose any κ ∈ T , then by our claim {κ} ∈ KG ⊆ LG . The
minimality of T then implies that T = {κ}. This means that KG and LG correspond
to the same R f -antichain, namely this collection of singletons, and so they really
are the same R f -invariant. �

If G is a group of final rank γ , then every minimal element of KG or LG must be
contained in γ+. Proposition 3.1 states that if G is torsion-complete, then LG = KG

is the largest possible R f -invariant generated by nonempty subsets of γ+.
We now consider a particularly simple case, that is, the torsion product of two

unbounded torsion-complete groups with countable basic subgroups. We show
that, though KG and LG agree on all torsion-complete groups, if we take torsion
products, this may no longer be the case. Of course, c= 2ℵ0 denotes the continuum.

Theorem 3.2. Suppose G is an unbounded torsion-complete group with a countable
basic subgroup B. Then KG5G is generated by the R f -antichain consisting of all
two-element subsets of R∩ c+, whereas LG5G is generated by the R f -antichain
consisting of all two-element subsets of (R−M)∩c+, together with all one-element
subsets of M∩ c+.

Proof. Because KG5G = KG · KG , the first statement follows directly from
Proposition 3.1. Next, note that if T is any two-element subset of R−M with
µ(T ) ≤ c, then by Proposition 1.3, T ∈ KG5G will also be minimal in LG5G .
Finally, we need to show that the following holds:

Claim. If δ ≤ c is weakly Mahlo, then {δ} ∈ LG5G .
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Let A be a pure subgroup of G containing B with |A| = δ, and let {Ai }i<δ

be a pure filtration of A starting with A0 = B. We may clearly assume that for
all 0 < i < δ we have |Ai | = |i | · ℵ0. Therefore, if i ∈ R ∩ δ, then {A j } j<i will
be a pure filtration of Ai and Ai/A j will always be divisible. This implies that
3{i}(Ai )= i so that {i} ∈ L Ai whenever i ∈R∩ δ.

Now {Ai 5 Ai }i<δ will be a filtration of A5 A. If i ∈R∩ δ, then

(Ai 5 A)/(Ai 5 Ai )⊆ (A5 A)/(Ai 5 Ai ).

The pure exact sequence 0→ Ai→ A→ A/Ai→ 0 leads to a pure exact sequence

0→ Ai 5 Ai → Ai 5 A→ Ai 5 (A/Ai )→ 0.

Since A/Ai is divisible, it is isomorphic to a direct sum of δ copies of Zp∞ . So

(Ai 5 A)/(Ai 5 Ai )∼= Ai 5 (A/Ai )

will be isomorphic to a direct sum of copies of Ai . In particular, this shows
that (A5 A)/(Ai 5 Ai ) has a subgroup isomorphic to Ai . So if i ∈ R∩ δ, then
{i} ∈ L Ai ⊆ L(A5A)/(Ai5Ai ).

The above computation shows that

R∩ δ ⊆3{δ}(A5 A).

But by (L2), this implies that {δ} ∈ LG5G , as required. �

Theorem 3.2 makes it clear why the continuum hypothesis (CH) is equivalent
to G5G being 6-cyclic. (This was [Keef 1991, Proposition 5] though the result
was known before that paper.) If CH holds, then (R−M) ∩ c+ = {ℵ1} has no
two-element subsets, and M ∩ c+ = ∅ has no one-element subsets; this means
that LG5G is empty. And on the other hand, if CH fails, then {ℵ1,ℵ2} will be a
two-element subset of (R−M)∩ c+, so LG5G is nonempty. The next result is a
striking parallel with regards to LG , c and δm .

Corollary 3.3. If G is an unbounded torsion-complete group with a countable basic
subgroup, then LG5G = LG · LG if and only if c = 2ℵ0 < δm .

Proof. If c < δm , then (R−M)∩ c+ = R∩ c+ and M∩ c+ = ∅. It follows then
from Proposition 3.1 and Theorem 3.2 that LG5G = KG5G = KG · KG = LG · LG .

Conversely, if δm ≤ c, then by Theorem 3.2, {δm} ∈ LG5G . However, since every
set in LG · LG has at least two-elements, {δm} 6∈ LG · LG . �

It is tempting to think that in any model of ZFC we must have c < δm . After
all, a Mahlo cardinal, even a weakly Mahlo cardinal, ought to be extremely large;
certainly much larger than the continuum. The following, however, shows that this
need not be the case. (I am thankful to Prof. Joan Bagaria for this argument.)
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Theorem 3.4. If there is a model of ZFC that contains a weakly Mahlo cardinal,
then there is a model of ZFC in which there is a weakly Mahlo cardinal smaller
than the continuum.

Proof. Start with a model V of ZFC in which there is a weakly Mahlo cardinal δ.
Let γ be any regular cardinal greater than δ. The usual way to construct a model of
ZFC with at least γ Cohen reals is to define the notion of forcing P to be the set
of all functions from a finite subset of γ ×ω to {0, 1} (see [Jech 2003, 15.1], for
example). If p, q ∈ P , then let p ≤ q (that is, p is stronger than q) if and only if
p ⊇ q. By [Jech 2003, Lemma 14.25], this P satisfies the c.c.c. (countable chain
condition). Therefore, if we use P to construct a generic extension V [G] of V , then
in V [G] we will have δ < γ ≤ c since G ∈ V [G] can be thought of as a collection
of γ distinct functions ω→ {0, 1}. (In fact, cV [G]

= (2ℵ0 )
V [G]
= (γ ℵ0)V , but we do

not need to be precise.)
By [Jech 2003, Theorem 14.34], V and V [G] have the same cardinals and

cofinalities. This implies that the class R does not change when we go from V
to V [G]. And in particular, this means that δ remains a regular cardinal.

Next, note that for all κ ∈R, since P is c.c.c., it is κ-c.c. (every antichain in P
has cardinality less than κ). It follows from [Jech 2003, Lemma 22.25] that if S ∈ V
is a stationary subset of κ in V , then S remains stationary in V [G]. In particular,
this means that R∩ δ will remain stationary in δ so that δ remains weakly Mahlo
in V [G]. �

Corollary 3.5. If ZFC is consistent, then there exists a model of ZFC in which
LG5H = LG · L H holds for all groups G and H. On the other hand, if there is a
model of ZFC in which there is a weakly Mahlo cardinal, then there is a model of
ZFC in which LG5H 6= LG 5 L H for some pair of groups G and H.

Proof. For the first statement, just take any model in which GCH holds (e.g., a model
of V= L). For the second, consider a model in which δm < c, and let G = H be an
unbounded torsion-complete group with a countable basic subgroup. �

We have seen that the R f -invariants KG have some advantages over the cor-
responding R f -invariants LG . That is, for all groups G and H , we know that
KG5H = KG ·K H , but this equation is much more complicated for LG . In addition,
if {Gi }i∈I is a collection of groups, by [Balof and Keef 2009, Theorem 3(a)] we
have K⊕

i∈I Gi =
⋃

i∈I KGi . On the other hand, we have the following result:

Theorem 3.6. A weakly Mahlo cardinal exists if and only if there is a collection of
groups {Gi }i∈I such that

L⊕
i∈I Gi 6=

⋃
i∈I

LGi .
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Proof. If no weakly Mahlo cardinal exists, then δm =∞, and for all groups G we
have LG = KG . So the result follows from [Balof and Keef 2009, Theorem 3(a)].

On the other hand, if δm <∞, then let I =R∩δm , and let H be a torsion-complete
group of final rank at least δm . According to Proposition 3.1 and Lemma 1.4(f),
if i ∈ I , then H has a subgroup Gi of cardinality i such that {i} ∈ LGi . We let G
be the external direct sum

⊕
i∈I Gi . If for all j < δm we let A j =

⊕
i< j Gi , then

{A j } j<δm is a filtration of G. Since for all j ∈ I , G j embeds in G/A j , it follows
that 3∅G ⊇ I is stationary. By (L2), this implies that {δm} ∈ LG . However, if
{δm} was an element of some LGi , since |Gi | = i < δm we could conclude from
Lemma 1.4(f) that {δm} is not minimal. This, in turn, would imply that ∅ ∈ LGi so
that Gi has nonzero elements of infinite height. Therefore, {δm} 6∈

⋃
i∈I LGi , so the

two sets disagree. �

We will need the following extension of Theorem 2.2:

Corollary 3.7. If G1, . . . ,Gn are groups, then G1 5 · · · 5 Gn is 6-cyclic if and
only if LG1 · · · LGn = 0R.

It would be tempting to say that Corollary 3.7 follows directly from Theorem 2.2
by simply inducting on n. This does not quite work, however. For example, if n= 3,
then G15G25G3 will be 6-cyclic if and only if LG15G2 · LG3 = 0R, but at this
stage we are stuck since we do not necessarily have LG15G2 = LG1 · LG2 .

The way to verify Corollary 3.7 is to go back to the proof of Theorem 2.2. That
proof was done with only two terms, but essentially the same argument can be
made with any finite number of terms. The notation is much more cumbersome, but
the ideas are identical, and so we omit them. This brings us to our final result, an
extension of [Balof and Keef 2009, Theorem 55]. Since that proof was embedded
in a much more involved discussion of the structure of R f -invariants, we provide
this self-contained argument. Observe that it is a complete characterization of the
groups that positively answer Nunke’s question.

Theorem 3.8. If G is a group (of arbitrary cardinality), then the following are
equivalent:

(a) There is a group H that is not 6-cyclic such that G5 H is 6-cyclic.

(b) There is no infinite pairwise disjoint subset of LG .

(c) For some positive integer n, Gn
= G5G5 · · ·5G is 6-cyclic.

Proof. Suppose (a) holds so that L H 6= 0R and LG · L H = 0R. Let S ∈ L H , and
suppose S = {α1, α2, . . . , αm}. We assume {Tk}k<ω is an infinite pairwise disjoint
collection from LG and derive a contradiction. Note that each Tk must intersect S
nontrivially since LG ·L H = 0R. On the other hand, since the Tks are disjoint, every
element of S can be in at most one of them. So the fact that there are only a finite
number of elements of S contradicts the fact that there are an infinite number of Tks.
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We suppose now that (b) holds and verify (c); actually, we will assume that (c)
fails, and verify that (b) must also fail. To that end, suppose we have constructed a
pairwise disjoint collection in LG and T1, . . . , Tk ; we will verify that there must
be a Tk+1 ∈ LG that is disjoint from them all. Let n be one more that the total
number of elements in T1 ∪ · · · ∪ Tk . Since by Corollary 3.7, (LG)

n
6= 0R, there

is a pairwise disjoint collection S1, . . . , Sn in LG . Since the S j s are disjoint, no
element of T1 ∪ · · · ∪ Tk is in more than one S j . Therefore, there must be an S j

disjoint from all the Ti s, and we just let Tk+1 be this S j .
We suppose now that (c) holds and verify (a). If G is 6-cyclic, then we can let H

be any group that is not6-cyclic. Otherwise, choose n to be the least positive integer
such that Gn is 6-cyclic. So n > 1 (since G is not 6-cyclic) and H := Gn−1 is not
6-cyclic, but G5 H = Gn is. �

The following shows that torsion-complete groups can be used as “test groups”
for the 6-cyclic groups:

Corollary 3.9. Suppose G is a torsion-complete group of final rank at least ℵω. If
H is any group, then H is 6-cyclic if and only if G5 H is 6-cyclic.

Proof. By Proposition 3.1, for every m < ω, {ℵm} ∈ LG , so G satisfies the denial
of Theorem 3.8(b), and the result follows from the denial of Theorem 3.8(a). �

In summary, the new invariant LG “solves” Nunke’s problem in the sense that it
reduces it from a question involving the torsion product to a question of being able
to compute LG . As we have seen, however, even for a standard torsion-complete
group, calculating LG involves significant questions of cardinal arithmetic.

Nunke’s problem can be generalized to asking when G 5 H is a direct sum
of countable groups (which we abbreviate to d.s.c. group) of length λ ≤ ω1. If
λ= ω1, we showed in [Keef 1989] that the answer to this question depends upon a
set-theoretic statement known as Kurepa’s Hypothesis (see [Jech 2003, Definition
9.24]). On the other hand, for all countable λ < ω1 the above techniques can be
generalized to answer the question of when G5 H is a d.s.c. group of length λ.

Define an invariant LλG inductively as follows:

(Lλ0) If µ(T )= ℵ0 (that is, T =∅), T ∈ LλG if and only if pλG 6= {0}.

Next, suppose for all groups H we have defined all the elements S ∈ LλH such
that µ(S) < κ :=µ(T ). We then say T ∈ LλG if and only if one of two things occurs:

(Lλ1) ϒλ
T ′(G) := { i < κ : Ti ∈ LλG } is stationary in κ , or

(Lλ2) G has a subgroup A of cardinality κ with a filtration {Ai }i<κ such that

3λT (A) := { i < κ : Ti ∈ LλA/Ai
}

is stationary in κ .
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So all that really has to be changed is the base case, (Lλ0) versus (L0).
Next, recall from [Keef 1991] that the group G is a Cλ-group if for every α < λ,

G has an α-high subgroup that is a d.s.c. group. In particular, a d.s.c. group will
always be a Cλ group, and every group is a Cω-group. The following can be proven
in an essentially identical manner to the results of this paper:

Theorem 3.10. If G and H are groups and λ < ω1 is a countable ordinal, then
G5 H is a d.s.c. group of length λ if and only if G and H are Cλ groups of length
at least λ and LλG · L

λ
H = 0R.

Similarly, virtually all of the results of this paper can be recast to statements
involving d.s.c. groups of countable length.

There are difficulties in translating these results to groups of uncountable length
and, in particular, to simply presented groups of arbitrary length. The base case
in the definition LλG really depends upon the countability of λ. In particular, if
∅ ∈ LλG , we would like to conclude that there is a countable subgroup A ⊆ G such
that ∅ ∈ LλA (cf., Lemma 1.4(f)), but this is not true if λ≥ ω1. Correspondingly, as
was shown in [Hill 1983a], if G and H are reduced groups, then G5 H will never
be a simply presented group of uncountable length. Some of these issues will be
discussed in later work.
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