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GEOMETRY OF TRINOMIALS

AARON MELMAN

The location of the zeros of a general trinomial was analyzed in the late 19th
and early 20th centuries. We reexamine this problem and obtain new zero
inclusion regions in the complex plane that complement and improve known
results. Our main contribution is the derivation of smaller annular sectors
containing the zeros of a trinomial that take into account the magnitude of
the coefficients, which is unlike existing results where such sectors are rigid.

1. Introduction

Locating the zeros of a trinomial of the form p(w) = anw
n
+ akw

k
+ a0 (where

w, a0, ak, an ∈ C satisfy a0akan 6= 0, and n, k are positive integers such that n ≥ 3
and 1≤ k ≤ n−1) is a problem with a long history that was studied by several au-
thors, such as Biernacki [1928], Herglotz [1922], Kempner [1922], Landau [1906;
1907], and Nekrassoff [1887], some of whom were also mentioned in [Marden
1966, pp. 80, 147, 165]. Their results take the form of bounds on the magnitude
of the zeros or of sectors in the complex plane containing the zeros. The oldest of
these works, [Nekrassoff 1887] — based on an earlier paper by that same author
from 1883 — was published only 25 years after Rouché’s theorem [1862]; it is
interesting that, although mentioned, this theorem was not used there.

The Hungarian mathematician Jenő Egerváry, whose work on the location of
trinomial zeros was summarized in [Szabó 2010], used an interpretation of the
zeros as the equilibrium points of a force field to obtain annular sectors in the
complex plane containing the zeros. However, the radii of the annuli are themselves
the moduli of the zeros of related trinomials, making this more a theoretical result.

Let us now use [Nekrassoff 1887] as a convenient reference to explain what
we intend to do here since, in addition to its own unique results, it also reflects
the results from the other references (including later ones) when applied to a tri-
nomial. We first simplify the aforementioned trinomial by dividing p(w) by −a0

and setting w= (−a0/an)
1/nz for any n-th root, which transforms p(w) into q(z),
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where

q(z)= zn
−

(
ak
a0

)(
−

a0
an

)k/n

zk
− 1.

In addition, we will assume that gcd(k, n) = 1, so that the trinomial cannot be
simplified by a substitution of the form y = z`. From here on, we will investigate
the location of the zeros of

q(z)= zn
− azk

− 1,

where

a =
(

ak
a0

)(
−

a0
an

)k/n

.

The zeros of p(w) can then easily be recovered from those of q(z).
In Satz I and Satz II (Theorem I and Theorem II) of [Nekrassoff 1887], open

annular sectors are derived, each containing a zero of the polynomial q: n contigu-
ous ones in Satz I and two groups of k and n−k contiguous ones in Satz II. Satz I
applies when the modulus of the coefficient a is below a certain threshold, while
Satz II applies for values above that threshold. However, these annular sectors (as
is true for all the other aforementioned references) depend only on n and/or k, and
the insensitivity to the coefficient a makes the angles they subtend unnecessarily
large in general. Just one example of an obvious shortcoming is that such rigid
annular sectors cannot reflect the fact that the zeros of q converge to the n roots of
unity as a→ 0.

We will qualitatively improve Satz I and Satz II of [Nekrassoff 1887] and similar
results in the other previously mentioned references by deriving smaller disjoint
annular sectors each containing a zero of q that are easy to obtain and that are,
unlike previous results, sensitive to the modulus of the coefficient a. The angles
they subtend tend to zero as |a|→ 0 and as |a|→+∞. These results are stated in
Theorem 4.1 and Theorem 5.3.

In Section 2 we collect a few definitions and lemmas to be used in subsequent
sections. In Section 3 we derive an inclusion region for the zeros that is valid for any
value of |a|, whereas disjoint inclusion regions for the smallest k and largest n−k
zeros are derived in Section 4 when |a| exceeds a well-defined value, and disjoint
inclusion regions for all the zeros are derived in Section 5 when |a| falls below
another well-defined value. All inclusion regions are illustrated by examples. An
Appendix deals with some numerical issues, which are not the focus of this work.

2. Preliminaries

In this section we state several definitions as well as a number of lemmas so that
we may easily refer to them later on. Throughout we will denote by O(c; ρ) an
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open disk centered at c with radius ρ and its closure by O(c; ρ). The complement
of a set H is denoted by H c.

For convenience, since we refer to it often, we begin by stating Rouché’s well-
known theorem.

Theorem 2.1 ([Rouché 1862]; see also [Lang 1999, Theorem 1.6]). Let f and g
be analytic in the interior of a simple closed Jordan curve C and continuous on C ,
and let |g(z)| < | f (z)| for all z ∈ C. Then f and f + g have the same number of
zeros in the interior of the curve, counting multiplicities.

Definition 2.2. The following functions are defined for a given complex number a;
positive integers n and k with n ≥ 3, 1≤ k ≤ n− 1, and gcd(k, n)= 1; and x ≥ 0:

φk(x)= xn
+ |a|xk

− 1,

χk(x)= xn
− |a|xk

− 1,

ψk(x)= xn
− |a|xk

+ 1.

As the complex number a remains the same throughout, we have omitted it from the
notation. In the following definition, we define the separability threshold σ(n, k),
which, as will be shown in Lemma 2.4, is used to determine the number of positive
zeros of ψk , which in turn determines if we can separate the zeros of q into two
groups of k and n− k zeros, whence σ(k, n)’s name.

Definition 2.3. The separability threshold σ(n, k) is defined for positive integers k
and n (with n ≥ 3, 1≤ k ≤ n− 1, and gcd(k, n)= 1) as

σ(n, k)= n
n−k

(
n−k

k

)k/n

.

Since

σ(n, n− k)= n
k

(
k

n−k

)(n−k)/n

=
n
k

(
k

n−k

)(
k

n−k

)−k/n

= σ(n, k),

σ (n, k) is a symmetric function of k for fixed n. Furthermore, 1 < σ(n, k) < 2
and, for given n, achieves its maximum value at k = dn/2e− 1, bn/2c+ 1, and its
minimum value at k = 1, n− 1. We also have limn→+∞ σ(n, 1)= 1.

Lemma 2.4. The following properties hold for the functions φk , χk , and ψk from
Definition 2.2.

(a) φk has a unique positive root t , and it lies on the interval (0, 1); χk has a
unique positive root s, and it lies on the interval (1,+∞); and the positive
roots of φk and χn−k are each others’ reciprocals.

(b) The function ψk satisfies ψk(0) > 0 and ψk(|a|) > 0, it achieves its unique
minimum on (0,+∞) at µ∗ = (k|a|/n)1/(n−k), and ψk(µ

∗) < 0 if and only if
|a|> σ(n, k).
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Figure 1. The functions φk , χk , and ψk .

(c) When |a| > σ(n, k), then ψk and ψn−k both have two distinct positive roots.
The roots of ψn−k are the reciprocals of the roots of ψk . When |a| < σ(n, k),
then ψk and ψn−k have no positive roots.

The proof is an elementary exercise and will be omitted. The functions φk , χk ,
and ψk are illustrated in Figure 1.

Lemma 2.5. (a) When σ(n, k) < |a| ≤ 2, the two positive zeros r1 and r2 of ψk ,
with r1 < r2, satisfy

k > n
2
=⇒ 1≤ r1 < r2 < |a|,

k < n
2
=⇒ 0< r1 < r2 ≤ 1< |a|.

(b) When |a|> 2, the two positive zeros r1 and r2 of ψk satisfy

0< r1 < 1< r2 < |a|.

Proof. To understand where r1 and r2 are located when σ(n, k) < |a| ≤ 2, we
compute ψk(1)= 2−|a| ≥ 0, which means that we either have 1≤ r1 < r2 < |a| or
0< r1 < r2 ≤ 1< |a|, depending on whether ψ ′k(1) < 0 or ψ ′k(1) > 0, respectively.
Note that ψ ′k(1)= 0 is impossible because it would imply that the minimum is at 1
and therefore ψk(1) < 0, contradicting our previous conclusion that ψk(1) ≥ 0.
Since ψ ′k(1)= n− k|a|, we have

ψ ′k(1) > 0 ⇐⇒ |a|< n
k

and ψ ′k(1) < 0 ⇐⇒ |a|> n
k
.

However, given the upper limit on |a| here, |a|> n/k is impossible when k < n/2.
On the other hand, given the lower limit on |a|, |a| < n/k cannot occur when
k>n/2 because then k>n−k, which would mean that σ(n, k)=σ(n, n−k)>n/k,
and therefore |a|> n/k, a contradiction. We have therefore obtained that

k > n
2
=⇒ ψ ′k(1) < 0 and k < n

2
=⇒ ψ ′k(1) > 0,
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which proves the statement in part (a).
When |a|> 2, we have ψk(1)= 2−|a|< 0, so that there will be one root strictly

to either side of 1. �

Lemma 2.6. The positive roots t and s of the functions φk and χk , respectively,
and the positive roots r1 and r2 of ψk (when they exist), with r1 < r2, satisfy:

(
1+ |a|

)−1/k
< t < r1 <

(
k
n
|a|
)1/(n−k)

< r2 < s <
(
1+ |a|

)1/(n−k)
.

When |a|> 2, then

r1 <
(
|a| − 1

)−1/k
< 1<

(
|a| − 1

)1/(n−k)
< r2.

Proof. For any x ∈ (0, 1), xn < xk so that φk(x) < (1 + |a|)xk
− 1. Since φk

is increasing, the root of the function on the right-hand side of this inequality,
namely (1 + |a|)−1/k , will be a strict lower bound on the positive root t of φk .
Furthermore, by part (a) of Lemma 2.4, the positive roots of φk and χn−k are each
others’ reciprocals so that an upper bound on the positive root of χk is provided by
the reciprocal of a lower bound on the positive root of φn−k . Such a lower bound
is, by what we just proved for φk , given by (1+ |a|)−1/(n−k). Its reciprocal yields
the strict upper bound on s.

Now assume that the roots r1 and r2 of ψk , with r1 < r2, exist, and let r = r1 or
r = r2. Then rn

− |a|r k
+ 1= 0, or |a|r k

= rn
+ 1, implying that φk(r)= 2rn > 0

and χk(r)=−2< 0 so that t < r < s. Consequently, t < r1 < r2 < s. Finally, the
roots r1 and r2 lie on the left and right sides, respectively, of the minimum of ψk ,
which by part (b) of Lemma 2.4 is given by (k|a|/n)1/(n−k).

When |a| > 2, then ψk(1) < 0, which implies that r1 < 1 < r2. For x ∈ (0, 1),
ψk(x) < (1− |a|)xk

+ 1, and ψk is decreasing, so r1 < (|a| − 1)−1/k < 1. Since,
by part (c) of Lemma 2.4, the smallest root of ψn−k is 1/r2, we can find an upper
bound on it as we just did for r1. That upper bound is given by (|a| − 1)−1/(n−k).
Its reciprocal then yields a lower bound on r2. �

All the bounds we derived are sufficient for our purposes, but they can be im-
proved, if so desired. The numerical issues involved in this improvement are further
elaborated in the Appendix.

In what follows, we will encounter sets of the form Lm(c; ρ), which we define as

Lm(c; ρ)=
{
z ∈ C : |zm

− c|< ρ
}
.

The boundary of Lm(c; ρ) is a lemniscate. When |c|<ρ, this lemniscate is a simple
closed curve, and when |c| > ρ, it is a union of m disconnected simple closed
curves, which we will call loops. The interiors of the loops will be called leaves,
with each leaf containing a different set of m-th roots of the complex numbers in
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Figure 2. Left: O(c; ρ) (dark gray). Right: Lm(c; ρ) (light gray).
In both cases, m = 3.

O(c; ρ). It is, in general, cumbersome to carry out set operations on sets bounded
by such lemniscates, but it is not difficult to enclose them by simpler sets. The
following lemma shows how Lm(c; ρ) can be enclosed by a disk centered at the
origin, or, when |c|> ρ, how its m loops can be circumscribed by annular sectors.

Lemma 2.7. Let m be a positive integer, c∈C, and ρ > 0. Then O(0; (|c|+ρ)1/m)

is the smallest disk centered at the origin that encloses Lm(c; ρ). Furthermore,
when |c|>ρ>0, ω=arg(c), and θ=arcsin(ρ/|c|), then Lm(c; ρ) is circumscribed
by the following union of disjoint annular sectors:{

z ∈ C : 0< (|c| − ρ)1/m < |z|< (|c| + ρ)1/m,

ω−θ

m
+ j · 2π

m
< arg(z) < ω+θ

m
+ j · 2π

m
( j = 0, 1, . . . ,m− 1)

}
.

Proof. Since |zm
− c| < ρ implies |z|m < |c| + ρ, z ∈ Lm(c; ρ) implies that

z ∈ O(0; (|c|+ρ)1/m) and it is the smallest such disk. When |c|>ρ, z ∈ Lm(c; ρ)
implies 0 < (|c| − ρ)1/m < |z| < (|c| + ρ)1/m . With ω and θ as defined above,
the argument of any z ∈ Lm(c; ρ) satisfies ω− θ < arg(zm) < ω+ θ , as illustrated
on the left in Figure 2. Taking the m-th root then completes the description of the
enclosing set. The circumscribing annular sectors defined by this set, which are
illustrated for m = 3 on the right in Figure 2, are disjoint because 2θ/m < 2π/m,
as θ < π/2. �

3. Zero inclusion region valid for any value of |a|

The following theorem derives upper and lower bounds on the moduli of q’s zeros.
We state it for the sake of completeness since, as a straightforward consequence of
Rouché’s theorem, it cannot be considered a new result.

Theorem 3.1. Let q(z) = zn
− azk

− 1, with integers n ≥ 3 and 1 ≤ k ≤ n − 1
with gcd(k, n)= 1, and let a ∈ C. Furthermore, let s and t , with 0< t < 1< s, be
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the positive roots of χk(x) = xn
− |a|xk

− 1 = 0 and φk(x) = xn
+ |a|xk

− 1 = 0,
respectively. Then the zeros of q are contained in the set

O(0; s)∩ Oc(0; t),

that is, any such zero z∗ satisfies t ≤ |z∗| ≤ s.

Proof. If |azk
+1|< |zn

| holds on some circle |z| = ρ, then by Rouché’s theorem,
all of q’s zeros are contained in the disk O(0; ρ). Since the inequality holds if
|a||z|k+1< |z|n or |z|n−|a||z|k−1< 0, any ρ for which χk(ρ) < 0 or ρ < s can
be chosen. The zeros must then lie in the closed disk O(0; s).

For the lower bound, we observe that if |zn
−azk

|<1 holds on some disk |z|=ρ,
then, using Rouché’s theorem once again, we conclude that none of q’s zeros are
contained in the disk O(0; ρ). The inequality is satisfied if |z|n + |a||z|k < 1 or
|z|n + |a||z|k − 1 < 0 so that an appropriate value for ρ is any value for which
φk(ρ) < 0 or ρ < t . All zeros must then lie in Oc(0; t). �

We remark that the same upper bound is also implied by a result of Cauchy
[1829] (see also [Marden 1966, Theorem (27,1), p. 122]) and by Theorem I in
[Kennedy 1940].

4. Disjoint zero inclusion regions when |a|> σ(n, k)

So far, we have obtained upper and lower bounds on the moduli of all zeros
(Theorem 3.1) regardless of the value of |a|. In the following theorem, we use
Rouché’s theorem and Lemma 2.7 to derive n disjoint annular sectors, each en-
closing just one zero, when |a|> σ(n, k).

Theorem 4.1. Let the zeros {zi }
n
i=1 of q(z) = zn

− azk
− 1 (with integers n ≥ 3

and 1 ≤ k ≤ n − 1, gcd(k, n) = 1, and |a| > σ(n, k)) be labeled in a way so
that |z1| ≤ · · · ≤ |zn|. Let δ1 and δ2 be such that r1 < δ1 ≤ δ2 < r2, where r1

and r2 are the positive roots of xn
− |a|xk

+ 1 = 0. Furthermore, let ω = arg(a),
θ1 = arcsin(δn−k

1 /|a|), and θ2 = arcsin(δ−k
2 /|a|).

Then the first k zeros {zi }
k
i=1 are contained in the set

�1(q)=
{

z ∈ C :
(
|a| + δn−k

1

)−1/k
< |z|<

(
|a| − δn−k

1

)−1/k
,

2 jπ−ω−π
k

−
θ1
k
< arg(z) < 2 jπ−ω−π

k
+
θ1
k

( j = 0, 1, . . . , k− 1)
}
,

while the remaining n− k zeros {zi }
n
i=k+1 are contained in the set

�2(q)=
{

z ∈ C :
(
|a| − δ−k

2

)1/(n−k)
< |z|<

(
|a| + δ−k

2

)1/(n−k)
,

2 jπ+ω
n−k

−
θ2

n−k
< arg(z) < 2 jπ+ω

n−k
+

θ2
n−k

( j = 0, 1, . . . , n− k− 1)
}
.
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We also have (
|a| − δn−k

1

)−1/k
< δ1 ≤ δ2 <

(
|a| − δ−k

2

)1/(n−k)
.

In addition, all the annular sectors in �1(q) and �2(q) are disjoint and each
contains exactly one zero of q.

Proof. If |zn
−1|< |azk

| holds on some circle |z| = ρ, then by Rouché’s theorem,
k of q’s zeros are contained in the disk O(0; ρ). Because the inequality holds if
|z|n+1< |a||z|k or |z|n−|a||z|k+1< 0, any ρ for which ψk(ρ)< 0 or r1<ρ < r2

can be chosen. Since r1 < δ1 ≤ δ2 < r2, we conclude that k zeros lie in O(0; δ1),
while the remaining n − k zeros lie in the complement of O(0; δ2). This also
follows from Pellet’s theorem [Marden 1966, Theorem (28,1)].

Since zn
− azk

− 1 = 0 implies that |z|k |zn−k
− a| = 1 and, as a result, that

|zn−k
−a| = 1/|z|k , the (n−k)-th powers of the n−k largest zeros {zi }

n
i=k+1, all of

which satisfy |zi |> δ2, must lie in O(a, δ−k
2 ). Moreover, since δn

2 −|a|δ
k
2 +1< 0,

we have δn−k
2 + δ−k

2 < |a| so that |a| > δ−k
2 , which in turn implies that O(a; δ−k

2 )

is bounded away from the origin. The zeros themselves must lie in Ln−k(a, δ−k
2 ),

which, from Lemma 2.7 with m=n−k, c=a, and ρ=δ−k
2 , consists of n−k disjoint

leaves that are contained in�2(q), a set consisting of disjoint annular sectors. That
(|a|−δ−k

2 )1/(n−k)>δ2 follows from δn
2−|a|δ

k
2+1<0. Consequently, any z∈�2(p)

satisfies |z|> δ2.
We now prove that each leaf of Ln−k(a, δ−k

2 ) contains exactly one zero. For this,
we appeal once more to Rouché’s theorem. Recall that Ln−k(a; δ−k

2 ) ⊆ �2(p) so
that |z|> δ2 for any z ∈ Ln−k(a; δ−k

2 ), which is composed of n− k disjoint closed
leaves bounded away from the origin, each containing a different (n − k)-th root
of a. For any z on the (Jordan) boundary curve of one of these leaves, we have
|zn−k

− a| = δ−k
2 , so that |zn

− azk
| = |z|kδ−k

2 > 1. By Rouché’s theorem, this
means that the polynomial zn

− azk
− 1 has as many zeros strictly inside this leaf

as zn
−azk and that number is exactly one since it contains just one (n−k)-th root

of a and it does not contain zero. There are n − k disjoint annular sectors each
containing such a leaf and therefore each contains at least one zero of q . Since
there are n− k such zeros, each annular sector must contain exactly one zero.

For the first k zeros {zi }
k
i=1, we consider the fact that zn

−azk
−1=0 implies that

|−azk
−1| = |zn

| and therefore that |(−a)− z−k
| = |z|n−k . Because now |zi |< δ1,

this means that the k-th powers of the reciprocals of the k smallest zeros must lie in
O(−a, δn−k

1 ). Also, δn
1 −|a|δ

k
1+1< 0, so δn−k

1 + δ−k
1 < |a|. Therefore |a|> δn−k

1 ,
implying that O(−a, δn−k

1 ) is bounded away from the origin. Analogously to what
we did for the n− k largest zeros, we now apply Lemma 2.7 with m = k, c=−a,
and ρ = δn−k

1 , from which we obtain that the reciprocals of the zeros themselves
must lie in Lk(−a, δn−k

1 ), which consists of k disjoint leaves that are contained in
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the set of disjoint annular sectors �1(q). The latter follows from

1
|z|
<
(
|a| + δn−k

1

)1/k
=⇒ |z|>

(
|a| + δn−k

1

)−1/k
,

and also
1
|z|
>
(
|a| − δn−k

1

)1/k
=⇒ |z|<

(
|a| − δn−k

1

)−1/k
< δ1,

with the last inequality following from δn
1 − |a|δ

k
1 + 1 < 0. The bounds on the

arguments in the definition of �1(q) are then determined from arg(z)=−arg(1/z)
and arg(−a)= arg(a)+π .

That each annular sector in�1(q) contains exactly one zero follows from similar
arguments as for the largest n − k zeros of q . For any z on the boundary of any
one of the leaves, we have∣∣−a− z−k

∣∣= δn−k
1 =⇒

∣∣azk
+ 1

∣∣= |z|kδn−k
1 > |z|n.

Rouché’s theorem then implies that zn
− azk

− 1 has as many zeros strictly inside
this leaf as azk

+1, which is exactly one and that each annular sector must contain
a single zero, just as in the case for the n− k largest zeros. �

Remarks 4.2. (1) We note that easily computed explicit values for the bounds
involved in the definitions of the annular sectors are given by Lemma 2.6.

(2) The smallest�1(q) and�2(q) are obtained by replacing δ1 and δ2 by r1 and r2,
respectively, and by replacing the strict inequalities by inclusive inequalities in their
definitions.

(3) The lower bound on |z| in �1(q) and the upper bound on |z| in �2 can be
replaced by t and s, respectively, as defined in Theorem 3.1, to yield better bounds.
Let us consider the upper bound. The inequality (|a|+r−k

2 )1/(n−k)> s is equivalent
to |a| + r−k

2 > sn−k , which in turn is equivalent to sn
− |a|sk

− (s/r2)
k < 0. That

this inequality holds follows from the fact that r2 < s (by Lemma 2.6) and that
sn
−|a|sk

−1= 0. The lower bound in�1(q) is analogously shown to be improved
by t .

(4) We note that the angles of the annular sectors in Theorem 4.1 depend on |a| and
decrease with increasing |a|. This is qualitatively different from previous results
in, for example, [Biernacki 1928; Herglotz 1922; Kempner 1922; Nekrassoff 1887,
Satz II], where these angles are rigid and insensitive to a, making them significantly
larger (and therefore worse) than the sectors in Theorem 4.1 as |a| increases. The
radii of the annular sectors we obtained are also better than the ones in [Nekrassoff
1887], as will be illustrated in the examples later on.

(5) Asymptotic upper bounds on the angles θ1 and θ2 for |a| →+∞ can be deter-
mined with the help of Lemma 2.6, which shows that in that case one can choose
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δ1 = (|a| − 1)−1/k and δ2 = (|a| − 1)1/n−k , implying that

lim
|a|→+∞

θ1(a)= lim
|a|→+∞

arcsin
(
δn−k

1 /|a|
)

≤ lim
|a|→+∞

arcsin
(
(|a| − 1)−(n−k)/k/|a|

)
≤ lim
|a|→+∞

arcsin
(
|a|−(n−k)/k/|a|

)
≤ |a|−n/k

+O
(
|a|−3n/k),

and, analogously, that

lim
|a|→+∞

θ2(a)≤ |a|−n/(n−k)
+O

(
|a|−3n/(n−k)).

This means that both θ1 and θ2 converge to zero as |a|→+∞ at a rate determined
by n and k and that the slower that convergence is for one angle, the faster it will
be for the other. A tedious, but similar, computation for the differences 11(a)
and 12(a) between the radii of the annular sectors in �1(q) and in �2(q), re-
spectively, shows that 11(a) ∼ O(|a|−(n+1)/k) and 12(a) ∼ O(|a|−(n−1)/(n−k))

as |a| → +∞.

This corollary is an immediate consequence of Theorem 4.1:

Corollary 4.3. Let the zeros {zi }
n
i=1 of q(z) = zn

− azk
− 1 (with integers n ≥ 3

and 1≤ k ≤ n− 1 and gcd(k, n)= 1) be labeled so that |z1| ≤ · · · ≤ |zn|.

(a) When σ(n, k) < |a| ≤ 2 and k > n/2, then |zi |> 1 for i = k+ 1, . . . , n.

(b) When σ(n, k) < |a| ≤ 2 and k < n/2, then |zi |< 1 for i = 1, . . . , k.

(c) When |a|> 2, then |zi |< 1 for i = 1, . . . , k and |zi |> 1 for i = k+ 1, . . . , n.

Proof. When σ(n, k)< |a|≤2 and k>n/2, Lemma 2.5 says 1≤r1<r2< |a|. From
Theorem 4.1 with r1 < δ1 ≤ δ2 < r2, one then obtains that the n−k zeros {zi }

n
i=k+1

are contained in �2(p) and therefore satisfy

|zi |>
(
|a| − δ−k

2

)1/(n−k)
> δ2 > r1 ≥ 1.

When σ(n, k)< |a|≤2 and k<n/2, Lemma 2.5 yields that 0<r1<r2≤1< |a|.
From Theorem 4.1 with r1 < δ1 ≤ δ2 < r2, one then obtains that the k zeros {zi }

k
i=1

are contained in �1(p) and therefore satisfy

|zi |<
(
|a| − δn−k

1

)−1/k
< δ1 < r2 ≤ 1.

When |a|> 2, Lemma 2.5 yields that 0< r1 < 1< r2 < |a|. From Theorem 4.1
with δ1 = δ2 = 1, one then obtains that the k zeros {zi }

k
i=1 are contained in �1(p)

and therefore satisfy
|zi |<

(
|a| − 1

)−1/k
< 1
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and that the n− k zeros {zi }
n
i=k+1 are contained in �2(p) and therefore satisfy

|zi |>
(
|a| − 1

)1/(n−k)
> 1. �

Examples 4.4. To illustrate the zero inclusion regions in Theorem 4.1, we consider
the trinomial q1(z) = z10

− (1.6+ i)z7
− 1, for which a = 1.6+ i , |a| = 1.8868,

and σ(10, 7) = 1.8420 so that σ(10, 7) < |a| < 2. From Theorem 4.1, we can
therefore expect an inclusion region composed of disjoint annular sectors. The
moduli of seven of the zeros of q1 lie in the interval [0.8746, 0.9771], whereas
three have their moduli in the interval [1.2140, 1.2739]. Figure 3 shows, from left
to right and using the same terminology as before, the shaded inclusion regions:
(4-1) when using the bounds from Lemma 2.6; (4-2) when using bounds, obtained
after only two Newton steps for the computation of s and t and only one step of
the method outlined in the Appendix, with the initial points chosen as the bounds
from Lemma 2.6; and (4-3) when using the exact values of s, t , r1, and r2. The
corresponding estimated ranges for the moduli of the first seven and last three zeros
are, respectively,

0.8595 to 1.0847 and 1.1091 to 1.4239,(4-1)

0.8745 to 1.0639 and 1.1236 to 1.2803,(4-2)

0.8746 to 1.0389 and 1.1438 to 1.2744.(4-3)

The small black dots are the zeros. The shaded regions become smaller from left
to right.

The corresponding (exact) optimal bounds obtained in [Nekrassoff 1887], in-
volving the solution of nonlinear equations similar to the ones in Definition 2.2,
are

0.8735 to 1.0586 and 1.0972 to 1.2901.

The sectors obtained in [Nekrassoff 1887] strictly contain the ones obtained from
Theorem 4.1. In [Biernacki 1928], the upper bound on the seven smallest zeros is
the same as the one obtained from the bound in Lemma 2.6. The results in [Landau
1906; 1907] are not applicable here, as they are only valid for k = 1.

Figure 3. Zero inclusion regions for q1.
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Figure 4. Zero inclusion regions for n= 10, k= 7 when a= 2+i ,
a = 4+ i , and a = 4+ 4i .

As |a| becomes larger, the angles subtended by the annular sectors containing the
zeros shrink, unlike the sectors in previous results, for example, [Biernacki 1928;
Herglotz 1922; Kempner 1922; Nekrassoff 1887]. Figure 4 shows, shaded in dark
gray and from left to right, the significant decrease in the size of our inclusion
regions for a trinomial with n = 10 and k = 7, when a = 2+ i , a = 4+ i , and
a = 4+ 4i , respectively, where we just used the simple bounds from Lemma 2.6.
The zeros are not indicated to avoid obscuring the small inclusion regions.

5. Disjoint zero inclusion regions when |a|< σ(n, k)

We now turn our attention to the case |a|<σ(n, k), for which the following theorem
establishes contiguous annular sectors, each containing one zero of zn

− azk
− 1,

and whose subtended angles are the same as the ones obtained in [Nekrassoff 1887,
Satz I]. It is stated here for completeness, as we will need it later on. Our proof
is different from the one in [Nekrassoff 1887] since it relies on a straightforward
application of Rouché’s theorem, which was not used in [Nekrassoff 1887] and
which, as will be illustrated in the examples that are to follow, also improves the
radii of the annular sectors.

Theorem 5.1. Let q(z) = zn
− azk

− 1, with integers n ≥ 3 and 1 ≤ k ≤ n − 1,
gcd(k, n) = 1, and |a| < σ(n, k). Let s and t be the positive roots of the real
equations xn

− |a|xk
− 1 = 0 and xn

+ |a|xk
− 1 = 0, respectively, and consider

the n contiguous annular sectors, each bounded by arcs of radius ρ1 such that
ρ1 < t < 1 and ρ2 such that ρ2 > s > 1, with subtended angle 2π/n, and centered
at the angle 2`π/n for ` = 0, 1, . . . , n − 1. Then each of these annular sectors
contains exactly one zero of q in its interior.

Proof. The boundary of each annular sector consists of two arcs and the two seg-
ments connecting them, and each contains a single n-th root of 1. Now, for a given
integer `, consider the annular sector centered at the angle 2`π/n that contains the
n-th root of unity exp(2`π i/n). For z on the inner arc, we have z = ρ1 exp(iζ ),
with 2`π/n−π/n ≤ ζ ≤ 2`π/n+π/n. Therefore, when z moves along the inner
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arc from one endpoint to the other, zn describes a full circle of radius ρn
1 around

the origin so that |zn
− 1| ≥ 1− ρn

1 . Because of the definition of ρ1, illustrated by
Figure 1, we then have on this arc that

(5-1) |azk
| = |a|ρk

1 < 1− ρn
1 ≤ |z

n
− 1|.

Analogously, when z lies on the outer arc, we obtain from the definition of ρ2 and,
once again illustrated by Figure 1, that

(5-2) |azk
| = |a|ρk

2 < ρ
n
2 − 1≤ |zn

− 1|.

On the segments connecting the arcs, z = x exp(2`π i/n±π i/n) with ρ1 ≤ x ≤ ρ2

so that zn
= xn exp(2`π i±π i)=−xn , from which we obtain that |zn

−1|= xn
+1.

Since |a| < σ(n, k), we have from part (c) in Lemma 2.4 that xn
− |a|xk

+ 1 > 0
for x ≥ 0, and therefore,

(5-3)
∣∣azk

∣∣= |a|xk < xn
+ 1=

∣∣zn
− 1

∣∣.
Inequalities (5-1), (5-2), and (5-3) imply that |azk

|< |zn
−1| on the boundary of the

annular sector containing the single n-th root of unity exp(2`π i/n). By Rouché
theorem, that means that this annular sector contains exactly one zero of zn

−azk
−1

in its interior. �

Theorem 5.1 establishes n open contiguous annular sectors each containing a
zero of the polynomial q, but the angles subtended by these annular sectors depend
only on n and are therefore fixed, regardless of the value of the coefficient a.
However, as |a| → 0, the zeros of q converge to the n-th roots of unity. The
annular sectors in Theorem 5.1 thus fail to capture a fundamental property of the
zeros. In what follows we will remedy this situation by refining Theorem 5.1, for
which we will need this simple lemma:

Lemma 5.2. Let α1 and α2 be the positive roots of xn
−cxk1−1 and xn

−cxk2−1,
respectively, with c > 0 and 1≤ k1, k2 ≤ n− 1. Then k1 < k2 =⇒ α1 < α2.

Proof. Assume that k1 < k2 and define f j (x) = xn
− cxk j − 1 ( j = 1, 2) so

that f j (α j ) = 0 and f j (x) < 0 for x < α j . The functions f j are of the same
form as φk so that part (a) in Lemma 2.4 implies that α1, α2 > 1 and therefore
that f2(α1) < f1(α1) = 0. Since f2(α2) = 0, this means that f2(α1) < f2(α2).
Because f2 is strictly increasing on (0,+∞), we conclude that α1 < α2. �

Theorem 5.3. Let q(z)= zn
−azk

− 1, with integers n ≥ 3 and 1≤ k ≤ n− 1 and
gcd(k, n)= 1. Let ρ1 and ρ2 be such that 0< ρ1 < t < 1< s < ρ2, where s and t
are the positive roots of xn

− |a|xk
− 1 = 0 and xn

+ |a|xk
− 1 = 0, respectively.

Set τ =min(k, n− k), and let u be the positive zero of xn
− |a|xτ − 1= 0.
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(a) If |a|< 2−τ/n , then there exists ū ≥ u such that |a|ūτ < 1, in which case, with
θ = arcsin(|a|ūτ ), the zeros of q are contained in the set

(5-4) �(q)=
{

z ∈ C : ρ1 < |z|< ρ2,

2 jπ
n
−
θ

n
≤ arg(z)≤ 2 jπ

n
+
θ

n
( j = 0, 1, . . . , n− 1)

}
,

which is composed of n disjoint annular sectors. Each annular sector contains
exactly one zero of q.

(b) If |a|(1+|a|)τ/(n−τ)<1, then we may use ū= (1+|a|)1/(n−τ)≥u, so |a|ūτ <1.
This condition on |a| is always satisfied when |a| ≤ 2(1+

√
5)−1
≈ 0.618.

Proof. We begin by observing that |a|<2−τ/n implies that |a|<1 and therefore that
|a|<σ(n, k). The bounds on |z| in the definition of�(q) follow from Theorem 5.1,
but they also follow directly from Theorem 3.1, which states that t ≤ |zi | ≤ s for
any zero zi (1≤ i ≤ n) of q.

The reciprocal polynomial of q is Q(z) = zn
+ azn−k

− 1; its zeros are 1/zi

(1≤ i ≤ n). Applying Theorem 3.1 to Q yields |1/zi | ≤ s̃, where s̃ is the positive
root of xn

−|a|xn−k
−1. From q(zi )= 0 we obtain that |zn

i −1| = |a||zi |
k
≤ |a|sk

and from Q(1/zi )= 0 that |(1/zi )
n
− 1| = |a|(1/|zi |)

n−k
≤ |a|s̃n−k , which shows

that the n-th powers of zi and 1/zi each lie in a disk centered at 1. The zeros and
their reciprocals themselves then lie in a lemniscate composed of disjoint leaves,
each leaf containing a different n-th root of unity, if their corresponding disk is
bounded away from the origin. In that case, bounds on the arguments of the zeros
can easily be obtained, just like before. Since arg(1/zi ) = − arg(zi ), either disk
can be used. To obtain the best possible bounds on the arguments, we therefore
choose the disk with the smallest radius. From Lemma 5.2 this will be the disk
with radius |a|sk when k < n− k or the disk with radius |a|s̃n−k when n− k < k.
In other words, the smallest radius is given by |a|uτ , where τ =min(k, n− k) and
u is the positive root of xn

− |a|xτ − 1.
Therefore, when |a|ūτ < 1 for some ū such that ū≥ u, we have from Lemma 2.7

with m = n, c = 1, and ρ = |a|ūτ that the aforementioned disjoint leaves are
circumscribed by disjoint annular sectors, each subtending an angle of 2θ/n with
θ = arcsin(|a|ūτ ). The annular sector containing exp(2 jπ i/n), the n-th root of
unity, for an integer j (0 ≤ j ≤ n − 1) is symmetric about a ray emanating from
the origin and forming an angle of 2 jπ/n with the real axis. These are precisely
the disjoint annular sectors of �(q). Applying Theorem 5.1, we observe that each
annular sector defined by that theorem contains exactly one of the annular sectors
of�(q), and, because each annular sector in Theorem 5.1 contains exactly one zero
of q , this zero must necessarily lie in the corresponding annular sector of �(q).
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To find a condition on |a| for which |a|uτ < 1, we note that un
− |a|uτ − 1= 0

so that the condition is equivalent to un
− 1 < 1 and therefore to u < 21/n . This

requires that (21/n)n−|a|(21/n)τ−1>0, or, equivalently, |a|<2−τ/n . A continuity
argument then ensures that for any such a there exists ū ≥ u such that |a|ūτ < 1.

For part (b), we use the upper bound on s from Lemma 2.6 with s = u and
k = τ to obtain that u ≤ (1+|a|)1/(n−τ). Setting ū = (1+|a|)1/(n−τ) then implies,
given the assumption in the statement of the theorem, that ū ≥ u and |a|ūτ < 1.
Furthermore, we observe that τ < n/2 and therefore τ/(n− τ) < 1 so that

|a|
(
1+ |a|

)τ/(n−τ)
< |a|

(
1+ |a|

)
.

Requiring that |a|(1+|a|)≤ 1 then leads to |a| ≤ (−1+
√

5)/2= 2(1+
√

5)−1. �

Remarks 5.4. (1) Easily computable values for the bounds are, once again, ob-
tained from Lemma 2.6.

(2) The value 2−τ/n , like σ(n, k), is symmetric in k and satisfies 2−1/2< 2−τ/n < 1.

(3) Although for brevity’s sake we will refrain from doing so, it can be shown
that the radii of the annular sectors that we obtained both in Theorem 4.1 and in
Theorem 5.3 are better than the corresponding ones in [Nekrassoff 1887].

(4) Theorem 5.3 establishes annular sectors that depend on a and whose subtended
angles converge to zero as a→ 0. This is in sharp contrast to the angles subtended
by the annular sectors of Satz I in [Nekrassoff 1887], which are impervious to
changes in a. Our result is valid when |a|uτ < 1, which holds for—but is not
limited to—any a satisfying |a| ≤ 0.618.

(5) An asymptotic upper bound on θ for |a| → 0 can be determined by

lim
|a|→0

θ(a)= lim
|a|→0

arcsin
(
|a|uτ

)
≤ lim
|a|→0

arcsin
(
|a|
(
1+ |a|

)τ/(n−τ))
≤ |a| +O

(
|a|2

)
.

A simple similar computation for the difference 1(a) between the radii of the
annular sectors in �(q) shows that 1(a)∼ O(|a|) as |a| → 0.

Examples 5.5. We now illustrate the zero inclusion regions from Theorem 5.3 by
considering a trinomial with n= 10 and k= 7 as before, this time with small values
for |a|. It is given by q2(z) = z10

− (0.4+ 0.6i)z7
− 1, for which a = 0.4+ 0.6i ,

|a| = 0.7211, σ(10, 7)= 1.8420, τ = 3, and 2−3/10
= 0.8123, so that |a|<σ(n, k),

and |a| < 2−τ/n . From Theorem 5.3, we can therefore expect an inclusion region
composed of ten disjoint annular sectors. The moduli of the zeros of q2 lie in the
interval [0.9407, 1.0818]. Figure 5 shows, from left to right and using the same
terminology as before, the shaded inclusion regions: (5-5) when using the bounds
from Lemma 2.6; (5-6) when using bounds, obtained after only two Newton steps
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Figure 5. Zero inclusion regions for q2.

for the computation of s and t and only one step of the method outlined in the
Appendix, with the initial points chosen as the bounds from Lemma 2.6; and (5-7)
when using the exact values of s, t , and u. The corresponding estimated ranges for
the moduli of the zeros are, respectively,

0.9254 to 1.1984,(5-5)

0.9393 to 1.0875,(5-6)

0.9393 to 1.0862.(5-7)

The small black dots are the zeros. The shaded regions become smaller from left
to right.

The corresponding (exact) optimal bounds obtained in [Nekrassoff 1887], in-
volving the solution of nonlinear equations similar to the ones in Definition 2.2, are

0.8765 to 1.2668.

The sectors obtained in [Nekrassoff 1887] strictly contain the ones obtained from
Theorem 5.3. The other references mentioned in the examples of the previous
section are not applicable here.

This time, as |a| becomes smaller, the angles subtended by the annular sec-
tors containing the zeros shrink, unlike the sectors in [Nekrassoff 1887]. Figure 6
shows, shaded in dark gray and from left to right, the significant decrease in the size

Figure 6. Zero inclusion regions for n = 10 and k = 7 with
a = 0.4+ 0.4i , a = 0.3+ 0.2i , and a = 0.1+ 0.1i .
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of our inclusion regions for a trinomial with n= 10 and k = 7 when a= 0.4+0.4i ,
a = 0.3+ 0.2i , and a = 0.1+ 0.1i , respectively, where, as in the previous section,
we just used the simple bounds from Lemma 2.6. The zeros are not indicated to
avoid obscuring the small inclusion regions.

We conclude by mentioning that the same techniques we used here for trino-
mials could also be applied to quadrinomials of the form zn

− azk
− bz` − 1 and

other lacunary polynomials. However, key quantities playing a role similar to,
for example, σ(n, k) would in those cases have to be computed numerically, and
the computations would generally become much more involved—well beyond the
scope of the present work.

Appendix

Although the bounds in Lemma 2.6, which are explicit and require no extra com-
putation, were sufficient for our purposes, better bounds lead to smaller inclusion
regions. One may therefore sometimes want better approximations to the solutions
of the real nonlinear equations we encountered before. Since that was not the focus
of this work, we briefly describe efficient ways to accomplish this here.

We need approximations from above on the roots of χk and χn−k to compute
approximations for the quantities s and t in Theorem 3.1, and approximations from
above and below for the smallest and largest positive roots r1 and r2 of ψk , respec-
tively.

First we consider

χk(x)= xn
− |a|xk

− 1.

We set y= yk and compute approximations to the solution of yn/k
−|a|y−1 = 0.

Since n/k > 1, the function yn/k is convex, so the iterates generated by Newton’s
method from an initial point to the right of the root will all be upper bounds on that
root. Such an initial point is easily obtained from Lemma 2.6 as (1+ |a|)k/(n−k).
Although Newton’s method could also be used without the transformation y = xk ,
convergence would be slower. The function χn−k can be treated analogously as χk .

Now consider

ψk(x)= xn
− |a|xk

+ 1.

Once again setting y = xk transforms the equation ψk(x)= 0 into

ψk(y1/k)= yn/k
− |a|y+ 1= 0.

We need approximations that lie between the two positive roots of ψk(y1/k). Al-
though Lemma 2.6 provides an initial point, it is not possible to use any of the
standard methods (Newton, Cauchy, Halley, et cetera) from such a point because
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the iterates may fall outside the interval determined by the roots. Instead, we ap-
proximate yn/k by a rational function of the form µ/(ν − y), which coincides in
function and derivative values with yn/k at a given point. This means that ψk(y1/k)

is approximated by

(A-1) µ

ν−y
− |a|y+ 1.

We claim that the two roots of this approximation will lie between the roots of
ψk(y1/k). One can then continue with either one, depending on which root of
ψk(y1/k) one wishes to approximate. To verify the claim, we observe that if
µ/(ν − y) approximates yn/k to first order at a given point, then (ν − y)/µ, a
linear function, must approximate y−n/k to first order, that is, it is its tangent at the
given point. But y−n/k is a convex function, so (ν− y)/µ ≤ y−n/k , and therefore
µ/(ν − y) ≥ yn/k . This means that the approximation (A-1) lies above ψk(y1/k).
Since the approximation is carried out at a point with a negative function value, the
roots of the approximation must then lie between the roots of ψk(y1/k) and will
be closer to those roots than the point at which ψk(y1/k) was approximated by the
function in (A-1). The roots of the approximation are easily computed since, for
the approximation at a point ȳ, a straightforward calculation shows that the values
of µ and ν are given by

µ=
k
n

ȳ1+n/k and ν =

(
1+ k

n

)
ȳ.

Computing the roots of the function in (A-1) is equivalent to computing the roots
of the quadratic equation

|a|y2
−
(
1+ |a|ν

)
y+µ+ ν = 0.

Figure 7 illustrates the approximation (A-1) (dotted line) to ψk(y1/k) (solid line)
at the point where ψk(y1/k) achieves its minimum.

0

1

k (y
1/k)

Figure 7. The function ψk(y1/k) (solid line) and its approxima-
tion (dotted line).
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