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DRINFELD ORBIFOLD ALGEBRAS

ANNE V. SHEPLER AND SARAH WITHERSPOON

We define Drinfeld orbifold algebras as filtered algebras deforming the skew
group algebra (semidirect product) arising from the action of a finite group
on a polynomial ring. They simultaneously generalize Weyl algebras, graded
(or Drinfeld) Hecke algebras, rational Cherednik algebras, symplectic re-
flection algebras, and universal enveloping algebras of Lie algebras with
group actions. We give necessary and sufficient conditions on defining pa-
rameters to obtain Drinfeld orbifold algebras in two general formats, both
algebraic and homological. Our algebraic conditions hold over any field
of characteristic other than two, including fields whose characteristic di-
vides the order of the acting group. We explain the connection between
Hochschild cohomology and a Poincaré–Birkhoff–Witt property explicitly
(using Gerstenhaber brackets). We also classify those deformations of skew
group algebras which arise as Drinfeld orbifold algebras and give applica-
tions for abelian groups.

1. Introduction

Results in commutative algebra are often obtained by an excursion through a larger,
noncommutative universe. Indeed, interesting noncommutative algebras often arise
from deforming the relations of a classical commutative algebra. Noncommutative
algebras modeled on groups acting on commutative polynomial rings serve as
useful tools in representation theory and combinatorics, for example, and include
symplectic reflection algebras, rational Cherednik algebras, and Lusztig’s graded
affine Hecke algebras. These algebras are deformations of the skew group algebra
generated by a finite group and a polynomial ring (upon which the group acts). They
also provide an algebraic framework for understanding geometric deformations of
orbifolds.
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Let G be a finite group acting by linear transformations on a finite dimensional
vector space V over a field k. Let S := S(V ) be the symmetric algebra with the
induced action of G by automorphisms, and let S #G be the corresponding skew
group algebra. A graded Hecke algebra (often called a Drinfeld Hecke algebra)
emerges after deforming the relations of the symmetric algebra S inside S #G: We
set each expression xy − yx (for x, y in V ) in the tensor algebra T (V ) equal to
an element of the group ring kG and consider the quotient of T (V )#G by such
relations. The quotient is a deformation of S #G when the relations satisfy certain
conditions, and these conditions are explored in many papers (see, e.g., [Drinfeld
1986; Etingof and Ginzburg 2002; Griffeth 2010; Lusztig 1989; Ram and Shepler
2003]).

Symplectic reflection algebras are special cases of graded Hecke algebras which
generalize Weyl algebras in the context of group actions on symplectic spaces. In
this paper, we replace Weyl algebras with universal enveloping algebras of Lie
algebras and complete the analogy: Weyl algebras are to symplectic reflection
algebras as universal enveloping algebras are to what? Our answer is the class
of Lie orbifold algebras, which together with graded Hecke algebras belong to a
larger class of Drinfeld orbifold algebras as we define and explore in this article.

In [Shepler and Witherspoon 2008], we explained that graded Hecke algebras are
precisely those deformations of S #G which arise from Hochschild 2-cocycles of
degree zero with respect to a natural grading on cohomology. In fact, we showed that
every such cocycle defines a graded Hecke algebra and thus lifts to a deformation
of S #G. The present investigation is partly motivated by a desire to understand
deformations of S #G arising from Hochschild 2-cocycles of degree 1.

Specifically, we assign degree 1 to each v in V and degree 0 to each g in G
and consider the corresponding grading on T (V )#G. We set each expression
x ⊗ y− y⊗ x in the tensor algebra T (V ) equal to an element of degree at most 1
(i.e., nonhomogeneous of filtered degree 1) and consider the quotient of T (V )#G by
these relations as a filtered algebra. We call the resulting algebra a Drinfeld orbifold
algebra if it satisfies the Poincaré–Birkhoff–Witt property, i.e., if its associated
graded algebra is isomorphic to S #G. Such algebras were studied by Halbout,
Oudom, and Tang [Halbout et al. 2011] over the real numbers in the special case that
G acts faithfully. We give a direct algebraic approach for arbitrary group actions
and fields here (which includes the case when the characteristic of the field divides
the order of G).

In this article, we explain in detail the connections between the Poincaré–Birkhoff–
Witt property, deformation theory, and Hochschild cohomology. We first classify
those deformations of S #G which arise as Drinfeld orbifold algebras. We then
derive necessary and sufficient conditions on algebra parameters that should facilitate
efforts to study and classify these algebras. In particular, we express the PBW
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property as a set of conditions using the diamond lemma. (Although our conditions
hold over arbitrary characteristic, we include a comparison with the theory of Koszul
rings over kG used in [Etingof and Ginzburg 2002; Halbout et al. 2011], which
requires kG to be semisimple.) We give an explicit road map from cohomology,
expressed in terms of Koszul resolutions, to the defining relations for Drinfeld
orbifold algebras. In particular, we explain how PBW conditions enjoy an elegant
description in terms of Gerstenhaber brackets.

Note that one can not automatically deduce results for Drinfeld orbifold algebras
defined over C from the results in [Halbout et al. 2011] for similar algebras defined
over R. (For example, the infinitesimal of a nontrivial deformation over C associated
to a group G acting on a complex vector space is always supported off the set R of
complex reflections in G, yet the infinitesimal of a nontrivial deformation over R

associated to that same group (acting on a real vector space of twice the dimension)
may have support including R.)

More precisely, let us consider a linear “parameter” function mapping the exterior
product V ∧ V to that part of T (V )#G having degree at most 1:

κ : V ∧ V → (k⊕ V )⊗ kG.

We drop the tensor sign when expressing elements of T (V ) and T (V )#G (as is
customary when working with noncommutative, associative algebras), writing vw
in place of v⊗w, for example. We also usually write κ(v,w) for κ(v∧w), to make
some complicated expressions clearer. Define an algebra H :=Hκ as the quotient

Hκ := T (V )#G/(vw−wv− κ(v,w) | v,w ∈ V ).

We say that Hκ satisfies the PBW condition when its associated graded algebra
gr Hκ is isomorphic to S #G (in analogy with the Poincaré–Birkhoff–Witt Theorem
for universal enveloping algebras). In this case, we call Hκ a Drinfeld orbifold
algebra. One may check that the PBW condition is equivalent to the existence of a
basis

{v
m1
1 · · · v

mn
n g : mi ∈ Z≥0, g ∈ G}

for Hκ as a k-vector space, where v1, . . . , vn is a k-basis of V .
The terminology arises because Drinfeld [1986] first considered deforming the

algebra of coordinate functions SG of the orbifold V ∗/G (over C) in this way,
although his original construction required the image of κ to lie in the group algebra
CG. Indeed, when κ has image in kG, a Drinfeld orbifold algebra Hκ is called a
Drinfeld Hecke algebra. These algebras are also called graded Hecke algebras, as
the graded affine Hecke algebra defined by Lusztig [1988; 1989] is a special case
(arising when G is a Coxeter group; see [Ram and Shepler 2003, Section 3]). Note
that symplectic reflection algebras are also examples of these algebras.



164 ANNE V. SHEPLER AND SARAH WITHERSPOON

Drinfeld orbifold algebras compose a large class of deformations of the skew
group algebra S #G, as explained in this paper. We determine necessary and
sufficient conditions on κ so that Hκ satisfies the PBW condition and interpret these
conditions in terms of Hochschild cohomology. To illustrate, we give several small
examples in Sections 3 and 4. We show that a special case of this construction is a
class of deformations of the skew group algebras U#G, where U is the universal
enveloping algebra of a finite dimensional Lie algebra upon which G acts. These
deformations are termed Lie orbifold algebras.

For example, consider the Lie algebra sl2 of 2×2 matrices over C having trace 0
with usual basis e, f, h. A cyclic group G of order 2 generated by g acts as follows:
ge = f, g f = e, gh = −h. Let V be the underlying C-vector space of sl2 and
consider the quotient

T (V )#G/(eh− he+ 2e− g, h f − f h+ 2 f − g, e f − f e− h).

We show in Example 4.3 that this quotient is a Lie orbifold algebra. Notice that
if we delete the degree 0 term (that is, the group element g) in each of the first
two relations above, we obtain the skew group algebra U(sl2)#G. If we delete the
degree 1 terms instead, we obtain a Drinfeld Hecke algebra (i.e., graded Hecke
algebra). (This is a general property of Lie orbifold algebras that we make precise
in Proposition 4.1.)

We assume throughout that k is a field whose characteristic is not 2. For our
homological results in Sections 5 through 8, we require in addition that the order of
G is invertible in k and that k contains all eigenvalues of the actions of elements of
G on V ; this assumption is not needed for the first few sections. All tensor products
will be over k unless otherwise indicated.

2. Deformations of skew group algebras

Before exploring necessary and sufficient conditions for an arbitrary quotient algebra
to define a Drinfeld orbifold algebra, we explain the connection between these
algebras and deformations of the skew group algebra S #G. Recall that S #G is the k-
vector space S⊗kG with algebraic structure given by (s1⊗g)(s2⊗h)= s1

g(s2)⊗gh
for all si in S and g, h in G. Here, gs denotes the element resulting from the group
action of g on s in S. Recall that we drop the tensor symbols and simply write, for
example, s1gs2h = s1

gs2gh. We show in the next theorem how Drinfeld orbifold
algebras arise as a special class of deformations of S #G.

First, we recall some standard notation. Let R be any algebra over the field
k, and let t be an indeterminate. A deformation of R over k[t] is an associative
k[t]-algebra with underlying vector space R[t] and multiplication determined by

r ∗ s = rs+µ1(r ⊗ s)t +µ2(r ⊗ s)t2
+ · · ·
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for all r, s ∈ R, where rs is the product of r and s in R, the µi : R⊗ R→ R are
k-linear maps that are extended to be k[t]-linear, and the above sum is finite for
each r, s.

We adapt our definition of Hκ to that of an algebra over k[t]. First, decompose
κ into its constant and linear parts: Let

κ = κC
+ κL , where κC

: V ∧ V → kG, κL
: V ∧ V → V ⊗ kG.

Write

κ =
∑
g∈G

κg g,

where each (alternating, bilinear) map κg : V × V → k⊕ V also decomposes into
constant and linear parts:

κg = κ
C
g + κ

L
g , where κC

g : V ∧ V → k, κL
g : V ∧ V → V .

Now let

Hκ,t := T (V )#G[t]/(vw−wv− κL(v,w)t − κC(v,w)t2
| v,w ∈ V ).

We call Hκ,t a Drinfeld orbifold algebra over k[t]whenever Hκ is a Drinfeld orbifold
algebra; in this case, Hκ,t is a deformation of S #G over k[t] and Hκ,t/tHκ,t ∼= S #G.

The following theorem extends [Witherspoon 2007, Theorem 3.2] (in the case
of a trivial twisting cocycle) to our setting. We note that in case κL

≡ 0, a change
of formal parameter allows us to replace t2 by t in the definition of Hκ,t , thus
giving the Drinfeld Hecke algebras (i.e., graded Hecke algebras) over k[t] (defined
in [Witherspoon 2007]) as a special case. We use standard notation for graded
linear maps: If W and W ′ are graded vector spaces, a linear map α : W → W ′ is
homogeneous of degree degα if α(Wi )⊆Wi+degα for all i .

Theorem 2.1. The Drinfeld orbifold algebras Hκ,t over k[t] are precisely the
deformations of S #G over k[t] for which degµi =−i and for which kG is in the
kernel of µi for all i ≥ 1.

The hypothesis that kG is in the kernel of all µi is a reasonable one when the
characteristic of k does not divide the order of G: In this case one may choose to
work with maps that are linear over the semisimple ground ring kG as in [Beilinson
et al. 1996; Etingof and Ginzburg 2002]. There are however alternative ways to
express Drinfeld Hecke algebras for which this hypothesis is not true. See [Ram and
Shepler 2003, Theorem 3.5] for a comparison with Lusztig’s equivalent definition of
a Drinfeld (graded) Hecke algebra in which the group action relations are deformed.
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Proof. Assume Hκ,t is a Drinfeld orbifold algebra over k[t]. Let v1, . . . , vn be a
basis of the vector space V , so that

{v
i1
1 · · · v

in
n | i1, . . . , in ∈ Z≥0}

is a basis of S. Since grHκ
∼= S #G, there is a corresponding basis B of Hκ given

by all vi1
1 · · · v

in
n g, where g ranges over all elements in G and i1, . . . , in range over

all nonnegative integers. Hence, we may identify Hκ,t with S #G[t] as a k-vector
space. As Hκ,t is associative, it defines a deformation of S #G[t] as follows.

Let r = vi1
1 · · · v

in
n g and s = v j1

1 · · · v
jn
n h be elements of B. For clarity, we denote

the product in Hκ,t by ∗. Using the relations of Hκ,t to express the product r ∗ s as
a linear combination of elements of B, we may expand uniquely:

r ∗ s = rs+µ1(r, s)t +µ2(r, s)t2
+ · · ·+µm(r, s)tm

for some m = mr,s depending on r, s, and some µ1, . . . , µm . By the definition of
Hκ,t as a quotient of T (V )#G[t], the group algebra kG is in the kernel of µi for
all i . Using the relations in Hκ , we have

r ∗ s = ((vi1
1 · · · v

in
n ) ∗ (

g(v
j1
1 · · · v

jn
n ))) gh.

We apply the relations of Hκ,t repeatedly to rewrite the product (vi1
1 · · · v

in
n ) ∗

(g(v
j1
1 · · · v

jn
n )) as an element in the k-span of B. We prove by induction on the

degree d =
∑n

l=1(il + jl) that degµi =−i . It suffices to prove this in case g = 1.
If d = 0 or d = 1, the maps µi give 0, and so they satisfy the degree requirement
trivially. Similarly, whenever a < b, va ∗ vb in Hκ,t identifies with vavb in S, and
µi (va, vb)= 0 for all i . Thus if d = 2, the nontrivial case is when some il = 1 and
some jm = 1 with l > m. Then

vl ∗ vm − vm ∗ vl = κ
L(vl, vm)t + κC(vl, vm)t2.

By construction, µ1(vl, vm)= κ
L(vl, vm), an element of V ⊗ kG, and the map µ1

has degree −1 on this input. Similarly, µ2(vl, vm)= κ
C(vl, vm), which has degree

−2 on this input.
Now assume d > 2 is arbitrary and d =

∑n
l=1(il+ jl). Without loss of generality,

assume in ≥ 1, j1 ≥ 1, and then

(v
i1
1 · · · v

in
n ) ∗ (v

j1
1 · · · v

jn
n )= (v

i1
1 · · · v

in−1
n ) ∗ (v1vn ∗ v

j1−1
1 · · · v jn

n )

+ (v
i1
1 · · · v

in−1
n ) ∗ (κL(vn, v1) ∗ v

j1−1
1 · · · v jn

n )t

+ (v
i1
1 · · · v

in−1
n ) ∗ (κC(vn, v1) ∗ v

j1−1
1 · · · v jn

n )t
2.

In the second and third terms, we see that the degree lost by applying the map is
precisely that gained in the power of t . In the first term, no degree was lost and no
power of t was gained, however the factors are one step closer to being part of a
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PBW basis. By induction, the degrees of the µi are as claimed. Equivalently, we
may give t a degree of 1, making Hκ,t a graded algebra, and argue as in [Braverman
and Gaitsgory 1996; Du et al. 2007].

Now assume that A is any deformation of S #G over k[t] for which degµi =

−i and for which kG is in the kernel of µi for all i ≥ 1. By definition, A is
isomorphic to S #G[t] as a vector space over k[t]. Fix a basis v1, . . . , vn of V . Let
φ : T (V )#G[t] → A be the k[t]-linear map given by

φ(vi1 · · · vim g)= vi1 ∗ · · · ∗ vim ∗ g

for all words vi1 · · · vim and group elements g. Since T (V ) is free on v1, . . . , vn and
by hypothesis, µi (kG, kG)= µi (kG, V )= µi (V, kG)= 0 for all i ≥ 1, the map
φ is in fact an algebra homomorphism. It may be shown by induction on degree
that φ is surjective, using the degree hypothesis on the maps µi .

We next find the kernel of φ. Let v,w ∈ V be elements of the basis. Then

φ(vw)= v ∗w = vw+µ1(v,w)t +µ2(v,w)t2,

φ(wv)= w ∗ v = wv+µ1(w, v)t +µ2(w, v)t2,

since degµi =−i for each i . Since vw = wv in S, we have

φ(vw−wv)= (µ1(v,w)−µ1(w, v))t − (µ2(v,w)−µ2(w, v))t2.

It follows that

(2.2) vw−wv− (µ1(v,w)−µ1(w, v))t − (µ2(v,w)−µ2(w, v))t2

is in the kernel of φ, since φ(vg)= vg and φ(g)= g for all v ∈ V and g ∈ G. By
the degree conditions on the µi , there are functions κL

g : V ∧ V → V ⊗ kG and
κC

g : V ∧ V → kG for all g ∈ G such that

µ1(v,w)−µ1(w, v)=
∑
g∈G

κL
g (v,w)g,(2.3)

µ2(v,w)−µ2(w, v)=
∑
g∈G

κC
g (v,w)g.(2.4)

For each g ∈ G, the functions κC
g : V ∧ V → kG and κL

g : V ∧ V → V ⊗ kG are
linear (by their definitions). Let I [t] be the ideal of T (V )#G[t] generated by all
expressions of the form (2.2), so by definition I [t] ⊂ Kerφ. We claim that in fact
I [t] = Kerφ: The quotient T (V )#G[t]/I [t] is by definition a filtered algebra over
k[t] whose associated graded algebra is necessarily S #G[t] or a quotient thereof.
By a dimension count in each degree, since I [t] ⊂ Kerφ, this forces I [t] = Kerφ.
Therefore φ induces an isomorphism from Hκ,t to A and thus the deformation A of
S #G is isomorphic to a Drinfeld orbifold algebra. �
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Remark 2.5. When working with a Drinfeld orbifold algebra, we may always
assume the relations (2.3) and (2.4) hold for v,w in V as a consequence of the
proof. In a later section, we will make more explicit this connection between the
functions µi and κ , using Hochschild cohomology in case the characteristic of
k does not divide the order of G: We will consider the µi to be cochains on the
bar resolution of S #G, and κ to be a cochain on the Koszul resolution of S. The
relations (2.3) and (2.4) then result from applying chain maps to convert between
the two resolutions. Specifically, let φ• be a map from the Koszul resolution to the
bar resolution of S (a subcomplex of the bar resolution of S #G). Then κL

=µ1◦φ2,
as we will explain.

3. Necessary and sufficient conditions

We determine conditions on the parameter κ for H = Hκ to satisfy the PBW
condition. In the setting of symplectic reflection algebras over the complex numbers,
Etingof and Ginzburg [2002, Theorem 1.3] used a generalization of [Braverman
and Gaitsgory 1996, Theorem 0.5 and Lemma 3.3] that replaces the ground field k
with the (semisimple) group ring kG. This approach was then adopted in [Halbout
et al. 2011]. Since the generalization of the work of Braverman and Gaitsgory does
not immediately apply in arbitrary characteristic, and since one of the conditions
in [Halbout et al. 2011] is missing a factor of 2, we include two proofs of the
PBW conditions for Drinfeld orbifold algebras, one using a Braverman–Gaitsgory
approach and one using Bergman’s [1978] diamond lemma. The second proof
applies in all characteristics other than 2, even those dividing the order of G, while
the first requires kG to be semisimple. (See [Khare 2007] for the diamond lemma
argument applied in a related setting and see [Levandovskyy and Shepler 2011]
for a related approach using noncommutative Gröbner theory, but in a quantum
setting.)

The set of all parameter functions

κ : V ∧ V → (k⊕ V )⊗ kG

(defining the quotient algebras Hκ ) carries the usual induced G-action: (hκ)(∗)=
h(κ(h

−1
(∗))), i.e., for all h ∈ G and v,w ∈ V ,

(hκ)(v,w)= h(κ(h
−1
v, h−1

w))=
∑
g∈G

h(κg(
h−1
v,h

−1
w)) hgh−1.

We say that κ is G-invariant when hκ = κ for all h in G. Let Alt3 denote the cyclic
group of order 3 considered as a subgroup of the symmetric group on 3 symbols.
Note that the following theorem gives conditions in the symmetric algebra S. We
allow the field k to have arbitrary characteristic other than 2.
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Theorem 3.1. The algebra Hκ is a Drinfeld orbifold algebra if and only if the
following conditions hold for each g in G and v1, v2, v3 in V :

(i) The parameter function κ is G-invariant.

(ii)
∑
σ∈Alt3

κL
g (vσ(2), vσ(3))(vσ(1)−

gvσ(1))= 0 in S = S(V ).

(iii)
∑
σ∈Alt3

∑
h∈G

κL
gh−1

(
vσ(1)+

hvσ(1), κ
L
h (vσ(2), vσ(3))

)
= 2

∑
σ∈Alt3

κC
g (vσ(2), vσ(3))(

gvσ(1)− vσ(1)).

(iv)
∑
σ∈Alt3

∑
h∈G

κC
gh−1

(
vσ(1)+

hvσ(1), κ
L
h (vσ(2), vσ(3))

)
= 0.

Proof of Theorem 3.1 using the theory of Koszul rings over kG. In this proof, we
restrict to the case where the characteristic of k does not divide the order of G. The
skew group algebra S #G is then a Koszul ring over kG, as defined by Beilinson,
Ginzburg, and Soergel (see [Beilinson et al. 1996, Definition 1.1.2 and Section 2.6]).
These authors worked with graded algebras in which the degree 0 component is
not necessarily commutative, but is a semisimple algebra. In our case the degree 0
component of S #G is the semisimple group algebra kG. The results of Braverman
and Gaitsgory [1996, Theorem 0.5 and Lemma 3.3] can be extended to this general
setting to give necessary and sufficient conditions on κ under which Hκ is a Drinfeld
orbifold algebra (cf. [Etingof and Ginzburg 2002, proof of Theorem 1.3]).

We first write Tk(V )#G as a tensor algebra over kG. We give the underlying
vector space Tk(V )⊗ kG a kG-bimodule structure by setting g(v⊗ h) := gv⊗ gh
and (v⊗ h)g := v⊗ hg for all v in Tk(V ) and all g, h in G. Let T be the tensor
algebra of V ⊗kG over kG. Then the kG-bimodule structure on V ⊗kG (restricted
from that on Tk(V )⊗ kG) extends to a kG-bimodule structure on T . We use the
abbreviation vg for each element v⊗ g in V ⊗ kG and identify V with V ⊗ 1G in
V ⊗kG. Then T := TkG(V ⊗kG) is isomorphic to Tk(V )#G as an algebra and as a
kG-module via the map sending any v1⊗kG · · ·⊗kG (vm g) in T to (v1⊗· · ·⊗vm)⊗g
in Tk(V )#G. For ease with notation (and to avoid confusion with tensor signs), we
identify these spaces. Thus, we may write the standard filtration F on T as

F0(T )= kG,

F1(T )= kG⊕ (V ⊗ kG),

F2(T )= kG⊕ (V ⊗ kG)⊕ (V ⊗ V ⊗ kG),

and so on.
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Now let P be the kG-subbimodule of T generated by all v⊗w−w⊗v−κ(v,w),
for v,w ∈ V . Let R be the kG-subbimodule generated by all v⊗w−w⊗ v, for
v,w∈V . By [Braverman and Gaitsgory 1996, Theorem 0.5], Hκ

∼=TkG(V⊗kG)/P
is a Drinfeld orbifold algebra if and only if

(I) P ∩ F1(T )= 0 and

(J) (F1(T ) · P · F1(T ))∩ F2(T )= P .

By [ibid., Lemma 3.3], if (I) holds, then (J) is equivalent to the following three
conditions, where α : R→ V ⊗ kG, β : R→ kG are maps for which

P = {r −α(r)−β(r) | r ∈ R} :

(a) Im(α⊗ id− id⊗α)⊂ R.

(b) α ◦ (α⊗ id− id⊗α)=−(β⊗ id− id⊗β).

(c) β ◦ (id⊗α−α⊗ id)≡ 0.

The maps α⊗id− id⊗α and β⊗id− id⊗β above are defined on the intersection
(R⊗kG (V ⊗ kG))∩ ((V ⊗ kG)⊗kG R). Extend κ to an alternating kG-module
map on T 2

:= T 2
kG(V ⊗ kG) so that κ(g(v⊗w)h) = κ( gv⊗ gw) gh for all g, h

in G and v,w in V . (Note that this is the only possible way to extend κ if κ is
invariant.) Then α(v⊗w−w⊗ v) = κL(v⊗w) = 1

2κ
L(v⊗w−w⊗ v) (as κ is

alternating) and for all r in R,

2α(r)= κL(r).

(Similarly, 2β(r)= κC(r) for all r in R.)
First note that (I) is equivalent to the condition that G preserves the vector space

generated by all v⊗w−w⊗ v− κL(v,w)− κC(v,w), i.e., this space contains

gv⊗ gw− gw⊗ gv− g(κL(v,w))− g(κC(v,w))

for each g ∈ G, v,w ∈ V . Equivalently, we have

κL(gv, gw)= g(κL(v,w)),

κC(gv, gw)= g(κC(v,w));

that is, both κL and κC are G-invariant, yielding (i).
We assume now that κ is G-invariant and proceed with the remaining conditions.
Condition (a): As a kG-bimodule, (R⊗kG (V ⊗ kG))∩ ((V ⊗ kG)⊗kG R) is

generated by elements of the form
∑

σ∈S3
(sgn σ)vσ(1)⊗ vσ(2)⊗ vσ(3), so we find

the image of α⊗ id− id⊗α on these elements. After reindexing, we obtain∑
σ∈Alt3

(κL(vσ(2), vσ(3))⊗ vσ(1)− vσ(1)⊗ κ
L(vσ(2), vσ(3))).
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We decompose into components indexed by g in G and shift all group elements to
the right (tensor products are over kG). The g-th summand is then

(3.2)
∑
σ∈Alt3

(κL
g (vσ(2), vσ(3))⊗

gvσ(1)− vσ(1)⊗ κ
L
g (vσ(2), vσ(3)))g,

which must be an element of R. This is equivalent to the vanishing of its image in
S #G. We rewrite this as (ii).

Condition (b): We assume condition (a) holds and thus (3.2) is an element of
R. We compute the left side of condition (b) by applying α to this element. Since
2α(r) = κL(r) for all r in R, we obtain the left side of (iii) after dividing by
2. Similarly, it is not difficult to see that the right side of condition (b) agrees
with the right side of (iii): The image of

∑
σ∈S3

(sgn σ)vσ(1)⊗ vσ(2)⊗ vσ(3) under
−(β⊗ id− id⊗β) is

−

∑
σ∈Alt3

g∈G

(κC
g (vσ(2), vσ(3))⊗

gvσ(1)− vσ(1)⊗ κ
C
g (vσ(2), vσ(3)))g

(as an element of V ⊗ kG) which we rewrite as

−

∑
σ∈Alt3

g∈G

(κC
g (vσ(2), vσ(3))(

gvσ(1)− vσ(1)))g.

Condition (c): An analysis similar to that for condition (b) yields (iv). �

Proof of Theorem 3.1 using the diamond lemma. In this proof, the characteristic of
k may be 0 or any odd prime. We apply [Bergman 1978] to obtain conditions on
κ equivalent to existence of a PBW basis and then argue that these conditions are
equivalent to those in the theorem. We suppress details and merely record highlights
of the argument (which requires one to fix a monomial ordering and check all
overlap/inclusion ambiguities on the set of relations defining Hκ ), as described, for
example, in [Bueso et al. 2003, Chapter 3]). Fix a basis v1, . . . , vn of V and let B be
our prospective PBW basis: Set B={vα1

1 · · · v
αn
n g :αi ∈Z≥0, g ∈G}⊂ T (V )⊗kG,

a subset of the free algebra F generated by v in V and g in G.
Using the diamond lemma, one may show that necessary and sufficient conditions

for Hκ to satisfy the PBW condition arise from expanding conjugation and Jacobi
identities in Hκ : For every choice of parameter κ , and for every v,w in V and h in
G, the elements

(1) h[v,w]H h−1
− [

hv, hw]H

and

(2) [vi , [v j , v`]H]H + [v j , [v`, vi ]H]H + [v`, [vi , v j ]H]H
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are always zero in the associative algebra H. Here, [a, b]H := ab− ba is just the
commutator in H of a, b ∈H. Using the relations defining H, we move all group
elements to the right and arrange indices of basis vectors in increasing order (apply
straightening operations).

An analysis of elements of type (1) shows that a PBW property on Hκ forces
hκ = κ for all h in G. Indeed, this condition is equivalent to

κh−1gh(v,w) =
h−1
(κg(

hv, hw)) for all g, h ∈ G, v, w ∈ V .

We next write each element of type (2) above in the image under the projection
map π :F→H of some f (vi , v j , v`) in the k-span of (potentially) nonzero elements
of B. Take (for example) the index set {i, j, `} = {1, 2, 3}. In Hκ ,

[v1, [v2, v3]H]H = v1κ(v2, v3)− κ(v2, v3)v1

=
∑

g∈G
v1κ

C
g (v2, v3)g− κC

g (v2, v3)gv1+ v1κ
L
g (v2, v3)g− κL

g (v2, v3)gv1

=
∑

g∈G

(
v1κ

C
g (v2, v3)− κ

C
g (v2, v3)

gv1+ v1κ
L
g (v2, v3)− κ

L
g (v2, v3)

gv1
)

g

=
∑

g∈G

(
κC

g (v2, v3)(v1−
gv1)+ v1κ

L
g (v2, v3)− κ

L
g (v2, v3)

gv1
)

g.

We apply further relations in H to this last expression to rearrange the vectors
v1, . . . , vn by adding terms of lower degree. Thus, if we express f = f (v1, v2, v3)

as f0+ f1+ f2 where fi has degree i in the free algebra F, then π( f2) and∑
g∈G

∑
σ∈Alt3

κL
g (vσ(2), vσ(3))(vσ(1)−

gvσ(1)) g

differ only by a rearrangement of vectors: They both project to the same element
under T (V )⊗ kG→ S(V )⊗ kG. But f2 is zero in the free algebra F if and only
if its image is zero in S(V )⊗ kG, yielding (ii).

The other conditions of the theorem require a bit of manipulation. One may
show that

f =
∑
σ∈Alt3

g∈G

(
κC

g (vσ(2), vσ(3))(vσ(1)−
gvσ(1))

+

∑
a<b

(Dg
ab+ Dg

ba) vavb− Dg
ab κ(va, vb)

)
g,

where the Dg
ab in k are constants determined by the action of G on V and the

values of κ expanded in terms of the fixed basis of V . Specifically, Dg
ab :=

δb,σ (1)c
σ(2),σ (3),g
a −cσ(2),σ (3),gb d σ(1),ga where δa,b is the Kronecker delta symbol and

where gva =
∑

b d a,g
b vb and κL

g (va, vb)=
∑

m ca,b,g
m vm .
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Note that f2 is zero if and only if
∑

σ∈Alt3(D
g
ab+ Dg

ba)= 0 for all a < b and g
in G. Thus, whenever f2 is zero, we may substitute Dg

ab =−Dg
ba in the equation

0= 2( f0+ f1) to see that f0+ f1 vanishes exactly when

2
∑
g∈G

κC(vσ(2), vσ(3))(vσ(1)−
gvσ(1))g =

∑
σ∈Alt3

g∈G

∑
a<b

(Dg
ab− Dg

ba)κ(va, vb) g.

We write the right-hand side as a sum over all a and b (as κ is alternating) and
obtain ∑

σ∈Alt3
g∈G

κ
(
κL

g (vσ(2), vσ(3)), vσ(1)+
gvσ(1)

)
g.

This yields (iii) and (iv) of the theorem whenever (ii) holds.
Thus, the four conditions of the theorem are equivalent to G-invariance of κ and

the vanishing of all f0, f1, f2 (for any i, j, `), which in turn is equivalent to the
PBW property for Hκ by careful application of the diamond lemma. �

We illustrate the theorem by giving two examples for which κC is identically 0.
In the next section we give an example for which κL and κC are both nonzero.

Example 3.3. Let G ∼= Z/2Z×Z/2Z, with generators g and h, act on the complex
vector space V having basis x, y, z by:

gx =−x, g y = y, gz =−z,
h x =−x, h y =−y, hz = z.

Define an alternating bilinear map κL
: V × V → V ⊗ kG by

κL(x, y)= zh, κL(y, z)= xgh, κL(z, x)= yg,

and let κC
≡ 0. One checks that κL is G-invariant and that conditions (ii) and (iii)

of Theorem 3.1 hold. Condition (iv) holds automatically since κC is identically 0.
The corresponding Drinfeld orbifold algebra is

T (V )#G/([x, y] − zh, [y, z] − xgh, [z, x] − yg ).

Example 3.4. Let G = S3 act by permutations on a basis v1, v2, v3 of a complex
three-dimensional vector space V . Let ξ be a primitive cube root of 1, and let

w1 = v1+ ξv2+ ξ
2v3, w2 = v1+ ξ

2v2+ ξv3, w3 = v1+ v2+ v3.

Define an alternating bilinear map κL
: V × V → V ⊗ kG by

κL(w1, w2)= w3((1, 2, 3)− (1, 3, 2)), κL(w2, w3)= 0, κL(w1, w3)= 0,

and let κC
≡ 0, where (1, 2, 3), (1, 3, 2) are the standard 3-cycles in S3. One

checks that κL is G-invariant and that conditions (ii) and (iii) of Theorem 3.1 hold.
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Condition (iv) holds automatically since κC is identically zero. The corresponding
Drinfeld orbifold algebra is

T (V )#G/( [w1, w2] −w3((1, 2, 3)− (1, 3, 2)), [w2, w3], [w1, w3] ).

The conditions of Theorem 3.1 simplify significantly when κL is supported on
the identity element 1 := 1G of G alone, and we turn to this interesting case in the
next section.

4. Lie orbifold algebras

The universal enveloping algebra of a finite-dimensional Lie algebra is a special
case of a Drinfeld orbifold algebra. We extend universal enveloping algebras by
groups and explore deformations of the resulting algebras in this section. Assume
throughout this section that the linear part of our parameter κ is supported on the
identity 1= 1G of G alone, that is, κL

g ≡ 0 for all g ∈ G−{1}. It is convenient in
this section to use standard notation from the theory of Lie algebras and Drinfeld
Hecke algebras (i.e., graded Hecke algebras): Let

ag : V ∧ V → k (for all g in G)

and

[ · , · ]g : V ∧ V → V

be linear functions where g := V as a vector space with the additional structure
given by the map [ · , · ]g. Define an algebra H :=H(g; ag, g ∈ G) as the quotient

H= T (V )#G
/(
vw−wv− [v,w]g−

∑
g∈G

ag(v,w)g | v,w ∈ V
)
.

Then H is a filtered algebra by its definition. We say that H is a Lie orbifold algebra
when it satisfies the PBW condition, that is, when grH ∼= S #G. We determine
necessary and sufficient conditions on the functions [ · , · ]g and ag for H to be a
Lie orbifold algebra. We will see that the PBW condition implies that the bracket
[ · , · ]g endows g= V with the structure of a Lie algebra (carrying an action of G
by automorphisms), thus explaining the choice of notation and terminology.

Proposition 4.1. The quotient

H= T (V )#G
/(
v⊗w−w⊗ v− [v,w]g−

∑
g∈G

ag(v,w)g | v,w ∈ V
)

defines a Lie orbifold algebra if and only if three conditions hold:

1. The bracket [ · , · ]g is a G-invariant Lie bracket (and thus g := V is a Lie
algebra upon which G acts by automorphisms).
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2. The parameters {ag}g∈G define a Drinfeld Hecke algebra, that is,

ahgh−1(v,w)= ag(
hv, hw) for all v,w ∈ V and g, h ∈ G,

and the Jacobi identity holds: for all vi ∈ V and g ∈ G,

0= ag(v2, v3)(v1−
gv1)+ ag(v3, v1)(v2−

gv2)+ ag(v1, v2)(v3−
gv3).

3. The Lie bracket and Drinfeld Hecke algebra structures are compatible:

0= ag(v3, [v1, v2]g)+ ag(v1, [v2, v3]g)+ ag(v2, [v3, v1]g)

for all vi ∈ V and g ∈ G.

Proof. Theorem 3.1(i) is equivalent to G-invariance of the Lie bracket [ · , · ]g and
the first equation in condition 2.

We next examine conditions (ii), (iii), and (iv) of Theorem 3.1, resulting from
the Jacobi identity on H,

0= [v1, [v2, v3]H]H+ [v2, [v3, v1]H]H+ [v3, [v1, v2]H]H for all vi ∈ V,

after setting κL(v,w) = [v,w]g and κC(v,w) =
∑

g∈G ag(v,w)g. When g = 1,
(ii) holds automatically, and (iii) is equivalent to the Jacobi identity on [ · , · ]g. For
g 6= 1, (iii) can be rewritten as

0=
∑
σ∈Alt3

ag(vσ(2), vσ(3))(
gvσ(1)− vσ(1)),

which is the second part of condition 2 in the statement of the proposition. Finally,
Theorem 3.1(iv) reduces to condition 3. In particular, when H satisfies the PBW
condition, we may view the vector space V as a Lie algebra g under a Lie bracket
[ · , · ]g. �

In the nonmodular setting, we may use previous analysis of Drinfeld Hecke
algebras (i.e., graded Hecke algebras) to interpret the conditions in the proposition in
some detail. Conditions on the functions ag result from a comparison of condition 2
in the proposition and the invariance condition of Theorem 3.1(i) with [Ram and
Shepler 2003, Lemma 1.5, equations (1.6) and (1.7), and Theorem 1.9]: If char(k)
does not divide |G|, then the Jacobi condition 2 in Proposition 4.1 is equivalent to
the condition that for each g 6=1, either ag≡0 or Ker ag=V g with codim(V g)=2.

We further interpret the restrictive condition 3 in Proposition 4.1: Fix g in G with
codim V g

= 2. Choose vectors v1, v2 spanning (V g)⊥ and v3, . . . , vn spanning V g.
This condition then tells us that after expanding with respect to the basis v1, . . . , vn ,
the coefficient of v2 in [v2, vi ]g is equal to the coefficient of v1 in [vi , v1]g for all
i ≥ 3.
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Remark 4.2. We view Lie orbifold algebras as generalizations both of symplectic
reflection algebras and of universal enveloping algebras with group actions. Indeed,
when H is a Lie orbifold algebra, we can replace each function ag with the zero
function and recover the skew group algebra U#G for G acting as automorphisms on
U, the universal enveloping algebra of a finite dimensional Lie algebra. Alternatively,
we can replace the linear parameter by zero, i.e., replace [ · , · ]g by the zero bracket,
and recover a Drinfeld Hecke algebra (a symplectic reflection algebra in the special
case that G acts symplectically). Thus, Lie orbifold algebras also include Drinfeld
Hecke algebras (and Lusztig’s graded affine Hecke algebra, in particular) as special
cases. We illustrate by giving details for the example mentioned in the introduction.

Example 4.3. Let g= sl2 over C with basis e, f , h and Lie bracket defined by

[e, f ] = h, [h, e] = 2e, [h, f ] = −2 f.

Let G be a cyclic group of order 2 generated by g acting on sl2 by

ge = f, g f = e, gh =−h.

The bracket is G-invariant under this action. Let ag be the skew-symmetric form
on V = sl2 defined by

ag(e, h)= 1, ag(h, f )= 1, ag( f, e)= 0.

This function is G-invariant, and Ker ag = V g is the linear span of e+ f , which
has codimension 2 in V . Furthermore, ag is compatible with the Lie bracket, that is,
condition 3 of Proposition 4.1 holds. (It suffices to check this condition for v1 = e,
v2 = f , v3 = h:

ag(h, [e, f ])+ ag(e, [ f, h])+ ag( f, [h, e])= 0.)

Set a1 equal to the zero function. Then T (V )#G modulo the ideal generated by

eh− he+ 2e− g, h f − f h+ 2 f − g, e f − f e− h

is a Lie orbifold algebra.
In fact, Theorem 3.1 shows there are only two parameters’ worth of Lie orbifold

algebras capturing this action of G on sl2: Every such Lie orbifold algebra has the
form

T (V )#G/(eh− he+ 2e− t2g+ t1, h f − f h+ 2 f − t2g+ t1, e f − f e− h)

for some scalars t1, t2 in C. (Note that t1 = t2 = 0 defines the universal enveloping
algebra extended by G.)
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5. Koszul resolution

Hochschild cohomology catalogues and illuminates deformations of an algebra.
Indeed, every deformation of a k-algebra R corresponds to an element in degree 2
Hochschild cohomology, HH2(R). Isomorphic deformations define cohomologous
cocycles. We isolated in [Shepler and Witherspoon 2008] the cocycles that define
Drinfeld Hecke algebras (i.e., graded Hecke algebras): Drinfeld Hecke algebras are
precisely those deformations of S #G whose corresponding Hochschild 2-cocycles
are “constant”. In the next section, we explain this statement, and we more generally
express conditions for a quotient of T (V )#G to define a Drinfeld orbifold algebra in
terms of the Hochschild cohomology of S #G and its graded Lie structure. Here we
establish preliminaries and notation. From now on, we assume that the characteristic
of k does not divide the order of G and that k contains the eigenvalues of the actions
of elements of G on V . (For example, take k algebraically closed of characteristic
coprime to |G|.)

Recall that we denote the image of v in V under the action of any g in G by gv.
Write V ∗ for the contragredient (or dual) representation. Given any basis v1, . . . , vn

of V , let v∗1 , . . . , v
∗
n denote the dual basis of V ∗. Given any set A carrying an action

of G, we write AG for the subset of elements invariant under the action. Again, we
write V g for the g-invariant subspace of V . Since G is finite, we may assume G
acts by isometries on V (i.e., G preserves a Hermitian form on V ).

The Hochschild cohomology HH•(S #G) is the space Ext•(S #G)e(S #G, S #G),
where (S #G)e= (S #G)⊗(S #G)op acts on S #G by multiplication, one tensor factor
acting on the left and the other tensor factor acting on the right. We also examine
the Hochschild cohomology HH•(S, S #G) := Ext•Se(S, S #G) where Se

= S⊗ Sop

and, more generally, HH•(S,M) := Ext•Se(S,M) for any Se-module M .
Let C be a set of representatives of the conjugacy classes of G. For any g in

G, let Z(g) be the centralizer of g. Since we have assumed that the characteristic
of k does not divide the order of G, there is a G-action giving the first of the
following isomorphisms of graded vector spaces (see, for example, Ştefan [1995,
Corollary 3.4]):

(5.1) HH•(S #G) ∼= HH•(S, S #G)G

∼=

(⊕
g∈G

HH•(S, Sg)
)G
∼=

⊕
g∈C

HH•(S, Sg)Z(g).

The first line is in fact a graded algebra isomorphism; it follows from applying
a spectral sequence. The second isomorphism results from decomposing the bi-
module S #G into the direct sum of components S g. The action of G permutes
these components via the conjugation action of G on itself, and thus the third
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isomorphism is a canonical projection onto a set of representative summands. Each
space HH•(S, Sg)= Ext•Se(S, Sg) may be determined explicitly using the Koszul
resolution of S (a free resolution of S as an Se-module) that we recall next.

The Koszul resolution K •(S) is defined by K0(S)= Se and

(5.2) K p(S)= Se
⊗
∧p
(V )

for p ≥ 1, with differentials

(5.3) dp(1⊗ 1⊗ v j1 ∧ · · · ∧ v jp)

=

p∑
i=1
(−1)i+1(v ji ⊗ 1− 1⊗ v ji )⊗ (v j1 ∧ · · · ∧ v̂ ji ∧ · · · ∧ v jp)

for all v j1, . . . , v jp ∈ V (e.g., see [Weibel 1994, §4.5]). We apply HomSe(−, S g)
to each term of the Koszul resolution and then make the identifications

HomSe
(
Se
⊗
∧p
(V ), Sg

)
∼= Homk

(∧pV, Sg
)
∼= Sg⊗

∧pV ∗

for each g in G. Thus we write the set of cochains arising from the Koszul resolution
(from which the cohomology classes emerge) as vector forms on V tagged by group
elements: Let

(5.4) C • =
⊕
g∈G

C •g, where C p
g := Sg⊗

∧pV ∗ for each g ∈ G.

We call C •g the space of cochains supported on g. Similarly, for any subset X of G,
we define C •X := ⊕g∈X C •g, the set of cochains supported on X . We say a cochain
in C • is supported off a subset X of G if it lies in ⊕g /∈X C •g. Note that each element
of G permutes the summands of C • via the conjugation action of G on itself.

From the space C • of cochains, we define a space of representatives of cohomol-
ogy classes: Let

(5.5) H •

:=

⊕
g∈G

S(V g)g⊗
∧•− codim V g

(V g)
∗
⊗
∧codim V g

((V g)⊥)∗.

Then H •
⊂ C • with

H • ∼= HH•(S, S #G) and (H •

)G ∼= HH•(S, S #G)G ∼= HH•(S #G).

(See [Shepler and Witherspoon 2012, Proposition 5.11 and (6.1)] for this formulation
of the Hochschild cohomology. It was first computed independently in [Farinati
2005] and [Ginzburg and Kaledin 2004].) In particular it follows that (H 2)G is
supported on elements g for which codim V g

∈ {0, 2}, since an element of (H 2)G is
invariant under the action of each group element g. See [Shepler and Witherspoon
2008, Lemma 3.6] for details.
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The grading on the polynomial ring S = S(V ) induces a grading on the set of
cochains by polynomial degree: We say a cochain in C • has polynomial degree i
if the factors in S in the expression (5.4) are all polynomials of degree i . We say
a cochain is homogeneous when its polynomial factors in S are homogeneous. A
constant cochain is then one of polynomial degree 0 and a linear cochain is one of
homogeneous polynomial degree 1. The cochains C • are filtered by polynomial
degree: C •0⊂C •1⊂C •2⊂ · · · , where C •i is the subspace of C • consisting of cochains
of polynomial degree at most i .

Definition 5.6. We define a cochain bracket map on the subspace generated by
linear and constant 2-cochains: Let [ · , · ] : C2

1 ×C2
1 → C3

1 be the symmetric map
defined by setting [α, β](v1, v2, v3) (for any v1, v2, v3 in V ) to∑

g,h∈G
σ∈Alt3

[
αgh−1 (βh(vσ(1) ∧ vσ(2))∧ vσ(3))+βgh−1 (αh(vσ(1) ∧ vσ(2))∧ vσ(3))

]
g

if α and β are linear, to∑
g,h∈G
σ∈Alt3

αgh−1 (βh(vσ(1) ∧ vσ(2))∧ vσ(3)) g

if α is constant and β is linear, and to 0 for constant α and β.

We will see in the next section that this definition gives a representative cochain
for a class in cohomology HH•(S #G) of the Gerstenhaber bracket of α and β when
they are cocycles.

6. Gerstenhaber bracket

In this section we recall the definition of the Gerstenhaber bracket on Hochschild
cohomology, defined on the bar resolution, and show how it is related to the cochain
bracket map of Definition 5.6. Recall the definition of the bar resolution of a
k-algebra R: It has pth term R⊗(p+2) and differentials

δp(r0⊗ · · ·⊗ rp+1)=

p∑
i=0

(−1)ir0⊗ · · ·⊗ riri+1⊗ · · ·⊗ rp+1

for all r0, . . . , rp+1 ∈ R. From this one may derive the standard definition of a
Hochschild 2-cocycle: It is an element µ of Homk(R⊗ R, R)∼= HomRe(R⊗4, R)
for which

(6.1) µ(rs, u)+µ(r, s)u = µ(r, su)+ rµ(s, u)

for all r, s, u ∈ R. (Here we have further identified the linear map µ on R⊗ R with
a bilinear map on R× R.)
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Lemma 6.2. Let µ be a Hochschild 2-cocycle on S #G whose kernel contains kG.
Then

µ(rg, s)= µ(r, gs)= µ(r, gs)g

for all r, s in S and g in G.

Proof. Apply (6.1) to r, g, s to obtain µ(rg, s)+µ(r, g)s = µ(r, gs)+ rµ(g, s).
By hypothesis, µ(r, g)= 0=µ(g, s), so µ(rg, s)=µ(r, gs). Now apply (6.1) to r ,
gs, g to obtain µ(r(gs), g)+µ(r, gs)g = µ(r, (gs)g)+ rµ(gs, g). By hypothesis,
µ(r(gs), g) = 0 = µ(gs, g), so µ(r, gs)g = µ(r, (gs)g). Since gs = (gs)g, the
lemma follows. �

We will also need the definition of the circle operation on Hochschild cohomology
in degree 2: If R is a k-algebra and α and β are elements of HomRe(R⊗4, R) ∼=
Homk(R⊗2, R), then α ◦β ∈ Homk(R⊗3, R) is defined by

α ◦β(r1⊗ r2⊗ r3) := α
(
β(r1⊗ r2)⊗ r3

)
−α

(
r1⊗β(r2⊗ r3)

)
for all r1, r2, r3 ∈ R. The Gerstenhaber bracket is then

[α, β] := α ◦β +β ◦α.

This bracket is well-defined on cohomology classes, but the circle operation is
not. (See [Gerstenhaber 1963, §7] for the circle operation and brackets in other
degrees.) In our setting, R = S #G, and we now express the Gerstenhaber bracket
on input from the Koszul resolution using the cochain bracket of Definition 5.6. In
the theorem below, we fix a choice of isomorphism HH•(S #G)∼= (H •

)G where H •

is given by (5.5). (See [Shepler and Witherspoon 2012, Proposition 5.11 and (6.1)].)

Theorem 6.3. Consider two cohomology classes α′, β ′ in HH2(S #G) represented
by cochains α, β in (H 2)G of polynomial degree at most 1. Then the Gerstenhaber
bracket in HH3(S #G) of α′ and β ′ is represented by the cochain bracket [α, β] of
Definition 5.6.

Proof. We use the chain map φ• from the Koszul resolution K •(S) to the bar
resolution for S = S(V ) given in each degree by

(6.4) φp(1⊗ 1⊗ v j1 ∧ · · · ∧ v jp)=
∑

σ∈Symp

sgn(σ )⊗ v jσ(1) ⊗ · · ·⊗ v jσ(p) ⊗ 1

for all v j1, . . . , v jp ∈ V , where Symp denotes the symmetric group on p symbols.
We may view functions on the bar resolution in cohomological degree 2 as functions
on K2(S)= Se

⊗
∧2
(V ) simply by composing with φ2.

We will also need a choice ψ• of chain map from the bar to the Koszul resolution.
The particular choice of ψ• does not matter here, but we will assume that ψφ is
the identity map and that ψ2(1⊗ a⊗ b⊗ 1) = 0 if either a or b is in the field k.
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(For example, one could take ψ• so that ψ2(1⊗ vi ⊗ v j ⊗ 1) = 1⊗ 1⊗ vi ∧ v j

for i < j and 0 otherwise, for some fixed basis v1, . . . , vn of V . See [Shepler and
Witherspoon 2011] for explicit constructions of such maps ψ•; we will not need
them here.) Note that although ψ2 may not be a kG-homomorphism, the map ψ2

preserves the action of G on the image of φ2. For our purposes here, this implies
that we do not need to average over G when computing brackets, as is done, for
example, in [Shepler and Witherspoon 2012]. We also note that every chain map ψ
for which ψφ is the identity map has the property that

ψ2(1⊗ v⊗w⊗ 1− 1⊗w⊗ v⊗ 1)= 1⊗ 1⊗ v∧w

for all v,w in V . Thus on elements of this form, ψ2 is independent of choice of
basis of V .

We extend each function γ on the bar complex for S to a function on the bar
complex for S #G in a standard way: In degree 2, we require kG to be in the kernel
of γ and set

γ (1⊗ s1g1⊗ s2g2⊗ 1) := γ (1⊗ s1⊗
g1s2⊗ 1)g1g2

for γ ∈HomSe(S⊗4, S #G), s1, s2 ∈ S, g1, g2 ∈ G. Compare with Lemma 6.2. (See
[Căldăraru et al. 2004, Theorem 5.4] for a more general statement.)

We apply the chain map ψ to convert α and β to functions on the bar complex,
execute the Gerstenhaber bracket, and apply φ to convert back to a function on
the Koszul complex. The induced operation on cochains arising from the Koszul
complex is thus

[α, β] := φ∗(ψ∗(α) ◦ψ∗(β))+φ∗(ψ∗(β) ◦ψ∗(α)).

Note there is no guarantee that [α, β] is in the chosen space H 3 of representatives
of cohomology classes, however there is a unique element of H 3 to which it is
cohomologous.

We compute separately the two corresponding circle operations, keeping in mind
that they are not well-defined on cohomology, and so must be combined. (Again,
we identify HomSe(S⊗(p+2), ∗) with Homk(S⊗p, ∗) and HomSe

(
Se
⊗
∧pV, ∗

)
with

Homk
(∧pV, ∗

)
, dropping extra tensor factors of 1.) Then

(α ◦β)(v1∧v2∧v3)

=
(
ψ∗(α)◦ψ∗(β)

)
φ(v1∧v2∧v3)

=
(
ψ∗(α)◦ψ∗(β)

) ∑
σ∈S3

sgn σ vσ(1)⊗vσ(2)⊗vσ(3)

=
∑
σ∈S3

sgn σ ψ∗(α)
(
ψ∗(β)(vσ(1)⊗vσ(2))⊗vσ(3)−vσ(1)⊗ψ

∗(β)(vσ(2)⊗vσ(3))
)
.
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We may rewrite the sum over the alternating group instead to obtain

(α ◦β)(v1 ∧ v2 ∧ v3)

=
∑

σ∈Alt3
ψ∗(α)

(
ψ∗(β)(vσ(1)⊗ vσ(2))⊗ vσ(3)−ψ

∗(β)(vσ(2)⊗ vσ(1))⊗ vσ(3)
)

−ψ∗(α)
(
vσ(1)⊗ψ

∗(β)(vσ(2)⊗ vσ(3))− vσ(1)⊗ψ
∗(β)(vσ(3)⊗ vσ(2))

)
.

But ψ∗(β)(v ⊗ w − w ⊗ v) = β(v ∧ w) for all vectors v,w in V , and hence
Lemma 6.2 implies that the sum above is just

(6.5)
∑

σ∈Alt3
ψ∗(α)

(
β(vσ(1) ∧ vσ(2))⊗ vσ(3)− vσ(1)⊗β(vσ(2) ∧ vσ(3))

)
=

∑
σ∈Alt3

h∈G

ψ∗(α)
(
βh(vσ(1) ∧ vσ(2))h⊗ vσ(3)− vσ(1)⊗βh(vσ(2) ∧ vσ(3))h

)
=

∑
σ∈Alt3

h∈G

ψ∗(α)
(
βh(vσ(1) ∧ vσ(2))⊗

hvσ(3)− vσ(1)⊗βh(vσ(2) ∧ vσ(3))
)

h.

First assume the polynomial degree of β is 0. Then each βh(vi ∧ v j ) is constant.
But ψ∗(α)

(
a⊗ b

)
is zero for either a or b in k, and the last expression is thus zero.

Hence, α ◦β(v1 ∧ v2 ∧ v3) is zero for β of polynomial degree 0.
Now assume β is homogeneous of polynomial degree 1. We claim that for any

h in G and any u1, u2, u3 in V ,

(6.6)
∑
σ∈Alt3

βh(uσ(1) ∧ uσ(2))⊗ huσ(3) =
∑
σ∈Alt3

βh(uσ(1) ∧ uσ(2))⊗ uσ(3).

The equation clearly holds for h acting trivially on V . One may easily verify the
equation for h not in the kernel of the representation G→GL(V ) by fixing a basis
of V consisting of eigenvectors for h and using the fact that any nonzero βh is
supported on

∧2
(V h)⊥ with codim V h

= 2; see (5.5).
We use (6.6) and the fact that ψ∗(α)(v⊗w−w⊗ v)= α(v∧w) for all vectors

v,w in V to simplify (6.5):

(α ◦β)(v1 ∧ v2 ∧ v3)(6.7)

=
∑

σ∈Alt3
h∈G

ψ∗(α)
(
βh(vσ(1) ∧ vσ(2))⊗

hvσ(3)− vσ(1)⊗βh(vσ(2) ∧ vσ(3))
)

h

=
∑

σ∈Alt3
h∈G

ψ∗(α)
(
βh(vσ(1) ∧ vσ(2))⊗ vσ(3)− vσ(1)⊗βh(vσ(2) ∧ vσ(3))

)
h

=
∑

σ∈Alt3
h∈G

ψ∗(α)
(
βh(vσ(1) ∧ vσ(2))⊗ vσ(3)− vσ(3)⊗βh(vσ(1) ∧ vσ(2))

)
h
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=
∑

σ∈Alt3
h∈G

α
(
βh(vσ(1) ∧ vσ(2))∧ vσ(3)

)
h

=
∑

σ∈Alt3
g,h∈G

αg
(
βh(vσ(1) ∧ vσ(2))∧ vσ(3)

)
gh.

A similar computation for β ◦α together with reindexing over the group yields the
result. �

The Gerstenhaber bracket takes a particularly nice form when we consider square
brackets of linear cocycles and brackets of linear with constant cocycles:

Corollary 6.8. Consider cohomology classes α′, β ′ in HH2(S #G) represented by a
constant cocycle α and a linear cocycle β in (H 2)G , respectively. The Gerstenhaber
bracket in HH3(S #G) of β ′ with itself is represented by the cocycle

[β, β](v1, v2, v3)= 2
∑

g,h∈G
σ∈Alt3

βgh−1
(
βh(vσ(1) ∧ vσ(2))∧ vσ(3)

)
g;

that of α′ with β ′ is represented by the cocycle

[α, β](v1, v2, v3)=
∑

g,h∈G
σ∈Alt3

αgh−1
(
βh(vσ(1) ∧ vσ(2))∧ vσ(3)

)
g.

7. PBW condition and Gerstenhaber bracket

In this section, we give necessary and sufficient conditions on a parameter to define
a Drinfeld orbifold algebra in terms of Hochschild cohomology. We interpret
Theorem 3.1 in terms of cocycles and the Gerstenhaber bracket in cohomology
as realized on the set of cochains arising from the Koszul resolution. Our results
should be compared with [Halbout et al. 2011, §2.2, (4), (5), (6)], where a factor of 2
is missing from the right side of (5). See also [Khare 2007, (1.9)] for a somewhat
different setting.

We want to describe precisely which parameter maps κ result in a quotient Hκ

that satisfies the PBW condition, that is, defines a Drinfeld orbifold algebra. The
algebras Hκ are naturally expressed and analyzed in terms of the Koszul resolution
of S. Recall, κ :

∧2V → S⊗CG with κ =
∑

g∈G κgg. The parameter map κ as
well as its linear and constant parts, κL and κC , thus define cochains on the Koszul
resolution and we identify κ, κL , κC with elements of C •. Indeed, for each g ∈ G,
the functions κgg, κL

g g, and κC
g g (from

∧2V to Sg) define elements of the cochain
complex C •g of (5.4).

We now determine a complete set of necessary and sufficient conditions on
these parameters regarded as cochains in Hochschild cohomology HH•(S #G)∼=
HH•(S, S #G)G . (We use the chain maps converting between resolutions discussed
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in Section 6.) The significance of the following lemma and theorem thereafter lies
in the expression of the PBW property in terms of the Gerstenhaber bracket in
cohomology. We distinguish a cochain [α, β] on the Koszul resolution (5.2) from
its cohomology class arising from the induced Gerstenhaber bracket by using the
phrase “as a cochain” where appropriate. (Recall that d is the differential on the
Koszul resolution defined as in (5.3).)

Lemma 7.1. In Theorem 3.1,

• condition (ii) holds if and only if κL is a cocycle, i.e., d∗κL
= 0;

• for κL in H •, condition (iii) is equivalent to [κL , κL
] = 2d∗κC as cochains;

• for κL in H •, condition (iv) is equivalent to [κC , κL
] = 0 as a cochain.

Proof. The cochain d∗κL is zero exactly when κL takes to 0 all input of the form

d3(v1 ∧ v2 ∧ v3)= (v1⊗ 1− 1⊗ v1)⊗ v2 ∧ v3

− (v2⊗ 1− 1⊗ v2)⊗ v1 ∧ v3

+ (v3⊗ 1− 1⊗ v3)⊗ v1 ∧ v2,

in other words, when

0= v1κ
L(v2, v3)− κ

L(v2, v3)v1

+ v2κ
L(v3, v1)− κ

L(v3, v1)v2

+ v3κ
L(v1, v2)− κ

L(v1, v2)v3

in S #G. This is equivalent to

0= v1κ
L
g (v2, v3)g− κL

g (v2, v3)gv1

+ v2κ
L
g (v3, v1)g− κL

g (v3, v1)gv2

+ v3κ
L
g (v1, v2)g− κL

g (v1, v2)gv3

for each g in G. We rewrite this expression using the commutativity of S and
moving all factors of g to the right:

0= κL
g (v2, v3)(v1−

gv1)+ κ
L
g (v3, v1)(v2−

gv2)+ κ
L
g (v1, v2)(v3−

gv3),

which is precisely Theorem 3.1(ii).
Next, notice that we may apply Equation (6.6) (in the proof of Theorem 6.3)

to β = κL , under the assumption that κL lies in H 2. Then for each g in G, the
left side of Theorem 3.1(iii) is the opposite of the coefficient of g in [κL , κL

] by
Definition 5.6 (see Corollary 6.8) and the skew-symmetry of κL . By a similar
calculation to that for κL , the right side of (iii) is the coefficient of g in

−2d∗3κ
C(v1 ∧ v2 ∧ v3)= 2

∑
g∈G

∑
σ∈Alt3

κC
g (vσ(2), vσ(3))(

gvσ(1)− vσ(1))g.
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Hence, Theorem 3.1(iii) is equivalent to [κL , κL
] = 2d∗3κ

C . This condition differs
from [Halbout et al. 2011, (5)] where the factor of 2 is missing.

We again compare coefficients of fixed g in G and apply Equation (6.6) to see
that Theorem 3.1(iv) is equivalent to [κC , κL

] = 0 by Definition 5.6. Note that this
is equivalent to [Halbout et al. 2011, (6)] when k = R. �

We are now ready to express the PBW property purely in cohomological terms.
Recall that H • is the fixed space of representatives of elements in HH•(S, S #G)
defined in (5.5).

Theorem 7.2. A quotient algebra Hκ̃ is a Drinfeld orbifold algebra if and only if
Hκ̃ is isomorphic to Hκ as a filtered algebra for some parameter κ satisfying these
conditions:

1. κ is G-invariant.

2. The linear part of κ is a cocycle in H •.

3. The Gerstenhaber square bracket of the linear part of κ satisfies [κL , κL
] =

2d∗(κC) as cochains.

4. The bracket of the linear with the constant part of κ is zero: [κC , κL
] = 0 as a

cochain.

Proof. Write κ̃ = κ̃L
+ κ̃C . If Hκ̃ is a Drinfeld orbifold algebra, then it satisfies

condition (ii) of Theorem 3.1. Lemma 7.1 then implies that κ̃L is a cocycle in
HH•(S, S #G) expressed with respect to the Koszul resolution, and it thus lies in
the set of cohomology representatives (H •

)G up to a coboundary:

κ̃L
= κL

+ d∗ρ

for some 2-cocycle κL in (H 2)G and some 1-cochain ρ. Set

κC
= κ̃C

+ ρ ◦ κ̃L
− ρ⊗ ρ

where (ρ⊗ρ)(v∧w) := ρ(v)ρ(w)−ρ(w)ρ(v) for all v,w ∈ V . Let κ = κC
+κL .

We may assume without loss of generality that ρ is G-invariant. (Note that
d∗ρ = κ̃L

− κL is G-invariant. Since d∗ commutes with the group action and the
order of G is invertible in k, we may replace ρ by 1

|G|

∑
g∈G

gρ to obtain a cochain
having the same image under d∗.) Also note that without loss of generality ρ takes
values in kG since d∗ρ has polynomial degree 1.

Define a map f : T (V )#G→Hκ by

f (v)= v+ ρ(v), f (g)= g

for all v ∈ V , g ∈ G; since ρ is G-invariant, these values extend uniquely to give
an algebra homomorphism. Note that f is surjective by an inductive argument on
the degrees of elements.
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We show first that the kernel of f contains the ideal

(vw−wv− κ̃L(v,w)− κ̃C(v,w) | v,w ∈ V ),

which implies that f induces an algebra homomorphism from Hκ̃ onto Hκ . By the
definition of f ,

f (vw−wv− κ̃L(v,w)− κ̃C(v,w))

= (v+ρ(v))(w+ρ(w))−(w+ρ(w))(v+ρ(v))

− κ̃L(v,w)−ρ(κ̃L(v,w))− κ̃C(v,w)

= vw−wv+vρ(w)+ρ(v)w−wρ(v)−ρ(w)v+ρ(v)ρ(w)−ρ(w)ρ(v)

− κ̃L(v,w)−ρ◦ κ̃L(v,w)− κ̃C(v,w)

= vw−wv+d∗ρ(v∧w)+(ρ⊗ρ)(v∧w)− κ̃L(v,w)−ρ◦ κ̃L(v,w)− κ̃C(v,w)

= vw−wv−κL(v,w)−κC(v,w) = 0

in Hκ . Thus the ideal generated by all vw−wv− κ̃L(v,w)− κ̃C(v,w) is in the
kernel of f .

Next we define an inverse to f by replacing ρ with −ρ: Define an algebra
homomorphism f ′ : T (V )#G→Hκ̃ by f ′(v)= v−ρ(v), f (g)= g for all v ∈ V ,
g ∈ G. We have κL

= κ̃L
− d∗ρ and

κ̃C
= κC

− ρ ◦ κ̃L
+ ρ⊗ ρ

= κC
− ρ ◦ κL

− ρ ◦ (d∗ρ)+ ρ⊗ ρ.

Extending ρ in the usual way from a function on V to a function on V ⊗ kG by
setting ρ(vg) := ρ(v)g for all v ∈ V , g ∈ G, we calculate

ρ ◦ (d∗ρ)(v∧w)= ρ(vρ(w)+ ρ(v)w−wρ(v)− ρ(w)v)

= ρ(v)ρ(w)+ ρ(v)ρ(w)− ρ(w)ρ(v)− ρ(w)ρ(v)

= 2(ρ⊗ ρ)(v∧w),

since ρ has image in kG. Thus we may rewrite

κ̃C
= κC

− ρ ◦ κL
− 2ρ⊗ ρ+ ρ⊗ ρ

= κC
− ρ ◦ κL

− ρ⊗ ρ

= κC
+ (−ρ) ◦ κL

− (−ρ)⊗ (−ρ).

An argument similar to that above for f (replacing ρ by−ρ) shows that the function
f ′ induces an algebra homomorphism from Hκ onto Hκ̃ . By its definition, f ′ is
inverse to f . Therefore Hκ and Hκ̃ are isomorphic as filtered algebras. (Note that
this isomorphism did not require that Hκ̃ satisfy the PBW condition, only that κ̃ be
a cocycle.) As gr Hκ

∼= gr Hκ̃
∼= S #G, the quotient algebra Hκ is also a Drinfeld
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orbifold algebra. Theorem 3.1 and Lemma 7.1 then imply the four conditions of
the theorem.

Conversely, assume Hκ̃ is isomorphic, as a filtered algebra, to some Hκ satisfying
the four conditions of the theorem. Then Theorem 3.1 and Lemma 7.1 imply that
Hκ is a Drinfeld orbifold algebra. As the isomorphism preserves the filtration,

gr Hκ̃
∼= gr Hκ

∼= S(V )#G

as algebras, and hence Hκ̃ is a Drinfeld orbifold algebra as well. Note that
Theorem 6.3 shows that the bracket formula in the statement of the theorem indeed
coincides with the Gerstenhaber bracket on cohomology. �

Remark 7.3. We compare the above results to Gerstenhaber’s original theory
of deformations, since every Drinfeld orbifold algebra defines a deformation of
S #G (see Section 2). The theory of Hochschild cohomology provides necessary
conditions for “parameter maps” to define a deformation. Given a k-algebra R and
arbitrary k-linear maps µ1, µ2 : R⊗ R→ R, we say µ1 and µ2 extend to first and
second order approximations, respectively, of a deformation R[t] of R over k[t]
if there are k-linear maps µi : R⊗ R→ R (i ≥ 3) for which the multiplication in
R[t] satisfies

r ∗ s = rs+µ1(r ⊗ s)t +µ2(r ⊗ s)t2
+µ3(r ⊗ s)t3

+ · · ·

for all r, s ∈ R, where rs is the product in R. Associativity forces µ1 to define a
cocycle in HH2(R); in addition, its Gerstenhaber square bracket must be twice the
differential applied to µ2:

[µ1, µ1] = 2δ∗3µ2.

Indeed, by using (2.3) and (2.4), we find that the equation [κL , κL
] = 2d∗κC is a

consequence of the equation [µ1, µ1] = 2δ∗3µ2: The left side of Theorem 3.1(iii)
is both equal to −[κL , κL

] applied to v1 ∧ v2 ∧ v3 and to −[µ1, µ1] applied to
v1 ∧ v2 ∧ v3 by our previous analysis, identifying α in the Braverman–Gaitsgory
approach with the restriction of µ1 to the space of relations R. The right side of
(iii) is both equal to −2d∗κC applied to v1 ∧ v2 ∧ v3 and to −2δ∗3µ2 applied to
v1 ∧ v2 ∧ v3 since µ2 ◦φ2 = κ

C and φ is a chain map (see (6.4)).
The square bracket [µ1, µ1] is called the primary obstruction to integrating a

map µ1 to a deformation: If a deformation exists with first-order approximation
µ1, then [µ1, µ1] is a coboundary, i.e., defines the zero cohomology class of the
Hochschild cohomology HH3(R).

The parameter maps κL and κC (arising from the Koszul resolution) play the
role of the first and second order approximation maps µ1 and µ2 (arising from
the bar complex). We see in the proof of Theorem 2.1 that each κL

g g is in fact a
cocycle when Hκ is a Drinfeld orbifold algebra, and each κC

g g defines a second
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order approximation to the deformation. In fact, we expect κL to be invariant
whenever Hκ is a Drinfeld orbifold algebra since HH•(S #G) ∼= HH•(S, S #G)G .
Note however that the theorem above goes beyond these elementary observations
and Gerstenhaber’s original formulation, which only give necessary conditions.

We now apply Theorem 7.2 in special cases to determine Drinfeld orbifold
algebras from the set of necessary and sufficient conditions given in that theorem
(in terms of Gerstenhaber brackets).

Recall that the Lie orbifold algebras are exactly the PBW algebras Hκ in which
the linear part of the parameter κ is supported on the identity group element 1G

alone. Interpreting Proposition 4.1 in homological language, we obtain necessary
and sufficient conditions for κ to define a Lie orbifold algebra in terms of the
Gerstenhaber bracket:

Corollary 7.4. Assume κL is supported on 1G . Then Hκ is a Lie orbifold algebra
if and only if

(a) κL is a Lie bracket on V ,

(b) both κL and κC are G-invariant cocycles (define elements of HH2(S #G)),

(c) [κC , κL
] = 0 as a cochain.

Proof. First note that [κL , κL
] = 0 exactly when κL defines a Lie bracket on

V . Suppose conditions (a), (b), and (c) hold. Condition (b) implies parts 1. and
2. of Theorem 7.2. It also implies that d∗(κC) = 0. Condition (a) implies that
[κL , κL

] = 0, and part 3. of Theorem 7.2 is satisfied as well. Condition (c) is part 4.
of Theorem 7.2. Hence, Theorem 7.2 implies that Hκ is a Lie orbifold algebra.

Conversely, assume that Hκ is a Lie orbifold algebra. By Proposition 4.1, κL

defines a Lie bracket on V and hence [κL , κL
] = 0. Theorem 7.2 then not only

implies condition (c), but also that κL and κC are both cocycles with κ G-invariant.
But κ is G-invariant if and only if both κL , κC are G-invariant. Hence, condition (b)
holds. �

Recall that (H •
)G ∼= HH•(S #G) and that C • and H • are sets of cochains and

cohomology representatives, respectively (see (5.4) and (5.5)). Given κC , κL in
(H 2)G of homogeneous polynomial degrees 0 and 1, respectively, the sum κ :=

κC
+κL is a parameter function V ∧V → (k⊕V )⊗kG defining a quotient algebra

Hκ . The last result implies immediately that for κL supported on 1G , the algebra Hκ

is a Lie orbifold algebra when κL is a Lie bracket on V and the cochain [κC , κL
]

is zero on the Koszul resolution. The hypothesis that κL be a Lie bracket is not as
restrictive as one might think. In fact, if κL is a noncommutative Poisson structure
(i.e., with Gerstenhaber square bracket [κL , κL

] zero in cohomology), then κL is
automatically a Lie bracket, as we see in the next corollary.
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Corollary 7.5. Suppose a linear cochain κL in C2 is supported on the kernel of the
representation G→ GL(V ) and that [κL , κL

] is a coboundary. Then [κL , κL
] = 0

as a cochain.

Proof. Suppose [κL , κL
] = d∗α for some α. Then (by definition of the map d∗),

d∗3α(v1 ∧ v2 ∧ v3)=−
∑
g∈G

∑
σ∈Alt3

αg(vσ(2), vσ(3))(
gvσ(1)− vσ(1))g

for all v1, v2, v3 in V , and thus d∗α is supported off the kernel K of the represen-
tation G→ GL(V ). But by Definition 5.6, [κL , κL

] is supported on K , since κL

itself is supported on K . Hence [κL , κL
] must be the zero cochain. �

The last corollary implies that every linear noncommutative Poisson structure
supported on group elements acting trivially lifts (or integrates) to a deformation of
S #G:

Corollary 7.6. Suppose a linear cocycle κL in (H 2)G has trivial Gerstenhaber
square bracket in cohomology. If κL is supported on the kernel of the representation
G → GL(V ), then the quotient algebra Hκ with κ = κL is a Drinfeld orbifold
algebra. Moreover, if G acts faithfully on V , then Hκ

∼= U(g)#G, a Lie orbifold
algebra.

Proof. Since κL lies in (H 2)G , we may set κC
≡ 0 and κ := κL to satisfy the

conditions of Theorem 7.2 (using Corollary 7.5 to deduce that κL is a Lie bracket).
If G acts faithfully, the resulting Drinfeld orbifold algebra is just the skew group
algebra U(g)#G, where the Lie algebra g is the vector space V with Lie bracket
κL . �

Remark 7.7. The analysis of the Gerstenhaber bracket in [Shepler and Witherspoon
2012] includes information on the case of cocycles supported off the kernel K of
the representation G→GL(V ). Indeed, we see in that article that if κL in (H 2)G is
supported off K , then [κL , κL

] is always a coboundary. This guarantees existence
of a constant cochain κC with [κL , κL

] = 2d∗κC . Thus to satisfy the conditions of
Theorem 7.2, one need only check that [κC , κL

] = 0 as a cochain (on the Koszul
resolution).

On the other hand, if κL in H • is supported on the kernel K , and [κL , κL
] is

a coboundary, then by Corollary 7.5, [κL , κL
] = 0 as a cochain. Thus to satisfy

the conditions of Theorem 7.2, one need only solve the equation [κC , κL
] = 0 as a

cochain for κC a cocycle.

8. Applications to abelian groups

The last section expressed the PBW condition in terms of simple conditions on
Hochschild cocycles. We see in this section how this alternative formulation gives
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a quick and clear proof that every linear noncommutative Poisson structure (i.e.,
Hochschild 2-cocycle with trivial Gerstenhaber square bracket) lifts to a deformation
when G is abelian. Halbout, Oudom, and Tang [Halbout et al. 2011, Theorem
3.7] gave an analogous result over the real numbers for arbitrary groups (acting
faithfully), but their proof does not directly extend to other fields such as the complex
numbers. (For example, complex reflections in a finite group acting linearly on
Cn may contribute to Hochschild cohomology HH2(S #G) defined over the real
numbers, but not to the same cohomology defined over the complex numbers.)

In the case of nonabelian groups, the square bracket of the linear part of the
parameter κ may be zero in cohomology but nonzero as a cochain. The following
proposition explains that this complication disappears for abelian groups:

Proposition 8.1. Let G be an abelian group. Let α, β in (H 2)G be linear with
Gerstenhaber bracket [α, β] a coboundary (defining the zero cohomology class).
Then [α, β] = 0 as a cochain.

Proof. Let v1, . . . , vn be a basis of V on which G acts diagonally. If [α, β] is
nonzero at the chain level, then some summand of Definition 5.6 is nonzero for
some triple v1, v2, v3. Suppose without loss of generality that

w = βh
(
v3 ∧αg(v1 ∧ v2)

)
is nonzero for some g, h in G.

Note that if g acts nontrivially on V , then v1 and v2 must span (V g)⊥ and
αg(v1 ∧ v2) lies in V g as αg(v1 ∧ v2) is nonzero and αg ∈ H 2

g . Similarly, if h acts
nontrivially on V , then v3 and αg(v1∧v2) must span (V h)⊥ and w lies in V h . (See
the comments after (5.5) or [Shepler and Witherspoon 2008, Lemma 3.6].)

Suppose first that both g and h act nontrivially on V . Then v3 and αg(v1 ∧ v2)

are independent vectors in V g
∩ (V h)⊥, a subspace of the 2-dimensional space

(V h)⊥. Thus (V h)⊥ ⊂ V g and v1, v2 in (V g)⊥ are fixed by h. As G is abelian and
α is G-invariant, αg =

hαg and

αg(v1 ∧ v2)= (
h−1
αg)(v1 ∧ v2)=

h−1(
αg(

hv1 ∧
hv2)

)
=

h−1(
αg(v1 ∧ v2)

)
.

But then αg(v1 ∧ v2) is fixed by h, contradicting the fact that it lies in (V h)⊥.
We use the fact that the cochain map [α, β] represents the zero cohomology

class to analyze the case when either g or h acts trivially on V . Calculations show
that the image of the differential d∗ is supported on elements of G that do not
fix V pointwise (see, for example, Section 7). Hence V hg

6= V and either g or h
acts nontrivially on V . Also note that the coefficient of gh in any image of the
differential lies in (V gh)⊥.

If h acts nontrivially on V but g fixes V pointwise, thenw lies in (V gh)⊥= (V h)⊥,
contradicting the fact that w lies in V h (as h acts nontrivially). If instead g acts
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nontrivially on V but h fixes V pointwise, we contradict the G-invariance of β: In
this case,

w = βh
(
v3 ∧αg(v1 ∧ v2)

)
= (g

−1
βh)

(
v3 ∧αg(v1 ∧ v2)

)
=

g−1(
βh (

gv3 ∧
g(αg(v1 ∧ v2)))

)
=

g−1(
βh (v3 ∧ (αg(v1 ∧ v2)))

)
=

g−1
w

(since both v3 and αg(v1∧v2) lie in V g), so w lies in V g
= V gh instead of (V gh)⊥.

�

As a consequence of Lemma 7.1 and Proposition 8.1, we obtain the following:

Corollary 8.2. Let G be an abelian group. Suppose κL in (H 2)G is a linear cocycle
with [κL , κL

] a coboundary. Then [κL , κL
] = 0 as a cochain. Thus we obtain a

Drinfeld orbifold algebra Hκ after setting κC
≡ 0 and κ := κL .

Other Drinfeld orbifold algebras with the same parameter κL arise from solving
the equation [κC , κL

] = 0 for κC a cocycle of polynomial degree 0 in (H 2)G .
Compare with [Halbout et al. 2011, Theorem 3.4], which is stated in the case that
the action is faithful.

We end this section by pointing out a much stronger statement than that implied
by [Shepler and Witherspoon 2012, Theorem 9.2] for abelian groups: There we
proved that for all groups G, the bracket of any two Hochschild 2-cocycles supported
off the kernel of the representation is a coboundary (i.e., zero in cohomology). The
proposition below (cf. [Halbout et al. 2011, Lemma 3.3]) explains that when G is
abelian, such brackets are not only coboundaries, they are zero as cochains.

Proposition 8.3. Let G be an abelian group. Let α, β in (H 2)G be two linear
Hochschild 2-cocycles on S #G supported off of the kernel of the representation
G→ GL(V ). Then [α, β] = 0 as a cochain.

Proof. This statement follows immediately from [Shepler and Witherspoon 2012,
Theorem 9.2] and Proposition 8.1. However, we give a short, direct proof here: Let
v1, . . . , vn be a basis of V on which G acts diagonally. If [α, β] is nonzero, then
some summand

βh
(
v3 ∧αg(v1 ∧ v2)

)
of Definition 5.6 is nonzero for some triple v1, v2, v3 in V and some g and h in G.
Since g and h both act nontrivially on V , the vector αg(v1 ∧ v2) must be invariant
under h (as we saw in the third paragraph of the proof of Proposition 8.1). But this
contradicts the fact that v3 and αg(v1 ∧ v2) must span (V h)⊥. �

One may apply Proposition 8.3 to find many examples of Drinfeld orbifold
algebras of the type given in Example 3.3.



192 ANNE V. SHEPLER AND SARAH WITHERSPOON

References

[Beilinson et al. 1996] A. Beilinson, V. Ginzburg, and W. Soergel, “Koszul duality patterns in
representation theory”, J. Amer. Math. Soc. 9:2 (1996), 473–527. MR 96k:17010 Zbl 0864.17006

[Bergman 1978] G. M. Bergman, “The diamond lemma for ring theory”, Adv. in Math. 29:2 (1978),
178–218. MR 81b:16001 Zbl 0326.16019

[Braverman and Gaitsgory 1996] A. Braverman and D. Gaitsgory, “Poincaré–Birkhoff–Witt theo-
rem for quadratic algebras of Koszul type”, J. Algebra 181:2 (1996), 315–328. MR 96m:16012
Zbl 0860.17002

[Bueso et al. 2003] J. Bueso, J. Gómez-Torrecillas, and A. Verschoren, Algorithmic methods in
non-commutative algebra: Applications to quantum groups, Mathematical Modelling: Theory and
Applications 17, Kluwer Academic, Dordrecht, 2003. MR 2005c:16069 Zbl 1063.16054
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