
Pacific
Journal of
Mathematics

SEMI-TOPOLOGICAL CYCLE THEORY I

JYH-HAUR TEH

Volume 259 No. 1 September 2012



PACIFIC JOURNAL OF MATHEMATICS
Vol. 259, No. 1, 2012

dx.doi.org/10.2140/pjm.2012.259.195

SEMI-TOPOLOGICAL CYCLE THEORY I

JYH-HAUR TEH

We study algebraic varieties parametrized by topological spaces and en-
large the domain of Lawson homology and morphic cohomology to this
category. We prove a Lawson suspension theorem and a splitting theorem.
A version of the Friedlander–Lawson moving lemma is obtained to prove
a duality theorem between Lawson homology and morphic cohomology for
smooth semi-topological projective varieties. K -groups for semi-topological
projective varieties and Chern classes are also constructed.

1. Introduction

Algebraic cycles are basic ingredients in studying invariants of algebraic vari-
eties. The collection of all r -dimensional algebraic cycles of a projective variety
X forms a topological abelian group Zr (X). Lawson [1989] studied these groups
from a homotopical viewpoint and proved a suspension theorem that serves as
a cornerstone for Lawson homology and morphic cohomology developed later
[Friedlander 1991; Friedlander and Lawson 1992; 1997; 1998]. A continuous
map f : Sn

→ Zr (X) from the n-sphere to Zr (X) can be viewed as a family of
algebraic cycles parametrized by Sn . This family can also be considered as an
“algebraic cycle” on X × Sn . This motivates us to consider algebraic varieties
parametrized by topological spaces and consider algebraic cycles on them.

When the base space is an algebraic variety and the parametrization is algebraic,
this is just the relative theory of algebraic varieties. The main point of our study
is that our base spaces are usually very general topological spaces, so their rings
of continuous complex-valued functions are not Noetherian. This makes classical
algebraic methods difficult to apply. It is well known in the algebraic case when we
wish a family of algebraic varieties to behave well we need the family to be flat over
the base scheme. The flatness of a family of varieties is equivalent to the property
that the family is the pull back of the universal family over a Hilbert scheme by an
algebraic morphism to the Hilbert scheme. So to obtain a nice theory, we define
our “semi-topological variety” to be a continuous map from a topological space S
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to some Hilbert scheme with some additional technical assumptions. We are able
to define semi-topological algebraic cycles on semi-topological projective varieties
and extend the definition of Lawson homology and morphic cohomology to them.
This paper is the first part of this theory. A Hodge theory and a Riemann–Roch
theorem will be given in a forthcoming paper.

Let us give a brief overview of this paper. In Section 2, we define semi-topologi-
cal projective varieties and algebraic cycles on them. Some basic topological
properties of semi-topological cycle groups are studied. In Section 3, we prove
the Lawson suspension theorem and a splitting theorem for semi-topological pro-
jective varieties. In Section 4, we give a version of the Friedlander–Lawson moving
lemma for semi-topological projective varieties and use it to prove a duality theo-
rem between the Lawson homology and morphic cohomology for semi-topological
smooth projective varieties. In Section 5, we compute the Lawson homology group
of divisors in a semi-topological smooth projective variety. In Section 6, we con-
struct K -groups and Chern classes.

2. Semi-topological varieties

Let us briefly recall the construction of cycle groups of complex projective vari-
eties. For a complex projective variety X , we write Cr,d(X) for the collection of
all effective r -cycles of degree d on X . According to the Chow theorem, Cr,d(X)
is a projective variety. Let Cr (X) =

∐
d≥0 Cr,d(X) be the Chow monoid and

Zr (X)= [Cr (X)]+ be the naive group completion of Cr (X). Let

Kr,d(X) =
∐

d1+d2≤d

π(Cr,d1(X)×Cr,d2(X)),

where π :Cr (X)×Cr (X)→ Zr (X) is the map (a, b) 7→ a−b. We have a filtration

Kr,0(X)⊆ Kr,1(X)⊆ · · · = Zr (X).

Each Kr,d(X) is compact and the topology of Zr (X) is the weak topology induced
from this filtration. With this topology, Zr (X) is a topological abelian group. If
Y is also a projective variety, we write Zr (Y )(X) for the group of algebraic r -
cocycles on X with values in Y , that is, c ∈ Zr (Y )(X) if c ∈ Zr+k(X×Y ) where k
is the dimension of X , the projection from c to X is surjective and fibers of c over
X are r -cycles in Y .

Throughout this paper, S is a compact topological space with base point s0. We
write Pn

S for Pn
× S.

Definition 2.1. A semi-topological projective variety over S is a continuous map
X : S→ Hilp Pn such that Xs := X(s) is a normal projective variety for all s ∈ S,
where Hilp Pn is the Hilbert scheme of Pn associated to a Hilbert polynomial p.
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We write X ⊂ Pn
S in this case. We define the dimension of X to be the dimension

of Xs0 , and write |Xs0 | for the algebraic variety corresponding to Xs0 .

Definition 2.2. Suppose that X ⊂ Pn
S,Y ⊂ Pm

S are semi-topological projective
varieties over S. Let

Zr (Y)(X) :=
{
α ∈Map

(
(S, s0), (Zk(P

n
×Pm), 0)

) ∣∣ α(s) ∈ Zr (Ys)(Xs)
}
,

where k = r + dim X. Let Zk,≤e(P
n
×Pm) be the image of∐

e1+e2≤e

Ck,e1(P
n
×Pm)×Ck,e2(P

n
×Pm)

in Zk(P
n
×Pm). The topology of Zk(P

n
×Pm) is the weak topology induced from

the filtration

Zk,≤0(P
n
×Pm)⊆ Zk,≤1(P

n
×Pm)⊆ · · · = Zk(P

n
×Pm).

Let Zr,≤e(Y)(X) := Map((S, s0), (Zk,≤e(P
n
× Pm), 0)) ∩ Zr (Y)(X). We equip

Map((S, s0), (Zk,≤e(P
n
× Pm), 0)) with the compact-open topology and we give

Zr,≤e(Y)(X) the subspace topology. From the filtration

Zr,≤0(Y)(X)⊆ Zr,≤1(Y)(X)⊆ · · · = Zr (Y)(X)

we equip Zr (Y)(X) with the weak topology.

Then it is not difficult to see that Zr (Y)(X) is a topological abelian group.

Definition 2.3. If Y,Y′ are two semi-topological projective varieties, we say that
Y′ is a subvariety of Y, denoted by Y′ ⊆ Y, if Y′s ⊆ Ys for all s ∈ S. We write
Y − Y′ for the assignment (Y − Y′)(s) := Ys − Y′s for s ∈ S and call Y − Y′ a
semi-topological Zariski open set of Y.

Definition 2.4. Suppose X ⊂ Pn
S , Y ⊂ Pm

S . Suppose for each s ∈ S, fs : Xs → Ys

is a given morphism of projective varieties. The assignment s 7→ fs is said to be a
morphism between X and Y, and we write f :X→Y, if s 7→ gr fs ∈Cr (P

n
×Pn)

is continuous, where gr fs is the graph of fs .

Definition 2.5. If f :X→Y is a morphism of semi-topological projective varieties,
define f∗ : Zr (X)(W)→ Zr (Y)(W) by

( f∗α)(s) := qs∗
(
(Ws × gr fs) • p∗s (α(s))

)
,

where p :W×X×Y→W×X, q :W×X×Y→W×Y are projections.

Proposition 2.6. The map f∗ is continuous.



198 JYH-HAUR TEH

Proof. First, p∗s and qs∗ are clearly continuous and that (Ws×gr fs)meets p∗s (α(s))
properly. It follows that the intersection product on cycles intersecting properly is
continuous [Fulton 1998]. Thus f∗ is continuous. �

Proposition 2.7. If Y′ is a subvariety of Y, then Zr (Y
′)(X) is closed in Zr (Y)(X).

Proof. For α ∈ Zr,≤e(Y)(X)− Zr,≤e(Y
′)(X), there is s1 ∈ S such that

α(s1) ∈ Zr,≤e(Y
′

s1
)(Xs1)− Zr,≤e(Y

′

s1
)(Xs1).

Since Zr,≤e(Y
′
s1
)(Xs1) is closed in Zr,≤e(Ys1)(Xs1) [Teh 2010, Proposition 2.9],

there is a V open in Zk,≤e(P
n
×Pm) such that

α(s1) ∈ V ∩ Zr,≤e(Ys1)(Xs1)⊂ Zr,≤e(Ys1)(Xs1)− Zr,≤e(Y
′

s1
)(Xs1).

Let

W =
{
β ∈Map

(
(S, s0), (Zk,≤e(P

n
×Pm), 0)

) ∣∣ β(s1) ∈ V
}
.

Then W is open in Map((S, s0), (Zk,≤(P
n
×Pm), 0)) and

α ∈W ∩ Zr,≤e(Y)(X)⊆ Zr,≤e(Y)(X)− Zr,≤e(Y
′)(X).

Therefore, the set Zr,≤e(Y)(X)− Zr,≤e(Y
′)(X) is open and Zr,≤e(Y

′)(X) is closed
in Zr,≤e(Y)(X). We then have that Zr (Y

′)(X) is closed in Zr (Y)(X). �

Recall that there is a functor k constructed by Steenrod [1967] from the category
of topological spaces to the category of compactly generated spaces that acts like
a retraction. Furthermore, for any topological space X , X and k(X) have the same
homology and homotopy groups. Recall that by the construction in [Teh 2008], if
H is a normal closed subgroup of G and both are compactly generated, then the
short exact sequence 0→ H → G→ G/H → 0 gives a fibration

BH BG

BG/H ,

where BG is the classifying space of G. Thus we have a long exact sequence of
homotopy groups

· · · → πn(H)→ πn(G)→ πn(G/H)→ πn−1(H)→ · · · .

Combined with the Steenrod functor k, once we have some complicated topological
abelian groups that form the short exact sequence stated above, we get a long exact
sequence of homotopy groups. The following is an application of this result.



SEMI-TOPOLOGICAL CYCLE THEORY I 199

Definition 2.8. Let

Zr (Y;Y
′)(X) :=

Zr (Y)(X)

Zr (Y′)(X)
and Z t(X) := Zr (P

t
S;P

t−1
S )(X),

where Y′ is a semi-topological subvariety of Y.

Corollary 2.9. We have a long exact sequence of homotopy groups

· · ·→πn Zr (Y
′)(X)→πn Zr (Y)(X)→πn Zr (Y;Y

′)(X)→πn−1 Zr (Y
′)(X)→· · · .

Definition 2.10. Let pt : S→Hilp Pn be a constant map whose image is a point in
Pn . Then Zr (Y)(pt) is isomorphic to Zr (Y)(pt ′) for any two such maps pt, pt ′.
We write Zr (Y) := Zr (Y)(pt) without referring to which point we take. The map
pt is called a point map.

Definition 2.11. Define

HS,n(X) := πn Z0(X) and Hn
S(X) := π2m−n Zm(X),

where m is the dimension of X.

Example 2.12. When S = S0 is the 0-dimensional sphere, and X = X × S0 for
some projective variety X , then

HS,n(X)= πn Z0(X)∼= Hn(X)

by the Dold–Thom theorem. If X is smooth, then

Hn
S(X)= π2m−n Zm(X)

FL
∼= π2m−n Z0(X)∼= H2m−n(X)

PD
∼= H n(X),

where FL and PD are the Friedlander–Lawson and Poincaré duality isomorphisms.

3. Suspension theorem and splitting theorem

Let us recall that if X ⊆ Pn and x∞ ∈ Pn+1
\Pn , the suspension 6/X of X with

respect to x∞ is the join of X and x∞.

Definition 3.1. Suppose that Y⊆Pm
S and pt is a point map with image in Pm+1

\Pm .
The suspension of Y with respect to pt is the semi-topological subvariety

(6/ptY)(s) :=6/pt(s)Ys .

So we have 6/ptY ⊆ Pm+1
S . The suspension induces a map

6/pt : Zk(P
n
×Pm)−→ Zk+1(P

n
×Pm+1)

by suspending Pm . Hence for each α ∈ Zr (Y)(X), 6/pt induces a semi-topological
cycle in Zr+1(6/Y)(X) by

(6/ptα)(s) :=6/ptα(s).
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Theorem 3.2. Let pt = [0 : . . . : 0 : 1] ∈ Pm+1, Y ⊆ Pm
S , and X ⊆ Pn

S . Then
6/pt∗ : Zr (Y)(X)→ Zr+1(6/ptY)(X) is a weak homotopy equivalence.

Proof. We write 6/ for 6/pt. Let

Tr+1(6/Y)(X) :=

{
α ∈ Zr+1(6/Y)(X)

∣∣∣∣ α(s) meets Xs ×Ys properly
in Xs ×6/Ys, for all s ∈ S

}
.

Let 3 ⊆ Pm+1
×P1

×Pm+1 be the closed subvariety constructed in [Friedlander
1991, Proposition 3.2], which is a geometric description of Lawson’s holomorphic
taffy. Let 3t :=3 • (P

m+1
×{t}×Pm+1), t ∈ C. Then for α ∈ Tr+1(6/Y)(X),

8t(α) := qt∗
(

p∗t α • (P
n
×3t)

)
∈ Tr+1(6/Y)(X),

where
pt : P

n
×Pm+1

×{t}×Pm+1
→ Pn

×Pm+1,

qt : P
n
×Pm+1

×{t}×Pm+1
→ Pn

×Pm+1,

are the projections to the first and second, and to the first and fourth factors, re-
spectively. If t = 0, then 80(α) ∈ 6/Zr (Y)(X). It is not difficult to see that 8 is a
strong deformation retract of Tr+1(6/Y)(X) to 6/Zr (Y)(X).

Let x1 = [0 : . . . : 0 : 1] ∈ Pm+2 and x2 = [0 : . . . : 0 : 1 : 1] ∈ Pm+2. Recall
that by [Friedlander and Lawson 1998, Proposition 2.3], for any d > 0, there is an
e(d) > 0 such that for any e> e(d), there is a line Le in Cm+1,e(P

m+2) containing
ePm+1 such that we have a map

9e : Zr+1,≤d(P
m+1)× Le→ Zr+1,≤de(P

m+1), (Z , D) 7→ p2∗((x1#Z) • D),

where p2 : P
m+2
− {x2} → Pm+1 is the projection with center {x2}. Furthermore,

for D ∈ Le−{ePm
}, 9e(Z , D) ∈ Tr+1,de(P

m+1) and 9e(Z , ePm)= eZ . When we
restrict to cycles having support in 6/Y ⊆ Pm+1, by checking the definition of 9e,
we get a map

9e : Zr+1,≤d(6/Y)× Le→ Zr+1,≤de(6/Y)

with the corresponding properties. For α ∈ Zr+1,≤d(6/Y)(X), define

9e(Z , D)(s) := p2∗
(
(x1#α(s)) • (D×Xs)

)
.

This map is continuous in s and has the same homotopy property as before. Note
that if f : C → Zr+1(6/Y)(X) is a map from a compact topological space C , the
image Im f is compact and Im f ⊆ Zk(P

n
× Pm). By [Teh 2010, Lemma 2.8],

Im f ⊆ Zk,≤d(P
n
×Pm) for some d > 0. Therefore Im f ⊆ Zr+1,≤d(6/Y)(X).

We show that the map i∗ : Tr+1(6/Y)(X) → Zr+1(6/Y)(X) induced from the
inclusion is a weak homotopy equivalence. Let [ f ] ∈ πn(Zr+1(6/Y)(X)) be a base
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point preserving continuous map. Since Im f is compact, Im f ⊆ Zr+1,≤d(6/Y)(X)

for some d. Then by the result above, there is a map

9e : Zr+1,≤d(6/Y)(X)× Le→ Zr+1,≤de(6/Y)(X),

such that 9e( f (s), ePm) = f (s) and 9e( f (s), D) ∈ Tr+1(6/Y)(X) for all D in
Le − {ePm

}. Hence i∗[9e( f, D)] = [ f ], which implies that i∗ is surjective. For
injectivity, if [g] ∈πnTr+1(6/Y)(X) is mapped to 0 by i∗ in Zr+1(6/Y)(X), then i∗g
can be extended to a map g̃ : Dn+1

→ Zr+1(6/Y)(X), where Dn+1 is the unit closed
ball. Again, by choosing some 9e, we can show that g̃ is homotopic to some

9e(g̃, D) : Dn+1
→ Tr+1(6/Y)(X).

Thus [g] = 0. Combining this with the previous result, the proof is complete. �

Theorem 3.3 (splitting theorem). If X is a semi-topological projective variety,
there is a map

ξt : Z0(P
t)(X)→ Z t(X)× Z t−1(X)× · · ·× Z0(X)

that is a weak homotopy equivalence.

Proof. Recall that there is an isomorphism Pn ∼= C0,n(P
1) for any positive integer

n. The projection map

Pt ∼= C0,t(P
1)→ C0,(t

k)
(Pk), x1+ · · ·+ xt 7→

∑
I⊂{1,...,t}
|I |=k

x I ,

where x I = xi1 + · · ·+ xit for I = {i1, . . . , it }, induces a map

ξt : Z0(P
t
S)(X)→ Z0(P

k
S)(X)→ Z k(X)

for 0≤ k ≤ t . We have a commutative diagram

Z0(P
t−1
S )(X) Z t−1(X)× · · ·× Z0(X)

Z0(P
t
S)(X) Z t(X)× Z t−1(X)× · · ·× Z0(X)

Z t(X) Z t(X),

ξt−1

ξt

q

=

p

where q is the quotient map and p is the projection map. From the homotopy se-
quence associated to the vertical columns, we get the result by induction on t . �
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4. Moving lemma

Let H =Hilp Pn be the Hilbert scheme of Pn associated to the Hilbert polynomial
p, and let π : H̃ −→ H be the universal family over H . Suppose each algebraic
variety parametrized by H is of dimension m. Let UH̃ (d)⊂ P(0(OPn

H
(d)m+1)) be

the Zariski open set of those F = ( f0, . . . , fm) such that

LF := {(t, h) ∈ Pn
H | Fh(t)= 0}

misses H̃ , where Fh = ( f0,h, . . . , fm,h) is obtained by pulling back F by the inclu-
sion z 7→ (z, h) from Pn to Pn

H . Then F induces a finite morphism pF : H̃→ Pm
H

by pF (x) := pFπ(x)(x).
For Y ∈ Cr,≤e(H̃)(H) and Z ∈ C`,≤e(H̃)(H), let

Y ?F Z := {(y, z) ∈ Y ×H Z | y 6= z, pF (y) 6= pF (z)},

where Y ×H Z is the fiber product of Y and Z over H .
By following a similar approach as in [Friedlander and Lawson 1998, Proposi-

tion 1.3], we get the following result:

Proposition 4.1. Suppose that r + ` ≥ m, e ∈ N. There is a Zariski closed subset
B(d)e ⊂UH̃ (d) with limd→∞ Fcodim B(d)e =∞, where

Fcodim B(d)e =min
h
{codim B(d)e,h} and B(d)e,h := {Fh | F ∈B(d)e,h},

such that for any Y ∈ Cr,≤e(H̃)(H) and Z ∈ C`,≤e(H̃)(H), |Yh| ?Fh |Zh| has pure
dimension r + `−m whenever F ∈UH̃ (d)−B(d)e.

Now let X : S→ H be a semi-topological projective variety. Then the pullback
X∗Pn

H = Pn
S and for F ∈ P(0(OPn

H
(d))m+1), we set X∗F(x, s) := F(x,X(s)) and

have X∗F ∈ P(0(OPn
S
(d)m+1)). Define pX∗F : X

∗(H̃)→ Pm
H by

pX∗F (x, s) := pFX(s)(x),

where x ∈ H̃ , s ∈ S. For α ∈ Zr,≤e(X), β ∈ Z`,≤e(X),

α ?X∗F β :=
{
(a, b) ∈ |α| ×S |β|

∣∣ a 6= b, pX∗F (a, s) 6= pX∗F (b, s)
}
,

where |α| and |β| denote the support of α and β respectively.
Let UH̃ (d)⊂P(0(OPn

S
(d)m+1)) be the semi-topological Zariski open set of those

F = ( f0, . . . , fm) such that

LF := {(t, s) ∈ Pn
S | Fs(t)= 0}

misses X∗ H̃ . Then by taking B̃(d)e = X∗(B(d)e), from the above result, we also
have enough good projections for semi-topological projective varieties when the
degree is large enough.
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Corollary 4.2. Let X ⊆ Pn
S be a semi-topological projective variety of dimension

m. Suppose that r+`≥m, e∈N. There is a semi-topological Zariski closed subset
B̃(d)e ⊆ UX(d) with limd→∞ Fcodim B(d)e =∞ such that for α ∈ Zr,≤e(X) and
β ∈ Z`,≤e(X), |αs |?Fs |βs | has pure dimension r+`−m, where F ∈UX(d)−B̃(d)e.

Once we know how to find good projections for semi-topological projective va-
rieties, following an argument in [Friedlander and Lawson 1998], we get a moving
lemma for semi-topological projective varieties.

Theorem 4.3. Let X ⊆ Pn
S be a semi-topological projective variety of dimension

m. Let r, `, e be nonnegative integers with r + `≥ m. Then there exist an open set
O of {0} in C and a continuous map

9̃ : C`(X)×O→ C`(X)
2,

such that π ◦ 9̃ induces by linearity a continuous map

9 : Z`(X)×O→ Zs(X)

satisfying the following properties. Let ψp =9|Zs(X)×{p} for p ∈ O.

(1) ψ0 = Id.

(2) For any p ∈ O, ψp is a continuous group homomorphism.

(3) For any α ∈ Z`,≤e(X), β ∈ Zr,≤e(X), and any p 6= 0 in O, each component
of excess dimension of the intersection |α(s)| ∩ |ψp(Z)| is contained in the
singular locus of |Xs |, for s ∈ S.

Let (X,Y) be a pair of semi-topological projective varieties in Pn
S , where Y⊆X.

We say that a map f : (X,Y)→ (X′,Y′) between two pairs of semi-topological
varieties is a relative isomorphism if f : X→ X′ is a semi-topological morphism
such that f : X − Y → X′ − Y′ is an isomorphism of semi-topological quasi-
projective varieties. The following example is the most important case to us.

Example 4.4. Define φ : (X×S Pt
S,X×S Pt−1

S )→ (6/t X,Pt−1
S ) by

φ
(
([x0 : · · · : xn], s), ([a0 : · · · : at ], s)

)
:= ([a0x0 : · · · : a0xn : a1 : · · · : at ], s),

where we identify the Pt−1
S of the second pair to the hyperplane at infinity of 6/t X.

Then it is not difficult to see that φ is a relative isomorphism.

The following lemma is a special case used in order to define the cycle groups
for a quasi-projective variety (see [Lima-Filho 1992]), but it is enough to prove the
duality theorem.

Lemma 4.5. Suppose that f : (X,Y)→ (X′,Y′) is a relative isomorphism, where
dim Y′ < r , then Zr (X)/Zr (Y) is weakly homotopic equivalent to Zr (X

′)/Zr (Y
′)

and Zr (X
′)/Zr (Y

′) is isomorphic to Zr (X
′).
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Proof. The map f : X→ X′ induces group homomorphisms f∗ : Zr (X)→ Zr (X
′)

and f∗ : Zr (Y) → Zr (Y
′). Since f restricted to X − Y is injective, this gives

the injectivity of f∗ : Zr (X)/Zr (Y) → Zr (X
′)/Zr (Y

′). But since r > dim Y′,
Zr (Y

′)= {0}. Hence f∗ is surjective and Zr (X
′)/Zr (Y

′)= Zr (X
′). �

By using the moving lemma, we got the following duality theorem that is proved
by similar arguments in [Friedlander and Lawson 1997].

Theorem 4.6 (Duality theorem). Suppose that X⊆Pn
S,Y⊆Pk

S , where dim X = m,
and X,Y are smooth, that is, each Xs,Ys is smooth. Then there is a weak homo-
topic equivalence i∗ : Zk(Y)(X)∼= Zm+k(X×Y), where i is the inclusion.

Corollary 4.7. Suppose that X is a smooth semi-topological projective variety of
dimension m. If 0≤ t≤m, then Z t(X) is weakly homotopic equivalent to Zm−t(X).

Proof. Z t(X)= Z0(P
t )(X)

Z0(Pt−1)(X)
∼=

Zm(X×Pt
S)

Zm(X×Pt−1
S )
∼=

Zm(6/
t X)

Zm(X×Pt−1)
∼= Zm(6/

t X)∼= Zm−t(X). �

5. Semi-topological divisors

Suppose that the dimension of X is greater than 0. Let

K [X] = C(S)[Z0, . . . ., zn]/I (X)=
⊕
d≥0

Kd(X),

where C(S) is the ring of complex-valued continuous functions on S, and Kd(X)

is the collection of homogeneous polynomials of degree d in K [X].

Proposition 5.1. If f ∈C(S)[z0, . . . , zn] is homogenous of degree d and is not the
zero polynomial for any s ∈ S, then f defines an effective semi-topological divisor
( f ) ∈ Cn−1(P

n
S) by

( f )(s) := ( fs)

for s ∈ S, where ( fs) is the divisor on Pn defined by fs .

Proof. Since fs is not the zero polynomial for any s ∈ S, ( fs) is an effective divisor
for any s ∈ S. From the definition of the Chow form, we see that the coefficients
of the Chow form F( fs) of ( fs) are continuous functions of the coefficients of f .
This implies that the assignment ( f ) : S→ Cn−1,d(P

n) is continuous. �

Definition 5.2. Let C(S)[z0, . . . , zn]d,X be the collection of all f∈C(S)[z0, . . . , zn]

of degree d such that ( fs) meets Xs properly in Pn for all s ∈ S. For f + I (X) in
Kd(X), where f ∈ C(S)[z0, . . . , zn]d,X, let

( f + I (X))(s) := ( fs) •Xs

for s ∈ S. Then ( f + I (X)) is a semi-topological divisor on X. Let

Wd(X) := {( f + I (X)) | f ∈ C(S)[z0, . . . , zn]d,X}.
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Let W (X)=
∐

d≥0 Wd(X) and

Zm−1(X)
lin
= {α−β | where α, β ∈W (X), α(s0)= β(s0)}.

We say that a semi-topological divisor D ∈ Zm−1(X) is semi-topologically linearly
equivalent to zero if D ∈ Zm−1(X)

lin .

Proposition 5.3. Let Td(X)={( f ) | f ∈C(S)[z0, . . . , zn]d,X}, T (X)=
∐

d≥0 Td(X)

and T̃ (X) := {( f )− (g) | ( f )(s0)= (g)(s0), ( f ), (g) ∈ T (X)} ⊆ Zm−1(X).

(1) T̃ (X) is isomorphic as a topological group to Zm−1(X)
lin .

(2) T̃ (X) is weakly homotopy equivalent to Zn−1(P
n
S) where X ⊆ Pn

S .

Proof. The isomorphism between T̃ (X) and Zm−1(X)
lin is given by the natural

map( f )− (g) 7→ ( f + I (X))− (g+ I (X)). By the moving lemma, for any e > 0,
there is an integer e(d) such that for any k > e(d) there is a continuous function
2k : Zn−1,≤e(P

n)× `0
→ Zn−1,ke(P

n) such that:

(1) 2k(c, 0)= kc.

(2) 2k(c, t) meets Xs properly for t ∈ `0
\{0}.

Then, by following exactly the argument for proving the suspension theorem, we
show that the inclusion i∗ : T̃ (X)→ Zn−1(P

n
S) is a weak homotopy equivalence. �

Proposition 5.4. Suppose that X ⊆ Pn
S is a semi-topological variety of dimension

m. Then Zm−1(X)
lin is weakly homotopy equivalent to Map((S, s0), (Z0(P

1), 0)).
In particular,

π`Zm−1(X)
lin
=


H 2(S), if `= 0,
H 1(S), if `= 1,
H 0(S), if `= 2,
0, otherwise.

Proof. We have a homeomorphism

C(S)[z0, . . . , zn]d →Map
(
S,C(

n+d
d )
)
, f 7→ coefficients of f.

This homeomorphism reduces to a homeomorphism

Cn−1,d(P
n)∼=Map

(
S,P(

n+d
d )−1)∼=Map

(
S,C0,(n+d

d )−1(P
1)
)
.

Thus Zn−1(P
n
S)
∼= Map((S, s0), (Z0(P

1), 0)). From the result above, we have
weak homotopy equivalences

Zm−1(X)
lin ∼= T̃ (X)∼= Zn−1(P

n
S)
∼=Map

(
(S, s0), (Z0(P

1), 0)
)
. �
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6. Chern classes

Definition 6.1. Suppose that the dimension of a semi-topological variety X is k. Let

Cs,1(Pn
S)(X) :=

{
α ∈Map

(
S,Ck+n−s(P

m
×Pn)

) ∣∣ α(s) ∈ Cs,1(Pn)(|Xs |)
}
,

where Cs,1(Pn)(|Xs |) := Cn−s,1(|Xs | ×Pn).

By suspension, we have a sequence

· · · → Cs,1(Pn)(X)→ Cs,1(Pn+1)(X)→ Cs,1(Pn+2)(X)→ · · · .

Let

Cs,1(P∞)(X) := lim
n→∞

Cs,1(Pn)(X)

and let

Vects(X) := [Cs,1(P∞)(X)]+

be the group completion. Note that we do not fix a base point of Vects(X). Let

Ṽects(X) := { f − g ∈ Vects(X) | fs0 = gs0},

Ṽects(X)n := { f − g ∈ Ṽects(X) | f, g ∈ Cs,1(Pn)(X)}.

Then we have sequences and maps

Ṽects(X)n Zn−s(P
n
S)(X)

Ṽects(X)n+1 Zn−s(P
n+1
S )(X)

...
...

6/

6/ 6/

6/

and we get a map

Ṽects(X)→ lim
n→∞

Zn−s(P
n
S)(X).

By taking π0 on both sides, we get a homomorphism

π0Ṽects(X)
c
−→ π0

(
lim

n→∞
Zn−s(P

n
S)(X)

)
∼= π0 Zo(P

n
S)(X)

∼=

s⊕
i=0

L i H 2i (X).

Definition 6.2. For [α] ∈ π0Ṽects(X), c([α]) ∈
⊕s

i=0 L i H 2i (X) is called the total
Chern class of [α].
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The inclusions

Cs,1(Pn
S)(X) ↪→ Cs+1,1(Pn+1

S )(X) ↪→ Cs+2,1(Pn+2
S )(X) ↪→ · · ·

induce inclusions on

Cs,1(P∞S )(X) ↪→ Cs+1,1(P∞S )(X) ↪→ Cs+2,1(P∞S )(X) ↪→ · · · ,

which induce again maps on

Ṽects(X)→ Ṽects+1
(X)→ Ṽects+2

(X)→ · · · .

Let
Ṽect(X) := lim

s→∞
Ṽects(X).

Definition 6.3. Suppose that X is a semi-topological projective variety. Let

Kn(X) := πnṼect(X).

This is called the n-th K -group of X.

This construction of Chern classes is a preparation for a proof of a Grothendieck–
Riemann–Roch theorem for semi-topological projective varieties.

Example 6.4. When S = S0, X = X × S0 where X is a smooth projective variety.
Then

Kn(X)= K semi
n (X),

where K n(X) is the semi-topological K -group of X constructed by Friedlander
and Walker [2002; 2003].
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