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FLAG SUBDIVISIONS AND γ -VECTORS

CHRISTOS A. ATHANASIADIS

The γ -vector is an important enumerative invariant of a flag simplicial
homology sphere. It has been conjectured by Gal that this vector is non-
negative for every such sphere 1 and by Reiner, Postnikov and Williams
that it increases when 1 is replaced by any flag simplicial homology sphere
that geometrically subdivides 1. Using the nonnegativity of the γ -vector in
dimension 3, proved by Davis and Okun, as well as Stanley’s theory of sim-
plicial subdivisions and local h-vectors, the latter conjecture is confirmed in
this paper in dimensions 3 and 4.

1. Introduction

This paper is concerned with the face enumeration of an important class of simplicial
complexes, that of flag homology spheres, and their subdivisions. The face vector
of a homology sphere (more generally, of an Eulerian simplicial complex) 1 can
be conveniently encoded by its γ -vector [Gal 2005], denoted by γ (1). Part of our
motivation comes from the following two conjectures. (We refer to Section 2 for
all relevant definitions.) The first, proposed by Gal [2005, Conjecture 2.1.7], can
be thought of as a generalized lower-bound conjecture for flag homology spheres;
it strengthens an earlier conjecture by Charney and Davis [1995]. The second,
proposed by Postnikov, Reiner and Williams [Postnikov et al. 2008, Conjecture 14.2],
is a natural extension of the first.

Conjecture 1.1 [Gal 2005]. For every flag homology sphere 1 we have γ (1)≥ 0.

Conjecture 1.2 [Postnikov et al. 2008]. For all flag homology spheres 1 and 1′

for which 1′ geometrically subdivides 1, we have γ (1′ )≥ γ (1).

These statements are trivial for spheres of dimension 2 or less. Conjecture 1.1
was proved for 3-dimensional spheres by Davis and Okun [2001, Theorem 11.2.1]
and was deduced from that result for 4-dimensional spheres in [Gal 2005, Corollary
2.2.3]. Conjecture 1.2 can be thought of as a conjectural analogue of the fact [Stanley
1992, Theorem 4.10] that the h-vector (a certain linear transformation of the face

MSC2010: primary 05E45; secondary 05E99.
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258 CHRISTOS A. ATHANASIADIS

vector) of a Cohen–Macaulay simplicial complex increases under quasigeometric
simplicial subdivision (a class of topological subdivisions that includes all geometric
simplicial subdivisions). The main result of this paper proves its validity in three
and four dimensions for a new class of simplicial subdivisions, which includes all
geometric ones.

Theorem 1.3. For every flag homology sphere 1 of dimension 3 or 4 and for every
flag vertex-induced homology subdivision 1′ of 1, we have γ (1′ )≥ γ (1).

This result naturally suggests the following stronger version of Conjecture 1.2:

Conjecture 1.4. For every flag homology sphere 1 and every flag vertex-induced
homology subdivision 1′ of 1, we have γ (1′ )≥ γ (1).

The following structural result on flag homology spheres, which may be of
independent interest, will also be proved in Section 4. It implies, for instance,
that Conjecture 1.4 is stronger than Conjecture 1.1. Throughout this paper, we
will denote by 6d−1 the boundary complex of the d-dimensional cross-polytope
(equivalently, the simplicial join of d copies of the 0-dimensional sphere).

Theorem 1.5. Every flag (d−1)-dimensional homology sphere is a vertex-induced
(hence quasigeometric and flag) homology subdivision of 6d−1.

The proof of Theorem 1.3 relies on the theory of face enumeration for simplicial
subdivisions, developed by Stanley [1992]. Given a simplicial complex 1 and a
simplicial subdivision 1′ of 1, the h-vector of 1′ can be expressed in terms of
local contributions, one for each face of 1, and the combinatorics of 1 [Stanley
1992, Theorem 3.2]. The local contributions are expressed in terms of the key
concept of a local h-vector, introduced and studied in [Stanley 1992]. When 1 is
Eulerian, this formula transforms into one involving γ -vectors (Proposition 5.3)
and leads to the concept of a local γ -vector, introduced in Section 5. Using the
Davis–Okun theorem [Davis and Okun 2001] mentioned earlier, it is shown that the
local γ -vector has nonnegative coefficients for every flag vertex-induced homology
subdivision of the 3-dimensional simplex. Theorem 1.3 is deduced from these
results in Section 5.

The proof of Theorem 1.5 is motivated by that of [Athanasiadis 2011, Theorem
1.2], stating that the graph of any flag simplicial pseudomanifold of dimension d−1
contains a subdivision of the graph of 6d−1.

We now briefly describe the content and structure of this paper. Sections 2 and 3
provide the necessary background on simplicial complexes, subdivisions and their
face enumeration. The notion of a homology subdivision, which is convenient for
the results of this paper as well as those of a flag subdivision and vertex-induced (a
natural strengthening of quasigeometric) subdivision, are introduced in Section 2C.
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Section 3C includes a simple example (see Example 3.4) that shows that there exist
quasigeometric subdivisions of the simplex with nonunimodal local h-vector.

Section 4 proves Theorem 1.5 and another structural result on flag subdivisions
(Proposition 4.6), stating that every flag vertex-induced homology subdivision of the
(d−1)-dimensional simplex naturally occurs as a restriction of a flag vertex-induced
homology subdivision of 6d−1. These results are used in Section 5.

Local γ -vectors are introduced in Section 5, where examples and elementary
properties are discussed. It is conjectured there that the local γ -vector has non-
negative coordinates for every flag vertex-induced homology subdivision of the
simplex (Conjecture 5.4). This statement can be considered as a local analogue of
Conjecture 1.1. It is shown to imply both Conjectures 1.1 and 1.4 and to hold in
dimension 3. Section 5 concludes with the proof of Theorem 1.3.

Section 6 discusses some special cases of Conjecture 5.4. For instance, the
conjecture is shown to hold for iterated edge subdivisions (in the sense of [Charney
and Davis 1995, Section 5.3]) of the simplex.

2. Flag complexes, subdivisions and γ -vectors

This section reviews background material on simplicial complexes, in particular
on their homological properties and subdivisions. For more information on these
topics, the reader is referred to [Stanley 1996]. Throughout this paper, k will be a
field that we will assume to be fixed. We will denote by |S| the cardinality, and by
2S the set of all subsets, of a finite set S.

2A. Simplicial complexes. All simplicial complexes we consider will be abstract
and finite. Thus, given a finite set �, a simplicial complex on the ground set � is a
collection1 of subsets of� such that F ⊆G ∈1 implies F ∈1. The elements of1
are called faces. The dimension of a face F is defined as one less than the cardinality
of F . The dimension of 1 is the maximum dimension of a face and is denoted by
dim(1). Faces of 1 of dimension 0 or 1 are called vertices or edges, respectively.
A facet of 1 is a face that is maximal with respect to inclusion. The complex 1 is
called pure if all its facets have the same dimension. All topological properties of
1 we mention in the sequel will refer to those of the geometric realization ‖1‖ of
1 [Björner 1995, Section 9], uniquely defined up to homeomorphism. For example,
we say that 1 is a simplicial or topological ball or sphere if ‖1‖ is homeomorphic
to a ball or sphere, respectively.

The open star of a face F ∈1, denoted by st1(F), is the collection of all faces of
1 that contain F . The closed star of F ∈1, denoted by st1(F), is the subcomplex
of 1 consisting of all subsets of the elements of st1(F). The link of the face F ∈1
is the subcomplex of 1 defined as link1(F) = {G r F : G ∈ 1, F ⊆ G }. The
simplicial join 11 ∗12 of two collections 11 and 12 of subsets of disjoint ground
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sets is the collection whose elements are the sets of the form F1∪F2, where F1 ∈11

and F2 ∈ 12. If 11 and 12 are simplicial complexes, then so is 11 ∗12. The
simplicial join of1 with the zero-dimensional complex {∅, {v}} is denoted by v∗1
and called the cone over 1 on the (new) vertex v.

A simplicial complex 1 is called flag if every minimal nonface of 1 has two
elements. The closed star, the link of any face of a flag complex and the simplicial
join of two (or more) flag complexes are also flag complexes. In particular, the
simplicial join of d copies of the zero-dimensional complex with two vertices is
a flag complex (in fact, a flag triangulation of the (d − 1)-dimensional sphere),
which will be denoted by 6d−1. Explicitly, 6d−1 can be described as the simplicial
complex on the 2d-element ground set �d = {u1, u2, . . . , ud} ∪ {v1, v2, . . . , vd}

whose faces are those subsets of �d that contain at most one element from each of
the sets {ui , vi } for 1≤ i ≤ d .

2B. Homology balls and spheres. Let 1 be a simplicial complex of dimension
d−1. We call 1 a homology sphere (over k) if for every F ∈1 (including F =∅)
we have

H̃i (link1(F), k)=
{
k if i = dim link1(F),
0 otherwise,

where H̃∗(0, k) denotes reduced simplicial homology of 0 with coefficients in k.
We call 1 a homology ball (over k) if there exists a subcomplex ∂1 of 1, called
the boundary of 1, so that the following hold:

• ∂1 is a (d − 2)-dimensional homology sphere over k.

• For every F ∈1 (including F =∅) we have

H̃i (link1(F), k)=
{
k if F /∈ ∂1 and i = dim link1(F),
0 otherwise.

The interior of 1 is defined as int(1) = 1 if 1 is a homology sphere and as
int(1) = 1r ∂1 if 1 is a homology ball. For example, the simplicial complex
{∅, {v}} with a unique vertex v is a 0-dimensional homology ball (over any field)
with boundary {∅} and interior {{v}}. If 1 is a homology ball of dimension d − 1,
then ∂1 consists exactly of the faces of those (d − 2)-dimensional faces of 1 that
are contained in a unique facet of 1.

Remark 2.1. It follows from standard facts [Björner 1995, (9.12)] on the homology
of simplicial joins that the simplicial join of a homology sphere and a homology
ball or of two homology balls is a homology ball and that the simplicial join of
two homology spheres is again a homology sphere. Moreover, in each case the
interior of the simplicial join is equal to the simplicial join of the interiors of the
two complexes in question.
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2C. Subdivisions. We will adopt the following notion of homology subdivision
of an abstract simplicial complex. This notion generalizes that of topological
subdivision of [Stanley 1992, Section 2]. We should point out that the class of
homology subdivisions of simplicial complexes is contained in the much broader
class of formal subdivisions of Eulerian posets, introduced and studied in [Stanley
1992, Section 7].

Definition 2.2. Let 1 be a simplicial complex. A (finite, simplicial) homology
subdivision of1 (over k) is a simplicial complex1′ together with a map σ :1′→1

such that the following hold for every F ∈ 1: (a) the set 1′F = σ
−1(2F ) is a

subcomplex of 1′ that is a homology ball (over k) of dimension dim(F), and
(b) σ−1(F) consists of the interior faces of 1′F .

Such a map σ is said to be a topological subdivision if the complex 1′F is
homeomorphic to a ball of dimension dim(F) for every F ∈1.

Let σ :1′ →1 be a homology subdivision of 1. From the defining properties,
it follows that the map σ is surjective and that dim(σ (E)) ≥ dim(E) for every
E ∈1′ . Given faces E ∈1′ and F ∈1, the face σ(E) of 1 is called the carrier
of E ; the subcomplex 1′F is called the restriction of 1′ to F . The subdivision
σ is called quasigeometric [Stanley 1992, Definition 4.1(a)] if there do not exist
E ∈1′ and face F ∈1 of dimension smaller than dim(E) such that the carrier of
every vertex of E is contained in F . Moreover, σ is called geometric [Stanley 1992,
Definition 4.1(b)] if there exists a geometric realization of 1′ that geometrically
subdivides a geometric realization of 1 in the way prescribed by σ .

Clearly, if σ :1′ →1 is a homology or topological subdivision, then the restric-
tion of σ to 1′F is also a homology or topological subdivision of the simplex 2F

for every F ∈ 1, respectively. Moreover, if σ is quasigeometric or geometric,
respectively, then so are all its restrictions 1′F for F ∈ 1. As part (c) of the
following example shows, the restriction of σ to a face F ∈1 need not be a flag
complex even when 1′ and 1 are flag complexes and σ is quasigeometric.

Example 2.3. Consider a 3-dimensional simplex 2V with V = {a, b, c, d} and
set F = {b, c, d}.

(a) Let 0 be the simplicial complex consisting of the subsets of V and the subsets
of {b, c, d, e}, and let σ : 0→ 2V be the subdivision (considered in part (h) of
[Stanley 1992, Example 2.3]) that pushes 0 into the simplex 2V so that the face F
of 0 ends up in the interior of 2V and e ends up in the interior of 2F . Formally, for
E ∈ 0 we let σ(E) = E if E ∈ 2V r {F}, we let σ(E) = V if E contains F and
otherwise we let σ(E)= F . Then 0 is a flag complex and the restriction 0F of σ
is the cone over the boundary of 2F (with new vertex e), which is not flag. See left
half of Figure 1.
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c d

e

b

c d

b

c′

d ′

b′

Figure 1. Two nonflag subdivisions of a triangle. Left: see parts
(a) and (b) of Example 2.3. Right: see part (c) of Example 2.3.

(b) Let 0′ be the simplicial complex consisting of the faces of the simplex 2V

and those of the cone on a vertex v over the boundary of the simplex with vertex
set {b, c, d, e}. (Note that 0′ is not flag.) Consider the subdivision σ ′ : 0′→ 2V

that satisfies σ ′(E)= V for every face E ∈ 0′ containing v and otherwise agrees
with the subdivision σ of part (a). Then σ ′ is quasigeometric, and its restriction
0′F = 0F is again the nonflag complex shown in the left half of Figure 1.

(c) Let 00 be the simplicial complex on the ground set F ∪ {b′, c′, d ′} whose faces
are F and those of the simplicial subdivision of 2F , shown in Figure 1, right. Let
0′′ consist of the faces of 2V and those of the cone over 00 on a new vertex v. We
leave to the reader to verify that 0′′ is a flag simplicial complex and that it admits
a quasigeometric subdivision σ ′′ : 0′′→ 2V (satisfying σ ′′(v) = σ ′′(F) = V ) for
which the restriction 0′′F is the nonflag simplicial complex shown in Figure 1, right.

The previous examples suggest the following definitions:

Definition 2.4. Let 1′ and 1 be simplicial complexes, and let σ : 1′ → 1 be a
homology subdivision.

(i) We say that σ is vertex-induced if for all faces E ∈1′ and F ∈1 the following
condition holds: if every vertex of E is a vertex of 1′F , then E ∈1′F .

(ii) We say that σ is a flag subdivision if the restriction 1′F is a flag complex for
every face F ∈1.

For homology or topological subdivisions, we have the hierarchy of properties:
geometric⇒ vertex-induced⇒ quasigeometric. The subdivision 0 of Example 2.3
is not quasigeometric while 0′ and 0′′ are quasigeometric but not vertex-induced.
(None of the three subdivisions is flag.) Thus, the second implication above is strict.
An example discussed in [Chan 1994, p. 468] shows that the first implication is strict
as well. We also point out here that if σ :1′ →1 is a vertex-induced homology
subdivision and the simplicial complex 1′ is flag, then σ is a flag subdivision.
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Joins and links. The notion of a (vertex-induced or flag) homology subdivision
behaves well with respect to simplicial joins and links, as we now explain. Let
σ1 :1

′
1→11 and σ2 :1

′
2→12 be homology subdivisions of two simplicial com-

plexes 11 and 12 on disjoint ground sets. The simplicial join 1′ 1 ∗1′ 2 is naturally
a homology subdivision of 11 ∗12 with subdivision map σ :1′ 1 ∗1′ 2→11 ∗12

defined by σ(E1∪E2)= σ1(E1)∪σ2(E2) for E1 ∈1
′
1 and E2 ∈1

′
2. Indeed, given

faces F1 ∈11 and F2 ∈12, the restriction of 1′ 1 ∗1′ 2 to the face F = F1 ∪ F2 ∈

11 ∗12 is equal to (1′ 1)F1 ∗ (1
′
2)F2 , which, by Remark 2.1, is a homology ball of

dimension equal to that of F1 ∪ F2. Moreover, σ−1(F)= σ−1
1 (F1) ∗ σ

−1
2 (F2), and

hence, σ−1(F) is the interior of this ball.
Similarly, let σ :1′→1 be a homology subdivision, and let F be a common face

of 1 and 1′ (such as a vertex of 1) that satisfies σ(F)= F . An easy application of
part (ii) of Lemma 4.1 shows that link1′ (F) is a homology subdivision of link1(F)
with subdivision map σF : link1′ (F)→ link1(F) defined by σF (E)=σ(E∪F)rF .
We will refer to this subdivision as the link of σ at F ; its restriction to a face
G ∈ link1(F) satisfies (link1′ (F))G = link1′ F∪G (F).

The following statement is an easy consequence of the relevant definitions; the
proof is left to the reader:

Lemma 2.5. The simplicial join of two vertex-induced or flag homology subdivi-
sions is also vertex-induced or flag, respectively. The link of a vertex-induced or
flag homology subdivision is also vertex-induced or flag, respectively.

Stellar subdivisions. We recall the following standard way to subdivide a simplicial
complex. Given a simplicial complex 1 on the ground set �, a face F ∈1 and an
element v not in �, the stellar subdivision of 1 on F (with new vertex v) is the
simplicial complex

1′ = (1r st1(F))∪ ({v} ∗ ∂(2F ) ∗ link1(F))

on the ground set�∪{v}, where ∂(2F )=2F r{F}. The map σ :1′→1, defined by

σ(E)=
{

E if E ∈1,
(E r {v})∪ F otherwise

for E ∈1′ , is a topological (and thus a homology) subdivision of 1. We leave to
the reader to check that if 1 is a flag complex and F ∈1 is an edge, then the stellar
subdivision of 1 on F is again a flag complex.

3. Face enumeration, γ -vectors and local h-vectors

This section reviews the definitions and main properties of the enumerative invariants
of simplicial complexes and their subdivisions that will appear in the following
sections, namely the h-vector of a simplicial complex, the γ -vector of an Eulerian
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simplicial complex and the local h-vector of a simplicial subdivision of a simplex.
Some new results on local h-vectors are included.

3A. h-vectors. A fundamental enumerative invariant of a (d − 1)-dimensional
simplicial complex 1 is the h-polynomial, defined by

h(1, x)=
∑
F∈1

x |F |(1− x)d−|F |.

The h-vector of 1 is the sequence h(1) = (h0(1), h1(1), . . . , hd(1)), where
h(1, x)=

∑d
i=0 hi (1)x i . The number

(−1)d−1hd(1)=
∑
F∈1

(−1)|F |−1

is the reduced Euler characteristic of 1 and is denoted by χ̃(1). The polynomial
h(1, x) satisfies hi (1)= hd−i (1) [Stanley 1997, Section 3.14] if 1 is an Eulerian
complex, meaning that

χ̃(link1(F))= (−1)dim link1(F)

holds for every F ∈ 1. For the simplicial join of two simplicial complexes 11

and 12 we have h(11 ∗ 12, x) = h(11, x) h(12, x). For a homology ball or
sphere 1 of dimension d − 1 we set

h(int(1), x)=
∑

F∈int(1)

x |F |(1− x)d−|F |

and recall the following well known statement (see, for instance, Theorem 7.1
in [Stanley 1996, Chapter II] and [Athanasiadis 2012, Section 2.1] for additional
references).

Lemma 3.1. Let 1 be a (d − 1)-dimensional simplicial complex. If 1 is either a
homology ball or a homology sphere over k, then xdh(1, 1/x)= h(int(1), x).

3B. γ -vectors. Let h = (h0, h1, . . . , hd) be a vector with real coordinates, and
let h(x) =

∑d
i=0 hi x i be the associated real polynomial of degree at most d. We

say that h(x) has symmetric coefficients and that the vector h is symmetric if
hi = hd−i holds for 0 ≤ i ≤ d. It is easy to check [Gal 2005, Proposition 2.1.1]
that h(x) has symmetric coefficients if and only if there exists a real polynomial
γ (x)=

∑bd/2c
i=0 γi x i of degree at most bd/2c satisfying

(3-1) h(x)= (1+ x)dγ
( x
(1+ x)2

)
=

bd/2c∑
i=0

γi x i (1+ x)d−2i .

In that case, γ (x) is uniquely determined by h(x) and called the γ -polynomial
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associated with h(x); the sequence (γ0, γ1, . . . , γbd/2c) is called the γ -vector asso-
ciated with h. We will refer to the γ -polynomial associated with the h-polynomial
of an Eulerian complex 1 as the γ -polynomial of 1 and will denote it by γ (1, x).
Similarly, we will refer to the γ -vector associated with the h-vector of an Eulerian
complex 1 as the γ -vector of 1 and will denote it by γ (1).

3C. Local h-vectors. We now recall some of the basics of the theory of face
enumeration for subdivisions of simplicial complexes [Stanley 1992; 1996, Section
III.10]. The following definition is a restatement of [Stanley 1992, Definition 2.1]
for homology (rather than topological) subdivisions of the simplex:

Definition 3.2. Let V be a set with d elements, and let 0 be a homology subdivision
of the simplex 2V . The polynomial `V (0, x)= `0+ `1x + · · ·+ `d xd defined by

(3-2) `V (0, x)=
∑
F⊆V

(−1)d−|F |h(0F , x)

is the local h-polynomial of 0 (with respect to V ). The local h-vector of 0 (with
respect to V ) is the sequence `V (0)= (`0, `1, . . . , `d).

The following theorem, stated for homology subdivisions, summarizes some of the
main properties of local h-vectors (see Theorems 3.2 and 3.3 and Corollary 4.7 in
[Stanley 1992]):

Theorem 3.3. (i) For every homology subdivision1′ of a pure simplicial complex
1 we have

(3-3) h(1′ , x)=
∑
F∈1

`F (1
′

F , x) h(link1(F), x).

(ii) The local h-vector `V (0) is symmetric for every homology subdivision 0 of
the simplex 2V .

(iii) The local h-vector `V (0) has nonnegative coordinates for every quasigeometric
homology subdivision 0 of the simplex 2V .

Proof. Parts (i) and (iii) follow from the proofs of Theorems 3.2 and 4.6, respectively,
in [Stanley 1992]. Moreover, Lemma 3.1 implies that every homology subdivision
of a simplicial complex is a formal subdivision in the sense of [Stanley 1992,
Definition 7.4]. Thus, parts (i) and (ii) are special cases of Corollary 7.7 and
Theorem 7.8, respectively, in [Stanley 1992]. �

Example 3.4. The local h-polynomial of the subdivision in part (a) of Example 2.3
was computed in [Stanley 1992] as `V (0, x)=−x2. This shows that the assumption
in Theorem 3.3(iii) that 0 is quasigeometric is essential. For part (b) of Example 2.3
we can easily compute that `V (0

′, x) = x + x3. Since 0′ is quasigeometric, this
disproves [Stanley 1992, Conjecture 5.4] (see also [Chan 1994, Section 6; Stanley
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1996, p. 134]), stating that local h-vectors of quasigeometric subdivisions are
unimodal.

The previous example suggests the following question:

Question 3.5. Is the local h-vector `V (0) unimodal for every vertex-induced ho-
mology subdivision 0 of the simplex 2V ?

We now show that local h-vectors also enjoy a locality property. (This will be
useful in the proof of Proposition 6.1.)

Proposition 3.6. Let σ : 0→ 2V be a homology subdivision of the simplex 2V . For
every homology subdivision 0′ of 0 we have

(3-4) `V (0
′, x)=

∑
E∈0

`E(0
′

E , x) `V (0, E, x),

where

(3-5) `V (0, E, x)=
∑

σ(E)⊆F⊆V

(−1)d−|F |h(link0F (E), x)

for E ∈ 0.

Proof. By assumption, 0′F is a homology subdivision of 0F for every F ⊆ V .
Thus, using the defining Equation (3-2) for `V (0

′, x) and (3-3) to expand h(0′F , x)
for F ⊆ V , we get

`V (0
′, x)=

∑
F⊆V

(−1)d−|F |h(0′F , x)

=

∑
F⊆V

(−1)d−|F |
∑

E∈0F

`E(0
′

E , x) h(link0F (E), x)

=

∑
E∈0

`E(0
′

E , x)
∑

F⊆V :σ(E)⊆F

(−1)d−|F |h(link0F (E), x),

and the proof follows. �

Remark 3.7. We call the polynomial `V (0, E, x) defined by (3-5) the relative local
h-polynomial of 0 (with respect to V ) at E . This polynomial reduces to `V (0, x)
for E =∅ and shares many of the important properties of `V (0, x), established in
[Stanley 1992]. For instance, using ideas of [Stanley 1992] and their refinements in
[Athanasiadis 2012], one can show that `V (0, E, x) has symmetric coefficients in
the sense that

xd−|E |`V (0, E, 1/x)= `V (0, E, x)

for every homology subdivision 0 of 2V and E ∈ 0 and that `V (0, E, x) has
nonnegative coefficients for every quasigeometric homology subdivision 0 of
2V and E ∈ 0. As a consequence of the latter statement and (3-4), we have
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`V (0
′, x)≥ `V (0, x) for every quasigeometric homology subdivision 0 of 2V and

every quasigeometric homology subdivision 0′ of 0. Since these results will not
be used in this paper, detailed proofs will appear elsewhere.

4. Flag subdivisions of 6d−1

This section proves Theorem 1.5 as well as a result on flag subdivisions of the
simplex (Proposition 4.6), which will be used in Section 5.

The following lemma gives several technical properties of homology balls and
spheres (over the field k). We will only sketch the proof, which is fairly straightfor-
ward and uses standard tools from algebraic topology.

Lemma 4.1. (i) If 1 is a homology sphere or ball of dimension d − 1, then
link1(F) is a homology sphere of dimension d − |F | − 1 for every F ∈1 or
interior face F ∈1, respectively.

(ii) If1 is a homology ball of dimension d−1 and F ∈1 is a boundary face, then
link1(F) is a homology ball of dimension d − |F | − 1 with interior equal to
link1(F)∩ int(1).

(iii) If 1 is a homology sphere or ball, then the cone over 1 is a homology ball
whose boundary is equal to 1 or the union of 1 with the cone over the
boundary of 1, respectively.

(iv) Let 11 and 12 be homology balls of dimension d. If 11 ∩12 is a homology
ball of dimension d−1 that is contained in or equal to the boundary of both11

and12, then11∪12 is a homology ball or sphere of dimension d , respectively.

(v) Let 1 be a homology sphere of dimension d − 1. If 0 is a subcomplex of 1
that is a homology ball of dimension d−1, then the complement of the interior
of 0 in 1 is also a homology ball of dimension d − 1 whose boundary is equal
to that of 0.

Proof. We first observe that for all faces F ∈1 and E ∈ link1(F), the link of E in
link1(F) is equal to link1(E ∪ F). Moreover, if 1 is a homology ball and F is an
interior face, then so is E ∪ F . Part (i) follows from these facts and the definition
of homology balls and spheres. Part (ii) is an easy consequence of part (i) and the
relevant definitions. Part (iii) is an easy consequence of the relevant definitions and
the fact that cones have vanishing reduced homology. Part (iv) follows by an easy
application of the Mayer–Vietoris long exact sequence [Munkres 1984, §25].

For the last part, we let K denote the complement of the interior of 0 in 1 and
note that the pairs (‖0‖, ‖∂0‖) and (‖1‖, ‖K‖) are compact triangulated relative
homology manifolds that are orientable over k. Applying the Lefschetz duality
theorem [Munkres 1984, §70] and the long exact homology sequence [Munkres
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1984, §23] to these pairs shows that K has trivial reduced homology over k. Similar
arguments work for the links of faces of K. The details are omitted. �

Remark 4.2. Although not all parts of Lemma 4.1 remain valid if homology balls
and spheres are replaced by topological balls and spheres, they do hold for the
subclasses of PL balls and PL spheres. (We refer the reader to [Björner et al. 1999,
Section 4.7 (d)] for this claim, for a short introduction to PL topology and for
additional references.) Thus, the results of this paper remain valid when homology
balls and spheres are replaced by PL balls and spheres and the notion of homology
subdivision is replaced by its natural PL analogue.

The following lemma will also be essential in the proof of Theorem 1.5. A
similar result has appeared in [Barmak 2010, Lemma 3.2].

Lemma 4.3. Let 1 be a flag (d − 1)-dimensional homology sphere. For every
nonempty face F of 1, the subcomplex

⋃
v∈F st1(v) is a homology (d − 1)-

dimensional ball whose interior is equal to
⋃
v∈F st1(v).

Proof. We set F = {v1, v2, . . . , vk},
⋃k

i=1 st1(vi ) = K and
⋃k

i=1 st1(vi ) = L and
proceed by induction on the cardinality k of F . For k = 1, the complex K is the
cone over link1(v1) on the vertex v1. Since 1 is a homology sphere, the result
follows from parts (i) and (iii) of Lemma 4.1. Suppose that k ≥ 2. We will also
assume that d ≥ 3 since the result is trivial otherwise. (We note that the assumption
that 1 is flag is essential in the case d = 2.) Since by Lemma 4.1(i) links of flag
homology spheres are also flag homology spheres, the complex 0 = link1(vk)

is a flag homology sphere of dimension d − 2 and {v1, . . . , vk−1} is a nonempty
face of 0. Thus, by the induction hypothesis, the union 01 =

⋃k−1
i=1 st0(vi ) is a

homology ball of dimension d − 2. Let 00 denote the boundary of 01, and let
02 denote the complement of the interior of 01 in 0. Thus, 00 is a homology
sphere of dimension d − 3, and, by part (v) of Lemma 4.1, 02 is a homology ball
of dimension d − 2 whose boundary is equal to 00.

Consider the union K1=
⋃k−1

i=1 st1(vi ) and the cones K2=vk∗02 and K0=vk∗00.
It is straightforward to verify that K= K1 ∪K2 and that K1 ∩K2 = K0. We note
that K1 is a homology ball of dimension d − 1 by the induction hypothesis and
that K2 and K0 are homology balls of dimension d − 1 and d − 2, respectively, by
part (iii) of Lemma 4.1. By the induction hypothesis, the interior of 01 is equal to⋃k−1

i=1 st0(vi ). Therefore, none of the faces of 00 contains any of v1, . . . , vk−1, and
hence, the same holds for K0. Since by the induction hypothesis the interior of K1

is equal to
⋃k−1

i=1 st1(vi ), we conclude that K0 is contained in the boundary of K1.
Moreover, K0 is also contained in the boundary of K2 since 00 is contained in the
boundary of 02. It follows from the previous discussion and Lemma 4.1(iv) that K
is a homology (d − 1)-dimensional ball.
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We now verify that the interior of K is equal to L. This statement may be derived
from the previous inductive argument since the interior of K is equal to the union of
the interiors of K1, K2 and K0. We give the following alternative argument: Since
K is a homology ball, its boundary consists of all faces of the (d − 2)-dimensional
faces of K that are contained in exactly one facet of K. The validity of the statement
for k = 1 implies that these (d − 2)-dimensional faces of K are precisely those
that do not contain any of the vi and that are not contained in more than one of
the subcomplexes link1(vi ). However, since 1 is (d − 1)-dimensional and flag, no
(d− 2)-dimensional face of 1 may be contained in more than one of the link1(vi ).
Thus, the boundary of K consists precisely of its faces that do not contain any of
the vi , and the proof follows. �

Proof of Theorem 1.5. Let 1 be a flag simplicial complex of dimension d − 1
and 6d−1 be the simplicial join of the zero-dimensional spheres {∅, {ui }, {vi }} for
1≤ i ≤ d. We fix a facet {x1, x2, . . . , xd} of 1, and for E ∈1 we define

(4-1) σ(E)= { ui : xi ∈ E } ∪ { vi : E /∈ st1(xi ) }.

Clearly, σ(E) cannot contain any of the sets {ui , vi }. Thus, we have σ(E)∈6d−1 for
every E ∈1, and hence, we get a map σ :1→6d−1. We will prove that this map is
a homology subdivision of6d−1 if1 is a homology sphere. Given a face F ∈6d−1,
we need to show that σ−1(2F ) is a subcomplex of 1 of dimension dim(F) that is a
homology ball with interior σ−1(F). We denote by S the subset of {x1, x2, . . . , xd}

consisting of all vertices xi for which F ∩ {ui , vi } =∅ and distinguish two cases:

Case 1: S =∅. We may assume that F = {u1, . . . , uk} ∪ {vk+1, . . . , vd} for some
k ≤ d . Setting E0 = {x1, . . . , xk}, the defining Equation (4-1) shows that σ−1(2F )

is equal to the intersection of
⋂k

i=1 st1(xi ) with the complement of
⋃d

i=k+1 st1(xi )

in 1 and that σ−1(F) consists of those faces of σ−1(2F ) that contain E0 and do not
belong to any of the link1(xi ) for k+1≤ i≤d . Consider the complex0= link1(E0),
and let K denote the complement of the union

⋃d
i=k+1 st0(xi ) in 0. Since links

of homology spheres are also homology spheres (see part (i) of Lemma 4.1), the
complex 0 is a homology sphere of dimension d − |F | − 1. By Lemma 4.3 and
part (v) of Lemma 4.1, K is a homology ball of dimension d−|F |−1 whose interior
is equal to the set of those faces of K that do not belong to any of the link0(xi ) for
k+ 1≤ i ≤ d . From the above we conclude that σ−1(2F ) is equal to the simplicial
join of the simplex 2E0 and K and that σ−1(F) is equal to the simplicial join of
{E0} and the interior of K. The result now follows from part (iii) of Lemma 4.1
and the previous discussion.

Case 2: S 6=∅. Then σ−1(2F ) is contained in link1(S). As a result, replacing 1
by link1(S) reduces this case to the previous one.
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Finally, we note that (4-1) may be rewritten as σ(E)=
⋃

x∈E f (x), where

f (x)=
{
{ui } if x = xi for some 1≤ i ≤ d ,
{ vi : x /∈ link1(xi ) } otherwise

for every vertex x of 1. This implies that for every E ∈1, the carrier of E is equal
to the union of the carriers of the vertices of E . As a result, σ is vertex-induced
and the proof follows. �

Corollary 4.4. Given any flag homology sphere 1 of dimension d − 1, there exist
simplicial complexes 0F , one for each face F ∈6d−1, with the following properties:
(a) 0F is a flag vertex-induced homology subdivision of the simplex 2F for every
F ∈6d−1, and (b) we have

(4-2) h(1, x)=
∑

F∈6d−1

`F (0F , x)(1+ x)d−|F |.

Proof. We apply (3-3) to the subdivision of 1 guaranteed by Theorem 1.5 and note
that for every F ∈6d−1, the restriction 0F of this subdivision to F has the required
properties and that h(link6d−1(F), x)= (1+ x)d−|F |. �

Remark 4.5. Due to (4-2) and Theorem 3.3(iii), h(1, x) ≥ (1+ x)d for every
flag (d − 1)-dimensional homology sphere 1. This inequality was proved, more
generally, for every flag (d − 1)-dimensional doubly Cohen–Macaulay simplicial
complex 1 in [Athanasiadis 2011, Theorem 1.3].

We now fix a d-element set V = {v1, v2, . . . , vd} and a homology subdivision
0 of 2V with subdivision map σ : 0 → 2V . We let U = {u1, u2, . . . , ud} be a
d-element set that is disjoint from V and consider the union 1 of all collections of
the form 2E

∗0G , where E = { ui : i ∈ I } and G = { v j : j ∈ J } are subsets of U
and V , respectively, and (I, J ) ranges over all ordered pairs of disjoint subsets of
{1, 2, . . . , d}. Clearly, 1 is a simplicial complex that contains as a subcomplex 0
(set I =∅) and the simplex 2U (set J =∅).

We let6d−1 be as in the proof of Theorem 1.5 and define the map σ0 :1→6d−1

by σ0(E ∪ F) = E ∪ σ(F) for all E ⊆ U and F ∈ 0 such that E ∪ F ∈ 1. The
second result of this section is as follows:

Proposition 4.6. Under the established assumptions and notation, we have:

(i) The complex 1 is a (d − 1)-dimensional homology sphere.

(ii) Endowed with the map σ0, the complex 1 is a homology subdivision of 6d−1.

(iii) If 0 is flag and vertex-induced, then 1 is a flag simplicial complex and a flag,
vertex-induced homology subdivision of 6d−1.

Proof. We first verify (ii). We consider any face W ∈6d−1 so that W = E ∪G for
some E ⊆U and G⊆ V and recall that 0G is a homology ball of dimension dim(G).
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We have σ−1
0 (2W )= 2E

∗0G and σ−1
0 (W )= {E} ∗σ−1(G)= {E} ∗ int(0G) by the

definition of σ0. Thus, it follows from part (iii) of Lemma 4.1 that σ−1
0 (2W ) is a

homology ball of dimension dim(W ) and that its interior is equal to σ−1
0 (W ).

Part (i) may be deduced from part (ii) as follows. Let F0, F1, . . . , Fm be a linear
ordering of the facets of 6d−1 such that Fi ∩U ⊂ F j ∩U implies i < j . Thus,
we have m = 2d , F0 = V and Fm = U . By assumption, 1F0 = 0V is a (d − 1)-
dimensional homology ball. Moreover, 1F j is equal to the simplicial join of a
face of 2U with the restriction of 0 to a face of 2V for 1 ≤ j ≤ m and hence a
(d−1)-dimensional homology ball by part (iii) of Lemma 4.1, and1F j ∩

⋃ j−1
i=0 1Fi

is equal to the simplicial join of the boundary of this face with the same restriction
of 0. It follows from part (iv) of Lemma 4.1 by induction on j that

⋃ j
i=01Fi is a

(d − 1)-dimensional homology ball for 0≤ j ≤ m− 1 and a (d − 1)-dimensional
homology sphere for j = m. This proves (i) since 1=

⋃m
i=01Fi .

To verify (iii), assume that 0 is flag and vertex-induced. It is clear from the
definition of σ0 that the subdivision 1 is also vertex-induced. Since the restriction
of 1 to any face of 6d−1 is the join of a simplex with the restriction of 0 to a face
of 2V , the subdivision1 is flag as well. To verify that1 is a flag complex, let E∪F
be a set of vertices of 1 that are pairwise joined by edges, where E = { ui : i ∈ I }
for some I ⊆ {1, 2, . . . , d} and F consists of vertices of 0. We need to show that
E ∪ F ∈1. We set J = {1, 2, . . . , d}r I and G = { v j : j ∈ J } and note that the
elements of F are vertices of 0G by definition of 1. Since the elements of F are
pairwise joined by edges in 0, our assumptions that 0 is vertex-induced and flag
imply that F ∈ 0G . Therefore, E ∪ F belongs to 2E

∗0G , which is contained in 1,
and the result follows. �

Remark 4.7. The conclusion in Proposition 4.6 that 1 is a flag complex does
not hold under the weaker hypothesis that 0 is quasigeometric rather than vertex-
induced. For instance, let 0 be the simplicial complex consisting of the subsets of
V = {v1, v2, v3} and {v2, v3, v4}, and let σ : 0→ 2V be the subdivision that pushes
0 into 2V so that the face F = {v2, v3} of 0 ends up in the interior of 2V and v4

ends up in the interior of 2F . Then 0 is quasigeometric and flag, but the simplicial
complex 1 is not flag since it has {u1, v2, v3} as a minimal nonface.

5. Local γ -vectors

This section defines the local γ -vector of a homology subdivision of the simplex,
lists examples and elementary properties, discusses its nonnegativity in the special
case of flag subdivisions and concludes with the proof of Theorem 1.3. This proof
comes as an application of the considerations and results of the present and the
previous sections.
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Definition 5.1. Let V be a set with d elements, and let 0 be a homology subdivision
of the simplex 2V . The polynomial ξV (0, x)=ξ0+ξ1x+· · ·+ξbd/2cxbd/2c defined by

(5-1) `V (0, x)= (1+ x)dξV

(
0,

x
(1+ x)2

)
=

bd/2c∑
i=0

ξi x i (1+ x)d−2i

is the local γ -polynomial of 0 (with respect to V ). The local γ -vector of 0 (with
respect to V ) is the sequence ξV (0)= (ξ0, ξ1, . . . , ξbd/2c).

Thus, ξV (0, x) is the γ -polynomial associated with `V (0, x), and ξV (0) is the
γ -vector associated with `V (0) in the sense of Section 3B. All formulas in the next
example follow from corresponding formulas in [Stanley 1992, Example 2.3] or
directly from the relevant definitions.

Example 5.2. (a) For the trivial subdivision 0 = 2V of the (d − 1)-dimensional
simplex 2V we have

(5-2) ξV (0, x)=
{

1 if d = 0,
0 if d ≥ 1.

(b) Let ξV (0) = (ξ0, ξ1, . . . , ξbd/2c), where 0 and V are as in Definition 5.1. As-
suming that d ≥ 1, we have ξ0 = 0 and ξ1 = f ◦0 , where f ◦0 is the number of interior
vertices of 0. Assuming that d ≥ 4, we also have ξ2 = −(2d − 3) f ◦0 + f ◦1 − f̃0,
where f ◦1 is the number of interior edges of 0 and f̃0 is the number of vertices of
0 that lie in the relative interior of a (d − 2)-dimensional face of 2V .

(c) Suppose that d ∈ {2, 3}. As a consequence of (b) we have ξV (0, x) = t x for
every homology subdivision 0 of 2V , where t is the number of interior vertices of 0.

(d) Let 0 be the cone over the boundary 2V r {V } of the simplex 2V (so 0 is the
stellar subdivision of 2V on the face V ). Then `V (0, x)= x+ x2

+· · ·+ xd−1, and
hence, ξ2 is negative for d ≥ 4. For instance, we have ξV (0, x)= x − x2 for d = 4.

(e) For the subdivisions of parts (b) and (c) of Example 2.3 we can compute that
`V (0

′, x)= `V (0
′′, x)= x + x3 and hence that ξV (0

′, x)= ξV (0
′′, x)= x − 2x2.

The following proposition shows the relevance of local γ -vectors in the study of
γ -vectors of subdivisions of Eulerian complexes:

Proposition 5.3. Let1 be a pure Eulerian simplicial complex. For every homology
subdivision 1′ of 1 we have

(5-3) γ (1′ , x)=
∑
F∈1

ξF (1
′

F , x)γ (link1(F), x).

Proof. Since 1 is Eulerian, so is link1(F) for every F ∈1. Thus, applying (3-1)
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to the h-polynomial of link1(F) we get

h(link1(F), x)= (1+ x)d−|F |γ
(

link1(F),
x

(1+ x)2

)
,

where d − 1= dim(1). Using this and (5-1), Equation (3-3) may be rewritten as

h(1′ , x)= (1+ x)d
∑
F∈1

ξF

(
1′F ,

x
(1+ x)2

)
γ
(

link1(F),
x

(1+ x)2

)
.

The proposed equality now follows from the uniqueness of the γ -polynomial
associated with h(1′ , x). �

The following statement is the main conjecture of this paper:

Conjecture 5.4. For every flag vertex-induced homology subdivision 0 of the
simplex 2V we have ξV (0)≥ 0.

Parts (d) and (e) of Example 5.2 show that the conclusion of Conjecture 5.4 fails
under various weakenings of the hypotheses. We do not know of an example of
a flag quasigeometric homology subdivision of the simplex for which the local
γ -vector fails to be nonnegative.

We now discuss some consequences of Theorem 1.5 and Proposition 5.3 related
to Conjecture 5.4.

Corollary 5.5. For every flag homology sphere 1 of dimension d − 1 we have

(5-4) γ (1, x)=
∑

F∈6d−1

ξF (0F , x),

where 0F is as in Corollary 4.4 for each F ∈ 6d−1. In particular, the validity of
Conjecture 5.4 for homology subdivisions 0 of dimension at most d − 1 implies the
validity of Conjecture 1.1 for homology spheres 1 of dimension at most d − 1.

Proof. Setting `F (0F , x)=
∑

i ξF,i x i (1+ x)|F |−2i in (4-2) and changing the order
of summation results in (5-4). Alternatively, one can apply (5-3) to the subdivision
guaranteed by Theorem 1.5 and note that γ (link6d−1(F), x)= 1 for every F ∈6d−1.
The last sentence in the statement of the corollary follows from (5-4). �

Corollary 5.6. The validity of Conjecture 5.4 for homology subdivisions 0 of di-
mension at most d−1 implies the validity of Conjecture 1.4 for homology spheres1
and subdivisions 1′ of dimension at most d − 1.

Proof. We observe that the term corresponding to F=∅ in the sum of the right-hand
side of (5-3) is equal to γ (1, x). Thus, the result follows from (5-3), Corollary 5.5
and the fact that the link of every nonempty face of a flag homology sphere is also
a flag homology sphere of smaller dimension. �
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Proposition 5.7. Conjecture 5.4 holds for subdivisions of the 3-dimensional simplex.

Proof. Let 0 be a flag vertex-induced homology subdivision of the (d − 1)-
dimensional simplex 2V , and let 1 be the homology subdivision of 6d−1 con-
sidered in Proposition 4.6. Applying (5-3) to this subdivision and noting that
γ (link6d−1(F), x)= 1 for every F ∈6d−1, we get

γ (1, x)=
∑

F∈6d−1

ξF (1F , x).

By definition of 1, the restriction 1F is a cone over the restriction of 1 to a
proper face of F for every F ∈6d−1 that is not contained in V . Since every such
subdivision has a zero local h-vector [Stanley 1992, p. 821], the previous formula
can be rewritten as

(5-5) γ (1, x)=
∑
F⊆V

ξF (0F , x).

Assume now that d = 4 so that ξ(0, x)= ξ0+ξ1x+ξ2x2 for some integers ξ0, ξ1

and ξ2. Since ξ0 = 0 and ξ1 ≥ 0 by part (b) of Example 5.2, it suffices to show that
ξ2 ≥ 0. For that, we observe that the only contribution to the coefficient of x2 in the
right-hand side of (5-5) comes from the term with F = V . As a result, ξ2 is equal to
the coefficient of x2 in γ (1, x). Since 1 is a 3-dimensional flag homology sphere
(by Proposition 4.6), this coefficient is nonnegative by the Davis–Okun theorem
[Davis and Okun 2001, Theorem 11.2.1], and the result follows. �

Proof of Theorem 1.3. For 3-dimensional spheres the result is due to Proposition 5.7
and Corollary 5.6. Assume now that 1 and 1′ have dimension 4. Then we can
write γ (1, x) = 1+ γ1(1)x + γ2(1)x2 and γ (1′ , x) = 1+ γ1(1

′ )x + γ2(1
′ )x2.

Since γ1(1) = f0(1)− 8 and γ1(1
′ ) = f0(1

′ )− 8, where f0(1) and f0(1
′ ) are

the number of vertices of 1 and 1′ , respectively, it is clear that γ1(1
′ ) ≥ γ1(1).

As the computation in the proof of [Gal 2005, Corollary 2.2.2] shows, we also have

2γ2(1)=
∑

v∈vert(1)

γ2(link1(v)),

where vert(1) is the set of vertices of 1. Similarly, we have

2γ2(1
′ )=

∑
v′∈vert(1′ )

γ2(link1′ (v′)),

where we may assume that vert(1) ⊆ vert(1′ ). Since link1′ (v) is a flag vertex-
induced homology subdivision of link1(v) for every v ∈ vert(1), by Lemma 2.5,
we have γ2(link1′ (v))≥ γ2(link1(v)) by the 3-dimensional case, treated earlier, for
every such vertex v. Since link1′ (v′) is a 3-dimensional flag homology sphere, we
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also have γ2(link1′ (v′))≥ 0 by the Davis–Okun theorem for every v′ ∈ vert(1′ )r
vert(1). Hence, γ2(1

′ )≥ γ2(1), and the result follows. �

Question 5.8. Does γ (1′ ) ≥ γ (1) hold for every flag homology sphere 1 and
every flag homology subdivision 1′ of 1?

6. Special cases

This section provides some evidence in favor of the validity of Conjecture 5.4 other
than that provided by Proposition 5.7.

Simplicial joins. Let 0 be a homology subdivision of the simplex 2V and 0′ be a
homology subdivision of the simplex 2V ′ , where V and V ′ are disjoint finite sets.
Then 0 ∗0′ is a homology subdivision of the simplex 2V

∗ 2V ′
= 2V∪V ′ , and given

subsets F ⊆V and F ′⊆V ′, the restriction of 0∗0′ to the face F∪F ′ of this simplex
satisfies (0 ∗0′)F∪F ′ = 0F ∗0

′

F ′ . Since h(0F ∗0
′

F ′, x)= h(0F , x) h(0′F ′, x), the
defining Equation (3-2) and a straightforward computation show that

`V∪V ′(0 ∗0
′, x)= `V (0, x) `V ′(0

′, x).

This equation and (5-1) imply that

(6-1) ξV∪V ′(0 ∗0
′, x)= ξV (0, x) ξV ′(0

′, x).

From the previous formula and Lemma 2.5 we conclude that if 0 and 0′ satisfy the
assumptions and the conclusion of Conjecture 5.4, then so does 0 ∗0′.

Edge subdivisions. Following [Charney and Davis 1995, Section 5.3], we refer to
the stellar subdivision on an edge of a simplicial complex 0 as an edge subdivision.
As mentioned in Section 3B, flagness of a simplicial complex is preserved by
edge subdivisions. The following statement describes a class of flag (geometric)
subdivisions of the simplex with nonnegative local γ -vectors:

Proposition 6.1. For every subdivision 0 of the simplex 2V that can be obtained
from the trivial subdivision by successive edge subdivisions, we have ξV (0)≥ 0.

Proof. Let 0 be a subdivision of 2V and 0′ be the edge subdivision of 0 on
e = {a, b} ∈ 0. Thus, we have 0′ = (0r st0(e))∪ ({v} ∗ ∂(e) ∗ link0(e)), where v
is the new vertex added and ∂(e)= {∅, {a}, {b}}.

By appealing to (3-4) and noticing that the right-hand side of this formula
vanishes except when E ∈ {∅, e} (or by direct computation), we find that

`V (0
′, x)= `V (0, x)+ x`V (0, e, x).

Thus, it suffices to prove the following claim: if the γ -polynomial corresponding to
`V (0, E, x) has nonnegative coefficients for every face E ∈0 of positive dimension
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(meaning that `V (0, E, x) can be written as a linear combination of the polynomials
x i (1+ x)d−|E |−2i with nonnegative coefficients for every |E | ≥ 2), then the same
holds for 0′. We consider a face E ∈ 0′ of positive dimension and distinguish
the following cases. (We note that E cannot contain e and that if E ∈ 0, then the
carrier σ(E)⊆ V of E is the same, whether considered with respect to 0 or 0′.)

Case 1: E ∈ 0r link0(e). The links link0′F (E) and link0F (E) are then combina-
torially isomorphic for every F ⊆ V that contains the carrier of E (since these
two links are equal if E ∪ e /∈ 0) and the defining Equation (3-5) implies that
`V (0

′, E, x)= `V (0, E, x).

Case 2: E ∈ link0(e). For F ⊆ V that contains the carrier of E , the link link0′F (E)
is equal to either link0F (E) or to the edge subdivision of link0F (E) on e in case F
does not or does contain the carrier of e, respectively. It follows from this and (3-3)
that (see also [Gal 2005, Proposition 2.4.3])

h(link0′F (E), x)=
{

h(link0F (E), x) if σ(e) 6⊆ F ,
h(link0F (E), x)+ xh(link0F (E ∪ e), x) if σ(e)⊆ F

and then from (3-5) that `V (0
′, E, x)= `V (0, E, x)+ x`V (0, E ∪ e, x).

Case 3: E /∈ 0. Then we must have E ∈ {v} ∗ ∂(e) ∗ link0(e) and, in particular,
v ∈ E . We distinguish two subcases:

Suppose first that E intersects e, and set E ′ = (E r {v}) ∪ e. Then for every
F ⊆ V that contains the carrier of E in 0′, link0′F (E)= link0F (E

′) (and the latter
coincides with the carrier of E ′ in 0), and hence, `V (0

′, E, x)= `V (0, E ′, x).
Suppose finally that E∩e=∅, and set E ′= (E r{v})∪e. Then for every F ⊆ V

that contains the carrier of E in 0′, link0′F (E) = link0F (E
′) ∗ ∂(e). Therefore,

we have h(link0′F (E), x)= (1+ x) h(link0F (E
′), x) for every such F , and hence,

`V (0
′, E, x)= (1+ x) `V (0, E ′, x).

The expressions obtained for `V (0
′, E, x) and our assumption on 0 show that,

indeed, the corresponding γ -polynomial has nonnegative coefficients in all cases. �

Barycentric and cluster subdivisions. As a special case of Proposition 6.1, the
(first) barycentric subdivision of the simplex 2V has nonnegative local γ -vector.
Several combinatorial interpretations for its entries are given in [Athanasiadis and
Savvidou 2011]. Similar results appear there for the simplicial subdivision of a
simplex defined by the positive part of the cluster complex associated with a finite
root system.

The following special case of Conjecture 5.4 might also be interesting to explore.
The notion of a CW-regular subdivision can be defined by replacing the simplicial
complex 1′ in the definition of a topological subdivision (Definition 2.2) by a
regular CW-complex; see [Stanley 1992, p. 839].
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Question 6.2. Does Conjecture 5.4 hold for the barycentric subdivision of any
CW-regular subdivision of the simplex?
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RAYS AND SOULS IN VON MANGOLDT PLANES

IGOR BELEGRADEK, ERIC CHOI AND NOBUHIRO INNAMI

We study rays in von Mangoldt planes, which has applications to the struc-
ture of open complete manifolds with lower radial curvature bounds. We
prove that the set of souls of any rotationally symmetric plane of nonnega-
tive curvature is a closed ball, and if the plane is von Mangoldt we compute
the radius of the ball. We show that each cone in R3 can be smoothed to a
von Mangoldt plane.

1. Introduction

Let Mm denote R2 equipped with a smooth, complete, rotationally symmetric
Riemannian metric given in polar coordinates as gm := dr2

+ m2(r) dθ2; let o
denote the origin in R2. We say that Mm is a von Mangoldt plane if its sectional
curvature Gm := −m′′/m is a nonincreasing function of r .

The Toponogov comparison theorem was extended in [Itokawa et al. 2003] to
open complete manifolds with radial sectional curvature bounded below by the
curvature of a von Mangoldt plane, leading to various applications in [Shiohama and
Tanaka 2002; Kondo and Ohta 2007; Kondo and Tanaka 2011] and generalizations
in [Mashiko and Shiohama 2006; Kondo and Tanaka 2010; Machigashira 2010].

A point q in a Riemannian manifold is called a critical point of infinity if each
unit tangent vector at q makes angle ≤ π/2 with a ray that starts at q. Let Cm

denote the set of critical points of infinity of Mm ; clearly Cm is a closed, rotationally
symmetric subset that contains every pole of Mm , so that o ∈ Cm . One reason for
studying Cm is the following consequence of the generalized Toponogov theorem
of [Itokawa et al. 2003].

Lemma 1.1. Let M̂ be a complete noncompact Riemannian manifold with radial
curvature bounded below by the curvature of a von Mangoldt plane Mm , and let
r̂ and r denote the distance functions to the basepoints ô and o of M̂ and Mm ,
respectively. If q̂ is a critical point of r̂ , then r̂(q̂) is contained in r(Cm).

MSC2010: 53C20, 53C22, 53C45.
Keywords: radial curvature, critical point, von Mangoldt, surface of revolution, ray, nonnegative

curvature, soul.
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Combined with the critical point theory of distance functions [Grove 1993;
Greene 1997, Lemma 3.1; Petersen 2006, §11.1], Lemma 1.1 implies the following.

Corollary 1.2. In the setting of Lemma 1.1, for any c in [a, b] ⊂ r(Mm–Cm),

• the r̂−1-preimage of [a, b] is homeomorphic to r̂−1(a) × [a, b], and the
r̂−1-preimages of points in [a, b] are all homeomorphic,

• the r̂−1-preimage of [0, c] is homeomorphic to a compact smooth manifold
with boundary, and the homeomorphism maps r̂−1(c) onto the boundary,

• if K ⊂ M̂ is a compact smooth submanifold, possibly with boundary, such that
r̂(K )⊃ r(Cm), then M̂ is diffeomorphic to the normal bundle of K .

If Mm is von Mangoldt and Gm(0)≤ 0, then Gm ≤ 0 everywhere, so every point
is a pole, and hence Cm = Mm so that Lemma 1.1 yields no information about
the critical points of r̂ . Of course, there are other ways to get this information, as
illustrated by classical Gromov’s estimate: if Mm is the standard R2, then the set of
critical points of r̂ is compact; see, for example, [Greene 1997, p. 109].

The following theorem determines Cm when Gm ≥ 0 everywhere; note that the
plane Mm in (i)–(iii) need not be von Mangoldt.

Theorem 1.3. If Gm ≥ 0, then:

(i) Cm is the closed Rm-ball centered at o for some Rm ∈ [0,∞].

(ii) Rm is positive if and only if
∫
∞

1 m−2 is finite.

(iii) Rm is finite if and only if m′(∞) < 1
2 .

(iv) If Mm is von Mangoldt and Rm is finite, then the equation m′(r) = 1
2 has a

unique solution ρm , and the solution satisfies ρm > Rm and Gm(rm) > 0.

(v) If Mm is von Mangoldt and Rm is finite and positive, then Rm is the unique
solution of the integral equation∫

∞

x

m(x)dr

m(r)
√

m2(r)−m2(x)
= π.

Here is a sample application of Theorem 1.3 (iv) and Corollary 1.2:

Corollary 1.4. Let M̂ be a complete noncompact Riemannian manifold with radial
curvature from the basepoint ô bounded below by the curvature of a von Mangoldt
plane Mm . If Gm ≥ 0 and m′(∞) < 1

2 , then M̂ is homeomorphic to the metric
ρm-ball centered at ô, where ρm is the unique solution of m′(r)= 1

2 .

Theorem 1.3 should be compared with the following results of Tanaka:

• The set of poles in any Mm is a closed metric ball centered at o of some radius
Rp in [0,∞] [Tanaka 1992b, Lemma 1.1].
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• Rp > 0 if and only if
∫
∞

1 m−2 is finite and lim infr→∞ m(r) > 0 [Tanaka
1992a].

• If Mm is von Mangoldt, then Rp is a unique solution of an explicit integral
equation [Tanaka 1992a, Theorem 2.1].

It is natural to wonder when the set of poles equals Cm , and we answer the
question when Mm is von Mangoldt.

Theorem 1.5. If Mm is a von Mangoldt plane, then:

(a) If Rp is finite and positive, then the set of poles is a proper subset of the
component of Cm that contains o.

(b) Rp = 0 if and only if Cm = {o}.

Of course Rp =∞ implies Cm = Mm , but the converse is not true: Theorem 1.11
ensures the existence of a von Mangoldt plane with m′(∞)= 1

2 and Gm ≥ 0, and
for this plane Cm = Mm by Theorem 1.3, while Rp is finite by Remark 4.7.

We say that a ray γ in Mm points away from infinity if γ and the segment
[γ (0), o] make an angle < π

2 at γ (0). Define Am ⊂ Mm –{o} as follows: q ∈ Am if
and only if there is a ray that starts at q and points away from infinity; by symmetry,
Am ⊂ Cm .

Theorem 1.6. If Mm is a von Mangoldt plane, then Am is open in Mm .

Any plane Mm with Gm ≥ 0 has another distinguished subset, namely the set of
souls, that is, points produced via the soul construction of Cheeger–Gromoll.

Theorem 1.7. If Gm ≥ 0, then Cm is equal to the set of souls of Mm .

Recall that the soul construction takes as input a basepoint in an open complete
manifold N of nonnegative sectional curvature and produces a compact totally
convex submanifold S without boundary, called a soul, such that N is diffeomorphic
to the normal bundle to S. Thus if N is contractible, as happens for Mm , then S is
a point. The soul construction also gives a continuous family of compact totally
convex subsets that starts with S and ends with N , and according to [Mendonça
1997, Proposition 3.7] q ∈ N is a critical point of infinity if and only if there is a
soul construction such that the associated continuous family of totally convex sets
drops in dimension at q. In particular, any point of S is a critical point of infinity,
which can also be seen directly; see the proof of [Maeda 1974/1975, Lemma 1].
In Theorem 1.7 we prove conversely that every point of Cm is a soul; for this Mm

need not be von Mangoldt.
In regard to Theorem 1.3 (iii), it is worth mentioning Gm ≥ 0 implies that m′ is

nonincreasing, so m′(∞) exists, and moreover, m′(∞) ∈ [0, 1] because m ≥ 0. As
we note in Remark A.5 for any von Mangoldt plane Mm , the limit m′(∞) exists
as a number in [0,∞]. It follows that if Gm ≥ 0 or if Mm is von Mangoldt, then
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Mm admits total curvature, which equals 2π(1−m′(∞)) and hence takes values
in [−∞, 2π ]; thus m′(∞)= 1

2 if and only if Mm has total curvature π . Standard
examples of von Mangoldt planes of positive curvature are the one-parametric
family of paraboloids, all satisfying m′(∞)= 0 [Shiohama et al. 2003, Example
2.1.4], and the one-parametric family of two-sheeted hyperboloids parametrized by
m′(∞), which takes every value in (0, 1) [Shiohama et al. 2003, Example 2.1.4].

A property of von Mangoldt planes, discovered in [Elerath 1980; Tanaka 1992b]
and crucial to this paper, is that the cut locus of any q ∈ Mm–{o} is a ray that lies
on the meridian opposite q. (If Mm is not von Mangoldt, its cut locus is not fully
understood, but it definitely can be disconnected [Tanaka 1992a, p. 266], and known
examples of cut loci of compact surfaces of revolution [Gluck and Singer 1979;
Sinclair and Tanaka 2006] suggest that it could be complicated.)

As we note in Lemma 3.14, if Mm is a von Mangoldt plane, and if q 6= o,
then q ∈ Cm if and only if the geodesic tangent to the parallel through q is a ray.
Combined with Clairaut’s relation this gives the following “choking” obstruction
for a point q to belong to Cm (see Lemma 3.3):

Proposition 1.8. If Mm is von Mangoldt and q ∈ Cm , then m′(rq) > 0 and m(r) >
m(rq) for r > rq , where rq is the r-coordinate of q.

The above proposition is immediate from Lemmas 3.3 and 3.14. We also show
in Lemma 3.10 that if Mm is von Mangoldt and Cm 6= o, then there is ρ such that
m(r) is increasing and unbounded on [ρ,∞).

The following theorem collects most of what we know about Cm for a von Man-
goldt plane Mm with some negative curvature, where the case lim infr→∞ m(r)= 0
is excluded because then Cm = {o} by Proposition 1.8.

Theorem 1.9. If Mm is a von Mangoldt plane with a point where Gm < 0 and such
that lim infr→∞ m(r) > 0, then

(1) Mm contains a line and has total curvature −∞,

(2) if m′ has a zero, then neither Am nor Cm is connected,

(3) Mm–Am is a bounded subset of Mm ,

(4) the ball of poles of Mm has positive radius.

In Example 6.1 we construct a von Mangoldt plane Mm to which Theorem 1.9 (2)
applies. In Example 6.2 we produce a von Mangoldt plane Mm such that neither
Am nor Cm is connected while m′ > 0 everywhere. We do not know whether there
is a von Mangoldt plane such that Cm has more than two connected components.

Because of Lemma 1.1 and Corollary 1.2, one is interested in subintervals of
(0,∞) that are disjoint from r(Cm), as, for example, happens for any interval on
which m′ ≤ 0, or for the interval (Rm,∞) in Theorem 1.3. To this end we prove
the following result, which is a consequence of Theorem 6.3.
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Theorem 1.10. Let Mn be a von Mangoldt plane with Gn ≥ 0, n(∞) =∞, and
such that n′(x) < 1

2 for some x. Then for any z > x there exists y > z such that
if Mm is a von Mangoldt plane with n = m on [0, y], then r(Cm) and [x, z] are
disjoint.

In general, if Mm and Mn are von Mangoldt planes with n = m on [0, y], then
the sets Cm and Cn could be quite different. For instance, if Mn is a paraboloid,
then Cn = {o}, but by Example 6.2 for any y > 0 there is a von Mangoldt Mm with
some negative curvature such that m = n on [0, y], and by Theorem 1.9 the set
Mm–Cm is bounded and Cm contains the ball of poles of positive radius.

Basic properties of von Mangoldt planes are described in Appendix A. In par-
ticular, in order to construct a von Mangoldt plane with prescribed Gm it suffices
to check that 0 is the only zero of the solution of the Jacobi initial value problem
(A.7) with K = Gm , where Gm is smooth on [0,∞). Prescribing values of m′ is
harder. It is straightforward to see that if Mm is a von Mangoldt plane such that m′

is constant near infinity, then Gm ≥ 0 everywhere and m′(∞) ∈ [0, 1]. We do not
know whether there is a von Mangoldt plane with m′ = 0 near infinity, but all the
other values in (0, 1] can be prescribed:

Theorem 1.11. For every s ∈ (0, 1] there is ρ > 0 and a von Mangoldt plane Mm

such that m′ = s on [ρ,∞).

Thus each cone in R3 can be smoothed to a von Mangoldt plane, but we do not
know how to construct a (smooth) capped cylinder that is von Mangoldt.

Structure of the paper. We collect notations and conventions in Section 2. Properties
of von Mangoldt planes are reviewed in Appendix A, while Appendix B contains a
calculus lemma relevant to continuity and smoothness of the turn angle. Section 3
contains various results on rays in von Mangoldt planes, including the proofs of
Theorem 1.6 and Proposition 1.8. Planes of nonnegative curvature are discussed in
Section 4, where Theorems 1.3 and 1.7 are proved. A proof of Theorem 1.11 is in
Section 5, and the other results stated in the introduction are proved in Section 6.

2. Notations and conventions

All geodesics are parametrized by arclength. Minimizing geodesics are called
segments. Let ∂r and ∂θ denote the vector fields dual to dr and dθ on R2. Given
q 6= o, denote its polar coordinates by θq and rq . Let γq , µq , and τq denote the
geodesics defined on [0,∞) that start at q in the directions of ∂θ , ∂r , and −∂r ,
respectively. We refer to τq |(rq ,∞) as the meridian opposite q; note that τq(rq)= o.
Also set κγ (s) := 6 (γ̇ (s), ∂r ).

We write ṙ , θ̇ , γ̇ , and κ̇ for the derivatives of rγ (s), θγ (s), γ (s), and κγ (s) by s,
and write m′ for dm/dr ; similar notations are used for higher derivatives.
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Let κ̂(rq) denote the maximum of the angles formed by µq and rays emanating
from q 6= o; let ξq denote the ray with ξq(0)= q for which the maximum is attained,
that is, such that κξq (0) = κ̂(rq).

A geodesic γ in Mm–{o} is called counterclockwise if θ̇ > 0 and clockwise if
θ̇ < 0. A geodesic in Mm is clockwise, counterclockwise, or can be extended to a
geodesic through o. If γ is clockwise, then it can be mapped to a counterclockwise
geodesic by an isometric involution of Mm .

Convention. Unless stated otherwise, any geodesic in Mm that we consider is either
tangent to a meridian or counterclockwise.

Due to this convention the Clairaut constant and the turn angle defined below
are nonnegative, which will simplify notations.

3. Turn angle and rays in Mm

This section collects what we know about rays in Mm with emphasis on the cases
when Gm ≥ 0 or G ′m ≤ 0. Let γ be a geodesic in Mm that does not pass through o,
so that γ is a solution of the geodesic equations

(3.1) r̈ = mm′θ̇2, θ̇m2
= c,

where c is called the Clairaut constant of γ . The equation θ̇m2
= c is the so-called

Clairaut’s relation, which, since γ is assumed counterclockwise, can be written as
c = m(rγ (s)) sin κγ (s). Thus 0 ≤ c ≤ m(rγ (s)) where c = m(rγ (s)) only at points
where γ is tangent to a parallel, and c = 0 when γ is tangent to a meridian.

A geodesic is called escaping if its image is unbounded; for example, any ray is
escaping.

Fact 3.2. (1) A parallel through q is a geodesic in Mm if and only if m′(rq)= 0
[Shiohama et al. 2003, Lemma 7.1.4].

(2) A geodesic γ in Mm is tangent to a parallel at γ (s0) if and only if ṙγ (s0) = 0.

(3) If γ is a geodesic in Mm and ṙγ (s) vanishes more than once, then γ is invariant
under a rotation of Mm about o [Shiohama et al. 2003, Lemma 7.1.6] and
hence not escaping.

Lemma 3.3. If γq is escaping, then m(r) > m(rq) for r > rq , and m′(rq) > 0.

Proof. Since γq is escaping, the image of s→ rγq (s) contains [rq ,∞), and q is
the only point where γq is tangent to a parallel. The Clairaut constant of γq is
c = m(rq), hence m(r) > m(rq) for all r > rq . It follows that m′(rq)≥ 0. Finally,
m′(rq) 6= 0 else γq would equal the parallel through q . �

Lemma 3.4. If γ is an escaping geodesic that is tangent to the parallel Pq through
q , then γ \ {q} lies in the unbounded component of Mm \ Pq .
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Proof. By reflectional symmetry and uniqueness of geodesics, γ locally stays on
the same side of the parallel Pq through q , that is, γ is the union of γq and its image
under the reflecting fixing µq ∪ τq . If γ could cross to the other side of Pq at some
point γ (s), then |rγ (s)− rq | would attain a maximum between γ (s) and q, and at
the maximum point γ would be tangent to a parallel. Since γ is escaping, it cannot
be tangent to parallels more than once, hence γ stays on the same side of Pq at all
times, and since γ is escaping, it stays in the unbounded component of Mm \ Pq . �

For a geodesic γ : (s1, s2)→ Mm that does not pass through o, we define the
turn angle Tγ of γ as

Tγ :=
∫
γ

dθ =
∫ s2

s1

θ̇γ (s) ds = θγ (s2)− θγ (s1).

Clairaut’s relation reads θ̇ = c/m2
≥ 0 so the above integral Tγ converges to a

number in [0,∞]. Since γ is unit speed, we have (ṙ)2+m2θ̇2
= 1. Combining this

with θ̇ = c/m2 gives

ṙ = sign(ṙ)

√
1− c2

m2 ,

which yields a useful formula for the turn angle: if γ is not tangent to a meridian
or a parallel on (s1, s2), so that sign(ṙγ (s)) is a nonzero constant, then

(3.5) dθ
dr
=
θ̇

ṙ
= sign(ṙγ (s))Fc(r) where Fc :=

c

m
√

m2− c2
,

and thus if ri := rγ (si ), then

(3.6) Tγ = sign(ṙ)
∫ r2

r1

Fc(r)dr.

Since c2
≤ m2, this integral is finite except possibly when some ri is in the set

{m−1(c),∞}. The integral (3.6) converges at ri =m−1(c) if and only if m′(ri ) 6= 0.
Convergence of (3.6) at ri =∞ implies convergence of

∫
∞

1 m−2 dr , and the converse
holds under the assumption lim infr→∞ m(r) > c; this assumption is true when
Gm ≥ 0 or G ′m ≤ 0, as follows from Lemma 3.10.

Example 3.7. If γ is a ray in Mm that does not pass through o, then Tγ ≤ π else
there is s with |θγ (s)− θγ (0)| = π , and by symmetry the points γ (s) and γ (0) are
joined by two segments, so γ would not be a ray.

Example 3.8. If Tγq is finite, then m′(rq) 6= 0 and m−2 is integrable on [1,∞), as
follows immediately from the discussion preceding Example 3.7.
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Lemma 3.9. If γ : [0,∞)→ Mm is a geodesic with finite turn angle, then γ is
escaping.

Proof. Note that γ is tangent to parallels in at most two points, for otherwise γ is
invariant under a rotation about o, and hence its turn angle is infinite. Thus after
cutting off a portion of γ we may assume it is never tangent to a parallel, so that rγ (s)
is monotone. By assumption θγ (s) is bounded and increasing. By Clairaut’s relation
m(rγ (s)) is bounded below, so that m(0) = 0 implies that rγ (s) is bounded below.
If γ were not escaping, then rγ (s) would also be bounded above, so there would
exist a limit of (rγ (s), θγ (s)) and hence the limit of γ (s) as s→∞, contradicting
the fact that γ has infinite length. �

Lemma 3.10. If m−2 is integrable on [1,∞), then

(1) the function (r log r)−
1
2 m(r) is unbounded,

(2) if Gm ≥ 0, then m′ > 0 for all r ,

(3) if Mm is von Mangoldt, then m′ > 0 for all large r ,

(4) if either Gm ≥ 0 or G ′m ≤ 0, then m(∞)=∞.

Proof. Since m−2 is integrable, the function (r log r)−
1
2 m(r) is unbounded, and in

particular, m is unbounded. If Gm ≥ 0 everywhere, then m′ is nonincreasing with
m′(0)= 1, and the fact that m is unbounded implies that m′ > 0 for all r . If Mm is
von Mangoldt, and Gm(ρ0)< 0, then Gm < 0 for r ≥ρ0, that is, m′ is nondecreasing
on [ρ0,∞). Since m is unbounded, there is ρ > ρ0 with m(ρ) > m(ρ0) so that∫ ρ
ρ0

m′ = m(ρ) − m(ρ0) > 0. Hence m′ is positive somewhere on (ρ0, ρ), and
therefore on [ρ,∞). Finally, since m is an unbounded increasing function for large
r , the limit limr→∞ m(r)= m(∞) exists and equals∞. �

Lemma 3.11. If γq is escaping, then lim infr→∞ m(r) > m(rq) if and only if there
is a neighborhood U of q such that γu is escaping for each u ∈U.

Proof. First, recall that m(r) >m(rq) for r > rq and m′(rq) > 0 by Lemma 3.3. We
shall prove the contrapositive: lim infr→∞ m(r) = m(rq) if and only if there is a
sequence ui → q such that γui is not escaping.

If there is a sequence zi ∈ Mm with rzi →∞ and m(rzi )→ m(rq), then there
are points ui → q on µq with m(rui )= m(rzi ). If γui is escaping, then it meets the
parallel through zi , so Clairaut’s relation implies that γui is tangent to the parallels
through ui and zi , which cannot happen for an escaping geodesic.

Conversely, suppose there are ui → q such that γi := γui is not escaping. Let
Ri be the radius of the smallest ball about o that contains γi , and let Pi be its
boundary parallel. Note that Ri→∞ as γi converges to γq on compact sets and
γq is escaping, and hence lim infr→∞ m(r)= limr→∞ m(Ri ). For each i there is a
sequence si, j such that the r -coordinates of γi (si, j ) converge to Ri , which implies
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κγi (si, j )→ π/2 as j→∞ and i is fixed. (Note that if γi is tangent to Pi , then si, j is
independent of j , namely, γ (si, j ) is the point of tangency.) By Clairaut’s relation,
m(Ri )= m(rui ), hence lim infr→∞ m(r)= m(rq). �

Lemma 3.12. If Mm is von Mangoldt, then a geodesic γ : [0,∞)→ Mm \ {o} is a
ray if and only if Tγ ≤ π .

Proof. The “only if” direction holds even when Mm is not von Mangoldt by
Example 3.7. Conversely, if γ is not a ray, then γ meets the cut locus of q , which by
[Tanaka 1992b] is a subset of the opposite meridian τγ (0)|(rγ (0),∞). Thus Tγ >π . �

Lemma 3.13. If γ is a ray in a von Mangoldt plane, and if σ is a geodesic with
σ(0)= γ (0) and κγ (0) > κσ(0), then σ is a ray and Tσ ≤ Tγ .

Proof. Set q = γ (0). If κγ (0) = π , then γ = τq , so τq is a ray, which in a von
Mangoldt plane implies that q is a pole [Shiohama et al. 2003, Lemma 7.3.1], so
that σ is also a ray. If κγ (0) < π and σ is not a ray, then σ is minimizing until
it crosses the opposite meridian τq |(rq ,∞) [Tanaka 1992b]. Near q the geodesic σ
lies in the region of Mm bounded by γ and µq hence before crossing the opposite
meridian σ must intersect γ or µq , so they would not be rays. Finally, Tσ ≤ Tγ
holds as σ lies in the sector between γ and µq . �

Lemma 3.14. If Mm is von Mangoldt and q 6= o, then γq is a ray if and only if
q ∈ Cm .

Proof. If γq is a ray, then q ∈ Cm by symmetry. If q ∈ Cm , then either q is a pole
and there is a ray in any direction, or q is not a pole. In the latter case τq is not a
ray [Shiohama et al. 2003, Lemma 7.3.1], hence by the definition of Cm there is a
ray γ with κγ (0) ≥ π/2, so γq is a ray by Lemma 3.13. �

Recall that κ̂(rq) is the maximum of the angles formed by µq and rays emanating
from q 6= o, and ξq is the ray for which the maximum is attained. It is immediate
from definitions that q ∈ Cm if and only if κ̂(rq)≥ π/2. Lemmas 3.15, 3.16, and
3.17 were suggested by the referee.

Lemma 3.15. Cm 6= {o} if and only if lim infr→∞ m > 0 and
∫
∞

1 m−2 is finite.

Proof. The “if” direction holds because by the main result of [Tanaka 1992a]
the assumptions imply that the ball of poles has a positive radius. Conversely, if
q ∈ Cm–{o}, then ξq is a ray different from µq . By [Tanaka 1992a, Lemma 1.3 and
Proposition 1.7] if either lim infr→∞ m = 0 or

∫
∞

1 m−2
=∞, then µq is the only

ray emanating from q . �

Lemma 3.16. The limit of the segments [q, τq(s)] as s→∞ is ξq .
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Proof. The segments [q, τq(s)] subconverge to a ray σ that starts at q. Since
ξq is a ray, it cannot cross the opposite meridian τq |(rq ,∞). As [q, τq(s)] and ξq

are minimizing, they only intersect at q, and hence the angle formed by µq and
[q, τq(s)] is ≥ κ̂(rq). It follows that κσ(0) ≥ κ̂(rq), which must be an equality as
κ̂(rq) is a maximum, so σ = ξq . �

Lemma 3.17. The function r→ κ̂(r) is left continuous and upper semicontinuous.
In particular, the set {q : κ̂(rq) < α} is open for every α.

Proof. If κ̂ is not left continuous at rq , then there exists ε>0 and a sequence of points
qi on µq such that rqi → rq− and either κ̂(rqi )− κ̂(rq) > ε or κ̂(rq)− κ̂(rqi ) > ε. In
the former case ξqi subconverge to a ray that makes a larger angle with µq than ξq ,
contradicting the maximality of κ̂(rq). In the latter case, ξqi intersects ξq for some
i . Therefore, by Lemma 3.16 the segment [qi , τq(s)] intersects [q, τq(s)] for large
enough s at a point z 6= τq(s), so τq(s) is a cut point of z which cannot happen for
a segment. This proves that κ̂ is left continuous. A similar argument shows that

lim sup
rqi→r+q

κ̂(rqi )≤ κ̂(rq),

so that κ̂ is upper semicontinuous, which implies that {q : κ̂(rq) < α} is open for
every α. �

Lemmas 3.12 and 3.14 imply that on a von Mangoldt plane κ̂(rq) ≥ π/2 if
and only if Tγq ≤ π ; the equivalence is sharpened in Theorem 3.24, whose proof
occupies the rest of this section.

Lemma 3.18. If σ is escaping and 0 < κσ(0) ≤ π/2, then Tσ =
∫
∞

rq
Fc(r) dr ;

moreover, if κσ(0) = π/2, then c = m(rq).

Proof. This formula for Tσ is immediate from (3.6) once it is shown that σ |(0,∞) is
not tangent to a meridian or a parallel. If σ |(0,∞) were tangent to a meridian, κσ(0)
would be 0 or π , which is not the case. Since σ is escaping, Fact 3.2 implies that σ
is tangent to a parallel at most once; that is, ṙσ has at most one zero. If κσ(0) = π/2,
then σ is tangent to the parallel through σ(0), and so σ |(0,∞) is not tangent to a
parallel. Finally, if κσ(0) < π/2, then σ is not tangent to a parallel, else it would be
tangent to a parallel through u with ru > rq , which would imply rσ(s) ≤ ru for all s
by Lemma 3.4, which cannot happen for an escaping geodesic. �

To better understand the relationship between κ̂(rq) and Tγq , we study how Tσ
depends on σ , or equivalently on σ(0) and κσ(0), when σ varies in a neighborhood
of a ray γq .

Lemma 3.19. If Gm ≥ 0 or G ′m ≤ 0, then the function u→ Tγu is continuous at
each point u where Tγu is finite.
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Proof. If Tγu is finite, then γu is escaping by Lemma 3.9, and hence Tγu =
∫
∞

ru
Fm(ru)

by Lemma 3.18. We need to show that this integral depends continuously on ru .
By Lemmas 3.3 and 3.10 and the discussion preceding Example 3.7, the assump-

tions on Gm and the finiteness of Tγu imply that m(r) > m(ru) for r > ru , m−2 is
integrable, m′(ru) > 0, and m(∞)=∞. Hence there exists δ > ru with m′|[ru ,δ]> 0,
and m(r) > m(δ) for r > δ; it is clear that small changes in u do not affect δ.

Write
∫
∞

ru
Fm(ru) =

∫ δ
ru

Fm(ru) +
∫
∞

δ
Fm(ru). On [ru, δ] we can write Fm(ru) =

h(r, ru)(r−ru)
−1/2 for some smooth function h. Since (r−ru)

−1/2 is the derivative
of 2(r − ru)

1/2, one can integrate Fm(ru) by parts which easily implies continuous
dependence of

∫ δ
ru

Fm(ru) on ru .
Continuous dependence of

∫
∞

δ
Fm(ru) on ru follows because Fm(ru) is continuous

in ru , and is dominated by K m−2 where K is a positive constant independent of
small changes of ru . �

Next we focus on the case when σ(0) is fixed, while κσ(0) varies near π/2. To
get an explicit formula for Tσ we need the following.

Lemma 3.20. If Mm is von Mangoldt, and γq is a ray, then there is ε > 0 such
that every geodesic σ : [0,∞)→ Mm with σ(0) = q and κσ(0) ∈ [π/2, π/2+ ε]
is tangent to a parallel exactly once, and if u is the point where σ is tangent to a
parallel, then m′ > 0 on [ru, rq ].

Proof. If κσ(0)= π/2, then σ = γq , so it is tangent to a parallel only at q , as rays are
escaping. If κσ(0) > π/2, then σ converges to γq on compact subsets as ε→ 0, so
for a sufficiently small ε the geodesic σ crosses the parallel through q at some point
σ(s) such that κσ(s) <π/2. Since γq is a ray, rotational symmetry and Lemma 3.13
imply that σ |[s,∞) is a ray, so σ is escaping. Thus σ is tangent to a parallel at a
point u where rσ(s) attains a minimum, and is not tangent to a parallel at any other
point by Fact 3.2. Finally, ru = limε→0 rq , and since m′(rq) > 0 by Proposition 1.8,
we get m′ > 0 on [ru, rq ] for small ε. �

Under the assumptions of Lemma 3.20 the Clairaut constant c of σ equals
m(ru)= m(rq) sin κσ(0), and the turn angle of σ is given by

Tσ =
∫
∞

rq

Fm(rq )(r) dr if κσ(0) =
π

2
and(3.21)

Tσ =
∫
∞

ru

Fc(r) dr −
∫ ru

rq

Fc(r) dr =
∫
∞

rq

Fc(r) dr + 2
∫ rq

ru

Fc(r) dr(3.22)

if π/2< κσ(0) < π/2+ ε. These integrals converge, that is, Tσ is finite, as follows
from Example 3.8 and Lemmas 3.10 and 3.20.

Since any geodesic σ with σ(0) = q and κσ(0) ∈ [0, π/2+ ε] has finite turn
angle, one can think of Tσ as a function of κσ(0) where σ varies over geodesics
with σ(0)= q and κσ(0) ∈ [0, π/2+ ε].
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Lemma 3.23. If Mm is von Mangoldt, and γq is a ray, then there is δ > π/2 such
that the function κσ(0)→ Tσ is continuous and strictly increasing on [π/2, δ], and
continuously differentiable on (π/2, δ]; moreover, the derivative of Tσ is infinite
at π/2.

Proof. The Clairaut constant c of σ equals m(ru)=m(rq) sin κσ(0), so the assertion
is immediate from (elementary but nontrivial) Lemma B.2 about continuity and
differentiability of the integrals (3.21) and (3.22). �

Theorem 3.24. If Mm is von Mangoldt and q 6= o, then

(1) κ̂(rq) > π/2 if and only if Tγq < π ,

(2) κ̂(rq)= π/2 if and only if Tγq = π .

Proof. (1) If κ̂(rq) > π/2, then any geodesic σ with σ(0) = q and κσ(0) ∈
[π/2, κ̂(rq)] is a ray, and so has turn angle ≤ π . By Lemma 3.23 the turn angle
is increasing at π/2, so Tγq < π . Conversely, if Tγq < π , then by Lemma 3.23 the
turn angle is continuous at π/2, so any geodesic σ with σ(0)= q and κσ(0) near
π/2 has turn angle < π , and is therefore a ray, so κ̂(rq) > π/2.

(2) This follows from (1) and the fact that κ̂(rq)≥ π/2 if and only if Tγq ≤ π . �

Proof of Theorem 1.6. By Theorem 3.24 we know that q ∈ Am if and only if
Tγq < π , and by Lemma 3.19 the map u → Tγu is continuous at q, so the set
{u ∈ Mm | Tγu < π} is open, and hence so is Am . �

Another proof of Theorem 1.6. Fix q ∈ Am so that Tγq < π by Theorem 3.24. Fix
ε > 0 such that ε+ Tγq < π . Let Pq be the parallel through q. Then there is a ray
γ with γ (0) = q and κγ (0) > π/2 such that γ intersects Pq at points q and γ (t),
and the turn angle of γ |(0,t) is < ε.

For an arbitrary sequence qi → q we need to show that qi ∈ Am for all large i .
Let γi : [0,∞)→ Mm be the geodesic with γi (0)= qi and κγi (0) = κγ (0). Since γi

converge to γ on compact sets, for large i there are ti > 0 such that γi (ti ) ∈ Pq

and ti → t . The angle formed by γ and µγ (t) is < π/2. Rotational symmetry and
Lemma 3.13 imply that if i is large, then γi |[ti ,∞) is a ray whose turn angle is ≤ Tγq .
The turn angles of γi |(0,ti ) converge to the turn angle of γ |(0,t), which is < ε. Thus
Tγi < Tγq +ε < π for large i , so that γi is a ray by Lemma 3.12, and hence qi ∈ Am .

�

4. Planes of nonnegative curvature

A key consequence of Gm ≥ 0 is monotonicity of the turn angle and of κ̂ .

Proposition 4.1. Suppose that Mm has Gm ≥ 0. If 0 < ru < rv and γu has finite
turn angle, then Tγu ≤ Tγv with equality if and only if Gm vanishes on [ru,∞].
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Proof. The result is trivial when G is everywhere zero. Since γu has finite turn angle,
m−2 is integrable, and hence m is a concave function with m′ > 0 and m(∞)=∞
by Lemma 3.10.

Set x := rq , so that the turn angle of γq is
∫
∞

x Fm(x). As m′ > 0, we can change
variables by t := m(r)/m(x) or r = m−1(tm(x)) so that∫

∞

x
Fm(x)(r) dr =

∫ m(∞)/m(x)

1

dt

l(t, x)t
√

t2− 1
=

∫
∞

1

dt

l(t, x)t
√

t2− 1
,

where l(t, x) := m′(r). Computing

∂l(t, x)
∂x

= m′′(r) ∂r
∂x
=

m′′(r)tm′(x)
m′(r)

=−G(r)
tm′(x)
m′(r)

≤ 0

we see that l(t, x) is nonincreasing in x . Thus if ru < rv , then l(t, ru)≥ l(t, rv) for
all t implying Tγu ≤ Tγv . The equality occurs precisely when l(t, x) is constant
on [1,∞)×[ru, rv], or equivalently, when G(m−1(tm(x))) vanishes on [1,∞)×
[ru, rv], which in turn is equivalent to G = 0 on [ru,∞), because tm(x) takes all
values in (m(ru),∞) so m−1(tm(x)) takes all values in (ru,∞). �

Lemma 4.2. If Gm ≥ 0, then κ̂ is nonincreasing in r .

Proof. Let u1, u2, and v be points on µv with 0< ru1 < ru2 < rv . By Lemma 3.16
the ray ξui is the limit of geodesic segments that join ui with points τv(s) as s→∞.
The segments [u1, τv(s)] and [u2, τv(s)] only intersect at the endpoint τv(s) for if
they intersect at a point z, then z is a cut point for τv(s), so [τv(s), ui ] cannot be
minimizing. Hence the geodesic triangle with vertices u1, v, and τv(s) contains the
geodesic triangle with vertices u2, v, and τv(s). Since Gm ≥ 0, the former triangle
has larger total curvature, which is finite as Mm has finite total curvature. As m
only vanishes at 0, concavity of m implies that m is nondecreasing.

If m is unbounded, Clairaut’s relation implies that the angles at τv(s) tend to zero
as s→∞. By the Gauss–Bonnet theorem κξ1(0)− κξ2(0) equals the total curvature
of the “ideal” triangle with sides ξ1, ξ2, and [u1, u2]. Thus κ̂(ru1) ≥ κ̂(ru2) with
equality if and only if Gm vanishes on [ru1,∞).

If m is bounded, then
∫
∞

1 m−2
=∞, so by [Tanaka 1992a, Proposition 1.7] the

only ray emanating from q is µq so that κ̂ = 0 on Mm \{o}. For future use note that
in this case the angle formed by µq = ξq and [q, τq(s)] tends to zero as s→∞, so
Clairaut’s relation together with the boundedness of m imply that the angle at τq(s)
in the bigon with sides [q, τq(s)] and τq also tends to zero as s→∞. �

Remark 4.3. By the above proof if Gm ≥ 0 and m−2 is integrable on [1,∞), then
κ̂(r1)= κ̂(r2) for some r2 > r1 if and only if Gm vanishes on [r1,∞).

Proof of Theorem 1.3. (i) Since rays converge to rays, Cm is closed. As o ∈ Cm ,
rotational symmetry and Lemma 4.2 imply that Cm is a closed ball.
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(ii) Since m is concave and positive, it is nondecreasing, so lim infr→∞ m > 0, and
the claim follows from Lemma 3.15.

(iii) We prove the contrapositive that Mm = Cm if and only if m′(∞)≥ 1
2 . Note that

the latter is equivalent to c(Mm)≤ π , where c(Z) denotes the total curvature of a
subset Z ⊆ Mm which varies in [0, 2π ].

Suppose c(Mm) ≤ π . Fix q 6= o, and consider the segments [q, τq(s)] that by
Lemma 3.16 converge to ξq as s→∞. Consider the bigon bounded by [q, τq(s)]
and its symmetric image under the reflection that fixes τq ∪µq . As in the proof of
Lemma 4.2 we see that the angle at τq(s) goes to zero as s→∞, so the sum of
angles in the bigon tends to 2(π − κ̂(rq)), which by the Gauss–Bonnet theorem
cannot exceed c(Mm)≤ π . We conclude that κ̂(rq)≥ π/2, so q ∈ Cm .

Conversely, suppose that Cm = Mm . Given ε > 0 find a compact rotationally
symmetric subset K ⊂ Mm with c(K ) > c(Mm)− ε. Fix q 6= o and consider the
rays ξµq (s) as s →∞. If all these rays intersect K , then they subconverge to a
line [Shiohama et al. 2003, Lemma 6.1.1], so by the splitting theorem Mm is the
standard R2, and c(Mm)= 0< π . Thus we can assume that there is v on the ray
µq such that ξv is disjoint from K . Therefore, if s is large enough, then K lies
inside the bigon bounded by [v, τv(s)] and its symmetric image under the reflection
that fixes τq ∪µq . The sum of angles in the bigon tends to 2(π − κ̂(rv)), and by
the Gauss–Bonnet theorem it is bounded below by c(K ). Since v ∈ Cm , we have
κ̂(rv)≥ π/2, and hence c(K )≤ π . Thus c(Mm) < π + ε, and since ε is arbitrary,
we get c(Mm)≤ π , which completes the proof of (iii).

(iv) Since Rm is finite, m′(∞) < 1
2 by (iii). As m′(0)= 1, the equation m′(x)= 1

2
has a solution ρm . As Gm ≥ 0, the function m′ is nonincreasing, so uniqueness
of the solution is equivalent to positivity of Gm(ρm). Since Mm is von Mangoldt,
Gm(ρm) > 0 for otherwise Gm would have to vanish for r ≥ ρm , implying m′(∞)=
m′(ρm)=

1
2 , so Rm would be infinite.

Now we show that ρm > Rm . This is clear if Rm = 0 because ρm ≥ 0 and
m′(0)= 1 6= 1

2 =m′(ρm). Suppose Rm > 0. Then m−2 is integrable by Lemma 3.15,
so m′ > 0 everywhere by the proof of Lemma 3.10. Hence for any rv ≥ ρm

we have m(rv) ≥ m(ρm), which implies tm(rv) > m(ρm) for all t > 1. Thus
m−1(tm(rv)) > m−1(m(ρm)) = ρm . Applying m′ to the inequality, we get in
notations of Proposition 4.1 that l(t, rv) <m′(ρm)=

1
2 , where the inequality is strict

because Gm(rm) > 0 by (iv). Now (4.5) below implies

Tγv =
∫
∞

1

dt

l(t, rv)t
√

t2− 1
>

∫
∞

1

2 dt

t
√

t2− 1
= π.

Since Mm is von Mangoldt, v /∈ Cm by Lemma 3.14. In summary, if rv ≥ ρm , then
v /∈ Cm , so ρm > Rm .
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(v) Since Rm is positive and finite, and Mm is von Mangoldt, there are geodesics
tangent to parallels whose turn angles are ≤ π and > π . By Proposition 4.1, the
turn angle is monotone with respect to r , so let rq be the (finite) supremum of
all x such that

∫
∞

x Fm(x) < π . Since Cm is closed, q ∈ Cm so that Tγq ≤ π . In
fact, Tγq = π for if Tγq < π , then rq is not maximal because by Theorems 1.6
and 3.24 the set of points q with Tγq < π is open in Mm . If Gm(rq) > 0, then by
monotonicity rq is a unique solution of Tγq = π . If Gm(rq)= 0, then Gm |[rq ,∞) = 0
as Mm is von Mangoldt, so (4.5) implies that the turn angle of each γv with rv ≥ rq

equals π/(2m′(rq)). So m′(rq)=
1
2 but this case cannot happen as Rm is infinite by

(iii). �

In preparation for a proof of Theorem 1.7 we recall that the Cheeger–Gromoll
soul construction with basepoint q , described, for example, in [Sakai 1996, Theorem
V.3.4], starts by deleting the horoballs associated with all rays emanating from q,
which results in a compact totally convex subset. The next step is to consider the
points of this subset which are at maximal distance from its boundary, and these
points in turn form a compact totally convex subset, and after finitely many iterations
the process terminates in a subset with empty boundary, called a soul. As we shall
see below, if Gm ≥ 0, then the soul construction with basepoint q ∈ Cm \ {o} takes
no more than two steps; more precisely, deleting the horoballs for rays emanating
from q results either in {q} or in a segment with q as an endpoint. In the latter case
the soul is the midpoint of the segment.

In what follows we let Bσ denote the (open) horoball for a ray σ with σ(0)= q ,
that is, the union over t ∈ [0,∞) of the metric balls of radius t centered at σ(t). Let
Hσ denote the complement of Bσ in the ambient complete Riemannian manifold.

Lemma 4.4. Let σ be a ray in a complete Riemannian manifold M , and let q=σ(0).
Then for any nonzero v ∈ Tq M that makes an acute angle with σ , the point expq(tv)
lies in the horoball Bσ for all small t > 0.

Proof. This follows from the definition of a horoball for if ϒ denotes the image of
t→ expq(tv), then

lim
s→+0

d(σ (s), ϒ)
d(σ (s), q)

= sin 6 (υ ′(0), σ ′(0)) < 1,

so Bσ contains a subsegment of ϒ–{q} that approaches q . �

Proof of Theorem 1.7. For q ∈ Cm , let Cq denote the complement in Mm of the
union of the horoballs for rays that start at q; note that Cq is compact and totally
convex. If Cq equals {q}, then q is a soul. Otherwise, Cq has positive dimension
and q ∈ ∂Cq . Set γ := ξq ; thus γ is a ray.

Case 1. Suppose π/2 < κ̂(rq) < π . Let γ̄ be the clockwise ray that is mapped
to γ by the isometry fixing the meridian through q. We next show that q is the
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intersection of the complements of the horoballs for rays µq , γ , and γ̄ , implying
that q is a soul for the soul construction that starts at q . As κγ (0)>π/2, any nonzero
v ∈ Tq Mm forms angle<π/2 with one of µ′(0), γ ′(0), or γ̄ ′(0), so expq(tv) cannot
lie in the intersection of Hµq , Hγ , and Hγ̄ for small t , and since the intersection is
totally convex, it is {q}.

Case 2. Suppose κ̂(rq)= π/2, so that γ = γq , and suppose that Gm does not vanish
along γ . By symmetry and Lemma 4.4, it suffices to show that every point of the
segment [o, q) near q lies in Bγ . Let α be the ray from o passing through q. The
geodesic γ is orthogonal to α, and it suffices to show that there is a focal point
w of α along γ (for this would imply that there is a family of geodesics of the
same length that minimize the distance from w to α, and since the geodesics cannot
minimize beyond the focal point, all points near q on α, except q , are in Bγ [Sakai
1996, Lemma III.2.11]).

Any α-Jacobi field along γ is of the form jn where n is a parallel nonzero normal
vector field along γ and j solves j ′′(t)+Gm(rγ (t)) j (t)= 0, j (0)= 1, j ′(0)= 0.
Since Gm ≥ 0, the function j is concave, so due to its initial values, j must vanish
unless it is constant. The point where j vanishes is focal. If j is constant, then
Gm = 0 along γ , which is ruled out by assumption.

Case 3. Suppose κ̂(rq) = π , that is, γ = τq . For any vector v ∈ Tq Mm pointing
inside Cq , for small t the point expq(tv) is not in the horoballs for µq and τq , and
hence v is tangent to a parallel, that is, Cq is a subsegment of the geodesic α tangent
to the parallel through q . As Cq lies outside the horoballs for µq and τq , these rays
there cannot contain focal points of α, implying that Gm vanishes along µq and τq ,
and hence everywhere, by rotational symmetry, so that Mm is the standard R2, and
q is a soul.

Case 4. Suppose κ̂(rq) = π/2, so that γ = γq , and suppose that Gm vanishes
along γ . By rotational symmetry Gm(r)= 0 for r ≥ rq , so m(r)= ar +m(0) for
r ≥ rq where a > 0, as m only vanishes at 0. The turn angle of γ can be computed
explicitly as

(4.5)
∫
∞

x

dr

m(r)
√

m(r)2

m(x)2
− 1
=

∫
∞

1

dt

at
√

t2− 1
=−

1
a

arccot
(√

t2− 1
)∣∣∣∣∞

1
=
π

2a
,

where x := rq . Since γ is a ray, we deduce that a ≥ 1
2 .

Let z ≤ x be the smallest number such that m′|[z,∞) = a; thus there is no
neighborhood of z in (0,∞) on which Gm is identically zero.

Note that m(r) = a(r − z) + m(z) for r ≥ z, so the surface Mm–B(o, z) is
isometric to C–B(ō,m(rq)/a) where C is the cone with apex ō such that cutting C
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along the meridian from ō gives a sector in R2 of angle 2πa with the portion inside
the radius m(rq)/a removed.

Since γq is a ray, Lemma 4.4 implies the existence of a neighborhood Uq of q
such that each point in Up–[o, q] lies in a horoball for a ray from q .

We now check that o lies in the horoball of γq . Concavity of m implies that the
graph of m lies below its tangent line at z, so evaluating the tangent line at r = 0
and using m(0)= 0 gives m(z)/a > z. The Pythagorean theorem in the sector in
R2 of angle 2πa implies that

dMm (γq(s), o)=

√
s2+

(
x − z+

m(z)
a

)2

+ z−
m(z)

a
,

which is < s for large s, implying that o is in the horoball of γq .
To realize q as a soul, we need to look at the soul construction with arbitrary

basepoint v, which starts by considering the complement in Mm of the union of the
horoballs for all rays from v, which by the above is either v or a segment [u, v]
contained in (o, v], where u is uniquely determined by v. It will be convenient to
allow for degenerate segments for which u = v; with this convention the soul is
the midpoint of [u, v]. Since z is the smallest such that Gm |[z,∞) = 0, the focal
point argument of Case 2 shows that u = v when 0< rv < z. Set y := rv, and let
e(y) := ru; note that 0 < e(y) ≤ y, and the midpoint of [u, v] has r-coordinate
h(y) := (y+ e(y))/2.

To realize each point of Mm as a soul, it suffices to show that each positive
number is in the image of h. Since h approaches zero as y→ 0 and approaches
infinity as y→∞, it is enough to show that h is continuous and then apply the
intermediate value theorem.

Since e(y) = y when 0 < y < z, we only need to verify continuity of e when
y ≥ z. Let vi be an arbitrary sequence of points on α converging to v, where as
before α is the ray from o passing through q . Set vi := rvi . Arguing by contradiction
suppose that e(yi ) does not converge to e(y). Since 0< e(yi )≤ yi and yi → y, we
may pass to a subsequence such that e(yi )→ e∞ ∈ [0, y]. Pick any w such that
rw lies between e∞ and e(y). Thus there is i0 such that either e(yi ) < rw < e(y)
for all i > i0, or e(y) < rw < e(yi ) for all i > i0. As y ≥ z, we know that Gm

vanishes along γv , so every α-Jacobi field along γv is constant. Therefore, the rays
γvi converge uniformly (!) to γv, as vi → v, and hence their Busemann functions
bi and b converge pointwise. Thus bi (w)→ b(w), but we have chosen w so that
b(w) and bi (w) are all nonzero, and sign(b(w)) = − sign(bi (w)), which gives a
contradiction proving the theorem. �

Remark 4.6. In Cases 1, 2, and 3 the soul construction terminates in one step,
namely, if q ∈ Cm , then {q} is the result of removing the horoballs for all rays
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that start at q. We do not know whether the same is true in Case 4 because the
basepoint v needed to produce the soul q is found implicitly, via the intermediate
value theorem, and it is unclear how v depends on q , and whether v = q .

Remark 4.7. Let Mm be as in Case 4 with m′|[z,∞) = 1
2 . If Mm is von Mangoldt,

then no point q with rq ≥ z is a pole because by (4.5) the turn angle of γq is π ,
which by Theorem 3.24 cannot happen for a pole.

5. Smoothed cones made von Mangoldt

Proof of Theorem 1.11. It is of course easy to find a von Mangoldt plane gmx that
has zero curvature near infinity, but prescribing the slope of m′ there takes more
effort. We exclude the trivial case x = 1 in which m(r)= r works.

For u ∈ [0, 1
4 ] set Ku(r)= 1/(4(r + 1)2)− u, and let mu be the unique solution

of (A.7) with K = Ku . Then gmu is von Mangoldt. For u > 0 let zu ∈ [0,∞) be
the unique zero of Ku ; note that zu is the global minimum of m′u , and zu→∞ as
u→ 0.

Lemma 5.1. The function u→ m′u(zu) takes every value in (0, 1) as u varies in
(0, 1

4).

Proof. One verifies that m0(r)= ln(r+1)
√

r + 1, that is, the right hand side solves
(A.7) with K = K0. Then m′0 = (2+ ln(r + 1))/(2

√
r + 1) is a positive function

converging to zero as r→∞. By Sturm comparison mu ≥m0> 0 and m′u ≥m′0> 0.
We now show that m′u(zu)→ 0 as u→+0. To this end fix an arbitrary ε > 0.

Fix tε such that m′0(tε) < ε. By continuous dependence on parameters (mu,m′u)
converges to (m0,m′0) uniformly on compact sets as u→ 0. So for all small u we
have m′u(tε) < ε and also tε < zu . Since m′u decreases on (0, zu), we conclude that
0< m′u(zu) < m′u(tε) < ε, proving that m′u(zu)→ 0 as u→+0.

On the other hand, m′1/4(z1/4)= 1 because z1/4 = 0 and by the initial condition
m′1/4(0) = 1. Finally, the assertion of the lemma follows from continuity of the
map u → m′u(zu), because then it takes every value within (0, 1) as u varies in
(0, 1

4). (To check continuity of the map fix u∗, take an arbitrary u→ u∗ and note
that zu→ zu∗ , so since m′u converges to m′u∗ on compact subsets, it does so on a
neighborhood of zu∗ , so m′u(zu) converges to m′u∗(zu∗).) �

Continuing the proof of the theorem, fix an arbitrary u > 0. The continuous
function max(Ku, 0) is decreasing and smooth on [0, zu] and equal to zero on
[zu,∞). So there is a family of nonincreasing smooth functions Gu,ε depending on
the small parameter ε such that Gu,ε=max(Ku, 0) outside the ε-neighborhood of zu .
Let mu,ε be the unique solution of (A.7) with K =Gu,ε; thus m′u,ε(r)=m′u,ε(zu+ε)

for all r ≥ zu + ε. If ε is small enough, then Gu,ε ≤ K0, so mu,ε ≥ m0 > 0 and
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m′u,ε≥m′0>0. By continuous dependence on parameters, the function (u, ε)→m′u,ε
is continuous, and moreover m′u,ε(zu + ε)→ m′u(zu) as ε→ 0, and u is fixed.

Fix x ∈ (0, 1). By Lemma 5.1 there are positive v1 and v2 such that m′v1
(zv1) <

x < m′v2
(zv2). Letting u of the previous paragraph to be v1, v2, we find ε such that

m′v1,ε
(zv1 + ε) < x < m′v2,ε

(zv2 + ε), so by the intermediate value theorem there
is u with m′u,ε(zu + ε) = x . Then the metric gmu,ε has the asserted properties for
ρ = zu + ε. �

6. Other applications

Proof of Lemma 1.1. Assuming r̂(q̂) /∈ r(Cm) we will show that q̂ is not a critical
point of r̂ . Since M̂ is complete and noncompact, there is a ray γ̂ emanating from
q̂. Consider the comparison triangle 1(o, q, qi ) in Mm for any geodesic triangle
with vertices ô, q̂ , and γ̂ (i). Passing to a subsequence, arrange so that the segments
[q, qi ] subconverge to a ray, which we denote by γ . Since q /∈ Cm , the angle
formed by γ and [q, o] is > π/2, and hence for large i the same is true for the
angles formed by [q, qi ] and [q, o]. By comparison, γ̂ forms angle >π/2 with any
segment joining q̂ to ô, that is, q̂ is not a critical point of r̂ . �

Proof of Theorem 1.5. (a) Let Pm denote the set of poles; it is a closed metric ball
[Tanaka 1992b, Lemma 1.1]. Moreover, Pm clearly lies in the connected component
Ao

m of Am ∪ {o} that contains o, and hence in the component of Cm that contains
o. By Theorem 1.6 Am is open in Mm , so Am ∪ {o} is locally path-connected, and
hence Ao

m is open in Mm . If Pm were equal to Ao
m , the latter would be closed,

implying Ao
m = Mm , which is impossible as the ball has finite radius.

(b) The “if” direction is trivial as Pm ⊂ Cm . Conversely, if Cm 6= {o}, then by
Lemma 3.15 m−2 is integrable and lim infr→∞ m(r)>0, so Rp>0 [Tanaka 1992a].

�

Proof of Theorem 1.9. By assumption there is a point of negative curvature, and
since the curvature is nonincreasing, outside a compact subset the curvature is
bounded above by a negative constant. As lim infr→∞ m(r) > 0, m is bounded
below by a positive constant outside any neighborhood of 0, so

∫
∞

0 m =∞. Hence
the total curvature 2π

∫
∞

0 Gm(r)m(r) dr is −∞.
Hence there is a metric ball B of finite positive radius centered at o such that the

total curvature of B is negative, and such that no point of Gm ≥ 0 lies outside B. By
[Shiohama et al. 2003, Theorem 6.1.1, p. 190], for any q ∈ Mm the total curvature
of the set obtained from Mm by removing all rays that start at q is in [0, 2π ]. So
for any q there is a ray that starts at q and intersects B.

If q is not in B, then the ray points away from infinity, so q ∈ Am and any point
on this ray is in Cm . Thus Mm–Am lies in B. Since Cm 6= {o}, Theorem 1.5 implies
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that Rp > 0. Letting q run to infinity the rays subconverge to a line that intersects
B; see, for example, [Shiohama et al. 2003, Lemma 6.1.1, p. 187].

If m′(rp)= 0, the parallel through p is a geodesic but not a ray, so Lemma 3.14
implies that no point on the parallel through p is in Cm . Since Cm contains o and
all points outside a compact set, Cm is not connected; the same argument proves
that Am is not connected. �

Example 6.1. Here we modify [Tanaka 1992b, Example 4] to construct a von
Mangoldt plane Mm such that m′ has a zero, and neither Am nor Cm is connected.
Given a ∈ (π/2, π) let m0(r)= sin r for r ∈ [0, a], and define m0 for r ≥ a so that
m0 is smooth, positive, and lim infr→∞ m0 > 0. Thus K0 := −m′′0/m0 equals 1 on
[0, a]. Let K be any smooth nonincreasing function with K ≤ K0 and K |[0,a] = 1.
Let m be the solution of (A.7); note that m(r) = sin(r) for r ∈ [0, a] so that m′

vanishes at π/2. By Sturm comparison m ≥ m0 > 0, and hence Mm is a von
Mangoldt plane. Since m′(a) < 0 and m > 0 for all r > 0, the function m cannot be
concave, so K = Gm eventually becomes negative, and Theorem 1.9 implies that
Am and Cm are not connected.

Example 6.2. Here we construct a von Mangoldt plane such that m′>0 everywhere
but Am and Cm are not connected. Let Mn be a von Mangoldt plane such that Gn ≥ 0
and n′ > 0 everywhere, and Rn is finite (where Rn is the radius of the ball Cn).
This happens, for example, for any paraboloid, any two-sheeted hyperboloid with
n′(∞) < 1

2 , or any plane constructed in Theorem 1.11 with n′(∞) < 1
2 . Fix q /∈ Cn .

Then γq has turn angle > π , so there is R > rq such that
∫ R

rq
Fn(rq ) > π . Let G be

any smooth nonincreasing function such that G = Gn on [0, R] and G(z) < 0 for
some z > R. Let m be the solution of (A.7) with K = G. By Sturm comparison
m ≥ n > 0 and m′ ≥ n′ > 0 everywhere; see Remark A.10. Since m = n on [0, R],
on this interval we have Fm(rq ) = Fn(rq ), so in the von Mangoldt plane Mm the
geodesic γq has turn angle >π , which implies that no point on the parallel through
q is in Cm . Now Theorem 1.9 (3) and (4) imply that Am and Cm are not connected.

Theorem 6.3. Let Mm be a von Mangoldt plane such that m′|[0,y] > 0 and m′|[x,y]
< 1

2 . Set fm,x(y) := m−1(cos(πb)m(y)), where b is the maximum of m′ on [x, y].
If x ≤ fm,x(y), then r(Cm) and [x, fm,x(y)] are disjoint.

Proof. Set f := fm,x . Arguing by contradiction assume there is q ∈ Cm with
rq ∈ [x, f (y)]. Then γq has turn angle ≤ π , so if c := m(rq), then

π ≥

∫
∞

rq

c dr

m
√

m2− c2
>

∫ y

rq

c dr

m
√

m2− c2

=

∫ m(y)

c

c dm

m′(r)m
√

m2− c2
≥

∫ m(y)

c

c dm

bm
√

m2− c2
=

1
b

arccos
(

c
m(y)

)
,
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so that πb > arccos(c/(m(y))), which is equivalent to cos(πb)m(y) < m(rq).
On the other hand, m( f (y)) is in the interval [0,m(y)] on which m−1 is increas-

ing, so f (y) < y, and therefore m is increasing on [x, f (y)]. Hence rq < f (y)
implies m(rq) < m( f (y))= cos(πb)m(y), which is a contradiction. �

Proof of Theorem 1.10. We use the notation of Theorem 6.3. The assumptions
on n imply n′ > 0, n′|[x,∞) < 1

2 , and b = n′(x). Hence fn,x is an increasing
smooth function of y with fn,x(∞)=∞. In particular, if y is large enough, then
fn,x(y) > z > x ; fix y that satisfies the inequality. Now if Mm is any von Mangoldt
plane with m= n on [0, y], then fm,x(y)= fn,x(y), so Mm satisfies the assumptions
of Theorem 6.3, so [x, z] and r(Cm) are disjoint. �

Appendix A: Von Mangoldt planes

The purpose of this appendix is to discuss what makes von Mangoldt planes special
among arbitrary rotationally symmetric planes.

For a smooth function m : [0,∞)→ [0,∞) whose only zero is 0, let gm denote
the rotationally symmetric inner product on the tangent bundle to R2 that equals
the standard Euclidean inner product at the origin and elsewhere is given in polar
coordinates by dr2

+m(r)2 dθ2. It is well known (see, for example, [Shiohama
et al. 2003, §7.1]) that:

• Any rotationally symmetric complete smooth Riemannian metric on R2 is
isometric to some gm . (As before, Mm denotes (R2, gm).)

• If m̄ : R→ R denotes the unique odd function such that m̄|[0,∞) = m, then
gm is a smooth Riemannian metric on R2 if and only if m′(0) = 1 and m̄ is
smooth.

• If gm is a smooth metric on R2, then gm is complete, and the sectional curvature
of gm is a smooth function on [0,∞) that equals −m′′/m.

It is easier to visualize Mm as a surface of revolution in R3, so we recall:

Lemma A.1. (1) Mm is isometric to a surface of revolution in R3 if and only if
|m′| ≤ 1.

(2) Mm is isometric to a surface of revolution (r cosφ, r sinφ, g(r)) in R3 if and
only if 0< m′ ≤ 1.

Proof. (1) Consider a unit speed curve s→ (x(s), 0, z(s)) in R3 where x(s) ≥ 0
and s ≥ 0. Rotating the curve about the z-axis gives the surface of revolution

(x(s) cosφ, x(s) sinφ, z(s))

with metric ds2
+ x(s)2 dφ2. The meridians starting at the origin are rays, so for

this metric to be equal to ds2
+m(s)2 dφ2 we must have m(s) = x(s). Since the
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curve has unit speed, |x ′(s)| ≤ 1, so a necessary condition for writing the metric as
a surface of revolution is |m′(s)| ≤ 1. It is also sufficient for if |m′(s)| ≤ 1, then we
could let z(s) :=

∫ s
0

√
1− (m′(s))2 ds, so that now (m(s), z(s)) has unit speed.

(2) If, furthermore, m′ > 0 for all s, then the inverse function of m(s) makes
sense, and we can write the surface of revolution (m(s) cosφ,m(s) sinφ, z(s)) as
(x cosφ, x sinφ, g(x)) where x :=m(s) and g(x) := z(m−1(x)). Conversely, given
the surface (x cosφ, x sinφ, g(x)), the orientation-preserving arclength parametri-
zation x = x(s) of the curve (x, 0, g(x)) satisfies x ′ > 0. �

Example A.2. The standard R2 is the only von Mangoldt plane with Gm ≤ 0 that
can be embedded into R3 as a surface of revolution because m′(0)= 1 and m′ is
nondecreasing afterwards.

Example A.3. If Gm ≥ 0, then m′ ∈ [0, 1] because m > 0, m′ is nonincreasing,
and m′(0)= 1, so that Mm is isometric to a surface of revolution in R3. In fact, if
m′(s0)= 0, then m|[s0,∞) = m(s0), that is, outside the s0-ball about the origin Mm

is a cylinder. Thus except for such surfaces Mm can be written as

(x cosφ, x sinφ, g(x)) for g(x)=
∫ m−1(x)

0

√
1− (m′(s))2 ds.

Paraboloids and two-sheeted hyperboloids are von Mangoldt planes of positive cur-
vature [Shiohama et al. 2003, p. 234–235] and are of the form (x cosφ, x sinφ,g(x)).

The defining property G ′m ≤ 0 of von Mangoldt planes clearly restricts the
behavior of m′. Let Z(Gm) denote the set where Gm vanishes; as Mm is von
Mangoldt, Z(Gm) is closed and connected, and hence it could be equal to the empty
set, a point, or an interval, while m′ behaves as follows.

(i) If Gm > 0, then m′ is decreasing and takes values in (0, 1].

(ii) If Gm ≤ 0, then m′ is nondecreasing and takes values in [1,∞).

(iii) If Z(Gm) is a positive number z, then m′ decreases on [0, z) and increases on
(z,∞), and m′ may have two, one, or no zeros.

(iv) If Z(Gm)= [a, b] ⊂ (0,∞], then m′ decreases on [0, a), is constant on [a, b],
and increases on (b,∞) if b <∞. Also either m′|[a,b] = 0 or else m′ has two,
or no zeros.

Remark A.4. All the above possibilities occur with one possible exception: in
Cases (iii) and (iv) we are not aware of examples where m′ vanishes on Z(Gm).

Remark A.5. Thus if Mm is von Mangoldt, then m′ is monotone near infinity, so
m′(∞) exists; moreover, m′(∞)∈ [0,∞], for otherwise m would vanish on (0,∞).
It follows that Mm admits total curvature, which equals∫ 2π

0

∫
∞

0
Gmm drdθ =−2π

∫
∞

0
m′′ = 2π(1−m′(∞)) ∈ [−∞, 2π ].
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Here the total curvature of a subset A ⊂ Mm is the integral of Gm over A with
respect to the Riemannian area form m drdθ , provided the integral converges to a
number in [−∞,∞], in which case we say that A admits total curvature.

Remark A.6. The zeros of m′ correspond to parallels that are geodesics and are
of interest. In contrast with restrictions on the zero set of m′ for von Mangoldt
planes, if Mm is not necessarily von Mangoldt, then any closed subset of [0,∞)
that does not contain 0 can be realized as the set of zeros of m′. (Indeed, for any
closed subset of a manifold there is a smooth nonnegative function that vanishes
precisely on the subset [Bröcker and Jänich 1982, Whitney’s Theorem 14.1]. It
follows that if C is a closed subset of [0,∞) that does not contain 0, then there is a
smooth function g : [0,∞)→ [0,∞) that is even at 0, satisfies g(0) = 1, and is
such that g(s)= 0 if and only if s ∈C . If m is the solution of m′ = g and m(0)= 0,
then Mm has the promised property.)

A common way of constructing von Mangoldt planes involves the Jacobi initial
value problem

(A.7) m′′+ K m = 0, m(0)= 0, m′(0)= 1,

where K is smooth on [0,∞). It follows from the proof of [Kazdan and Warner
1974, Lemma 4.4] that gm is a complete smooth Riemannian metric on R2 if and
only if the following condition holds:

(?) the (unique) solution m of (A.7) is positive on (0,∞).

Remark A.8. A basic tool that produces solutions of (A.7) satisfying condition (?)
is the Sturm comparison theorem that implies that if m1 is a positive function that
solves (A.7) with K = K1, and if K2 is any nonincreasing smooth function with
K2 ≤ K1, then the solution m2 of (A.7) with K = K2 satisfies m2 ≥m1, so that gm2

is a von Mangoldt plane.

Example A.9. If K is a smooth function on [0,∞) such that max(K , 0) has com-
pact support, then a positive multiple of K can be realized as the curvature Gm of
some Mm ; of course, if K is nonincreasing, then Mm is von Mangoldt. (Indeed, in
[Kazdan and Warner 1974, Lemma 4.3] Sturm comparison was used to show that if∫
∞

t max(K , 0)≤ 1/(4t + 4) for all t ≥ 0, then K satisfies (?), and in particular, if
max(K , 0) has compact support, then there is a constant ε > 0 such that the above
inequality holds for εK .)

Remark A.10. A useful addendum to Remark A.8 is that the additional assumption
m′1≥ 0 implies m′2≥m′1> 0. (Indeed, the function m′1m2−m1m′2 vanishes at 0 and
has nonpositive derivative (−K1+ K2)m1m2, so m′1m2 ≤ m1m′2. As m1, m2, and
m′1 are nonnegative, so is m′2. Hence, m1m′2 ≤ m2m′2, which gives m′1m2 ≤ m2m′2,
and the claim follows by canceling m2.)
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Question A.11. Let m0 : [r0,∞)→ (0,∞) be a smooth function such that r0 > 0
and −m′′0/m0 is nonincreasing. What are sufficient conditions for (or obstructions
to) extending m0 to a function m on [0,∞) such that gm is a von Mangoldt plane?

Appendix B: A calculus lemma

This appendix contains an elementary lemma on continuity and differentiability of
the turn angle, which is needed for Theorem 3.24.

Given numbers rq > r0 > 0, let m be a smooth self-map of (0,∞) such that

• m′ > 0 on [r0, rq ],

• m(r) > m(rq) for r > rq ,

• m−2 is integrable on (1,∞),

• lim infr→∞ m(r) > m(rq).

Example B.1. Suppose Gm ≥ 0 or G ′m ≤ 0. If γq is a ray on Mm , and r0 is
sufficiently close to rq , then m satisfies the above properties by Lemmas 3.3, 3.8,
and 3.10.

Set c0 := m(r0) and cq := m(rq). Let T = T (c) be the function given by the
integral (3.21) for c= cq , and by the sum of integrals (3.22) for c0 ≤ c ≤ cq , where
Fc is given by (3.5) and ru := m−1(c), where m−1 is the inverse of m|[r0,rq ].

Lemma B.2. Under the assumptions of the previous paragraph, T is continuous
on (c0, cq ], continuously differentiable on (c0, cq), and T ′(c)

√

c2
q − c2 converges to

−1/(m′(rq)) < 0 as c→ cq−.

Proof. By definition T equals
∫
∞

rq
Fc +

∫ rq
ru

Fc if c ∈ [c0, cq) and T =
∫
∞

rq
Fc if

c = cq . Step 1 shows that
∫
∞

rq
Fc depends continuously on c ∈ [c0, cq ], while

Step 2 establishes continuity of T at cq . In Steps 3 and 4 we prove continuous
differentiability and compute the derivatives of integrals

∫
∞

rq
Fc and

∫ rq
ru

Fc with
respect to c ∈ (c0, cq). Step 5 investigates the behavior of T ′(c) as c→ cq .

Recall that the integral
∫ b

a Hc(r) dr depends continuously on c if for each r ∈
(a, b) the map c→ Hc(r) is continuous, and every c has a neighborhood U0 in
which |Hc| ≤ h0 for some integrable function h0. If in addition each map c→ Hc(r)
is C1, and every c has a neighborhood U1 where |∂Hc/∂c| ≤ h1 for an integrable
function h1, then

∫ b
a Hc(r) dr is C1 and differentiation under the integral sign is

valid; the same conclusion holds when Hc and ∂Hc/∂c are continuous in the closure
of U1× (a, b).

Step 1. The integrand Fc is smooth over (ru,∞), because the assumptions on m
imply that m(r) > c for r > ru .

Since 0< c ≤ cq we have Fc ≤ Fcq = cq/(m
√

m2
− c2

q) which is integrable on
(rq ,∞). Indeed, fix δ > rq and note that since m−2 is integrable on (δ,∞), so is
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Fcq . To prove integrability of Fcq on (rq , δ), note that

h(r) :=
m(r)−m(rq)

r − rq

is positive on [rq ,∞), as h(rq)= m′(rq) > 0 and m(r) > m(rq) for r > rq . Then
Fcq is the product of (r−rq)

−1/2 and a function that is smooth on [rq , δ], and hence
Fcq is integrable on (rq , δ).

Thus the integrals
∫ δ

rq
Fc(r) dr and

∫
∞

δ
Fc(r) dr depend continuously on c ∈

(0, cq ], and hence so does their sum
∫
∞

rq
Fc(r) dr .

Step 2. As c→ cq , the integral
∫ rq

ru
Fc converges to zero, for if K is the maximum

of (mm′
√

m+ c)−1 over the points with r ∈ [r0, rq ] and c ∈ [c0, cq ], then∫ rq

ru

Fc ≤ K
∫ rq

ru

m′ dr
√

m− c
= K

∫ cq−c

0

dt
√

t
,

which goes to zero as c→ cq . Thus T is continuous at c = cq .

Step 3. To find an integrable function dominating ∂Fc/∂c on (rq ,∞) locally in c,
note that every c ∈ (c0, cq) has a neighborhood of the form (c0, cq − δ) with δ > 0,
and over this neighborhood

∂Fc

∂c
=

m
(m2− c2)3/2

≤
m

(m2− (cq − δ)2)3/2
,

where the right hand side is integrable over [rq ,∞), as m−2 is integrable at∞; thus

d
dc

∫
∞

rq

Fc =

∫
∞

rq

m
(m2− c2)3/2

dr

is continuous with respect to c ∈ (c0, cq). This integral diverges if c = m(rq).

Step 4. To check continuity of
∫ rq

ru
Fc change variables via t := m/c so that r =

m−1(tc). Thus dt = m′(r) dr/c = n(tc) dr/c where n(r) := m′(m−1(r)), and∫ rq

ru

Fc(r) dr =
∫ cq/c

1
Fc(t) dt where Fc(t)=

1

n(tc)t
√

t2− 1
.

Since m′> 0 on [r0, rq ] and n(tc)=m′(r), the function Fc is smooth over (1, cq/c).
To prove the continuity of

∫ cq/c
1 Fc, fix an arbitrary (u, v)⊂ (c0, cq). If c ∈ (u, v)

and t ∈ (1, cq/c), then m−1(tc) lies in the m−1-image of (u, (v/u)cq), which by
taking the interval (u, v) sufficiently small can be made to lie in an arbitrarily small
neighborhood of [r0, rq ], so we may assume that m′ > 0 on that neighborhood. It
follows that the maximum K of 1/(n(tc)) over c ∈ [u, v] and t ∈ [1, cq/c] is finite,
and |Fc| ≤ K/(t

√
t2− 1) for c ∈ (u, v), that is, |Fc| is locally dominated by an

integrable function that is independent of c; for the same reason the conclusion also
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holds for
∂Fc

∂c
=−

n′(tc)

n(tc)2
√

t2− 1
.

Finally, given c∗ ∈ (c0, cq), fix δ ∈ (1, cq/c∗) and write
∫ cq/c

1 Fc=
∫ δ

1 Fc+
∫ cq/c
δ Fc

for c varying near c∗. The first summand is C1 at c∗, as the integrand and its
derivative are dominated by the integrable function near c∗. The second summand
is also C1 at c∗ as the integrand is C1 on a neighborhood of {c∗} × [δ, cq/c]. By
the integral Leibniz rule

d
dc

∫ cq/c

1
Fc =−

cq

c2 Fc

(
cq

c

)
−

∫ cq/c

1

n′(tc)dt

n(tc)2
√

t2− 1
.

The first summand equals −
(
m′(rq)

√

c2
q − c2

)−1, and the second summand is
bounded.

Step 5. Let us investigate the behavior of
∫
∞

rq
(m/(m2

− c2)3/2)dr from Step 3 as
c→ cq−. Fix δ > rq such that m′ > 0 on [r0, δ] and write the above integral as the
sum of the integrals over (rq , δ) and (δ,∞). The latter one is bounded. Integrate
the former integral by parts as∫ δ

rq

mm′

m′(m2− c2)3/2
dr =−

∫ δ

rq

1
m′

d
(

1
√

m2−c2

)
=

1

m′(rq)
√

c2
q − c2

−
1

m′(δ)
√
δ2−c2

−

∫ δ

rq

m′′dr

(m′)2
√

m2−c2
.

Only the first summand is unbounded as c→ cq−. The terms from Steps 4 and 5
enter into T ′ with coefficients 2 and 1, respectively, so as c→ cq−

T ′(c)
√

c2
q − c2

→−
1

m′(rq)
< 0

as the bounded terms multiplied by
√

c2
q − c2 disappear in the limit. �
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ISOPERIMETRIC SURFACES WITH BOUNDARY, II

ABRAHAM FRANDSEN, DONALD SAMPSON AND NEIL STEINBURG

Following our previous work with Dorff and Lawlor, we extend results for
the so-called equitent problem of fixed boundary and fixed volume. We
define sufficient conditions, which in R2 and R3 are also necessary, for lo-
cal minima to be piecewise spherical, and we show that these are area-
minimizing in their homotopy class. We also give new examples of these
surfaces in R2 and R3.

1. Introduction

Equitent problems, first introduced in the paper “Isoperimetric surfaces with bound-
ary” [Dorff et al. 2011], ask what is the area-minimizing surface enclosing a given
volume and spanning a given boundary. In this way, equitent problems represent a
combination of isoperimetry and boundary conditions, such as in Steiner problems
and minimal surfaces. Our previous approach, which we extend here, uses the
technique of metacalibration. Metacalibration is a version of the calibration meth-
ods popularized by Harvey and Lawson [1982], adapted to use on isoperimetric
problems. In particular, we use a combination of the mapping of [Gromov 1986],
after [Knothe 1957], and the paired calibrations of [Lawlor and Morgan 1994].

In our original results, we construct various classes of surfaces bounded by the
dual figures of uniform polytopes and enclosing a prescribed volume and prove
that these surfaces are minimizing in their homotopy class. The results, however,
turn out to be limited in scope, as shown in [Ross et al. 2011]. Consequently, there
remains much ground to be covered.

In this paper, we will extend previous results by considering equitent systems
generated by polytopes whose edges are all of a given length. This results in a
much wider range of equitent surfaces than those bounded by uniform polytopes.
We construct the conjectured minimizing surface using a refinement of previous
methods and prove that this surface is indeed area-minimizing in its homotopy
class.

Further, we show that any homotopically area-minimizing equitent surface with
piecewise spherical faces and simplex vertex figures is equivalent to one generated

MSC2010: primary 53C38; secondary 49Q10.
Keywords: metacalibration, calibration, isoperimetric, equitent.
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by our construction. We conclude with a discussion of new equitent surfaces and
a survey of open problems.

2. The surfaces

Let 0 be a convex polytope of dimension m ≤ n with equal edge lengths, r , em-
bedded in Rn . Let p1, . . . , pk be the vertices of 0. For each pi let Ri be the region
farthest from pi :

Ri = {x ∈ Rn
: r < ‖x − pi‖ and ‖x − p j‖< ‖x − pi‖ for all j 6= i}.

Note that if pi and p j share an edge in 0, ∂Ri∩∂R j is a subset of the perpendicular
bisecting hyperplane of that edge. Now, define

R0 = {x ∈ Rn
: ‖x − pi‖< r for 1≤ i ≤ k}.

See figure.

R3

R0R2 p4 p2

p1

p3

R4

R1

This region represents the enclosed volume. We suppose that R0 6= ∅ and
Hn−1(∂R0 ∩ ∂Ri ) 6= 0 for all i > 0. Let V0 =Hn(R0). Then let

M =
k⋃

i=0

∂Ri .

Notice that ∂R0 is the portion of the surface that encloses the volume R0. In
order to have a nontrivial result, we require R0 6=∅. The condition

Hn−1(∂R0 ∩ ∂Ri ) 6= 0

for all i > 0 ensures that all smooth subsurfaces of M meet at 120 degree angles.
For m = 2, the only viable generating figures, 0, are equilateral triangles, rhombi
with interior angles strictly greater than 60◦, and small perturbations of regular
pentagons. For m = 3, the valid generating figures include all but two of the eight
convex deltahedra (polyhedra where all faces are equilateral triangles), as well as
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other polytopes with faces of higher degree. It is worth noting, however, that those
generating figures, 0, whose faces are not equilateral triangles produce surfaces
which are locally minimal within their homotopy class, but not globally mini-
mal. As will be seen in the proof, this construction gives sufficient conditions for
minimizing surfaces to be piecewise spherical. Furthermore, due to the regularity
properties of soap films proved by Taylor and Almgren [Taylor 1976], these are
also necessary conditions in R2 and R3. In higher dimensions nonsimplicial vertex
figures may be minimizing, but are not considered in this paper. See for example
[Brakke 1991].

3. The minimization theorem

In this section we prove that the surfaces constructed are homotopically minimizing
in the following sense: Let U be a bounded open set that contains R0, and let
M0 = M ∩U .

Theorem 1. The surface M0 is area-minimizing among all compact surfaces (rec-
tifiable sets) in U with boundary ∂U∩M that enclose the fixed volume Hn(R0) and
are homotopically equivalent to M0. This also holds with the weaker assumption
that competitor surfaces are not necessarily homotopic to M0 but separate space
into the same regions as M0 and these regions share boundary nontrivially (on a
set of positive Hn−1 measure) only if the corresponding regions do in M0.

Our proof uses a metacalibration argument that compares figures according
to their flux on specially crafted vector fields. In particular, we use a paired-
calibration approach with one vector field defined for each separated region.

Let N be any competitor surface and let Si be the separated regions that corre-
spond to each Ri respectively. (Then Hn(S0)=Hn(R0) by the volume condition.)
Define vi : Si → Rn for 1 ≤ i ≤ m to be the constant vector field −pi/r . Let
φ : S0 → R0 be the Knothe–Rosenblatt rearrangement and let v0 : S0 → Rn be
given by v0 = φ/r .

At this point a few simple results would be useful:

Proposition 2. If Si and S j share boundary nontrivially, then vi − v j is a unit
vector. If N = M0 then vi − v j is the unit normal to ∂Ri ∩ ∂R j .

Proof. Note that Si and S j share boundary nontrivially if and only if pi and p j are
adjacent in 0. Thus ‖vi − v j‖ = (1/r)‖pi − p j‖ = 1. Also if N = M0, vi − v j is
the unit normal to ∂Ri ∩ ∂R j since ∂Ri ∩ ∂R j lies on the hyperplane equidistant
to pi and p j . �

Proposition 3. The matrix Dv0 is triangular. If N = M then v0 is the identity
scaled by 1/r .



310 ABRAHAM FRANDSEN, DONALD SAMPSON AND NEIL STEINBURG

Proof. Follows from the definition of v0. See [Dorff et al. 2011] for details. �

Proposition 4. For i 6= 0,
∫

N∩∂Si
vi · n dHn−1

=
∫

M∩∂Ri
vi · n dHn−1, where n is

the unit normal to the surface of integration, outward pointing with respect to Si

or Ri .

Proof. Follows from the divergence theorem since vi is divergence free and ∂(M∩
∂Ri )= ∂(N ∩ ∂Si ). �

Proof of Theorem 1. For any competitor surface N , let G(N ) =
∑

i

∫
N∩∂Si

vi ·

n dHn−1. Letting P(N ) =
∑

i

∫
N∩∂Si

dHn−1 be our objective function, we find
that

G(N )=
∑

i

∫
N∩∂Si

vi · n dHn−1

=

∑
i 6= j

∫
N∩(∂Si∩∂S j )

(vi − v j ) · n dHn−1

≤

∑
i 6= j

∫
N∩(∂Si∩∂S j )

‖vi − v j‖ ‖n‖ dHn−1

≤

∑
i 6= j

∫
N∩(∂Si∩∂S j )

dHn−1

=

∑
i

∫
N∩∂Si

dHn−1
= P(N ),

with equality if N = M0.
Now also note that∫

N∩∂S0

v0 · n dHn−1
=

∫
S0

divv0 dHn−1

=

∫
S0

1
r

(
∂φ1

∂x1
+
∂φ2

∂x2
+ · · ·+

∂φn

∂xn

)
dHn−1

≥

∫
S0

n
r

n

√
∂φ1

∂x1

∂φ2

∂x2
· · ·

∂φn

∂xn
dHn−1

=

∫
S0

n
r

n
√

1 dHn−1

=
n
r

Hn−1(S0)=
n
r

Hn−1(R0),

with equality if N =M0. This follows from the AM-GM inequality and the equality

∂φ1

∂x1

∂φ2

∂x2
· · ·

∂φn

∂xn
= det(Dφ)= 1,
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which is valid since φ is volume-preserving.
Combining these results we find

P(M0)= G(M0)=
∑
i 6=0

∫
M0∩∂Ri

vi · n dHn−1
+

∫
M0∩∂R0

v0 · n dHn−1

=

∑
i 6=0

∫
N∩∂Si

vi · n dHn−1
+

n
r

Hn−1(R0)

≤

∑
i 6=0

∫
N∩∂Si

vi · n dHn−1
+

∫
N∩∂S0

v0 · n dHn−1

= G(N )≤ P(N ). �

4. Soap films in R3

In [Dorff et al. 2011] and [Ross et al. 2011] we identified the regular tetrahedron,
the regular octahedron, and the regular icosahedron as polytopes that generate
realizable soap films. The only other three-dimensional polytopes, 0, that gen-
erate surfaces realizable as soap films are the triangular dipyramid, the pentagonal
dipyramid, and the snub disphenoid. The generated soap films are shown below.
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This is due to the conditions proven by Jean Taylor [1976], namely that each
face not intersecting with the boundary must meet with exactly two other faces in
120-degree angles. Thus, any generating figure, 0, with nontriangular faces will
not yield a surface realizable as a soap film. The remaining two deltahedra fail to
meet the conditions of our construction because of their large circumradius.

Every surface generated by our construction will have piecewise spherical faces
and simplicial vertex figures. The converse is also true. Given any area-minimizing
equitent surface with piecewise spherical faces and simplicial vertex figures, we
can recover the generating polytope, 0, as the set of centers of each spherical
face. In higher dimensions there may exist area-minimizing equitent surfaces with
nonsimplicial vertex figures.

5. Conclusion

We have characterized all piecewise spherical equitent surfaces in two and three
dimensions, and proven them to be area minimizing. Several interesting and open
problems arise. An especially intriguing question deals with equitent surfaces that
have negatively curved bubbles, meaning each face of the bubble region bends
inward. Such a surface can be created using soap films, but our methods are not
yet able to address this case. Similarly, equitent surfaces with nonspherical faces
fall outside the scope of our approach. Finally, our construction generates surfaces
whose vertices are cones over simplices. In spaces of dimension greater than three,
however, minimal surfaces need not have simplicial vertex figures, and we may yet
find interesting new equitent surfaces. Extensions of the metacalibration methods
outlined in this paper show great promise in solving these open problems.
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CYCLIC BRANCHED COVERINGS OF KNOTS
AND QUANDLE HOMOLOGY

YUICHI KABAYA

We give a construction of quandle cocycles from group cocycles, especially,
for any integer p ≥ 3, quandle cocycles of the dihedral quandle Rp from
group cocycles of the cyclic group Z/ p. We show that a group 3-cocycle of
Z/ p gives rise to a nontrivial quandle 3-cocycle of Rp. When p is an odd
prime, since dimF p H3

Q(Rp; F p) = 1, our 3-cocycle is a constant multiple of
the Mochizuki 3-cocycle up to coboundary. Dually, we construct a group
cycle represented by a cyclic branched covering branched along a knot K
from the quandle cycle associated with a colored diagram of K .

1. Introduction

A quandle, which was introduced by Joyce [1982], is an algebraic object whose
axioms are motivated by knot theory and conjugation in a group. Carter, Jelsovsky,
Kamada, Langford and Saito [Carter et al. 2003] introduced a quandle homology
theory, and they defined the quandle cocycle invariants for classical knots and
surface knots. The quandle homology is defined as the homology of a chain
complex generated by cubes whose edges are labeled by elements of a quandle. On
the other hand, the group homology is defined as the homology of a chain complex
generated by tetrahedra whose edges are labeled by elements of a group. So it is
natural to ask for a relation between quandle homology and group homology. This
question also arises from the fact that the quandle cocycle invariants were defined
as an analogue of the Dijkgraaf–Witten invariants, which are defined using group
cocycles.

In [Inoue and Kabaya 2010], we defined a simplicial version of quandle homol-
ogy and constructed a homomorphism from the usual quandle homology to the
simplicial quandle homology. The important point is that this homomorphism gives
a triangulation of a knot complement in algebraic fashion. This enables us to relate
the quandle homology to the topology of knot complements.

The author is supported by JSPS Research Fellowships for Young Scientists.
MSC2010: 57M05, 57M10, 57M12, 57M25, 57M27.
Keywords: quandle homology, group homology, cyclic branched covering.
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In this paper, we apply the results of [Inoue and Kabaya 2010] to construct
quandle cocycles from group cocycles. First, we demonstrate how to give a quandle
cocycle of the dihedral quandle Rp from a group cocycle of the cyclic group Z/p
for any integer p ≥ 3 in Section 7. We show that a generator of H 3(Z/p;Z/p)
gives rise to a nontrivial quandle 3-cocycle of H 3

Q(Rp;Z/p). When p is an odd
prime, since dimFp H 3

Q(Rp; Fp)= 1, our quandle 3-cocycle is equal to a constant
multiple of the Mochizuki 3-cocycle [2003] up to coboundary.

Then we generalize the construction to wider classes of quandles. Let G be
a group and let h be an element of G; then the set Conj(h) = {g−1hg | g ∈ G}
forms a quandle by conjugation. (It is known from [Joyce 1982] that any faithful
homogeneous quandle has such a presentation.) When some obstruction in second
cohomology vanishes, we construct a quandle cocycle of Conj(h) from a group
cocycle of G.

Dually, we relate the quandle cycle associated with an arc and region coloring
(shadow coloring) of a knot K to a group cycle represented by a cyclic branched
covering branched along K . Let D be a diagram of K . We can define the notion
of arc and region colorings of D by a quandle Conj(h). A pair of an arc and a
region coloring is called a shadow coloring. We can associate a cycle of a quandle
homology group to a shadow coloring of D. Using the homomorphism constructed
in [Inoue and Kabaya 2010], we construct a group cycle of G represented by a cyclic
branched covering branched along K . This reveals a close relationship between the
shadow cocycle invariant of a knot and the Dijkgraaf–Witten invariant of the cyclic
branched cover.

Hatakenaka and Nosaka [2012] defined an invariant of 3-manifolds called the
4-fold symmetric quandle homotopy invariant, based on the fact that any 3-manifold
can be represented as a 4-fold simple branched covering of S3 along a link. As
an application, they showed that the shadow cocycle invariant of a link for the
Mochizuki 3-cocycle is equal to a scalar multiple of the Dijkgraaf–Witten invariant
of the double branched cover along the link.

This paper is organized as follows. In Section 2, we recall the definition of
group homology and show how to represent a group cycle by a triangulation with a
labeling of its 1-simplices. We give a presentation of the fundamental group of a
cyclic branched covering branched along a knot in Section 3, which is independent
from the other sections. In Section 4, we construct a group cycle represented by
a cyclic branched cover. We recall the definition of quandles and their homology
theory in Section 5. We review some results from [Inoue and Kabaya 2010] in
Section 6 and apply them to construct quandle cocycles of the dihedral quandle
Rp in Section 7. The reader interested in the form of the 3-cocycle should consult
(7-5) (and (7-4)). We generalize the construction to wider classes of quandles in
Section 8. In Section 9, we construct a group cycle represented by a cyclic branched
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covering from the quandle cycle associated with a shadow coloring. The reader
who is only interested in the construction of quandle cocycles from group cocycles
may skip Sections 2B 2C 3, and 4,

2. Group homology

In this section, we collect basic facts on group homology, starting with a review of
definitions; see [Brown 1982] for details. The material discussed in Sections 2B
and 2C was developed in [Neumann 2004].

2A. Group homology. Let G be a group. Let Cn(G) be the free Z[G]-module
generated by n-tuples [g1| . . . |gn] of elements of G. Define the boundary map
∂ : Cn(G)→ Cn−1(G) by

∂([g1| . . . |gn])

= g1[g2| . . . |gn] +

n−1∑
i=1

(−1)i
[
g1| . . . |gi gi+1| . . . |gn

]
+ (−1)n[g1| . . . |gn−1].

We remark that the chain complex {· · · → C1(G)→ C0(G)→ Z→ 0} is acyclic,
where C0(G)∼= Z[G] → Z is the augmentation map. So the chain complex C∗(G)
gives a free resolution of Z. Let M be a right Z[G]-module. The homology of
Cn(G;M)= M ⊗Z[G] Cn(G) is called the group homology of M and denoted by
Hn(G;M). In other words, Hn(G;M)= TorZ[G]

n (M,Z).
Let C ′n(G) be the free Z-module generated by (g0, . . . , gn)∈Gn+1. Then C ′n(G)

is a left Z[G]-module by the action g(g0, . . . , gn) = (gg0, . . . , ggn). Define the
boundary operator of C ′n(G) by

∂(g0, . . . , gn)=

n∑
i=0

(−1)i (g0, . . . , ĝi , . . . , gn).

C∗(G) and C ′
∗
(G) are isomorphic as chain complexes. In fact, the following

correspondence gives an isomorphism:

[g1|g2| . . . |gn] ↔ (1, g1, g1g2, . . . , g1 · · · gn),

or, equivalently,

g0
[
g−1

0 g1|g−1
1 g2| . . . |g−1

n−1gn
]
↔ (g0, . . . , gn).

The notation that uses (g0, . . . , gn) is called homogeneous, and the one that uses
[g1| . . . |gn] is called inhomogeneous.

Factoring out Cn(G) by the degenerate subcomplex generated by [g1| . . . |gn]

such that gi = 1 for some i , we obtain the normalized chain complex and its
homology group. It is known that the group homology using the normalized
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chain complex coincides with the homology using the unnormalized one. In the
homogeneous notation, we factor out C ′n(G) by the subcomplex generated by
(g0, . . . , gn) such that gi = gi+1 for some i to define the normalized chain complex.

For a left Z[G]-module N , the group cohomology H n(G; N ) is defined as the
cohomology of the cochain complex Cn(G; N )= HomZ[G](Cn(G), N ). Let A be
an abelian group. A cocycle of Cn(G; A) in the homogeneous notation is a function
f : Gn+1

→ A satisfying the following conditions:

(1)
n+1∑
i=0

(−1)i f (x0, . . . , x̂i , . . . , xn+1)= 0,

(2) f (gx0, . . . , gxn)= f (x0, . . . , xn) for any g ∈ G (left invariance).

If f also satisfies

(3) f (x0, . . . , xn)= 0 if xi = xi+1 for some i ,

then f is a normalized n-cocycle. We can show that any n-cocycle is cohomologous
to a normalized n-cocycle.

2B. Cycles represented by triangulations. Let 1 be an n-dimensional simplex.
We label the vertices of 1 by 0, 1, . . . , n. A face of 1 is presented by a subset of
{0, 1, . . . , n}. Let 〈i0, . . . , ik〉 be the face spanned by i0, . . . , ik ∈ {0, . . . , n}, with
a vertex ordering given by i0, . . . , ik . Any face inherits a vertex ordering from the
vertex ordering of 1, that is, 〈i0, . . . ik〉 with i0 < i1 < · · ·< ik .

Definition 2.1. Let T be a CW-complex obtained by gluing a finite number of
n-dimensional simplices along their (n−1)-dimensional faces in pairs by simplicial
homeomorphisms. We denote the k-skeleton of T by T (k). We assume that the gluing
maps preserve the vertex orderings of the faces. Then T −T (n−3) is homeomorphic
to a topological n-manifold (not orientable in general). When T−T (n−3) is oriented,
we call T an ordered n-cycle.

Consider an n-cycle σ of Cn(G;Z). Then σ is represented by a sum∑
j

ε j [g j1| . . . |g jn],

where ε j =±1 and g jk ∈ G. For each [g j1| . . . |g jn], take an n-simplex 1 j . Then
label the edge 〈i1i2〉 of 1 j by g j i1 g j (i1+1) . . . g j i2 for i1 < i2. In particular, we have

〈0, 1〉 ↔ g j1, 〈1, 2〉 ↔ g j2, . . . , 〈n− 1, n〉 ↔ g jn.

We denote the label of 〈i1, i2〉 by λ〈i1, i2〉. For i1 > i2, label the oriented edge
〈i1, i2〉 by λ〈i2, i1〉

−1. For any 2-dimensional face 〈i0, i1, i2〉, we have

λ〈i0, i1〉λ〈i1, i2〉 = λ〈i0, i2〉.
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g2

1↔ g1

0↔ 1

3↔ g1g2g3

2↔ g1g2

g1

g3

Figure 1. A labeling of a simplex.

Rewriting them in the homogeneous notation, we assign labels to the vertices of
1 j as

0↔ 1, 1↔ g j1, 2↔ g j1g j2, . . . , n↔ g j1 . . . g jn,

up to the left action of G (Figure 1).
Since ∂σ = 0, (n− 1)-dimensional faces cancel in pairs. Gluing the 1 j ’s along

their faces according to such pairings, we obtain an n-cycle T . At any (n − 1)-
simplex of T , there exist exactly two adjacent n-simplices. The labelings of the
(n− 1)-simplex derived from these two n-simplices coincide. Thus we have a well-
defined labeling of 1-simplices λ : {oriented 1-simplices of T } → G satisfying:

(1) λ〈i0, i1〉λ〈i1, i2〉 = λ〈i0, i2〉 for any 2-dimensional face 〈i0, i1, i2〉,

(2) λ〈i1, i0〉 = λ〈i0, i1〉
−1.

We call a labeling of 1-simplices satisfying the conditions (1) and (2) a G-valued
1-cocycle. Orient 1 j positively if ε j = 1 and negatively if ε j = −1. Since these
orientations agree on face pairings, we thus have an orientation on T . Therefore
T is an ordered n-cycle with a G-valued 1-cocycle λ. In general, T may not be
connected, but we assume that T is connected because we can treat each connected
component separately in our arguments. Conversely, any ordered n-cycle T with a
G-valued 1-cocycle λ represents an n-cycle of Cn(G;Z).

2C. Group cycles and representations. Suppose a cycle σ ∈ Cn(G;Z) is repre-
sented by an ordered n-cycle T with a G-valued 1-cocycle λ. Then σ induces a
homomorphism from π1(T ) to G as follows. Let T̃ be the universal covering of T
and let p : T̃→T be the covering map. Then the simplices of T lift to simplices of T̃ ,
and each lift has an induced vertex ordering compatible with adjacent n-simplices.
The G-valued 1-cocycle λ of T induces a G-valued 1-cocycle of T̃ . Consider a
fundamental domain of T , that is, a contractible subcomplex D of T̃ such that

• T̃ =
⋃

γ∈π1(M)

γ D,

• D ∩ γ D = (lower-dimensional simplices), for any γ 6= 1,



320 YUICHI KABAYA

where we regard π1(T ) as the group of deck transformations. By definition, the
number of n-simplices in D coincides with the number of n-simplices in T ; in
particular, both are finite. We fix a base point ∗̃ in the interior of D. Each (n− 1)-
simplex on ∂D is glued to another (n− 1)-simplex on ∂D. We denote such a pair
of faces by F±i . Let xi be a path in T that starts at ∗ = p( ∗̃), traverses p(Fi ) in the
direction from F+i to F−i , and ends at ∗. These paths form a system of generators of
the fundamental group π1(T, ∗ ). The relations are given at any (n− 2)-simplices,
around which there are a finite number of p(Fi )’s.

Fix an n-simplex 1 in D and a labeling of vertices of 1 derived from λ. Then
n-simplices adjacent to 1 inherit labelings of vertices from λ. In this way, all
vertices of D are labeled by elements of G. Now consider the labeling of vertices
of F+i and F−i . Since these reduce to the same labeling of edges, they coincide up
to left multiplication. Therefore there exists an element of G that sends the labeling
of vertices of F−i to the one of F+i . Denote the element by ρ(xi ). This ρ induces a
homomorphism ρ : π1(T, ∗ )→ G.

Conversely, if we have an ordered n-cycle T and a homomorphism

ρ : π1(T, ∗ )→ G,

we can construct a G-valued 1-cocycle λ and then a cycle of Cn(G;Z) up to
boundary as follows. Since ρ induces a map

T → K (π1(T, ∗ ), 1)→ BG,

we obtain a labeling of 1-simplices λ of T . This gives rise to a G-valued 1-cocycle
λ and a homology class in Hn(G;Z). The G-valued 1-cocycle λ is well-defined up
to the coboundary action. A map µ : {0-simplices of T } → G acts on a G-valued
1-cocycle λ as a coboundary action by

〈i1, i2〉 7→ µ(i1)
−1λ〈i1, i2〉µ(i2).

We can show that the homology class obtained from λ does not change under the
coboundary action. For any g ∈ G, the cycle corresponding to the representation
g−1ρg is obtained from λ by the coboundary action by µ ≡ g. As a result, the
homology class obtained from ρ depends only on the conjugacy class of ρ.

For a closed oriented n-manifold M and a representation ρ : π1(M)→ G, we
have a homology class defined by the image of the fundamental class [M] under
the map Hn(M)→ Hn

(
K (π1(M), 1)

)
→ Hn(G;Z). When M is homeomorphic to

an ordered n-cycle T , the homology class is represented by a G-valued 1-cocycle
λ of T associated with ρ. In this situation, we say that the homology class defined
by M and ρ is represented by T and λ.
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xk x j

xi

x j xi

xk

Figure 2. The relation is given by xk = x−1
j xi x j .

3. Cyclic branched covering

In this section, we give a presentation of the fundamental group of a cyclic branched
covering from the Wirtinger presentation.

3A. Presentation of the fundamental group of the branched cover. Let K be a
knot in S3 and let D be a diagram of K . Then π1(S3

−K ) is presented by generators
and relations called the Wirtinger presentation. Let x1, . . . , xn be the generators of
the Wirtinger presentation that correspond to the arcs of D. Each crossing (Figure 2)
gives rise to a relation xk = x−1

j xi x j .
For any integer l > 1, let Cl be the l-fold cyclic covering of K , that is, the

manifold corresponding to the kernel of

π1(S3
− K )→ H1(S3

− K )∼= Z→ Z/ l.

Putting back the knot K to Cl , we obtain the l-fold cyclic branched covering Ĉl

of K .

Proposition 3.1. π1(Cl) has the following presentation:

Generators: xi,s ( for i = 1, 2, . . . , n and s = 0, 1, . . . , l − 1),

Relations: xk,s = x−1
j,s−1xi,s−1x j,s ( for each crossing and s = 0, 1, . . . , l − 1),

x1,0 = x1,1 = · · · = x1,l−2 = 1.

The inclusion map π1(Cl)→ π1(S3
− K ) is given by

xi,s 7→ x s−1
1 xi x−s

1 ,

if we take appropriate base points. By adding a relation x1,l−1 = 1, we obtain a
presentation of π1(Ĉl).

A method for obtaining a presentation of the fundamental group of a branched
covering is given in [Rolfsen 1976]. But we give a proof here because some
techniques are used to construct a group cycle represented by Ĉl later.

Proof. First, we construct a handle decomposition of the knot complement associated
with the Wirtinger presentation (Figure 3). Then we lift the handle decomposition
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x1

x3x2 x3

x1

x2

x3x1 x2

Figure 3. A handle decomposition of a knot complement.

to a handle decomposition of Cl (Figure 4). After that, we read the relations given
by attaching 2-handles.

Let N (K ) be a regular neighborhood of K . We give a handle decomposition of
S3
− N (K ). We represent S3 by the one-point compactification of

R3
= {(x, y, z) | x, y, z ∈ R}.

Let B+ = {z ≥ 0}∪ {∞} and B− = {z ≤ 0}∪ {∞}. We denote the equatorial sphere
of S3 by S0 = {z = 0} ∪ {∞}. Put K in a position such that the projection to S0

has only double points. Let n be the number of crossings of this projection. We
deform K in the z-direction so that K intersects S0 at 2n points and each of B±∩K
consists of n arcs. We call B+ ∩ K over-crossing arcs and B− ∩ K under-crossing
arcs. Index the arcs of B+ ∩ K by xi (i = 1, 2, . . . , n).

Now B+ − N (K ) is homeomorphic to a handlebody of genus n (Figure 3).
Projecting the over-crossing arcs to S0, we obtain a meridian disk system of the
handlebody. We denote the meridian disk corresponding to xi by Di . For each
under-crossing arc, attach a 2-handle D2

× D1 along ∂D2
× D1 to B+ − N (K )
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(Figure 3). Then the resulting manifold is homeomorphic to (S3
− N (K ))− B3,

where B3 is a 3-ball. Attaching B3 along the boundary to ∂((S3
− N (K ))− B3),

the resulting manifold is homeomorphic to S3
− N (K ). So we have a handle

decomposition of S3
− N (K ) into one 0-handle, n 1-handles, n 2-handles and one

3-handle. In this handle decomposition, 1-handles correspond to the Wirtinger
generators and 2-handles to the Wirtinger relations. We denote the set of i-handles
by hi and X (i)

= h0
∪ · · · ∪ hi .

Next we consider the preimage of X (1) in Cl . Cut X (1) along the meridian
disks Di , and denote the resulting manifold by B, which is homeomorphic to a
3-ball. Let ∗ be a point in B ⊂ S3

− N (K ). We take a loop in X (1) that starts at ∗,
intersects the meridian disk Di , and ends at ∗. Orient the loop so that it corresponds
to the generator of H1(S3

− K ). By abuse of notation, we also denote this loop
by xi . Take a lift B0 ⊂ Cl of B and denote the preimage of ∗ ∈ B in B0 by ∗̃. Then
there exists a unique lift x̃i of the loop xi starting at ∗̃. Since xi corresponds to
the generator of H1(S3

− K ), x̃i ends at another lift of B, which we denote by B1.
Similarly, the lift of xi starting at B1 ends at another lift, which we denote by B2.
Continuing this, we see that Bl = B0 and all lifts of B will appear. Therefore the
preimage of X (1) is decomposed into l 3-balls B0∪B1∪· · ·∪Bl−1. The intersection
of Bs and Bs+1 consists of n disks, each of which is a lift of a meridian disk Di .
We denote this lifted disk by Di,s (Figure 4). It is easy to check that

{D1,l−1} ∪ {Di,s : i = 2, . . . , n; s = 0, . . . , l − 1}

forms a meridian disk system of the preimage of X (1). Denote by x̃i,s the lift of xi

starting at Bs and ending at Bs+1.

D2,s+1

D3,s+1

D2,s

D1,s

D1,s+1

Bs

Bs+1

Bs+2

D3,s

Figure 4. A handle decomposition of Cl .
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The generator of π1(Cl, ∗̃) corresponding to the meridian disk Di,s is given by

(3-1) x̃1,0 x̃1,1 . . . x̃1,s−1 x̃i,s x̃−1
1,s x̃−1

1,s−1 . . . x̃
−1
1,0.

We denote this element by xi,s . To give a simple presentation of π1(Cl, ∗̃), we add
extra generators x1,0, x1,1, . . . , x1,l−2 corresponding to x̃1,0, x̃1,1, . . . x̃1,l−2, respec-
tively, and relations x1,0 = x1,1 = · · · = x1,l−2 = 1.

Finally, we consider the relations given by the lifts of 2-handles. We see that the
relation xk = x−1

j xi x j lifts to

xk,s = x−1
j,s−1xi,s−1x j,s (s = 0, 1, . . . , l − 1);

see Figure 4.
Since the generator xi,s is represented by (3-1), the inclusion map π1(Cl, ∗̃)→

π1(S3
− K , ∗ ) is given by xi,s 7→ x s−1

1 xs x−s
1 . This proves the second statement.

By adding a 2-handle to Cl along x̃1,0 x̃1,1 . . . x̃1,l−1 and capping off the resulting
sphere, we obtain a manifold homeomorphic to the cyclic branched covering Ĉl .
Therefore a presentation of the cyclic branched covering is obtained by adding a
relation x1,l−1 = 1. �

4. Cycle represented by cyclic branched covering

For a representation ρ : π1(S3
− K )→ G, we have the restriction map ρ|π1(Cl ) :

π1(Cl)→ G given by

(4-1) ρ|π1(Cl )(xi,s)= ρ(x1)
s−1ρ(xi )ρ(x1)

−s .

If ρ(x1)
l
= 1, it reduces to a representation ρ̂ : π1(Ĉl)→ G and there is a group

cycle given by Ĉl and ρ̂. In this section, we construct an explicit ordered 3-cycle
and its G-valued 1-cocycle representing the homology class given by Ĉl and ρ̂. First
we give a triangulation of S3

− N (K ) associated with the Wirtinger presentation.
Let K be a knot and fix a diagram of K . As in the proof of Proposition 3.1, we

define B± and give a Heegaard splitting of S3
− N (K ) with the meridian disks Di .

Cutting the handlebody B+ − N (K ) along the meridian disks Di , the result is a
ball with 2n 2-cells on the boundary. We denote the resulting 3-ball by B and the
pair of 2-cells corresponding to Di by F+i and F−i so that the Wirtinger generator
corresponding to xi runs from F+i to F−i (Figure 5(A)). Now consider the attaching
regions of the two handles corresponding to under-crossing arcs, which consist of
annuli S1

× D1(⊂ D2
× D1) on ∂(B+− N (K )). Each annulus is divided by the

Di ’s into four rectangles on ∂B. We define a graph on ∂B with vertices consisting
of F±i and edges consisting of these rectangles (Figure 5(B)). Each vertex of this
graph has valency at least four. We can make all vertices of the graph into trivalent
vertices (Figure 5(C)) by adding extra 1-handles and 2-handles (stabilizations of
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(A) (B)F−1

F−2
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F+1
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(E)
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F ′+2

F ′′+2

F ′−2

F ′′−2

F ′−3

F ′′+3

F ′−1

F ′+3

F ′′−1

F ′′+1

Figure 5. A polyhedral decomposition of S3
− N (K ). We are

looking from inside of B+. The white rectangles in (A) and (B)
correspond to the attaching regions of the 2-handles.
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Figure 6. Stabilizations of the handle decomposition.

the Heegaard splitting; see Figure 6). We denote the new vertices, which originally
belonged to F±i , by F ′±i , F ′′±i , . . . . The dual of the graph gives a triangulation of
∂B (Figures 5(D) and 5(E)). By abuse of notation, we denote the triangles dual to
the vertices F ′±i , F ′′±i , . . . by the same symbols. Taking a cone from an interior
point of B, we obtain a triangulation T of B into 4n tetrahedra. Regluing the
triangles F ′+i , F ′′+i , . . . to F ′−i , F ′′−i , . . . , we obtain a triangulation of S3

− N (K )
into 4n tetrahedra, which was explained in [Weeks 2005]. We remark that this is not
a triangulation in the usual sense: it is not a simplicial complex, and moreover, the
link of some 0-simplex is not homeomorphic to the 2-sphere. Actually there exist
only three 0-simplices; one is the cone point in B (the north pole in [Weeks 2005]),
the second is the 0-simplex corresponding to the complementary regions of the
diagram (the south pole), and the last one is a 0-simplex whose small neighborhood
is homeomorphic to the cone over the torus ∂N (K ).

Using this triangulation, we construct a triangulation of the cyclic branched
covering Ĉl . Let B0, B1, . . . , Bl−1 be l copies of B and let Ts be the triangulation
of Bs we have constructed. We denote the triangles F ′±i , F ′′±i , . . . on ∂Bs by
F ′±i,s, F ′′±i,s, . . . respectively. By abuse of notation, we regard F ′±i,s, F ′′±i,s, . . .
simply as F±i,s . Glue the Ts’s along their boundary triangles by the identification
maps

F−i,s→ F+i,s−1 (i = 1, 2, . . . , n, s = 0, 1, . . . , l − 1).

Denote this triangulation by T̂ . We define an ordering of each tetrahedron by assign-
ing 0 to the interior vertex of Bs , 1 to the vertex corresponding to the complementary
region of the diagram, 2 to the vertex corresponding to the under-crossing arc, and
3 to the vertex corresponding to the over-crossing arc, respectively (Figure 7). The
orderings are compatible under the gluing maps. So T̂ is an ordered 3-cycle. Here
T̂ is a triangulation of Ĉl except near the 0-simplex corresponding to K , whose
small neighborhood is homeomorphic to a cone over a torus. We can resolve
this singularity by inserting a suspension of a 2l-gon around K (Figure 8). As a
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3

0

Figure 7. The orderings of the tetrahedra of B.

result, we obtain an ordered 3-cycle homeomorphic to Ĉl . (This procedure is called
“blowing up” at a 0-simplex in [Neumann 2004].)

We construct a group cycle given by Ĉl and a representation ρ̂ : π1(Ĉl)→ G
using the triangulation T̂ . Here ρ̂ is given by the set {ρ̂(xi,s)} ⊂ G satisfying

ρ̂(xk,s)= ρ̂(x j,s−1)
−1ρ̂(xi,s−1)ρ̂(x j,s),

ρ̂(x1,0)= ρ̂(x1,1)= ρ̂(x1,2)= · · · = ρ̂(x1,l−1)= 1,

with i, j, k as in Figure 2 and s = 0, 1, . . . , l − 1. Give a labeling of vertices on Ts

for each s. Let (g1, g2, g3) be the labeling of vertices on F−i,s+1 and let (g′1, g′2, g′3)
be the labeling of vertices on F+i,s . If these are related by

ρ̂(xi,s)(g1, g2, g3)= (g′1, g′2, g′3),

then we obtain a G-valued 1-cocycle λ on T̂ by gluing Ts using ρ̂. To obtain a group
cycle given by Ĉl and ρ̂, we insert a suspension over a 2l-gon to T̂ at the 0-simplex
corresponding to K . We give an ordering on the vertices of each tetrahedron of
the suspension compatible with the ordering on the 2l-gon; for example, order the
central 0-simplex maximal. These tetrahedra inherit a vertex labeling by G on the
boundary faces of the suspension. We assign any labeling at the central 0-simplex
of the suspension. Then upper and lower tetrahedra have the same labelings with
different orientations. So these cancel out in pairs and give no contribution to the
group cycle represented by Ĉl and ρ̂. Therefore the homology class given by T̂
and λ represents the homology class given by Ĉl and ρ̂.

Figure 8
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5. Quandle homology

In this section, we review the definitions of quandles, rack (co)homology and
quandle (co)homology. Our treatment of quandle (or rack) homology follows that
of [Etingof and Graña 2003]. In Sections 5B and 5C, we recall the notions of
colorings and quandle cocycle invariants defined in [Carter et al. 2003].

5A. Quandle and quandle homology. A quandle X is a set with a binary operation
∗ satisfying the following axioms:

(Q1) x ∗ x = x for any x ∈ X ,

(Q2) the map ∗y : X→ X defined by x 7→ x ∗ y is a bijection for any y ∈ X , and

(Q3) (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for any x, y, z ∈ X .

We denote the inverse of ∗y by ∗−1 y. For a quandle X , we define the associated
group G X by

G X = 〈x ∈ X |y−1xy = x ∗ y (x, y ∈ X)〉.

A quandle X has a right G X -action in the following way. Let g = xε1
1 xε2

2 · · · x
εn
n be

an element of G X where xi ∈ X and εi =±1. Define

x ∗ g =
(
. . . ((x ∗ε1 x1) ∗

ε2 x2) . . .
)
∗
εn xn.

One can easily check that this is a right action of G X on X . So the free abelian
group Z[X ] generated by X is a right Z[G X ]-module.

Let C R
n (X) be the free left Z[G X ]-module generated by Xn . We define the

boundary map C R
n (X)→ C R

n−1(X) by

∂(x1, x2, . . . , xn)

=

n∑
i=1

(−1)i
(
(x1, . . . , x̂i , . . . , xn)− xi (x1 ∗ xi , . . . , xi−1 ∗ xi , xi+1, . . . , xn)

)
.

Figure 9 shows a graphical picture of the boundary map. Let C D
n (X) be the

Z[G X ]-submodule of C R
n (X) generated by (x1, . . . , xn) with xi = xi+1 for some i .

Now C D
n (X) is a subcomplex of C R

n (X). Let C Q
n (X)= C R

n (X)/C D
n (X). For a

right Z[G X ]-module M , we define the rack homology of M by the homology of
C R

n (X;M) = M ⊗Z[G X ] C
R
n (X) and denote it by H R

n (X;M). We also define the
quandle homology of M by the homology of C Q

n (X;M)= M ⊗Z[G X ] C
Q
n (X) and

denote it by H Q
n (X;M). The homology H Q

n (X;Z), where Z is the trivial Z[G X ]-
module, is equal to the usual quandle homology H Q

n (X). Let Y be a set with a right
G X -action. For any abelian group A, the abelian group A[Y ] freely generated by
Y over A is a right Z[G X ]-module. The homology group H Q

n (X; A[Y ]) is usually
denoted by H Q

n (X; A)Y [Kamada 2007].
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Figure 9. The boundary map ∂(g(x,y,z))=−(g(y,z)−gx(y,z))+
(g(x,z)−gy(x∗y,z))−(g(x,y)−gz(x∗z,y∗z)). Here x,y,z∈X
and g∈G X . Edges are labeled by elements of X and vertices are
labeled by elements of G X .

Let N be a left Z[G X ]-module. We define the rack cohomology H n
R(X; N ) by

the cohomology of Cn
R(X; N )= HomZ[G X ](C

R
n (X), N ). The quandle cohomology

H n
Q(X; N ) is defined in a similar way. For a set Y with a right G X -action and

an abelian group A, we let Func(Y, A) be the left Z[G X ]-module generated by
functions φ : Y → A, where the action is defined by (gφ)(y) = φ(yg) for y ∈ Y
and g ∈ G X . The cohomology group H n

Q(X;Func(Y, A)) is usually denoted by
H n

Q(X; A)Y [Kamada 2007].

5B. Shadow coloring and associated quandle cycle. Let X be a quandle. Let L
be an oriented link in S3 and let D be a diagram of L . An arc coloring of D is an
assignment of elements of X to arcs of D satisfying the following relation at each
crossing:

x ∗ y

y

x

where x, y ∈ X . By the Wirtinger presentation of the knot complement, an arc
coloring determines a representation of π1(S3

− L) into the associated group G X .
This is obtained by sending each meridian to its color.

Let Y be a set with a right G X action. A region coloring of D is an assignment
of elements of Y to regions of D satisfying the relation

x
r

r · x



330 YUICHI KABAYA

for any pair of adjacent regions, where r ∈ Y and x ∈ X . A pair S = (A,R) is
called a shadow coloring. If we fix a color of a region of D, then colors of other
regions are uniquely determined. Therefore there always exists a region coloring
compatible with a given arc coloring.

Define a cycle C(S) of C Q
2 (X;Z[Y ]) for a shadow coloring S. Put +r ⊗ (x, y)

for a positive crossing and −r ⊗ (x, y) for a negative crossing colored by

rx

y

r x

y

respectively. Then define

C(S)=
∑

c: crossing

εcrc⊗ (xc, yc) ∈ C Q
2 (X;Z[Y ]),

where εc =±1. We can easily check the following:

Proposition 5.1 [Inoue and Kabaya 2010]. C(S) is a cycle and the homology class
[C(S)] is invariant under Reidemeister moves. Moreover it does not depend on the
choice of the region coloring if the action of G X on Y is transitive.

So the homology class [C(S)] is an invariant of the arc coloring A in many
cases. There are two important sets with right G X -action: one is when Y consists
of one point {∗} and the other is when Y = X . Eisermann [2003; 2007] showed
that the cycle [C(S)] for Y = {∗} is essentially described by the monodromy of
some representation of the knot group along the longitude. So we concentrate on
the invariant [C(S)] in the case of Y = X from now on.

5C. Quandle cocycle invariant. Let X be a quandle with |X |<∞. Let A be an
abelian group and f be a cocycle of H 2

Q(X;Func(X, A)). We define the (shadow)
quandle cocycle invariant by

1
|X |

∑
S: shadow colorings

〈 f,C(S)〉 ∈ Z[A].

Here the sum is finite because there are only a finite number of shadow colorings
of D. This is an invariant of oriented knots by Proposition 5.1. If G X acts on X
transitively (that is, X is connected), 〈 f,C(S)〉 does not depend on the choice of a
region coloring R by Proposition 5.1, and thus∑

S=(A,R),
A: arc coloring

〈 f,C(S)〉

coincides with the quandle cocycle invariant, where R is a region coloring compati-
ble with A.
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We can regard f ∈ Cn
Q(X; A) as an element of Cn−1

Q (X;Func(X, A)) by

f (x1, x2, . . . , xn−1)(r)= f (r, x1, x2, . . . , xn−1).

This gives a homomorphism H n
Q(X; A)→ H n−1

Q (X;Func(X, A)). Therefore a
quandle 3-cocycle f ∈ H 3

Q(X; A) gives rise to a quandle cocycle invariant. Explic-
itly, the cocycle invariant has the form∑

S=(A,R),
A: arc coloring

∑
c: crossing

εc f (rc, xc, yc) ∈ Z[A],

where xc, yc ∈ X are given by A and rc ∈ X are given by R.

6. H1
n (X;Z) and the map H R

n (X;Z[X])→ H1
n+1(X;Z)

Let X be a quandle. Let C1
n (X) = spanZ{(x0, . . . , xn) | xi ∈ X}. We define the

boundary operator of C1
n (X) by

∂(x0, . . . , xn)=

n∑
i=0

(−1)i (x0, . . . , x̂i , . . . , xn).

Since X has a right action of G X , the chain complex C1
n (X) has a right action of

G X by (x0, . . . , xn)∗ g = (x0 ∗ g, . . . , xn ∗ g). Let M be a left Z[G X ]-module. We
denote the homology of C1

n (X)⊗Z[G X ]M by H1
n (X;M). For any abelian group A,

we can also define the cohomology group H n
1(X; A) in a similar way.

Let In be the set consisting of maps ι : {1, 2, . . . , n}→{0, 1}. We let |ι| denote the
cardinality of the set {i | ι(i)= 1, 1≤ i ≤ n}. For each generator r⊗(x1, x2, . . . , xn)

of C R
n (X;Z[X ]), where r, x1, . . . , xn ∈ X , we define

r(ι)= r ∗
(
x ι(1)1 x ι(2)2 · · · x ι(n)n

)
∈ X,

x(ι, i)= xi ∗
(
x ι(i+1)

i+1 x ι(i+2)
i+2 · · · x ι(n)n

)
∈ X,

for any ι ∈ In . Fix an element q ∈ X . For each n ≥ 1, we define a homomorphism

ϕ : C R
n (X;Z[X ])→ C1

n+1(X)⊗Z[G X ] Z

by

(6-1) ϕ
(
r ⊗ (x1, x2, . . . , xn)

)
=

∑
ι∈In

(−1)|ι|
(
q, r(ι), x(ι, 1), x(ι, 2), . . . , x(ι, n)

)
.

For example, in the case n = 2 (Figure 10),

ϕ(r ⊗ (x, y))

= (q, r, x, y)− (q, r ∗ x, x, y)− (q, r ∗ y, x ∗ y, y)+ (q, (r ∗ x) ∗ y, x ∗ y, y),
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q q

q q
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Figure 10

and in the case n = 3,

ϕ(r ⊗ (x, y, z))= (q, r, x, y, z)− (q, r ∗ x, x, y, z)
− (q, r ∗ y, x ∗ y, y, z)− (q, r ∗ z, x ∗ z, y ∗ z, z)
+ (q, (r ∗ x) ∗ y, x ∗ y, y, z)+ (q, (r ∗ x) ∗ z, x ∗ z, y ∗ z, z)
+ (q, (r ∗ y) ∗ z, (x ∗ y) ∗ z, y ∗ z, z)
−
(
q, ((r ∗ x) ∗ y) ∗ z, (x ∗ y) ∗ z, y ∗ z, z

)
.

Theorem 6.1 [Inoue and Kabaya 2010]. The map

ϕ : C R
n (X;Z[X ])→ C1

n+1(X)⊗Z[G X ] Z

is a chain map.

Therefore ϕ induces a homomorphism ϕ∗ : H R
n (X;Z[X ]) → H1

n+1(X;Z). We
remark that the induced map ϕ∗ : H R

n (X;Z[X ])→ H1
n+1(X;Z) does not depend

on the choice of q ∈ X [Inoue and Kabaya 2010].
In general, it is easier to construct cocycles of H1

n+1(X) from group cocycles of
some group related to X than those of H R

n (X;Z[X ]). If we have a function f from
X k+1 to some abelian group A satisfying

(1)
k+1∑
i=0
(−1)i f (x0, . . . , x̂i , . . . , xk+1)= 0,

(2) f (x0 ∗ y, . . . , xk ∗ y)= f (x0, . . . , xk) for any y ∈ X , and

(3) f (x0, . . . , xk)= 0 if xi = xi+1 for some i ,
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then f is a cocycle of H k
1(X; A) and ϕ∗ f is a cocycle of H k−1

Q (X;Func(X, A)).
Moreover, ϕ∗ f can be regarded as a cocycle in H k

Q(X; A) by

(ϕ∗ f )(r, x1, . . . , xk−1)= (ϕ
∗ f )(x1, . . . , xk−1)(r).

We will construct functions satisfying these three conditions from group cocycles.

7. Cocycles of dihedral quandles

For any integer p > 2, let Rp denote the cyclic group Z/p with quandle operation
defined by x ∗ y = 2y − x mod p. Actually this operation satisfies the quandle
axioms. The quandle Rp is called the dihedral quandle. In this section, we construct
quandle cocycles of Rp from group cocycles of G = Z/p. In the next section, we
will propose a general construction of quandle cocycles from group cocycles.

7A. Group cohomology of cyclic groups. Let G be the cyclic group Z/p (where p
is an integer greater than 2). The first cohomology H 1(G;Z/p)=Hom(Z/p,Z/p)
is generated by the 1-cocycle b1 defined by

b1(x)= x .

The connecting homomorphism δ : H 1(G,Z/p)→ H 2(G;Z) of the long exact
sequence corresponding to 0→ Z→ Z→ Z/p→ 0 maps b1 to a generator of
H 2(G;Z), and the reduction H 2(G;Z)→ H 2(G;Z/p) maps it to a generator b2

of H 2(G;Z/p). Explicitly, we have

(7-1) b2(x, y)= 1
p
(y− x + y+ x)=

{
1 if x + y ≥ p,
0 otherwise,

where x is an integer 0≤ x < p such that x ≡ x mod p. Cup products of b1’s and
b2’s are also cocycles. Moreover, when p is an odd prime, it is known that any
element of H∗(G;Z/p) can be presented by a cup product of b1’s and b2’s; see,
for example, [Benson 1991, Proposition 3.5.5]. We remark that b1 and b2 and their
products are normalized cocycles.

7B. Cocycle of Rp. For an integer p > 2, let f be a normalized k-cocycle of
H k(G,Z/p). Regarding Rp as G = Z/p, we obtain a map f : (Rp)

k+1
→ Z/p

satisfying

(1)
k+1∑
i=0

(−1)i f (x0, . . . , x̂i , . . . , xk+1)= 0,

(3) f (x0, . . . , xk)= 0 if xi = xi+1 for some i ,

by using homogeneous notation (Section 2A). If f also satisfies the condition

(2) f (x0 ∗ y, . . . , xk ∗ y)= f (x0, . . . , xk) for any y ∈ Rp,
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then f gives rise to a quandle k-cocycle of H k
Q(Rp;Z/p) by the construction of

Section 6. Define f̃ : (Rp)
k+1
→ Z/p by

(7-2) f̃ (x0, . . . , xk)= f (x0, . . . , xk)+ f (−x0, . . . ,−xk).

Then f̃ satisfies condition (2) by the left invariance of the homogeneous group
cocycle. It is easy to check that f̃ also satisfies conditions (1) and (3). So we obtain
a quandle k-cocycle.

We give an explicit presentation of the 3-cocycle arising from b1b2∈H 3(G;Z/p).
Let

d(x, y)= b2(x, y)− b2(−x,−y);

then d is a 2-cocycle. (We can check that d is cohomologous to 2b2.) Then by the
defining equation (7-2), b̃1b2 is given by

[x |y|z] 7→ x · d(y, z).

By definition we have

(7-3) d(−x,−y)=−d(x, y)

and

(7-4) d(x, y)=


1 if x + y > p,

−1 if x + y < p, x 6= 0 and y 6= 0,

0 otherwise.

We remark that the cocycle d can be easily understood geometrically. Identify i ∈
Z/p with the complex number ζ i , where ζ = exp(2π

√
−1/p). Then d(x, y)=−1

if (0, x, x + y) is counterclockwise, d(x, y) = +1 if (0, x, x + y) is clockwise,
and d(x, y)= 0 if (0, x, x + y) is degenerate (Figure 11). This interpretation and
Equation (7-3) make various calculations easy.

Proposition 7.1. The quandle 3-cocycle arising from b1b2 ∈ H 3(G;Z/p) has the
following presentation:

(7-5) (x, y, z) 7→ 2z
(
d(y− x, z− y)+ d(y− x, y− z)

)
, (x, y, z ∈ Rp).

This is a nontrivial quandle 3-cocycle of Rp with Z/p coefficients.

−1 0

x + y

x x + y

0+1

x

Figure 11. The value of d(x, y).
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Proof. In (6-1), since the map ϕ∗ does not depend on the choice of q ∈ Rp, we let
q = 0. Then we have

ϕ(x, y, z)= (0, x, y, z)− (0, x ∗ y, y, z)

− (0, x ∗ z, y ∗ z, z)+ (0, (x ∗ y) ∗ z, y ∗ z, z)

= (0, x, y, z)− (0, 2y− x, y, z)

− (0, 2z− x, 2z− y, z)+ (0, 2z− 2y+ x, 2z− y, z),

for x, y, z ∈ Rp. Rewriting in inhomogeneous notation, this is equal to

[x | y− x | z− y] − [2y− x | x − y | z− y]

− [2z− x | x − y | y− z] + [2z− 2y+ x | y− x | y− z].

The evaluation of b̃1b2 on this chain is

x · d(y− x, z− y)− (2y− x)d(x − y, z− y)

− (2z− x)d(x − y, y− z)+ (2z− 2y+ x)d(y− x, y− z)

= x · d(y− x, z− y)+ (2y− x)d(y− x, y− z)

+ (2z− x)d(y− x, z− y)+ (2z− 2y+ x)d(y− x, y− z)

= 2z · d(y− x, z− y)+ 2z · d(y− x, y− z).

We will see that this cocycle is nontrivial because the evaluation on the cycle given
by a shadow coloring S of the (2, p)-torus link (Figure 12) is nonzero. Color two
arcs by x, y ∈ Rp as in Figure 12. Then other arcs must be colored by (i+1)y− i x
by the relations at the crossings. Let r be the color of the central region. Then we
have

C(S)=
p−1∑
i=0

r ⊗
(
iy− (i − 1)x, (i + 1)y− i x

)
.

We assume that r = 0 and x = 0. Evaluation of the cocycle on C(S) yields

r

py−(p−1)x

x y2y−x

3y−2x

Figure 12. A shadow coloring of the (2, p)-torus knot by Rp (for
any x, y, r ∈ Rp).



336 YUICHI KABAYA

p−1∑
i=0

2(i + 1)y
(
d(iy, y)+ d(iy,−y)

)
= 2y

p−1∑
i=0
(i + 1)

(
d(iy, y)− d(−iy, y)

)
(by (7-3))

= 2y
p−1∑
i=0

(
(i + 1)d(iy, y)+ (i − 1)d(iy, y)

)
= 4y

p−1∑
i=0

i · d(iy, y).

By the next lemma, this is equal to −4y2 mod p. �

Lemma 7.2. Let p > 2 be an integer. For 0< y < p, we have

p−1∑
i=0

i · d(iy, y)=

{
−y p: odd,
p
2
− y p: even.

When y = 0, the left-hand side is 0.

Proof. When y = 0, this is straightforward since d(x, 0) = 0 for any 0 ≤ x < p.
When y is a unit in Z/p, by (7-4) we have

p−1∑
i=0

i ·d(iy, y)=
p−1∑
i=0

i
y
· d(i, y)

=
1
y
(
−1−2−· · ·−(p−y−1)+(p−y+1)+(p−y+2)+· · ·+(p−1)

)
=

1
y

((p− y− 1)(y− p)
2

+
(y− 1)(2p− y)

2

)
=

1
y

(
−y2
−

p
2
+ 2py−

p2

2

)
≡−y−

p
2
·

1
y
.

This is equal to −y when p is odd. When p is even, −p/2 · 1/y ≡ p/2 mod p
since 1/y is a unit in Z/p.

When y is not a unit in Z/p, let c be the greatest common divisor of y and p.
Then

p−1∑
i=0

i · d(iy, y)= c
p/c−1∑

j=0

j
y/c
· d( jc, y)= c

y/c

p/c−1∑
j=0

j · d( j, y/c).

Since y/c is a unit in Z/(p/c), this reduces to the previous case. �

Since 2 is divisible in Z/p when p is odd, we have:

Corollary 7.3. When p > 2 is an odd number,

(7-6) (x, y, z) 7→ z
(
d(y− x, z− y)+ d(y− x, y− z)

)
is a nontrivial quandle 3-cocycle of Rp with Z/p coefficients.
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When p is prime, it is known that dimFp H 3
Q(Rp; Fp)= 1. Therefore our cocycle is

a constant multiple of the Mochizuki 3-cocycle [2003]. We remark that when p is
prime, dimFp H n

Q(Rp; Fp) was calculated for any n by Nosaka [2009], who gave a
system of generators of H n

Q(Rp; Fp).
When p is an odd integer, Nosaka [2010] showed that H Q

3 (Rp;Z)∼= Z/p. Since
H Q

2 (Rp;Z) is zero, we have H 3
Q(Rp;Z/p)∼= Z/p. This means that there exists a

nontrivial quandle 3-cocycle of Rp with Z/p coefficients.

8. General construction

In this section, we generalize the construction in the previous section to wider
classes of quandles. We construct a quandle cocycle of a faithful homogeneous
quandle X from a group cocycle of Aut(X) when an obstruction living in the second
cohomology of Aut(X) vanishes.

8A. Let G be a group. Fix an element h ∈G. Let Conj(h)= {g−1hg | g ∈G}. Now
Conj(h) has a quandle operation by x ∗ y = y−1xy. In this section, we construct a
quandle cocycle of Conj(h) from a group cocycle of G. First we shall show that
this class of quandles is not so special.

Let X be a quandle. We denote the group of the quandle automorphisms of X by
Aut(X). We consider an automorphism that acts on X from the right. For x ∈ X ,
let S(x) be the map that sends y to y ∗ x . By the axioms (Q2) and (Q3), S(x) is
a quandle automorphism. X is called faithful if S : X → Aut(X) is injective. A
quandle X is homogeneous if Aut(X) acts on X transitively. The following lemma
was essentially shown in Theorem 7.1 of [Joyce 1982], but we include a proof for
completeness.

Lemma 8.1. Every faithful homogeneous quandle X is represented by Conj(h)
with some group G and h ∈ G.

Proof. For x ∈ X and g ∈Aut(X), we have S(xg)= g−1S(x)g. In fact, (y)S(xg)=
y ∗ (xg)= (yg−1

∗ x)g = (y)g−1S(x)g for any y ∈ X .
Let G = Aut(X) and fix an element x0 ∈ X . Put h = S(x0). Because X is

homogeneous, for any x ∈ X , there exists g ∈ G such that x = x0g. So we
have S(x) = S(x0g) = g−1hg, that is, S(x) ∈ Conj(h). Therefore we obtain a
homomorphism S : X → Conj(h). This is surjective since g−1S(x0)g = S(x0g),
and injective since X is faithful. �

Let Z(h)= {g ∈ G | gh = hg} be the centralizer of h in G.

Lemma 8.2. A map
Conj(h) → Z(h)\G

∈ ∈

g−1hg 7→ Z(h)g
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is well-defined and bijective.

Proof. Let g−1
1 hg1 = g−1

2 hg2. Then (g1g−1
2 )−1h(g1g−1

2 )= h, so g1g−1
2 ∈ Z(h) and

g1∈ Z(h)g2. This means that g1 and g2 belong to the same right coset. Therefore the
map is well-defined. By a similar argument, we can show the injectivity. Surjectivity
is trivial by definition. �

Now we study the quandle structure on Z(h)\G and construct a section of the
projection π : G→ Z(h)\G. The quandle operation on Conj(h) induces a quandle
operation on Z(h)\G:

Z(h)g1 ∗ Z(h)g2↔ (g−1
1 hg1) ∗ (g−1

2 hg2)= (g−1
2 hg2)

−1(g−1
1 hg1)(g−1

2 hg2)

= (g1g−1
2 hg2)

−1h(g1g−1
2 hg2)↔ Z(h)g1(g−1

2 hg2).

This quandle operation on Z(h)\G lifts to a quandle operation ∗̃ on G by

(8-1) g1 ∗̃ g2 = h−1g1(g−1
2 hg2), (g1, g2 ∈ G).

We can easily check that ∗̃ satisfies the quandle axioms (the inverse operation is
given by g1 ∗̃

−1 g2 = hg1g−1
2 h−1g2) and that the projection map π : G→ Z(h)\G

is a quandle homomorphism. We remark that the quandle operation given by (8-1)
has been already studied by Joyce [1982] and Eisermann [2003].

Let s : Z(h)\G→ G be a section of π , that is, a map (not a homomorphism)
satisfying π ◦s= id. Since s(x ∗ y) and s(x) ∗̃s(y) are in the same coset in Z(h)\G,
there exists an element c(x, y) ∈ Z(h) satisfying

s(x) ∗̃ s(y)= c(x, y)s(x ∗ y).

Lemma 8.3. If Z(h) is an abelian group, c : Z(h)\G × Z(h)\G → Z(h) is a
quandle 2-cocycle. If the cocycle c is cohomologous to zero, we can change the
section s to satisfy s(x ∗ y)= s(x) ∗̃ s(y).

Proof. For c1, c2 ∈ Z(h) and g1, g2 ∈ G, we have

(c1g1) ∗̃ (c2g2)= h−1c1g1g−1
2 c−1

2 hc2g2 = c1h−1g1g−1
2 hg2 = c1(g1 ∗̃ g2).

Therefore,

(8-2)
(
s(x) ∗̃ s(y)

)
∗̃ s(z)=

(
c(x, y)s(x ∗ y)

)
∗̃ s(z)

= c(x, y)
(
s(x ∗ y) ∗̃ s(z)

)
= c(x, y)c(x ∗ y, z)s

(
(x ∗ y) ∗ z

)
and

(8-3)
(
s(x) ∗̃ s(z)

)
∗̃
(
s(y) ∗̃ s(z)

)
=
(
c(x, z)s(x ∗ z)

)
∗̃
(
c(y, z)s(y ∗ z)

)
= c(x, z)c(x ∗ z, y ∗ z)s

(
(x ∗ z) ∗ (y ∗ z)

)
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for any x, y, z ∈ Z(h)\G. Comparing (8-2) and (8-3), we have

c(x, z)c(x ∗ y, z)−1c(x, y)−1c(x ∗ z, y ∗ z)= 1.

By s(x) ∗̃ s(x)= s(x), we also have c(x, x)= 1.
If c is cohomologous to zero; then there exists a map b : Z(h)\G → Z(h)

satisfying c(x, y) = b(x)b(x ∗ y)−1. Put s ′(x) = b(x)−1s(x), then s ′ satisfies
s ′(x) ∗̃ s ′(y)= s ′(x ∗ y). �

Remark 8.4. The 2-cocycle c has already appeared in [Eisermann 2003] in a similar
context.

Example 8.5. Let G be the dihedral group

D2p = 〈h, x | h2
= x p

= hxhx = 1〉,

where p is an odd number greater than 2. Then we have Z(h) = {1, h} and
Conj(h) = {x−i hx i

| i = 0, 1, . . . , p − 1} = {hx2i
| i = 0, . . . , p − 1}. We can

identify x−i hx i
∈ Conj(h) with i ∈ Rp = {0, 1, 2, . . . , p − 1}. Define a section

s : Z(h)\G→ G by
Conj(h) ∼= Z(h)\G

s
−→ G

∈ ∈ ∈

x−i hx i
↔ Z(h)x i

7→ hx i

Then we have

s
(
Z(h)x i

∗ Z(h)x j)
= s(Z(h)x2 j−i )= hx2 j−i

= h−1(hx i )(x− j hx j )= s(Z(h)x i ) ∗̃ s(Z(h)x j ).

Therefore c(x, y)= 0 for any x, y ∈ Rp.

8B. Let G be a group. Fix h ∈G with hl
= 1 (l > 1). In the following we assume:

Assumption 8.6. Z(h) is abelian and the 2-cocycle corresponding to G→ Z(h)\G
is cohomologous to zero.

Under this assumption, we can take a section s : Z(h)\G→ G satisfying

s(x ∗ y)= s(x) ∗̃ s(y),

by Lemma 8.3. Let f : Gk+1
→ A be a normalized group k-cocycle of G in the

homogeneous notation, where A is an abelian group. Then f satisfies

(1)
k+1∑
i=0

(−1)i f (x0, . . . , x̂i , . . . , xk+1)= 0,

(2) f (gx0, . . . , gxk)= f (x0, . . . , xk) for any g ∈ G (left invariance), and

(3) f (x0, . . . , xk)= 0 if xi = xi+1 for some i .
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Since it is convenient to use a right-invariant function in the following construction,
we modify condition (2) by replacing f (x0, . . . , xk) with f (x−1

0 , . . . , x−1
k ):

(2′) f (x0g, . . . , xk g)= f (x0, . . . , xk) for any g ∈ G (right invariance).

Define f̃ : Conj(h)k+1
→ A by

f̃ (x0, . . . , xk)=

l−1∑
i=0

f
(
hi s(x0), . . . , hi s(xk)

)
,

for x0, . . . , xk ∈ Conj(h).

Proposition 8.7. The function f̃ satisfies conditions (1), (2) and (3) of Section 6.
Therefore f̃ gives rise to a k-cocycle of H k

1(Conj(h); A).

Proof. It is clear that (1) and (3) are satisfied from the conditions on a normalized
group cocycle in homogeneous notation. We only have to check the second property.

f̃ (x0 ∗ y, . . . , xk ∗ y)

=

l−1∑
i=0

f
(
hi s(x0 ∗ y), . . . , hi s(xk ∗ y)

)
=

l−1∑
i=0

f
(
hi s(x0) ∗̃ s(y), . . . , hi s(xk) ∗̃ s(y)

)
=

l−1∑
i=0

f
(
hi−1s(x0)(s(y)−1hs(y)), . . . , hi−1s(xk)(s(y)−1hs(y))

)
=

l−1∑
i=0

f
(
hi−1s(x0), . . . , hi−1s(xk)

)
(right invariance)

= f̃ (x0, . . . , xk). �

Combining with the arguments of Section 6, we have:

Corollary 8.8. If Z(h) is abelian and the 2-cocycle corresponding to G→ Z(h)\G
is cohomologous to zero, then there is a homomorphism

H n(G; A)→ H n
Q(Conj(h); A)

for any abelian group A.

8C. We return to the case of Rp discussed in the previous section. We assume that
p is an odd integer greater than 2. Let G be the dihedral group

D2p = 〈h, x | h2
= x p

= hxhx = 1〉.
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Consider the short exact sequence

(8-4) 0→ Z/p→ D2p→ Z/2→ 0.

We regard Z/2 as {1, h} by taking coset representatives in D2p. Then Z/2 acts on
Z/p by h(x i )= x−i . This induces the restriction map

H∗(D2p;Z/p)→ H∗(Z/p;Z/p)Z/2.

We can show that this homomorphism is an isomorphism [Brown 1982, Proposi-
tion III.10.4]. To obtain a group cocycle of D2p from a group cocycle of Z/p, we
need the inverse map, which is called the transfer. The transfer map is described
as follows (see also [Brown 1982]). Let r be the map D2p → Z/p defined by
r(x i )= x i and r(hx i )= x−i . For a cocycle f of H n(Z/p;Z/p)Z/2, the image f ′

of the transfer is given by

f ′(x0, . . . , xn)= f (r x0, . . . , r xn)+ f (hr x0, . . . , hr xn)

in homogeneous notation. When restricted to the image of s : Z(h)\G→ G, this is
equal to the map defined in (7-2). Applying our construction for this group cocycle,
we obtain a quandle 3-cocycle of Rp, which is twice the cocycle constructed in the
previous section.

8D. We end this section by giving another homomorphism from H n(G; A) to
H n

Q(Conj(h); A) arising from a more general context.
Let X be a quandle and let M be a right Z[G X ]-module. We can construct

a map from the rack homology H R
n (X;M) to the group homology Hn(G X ;M).

The following lemma is well-known; for example, see Lemma 7.4 of Chapter I of
[Brown 1982].

Lemma 8.9. Let · · · → P1→ P0→ M→ 0 be a chain complex where the Pi are
projective (for example, free). Let · · ·→C1→C0→ N→ 0 be an acyclic complex.
Any homomorphism M → N can be extended to a chain map from {P∗} to {C∗}.
Moreover, such a chain map is unique up to chain homotopy.

So there exists a unique chain map from C R
∗
(X) to C∗(G X ) up to homotopy. This

map induces M ⊗Z[G X ] C R
∗
(X) → M ⊗Z[G X ] C∗(G X ) and then H R

n (X;M) →
Hn(G X ;M). Using normalized chains in group homology, we can also construct a
map H Q

n (X;M)→ Hn(G X ;M). We give an explicit chain map. Let (x1, . . . , xn)

be a generator of C R
n (X). We define a map ψ by

ψ((x1, . . . , xn))=
∑
σ∈Sn

sgn(σ )
[
yσ,1| · · · |yσ,i | · · · |yσ,n

]
,

where yσ,i ∈ X is defined for a permutation σ and i ∈ {1, . . . , n} as follows. Let
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y ∗ z

x

z

z z
z

y y

(x ∗ y) ∗ z

x ∗ z
y ∗ z

x ∗ y

Figure 13

j1, . . . , ji < i be the maximal set of numbers satisfying

σ(i) < σ( j1) < σ( j2) < · · ·< σ( ji ).

Then define

yσ,i = xσ(i) ∗ (xσ( j1)xσ( j2) · · · xσ( ji )).

A graphical picture of this map is given in Figure 13. For example, when n = 3,

ψ((x, y, z))= [x |y|z] − [x |z|y ∗ z]

+ [y|z|(x ∗ y) ∗ z] − [y|x ∗ y|z] + [z|x ∗ z|y ∗ z] − [z|y ∗ z|(x ∗ y) ∗ z],

for (x, y, z) ∈ C R
3 (X). Dually, we also have a map H n(G X ;M)→ H n

Q(X;M).
We apply this map for Conj(h). Since there exists a natural homomorphism from

the associated group GConj(h) to G, we have a homomorphism

H n(G; A)→ H n(GConj(h); A)→ H n
Q(Conj(h); A).

Fenn, Rourke and Sanderson [Fenn et al. 1995] defined the rack space B X .
Since π1(B X) is isomorphic to G X , there exists a unique map, up to homotopy,
from B X to the Eilenberg–MacLane space K (G X , 1) that induces the isomor-
phism between their fundamental groups. This map induces a homomorphism
H n(G X ;M)→ H n

Q(X;M), which is equal to the map we have constructed in this
subsection. Clauwens [2011, Proposition 25] showed that this map vanishes under
some conditions on X and M . In particular, when p is odd prime,

H n(D2p;Z/p)→ H n
Q(Rp;Z/p)

vanishes for n > 0.



CYCLIC BRANCHED COVERINGS OF KNOTS AND QUANDLE HOMOLOGY 343

9. Quandle cycle and branched cover

In this section, we study the dual of the previous construction. We show that
the cycle C(S) associated with a shadow coloring S= (A,R) of a knot K gives
rise to a group cycle represented by a cyclic branched covering along K and the
representation induced from the arc coloring A.

9A. Let X be a quandle. Let D be a diagram of a knot K . For a shadow coloring
S= (A,R) of D whose arcs and regions are colored by X , define A ∗ a and R ∗ a
for a ∈ X by

(A ∗ a)(x)=A(x) ∗ a, (R ∗ a)(r)=R(r) ∗ a (for any arc x and region r).

By the axiom (Q3), S ∗ a = (A ∗ a,R ∗ a) is also a shadow coloring.
In the following, we assume that X = Conj(h) for some group G and that h is

in G and satisfies Assumption 8.6. As in the previous section, let s : Conj(h) ∼=
Z(h)\G→ G be a section satisfying s(a ∗ b)= s(a) ∗̃ s(b) for a, b ∈ X . Let

ι : C1
n (X)→ Cn(G;Z) : (a0, . . . , an) 7→

(
s(a0), . . . , s(an)

)
.

Composing with ϕ : C Q
n (X;Z[X ])→ C1

n+1(X), we have a map

C Q
2 (X;Z[X ])

ϕ
−→ C1

3 (X)
ι
−→ C3(G;Z).

For a shadow coloring S, ιϕ(C(S)) is not a cycle of C3(G;Z) in general. But we
can show:

Theorem 9.1. Let S= (A,R) be a shadow coloring of a diagram D of a knot K
by Conj(h). Let a ∈ Conj(h) be the color of an arc of D. If hl

= 1, then

(9-1) ιϕ(C(S))+ιϕ(C(S∗a))+ιϕ(C(S∗a2))+· · ·+ιϕ(C(S∗al−1))∈C3(G;Z)

is a group cycle represented by the l-fold cyclic branched covering Ĉl along the
knot K and the representation π1(Ĉl)→ G induced from the arc coloring A.

Proof. Let x1, . . . , xn be the arcs of the diagram D such that a = A(x1). We
denote the color A(xi ) by ai (a1 = a). The arc coloring A induces a representation
ρ : π1(S3

− K )→ G. Using s : Z(h)\G→ G, ρ is given by

ρ(xi )= s(ai )
−1hs(ai ) ∈ Conj(h)⊂ G.

We have

s(b ∗ ai )= h−1s(b)s(ai )
−1hs(ai )= h−1s(b)ρ(xi ) ∈ G,

s(b ∗−1 ai )= hs(b)s(ai )
−1h−1s(ai )= hs(b)ρ(xi )

−1
∈ G,
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·ρ(x j,s)
−1

s(ai ∗a−s+1
1 )

s(r ′∗a−s+1
1 ) s(r ∗a−s+1

1 )

s(a j ∗a−s+1
1 )

s((r ∗a j )∗a−s+1
1 )

s((ai ∗a j )∗a−s+1
1 )

s((r ′∗a j )∗a−s+1
1 )

s(r ′∗a−s
1 )

s(ai ∗a−s
1 )

s(r ∗a−s
1 )

s(a j ∗a−s
1 )

s((r ∗a j )∗a−s
1 )

s((ai ∗a j )∗a−s
1 )

s((r ′∗a j )∗a−s
1 )

∂Ts∂Ts+1

Figure 14. A labeling at a crossing. (r ′ = r ∗±1ai .)

for any b ∈ Conj(h). So we have

s((b ∗ ai ) ∗ a−s
1 )= hs−1s(b)ρ(xi )ρ(x1)

−s,

s(b ∗ a−s+1
1 )= hs−1s(b)ρ(x1)

−s+1.

Since
ρ(xi,s)= ρ(x s−1

1 xi x−s
1 )= ρ(x1)

s−1ρ(xi )ρ(x1)
−s

by (4-1), we have

(9-2) s(b ∗ a−s+1
1 )= s((b ∗ ai ) ∗ a−s

1 )ρ(xi,s)
−1.

Let Ts(s = 0, 1, . . . l − 1) be copies of the triangulation of a 3-ball with a vertex
ordering on each tetrahedron constructed in Section 4 (Figures 5 and 7). Then we
define a labeling of vertices of Ts by ιϕ(C(S∗a−s+1

1 )) (Figure 14). The vertices of
the face F ′−j,s+1 ⊂ Ts+1 are labeled by(

s((r ∗ a j ) ∗ a−s
1 ), s((ai ∗ a j ) ∗ a−s

1 ), s(a j ∗ a−s
1 )
)
,

and the vertices of the face F ′+j,s ⊂ Ts are labeled by(
s(r ∗ a−s+1

1 ), s(ai ∗ a−s+1
1 ), s(a j ∗ a−s+1

1 )
)
,

where r is the color of the region as indicated in Figure 14. By (9-2), the labelings
of the face F ′−j,s+1 and F ′+j,s are related by(
s(r ∗ a−s+1

1 ), s(ai ∗ a−s+1
1 ), s(a j ∗ a−s+1

1 )
)

=
(
s((r ∗ a j ) ∗ a−s

1 ), s((ai ∗ a j ) ∗ a−s
1 ), s(a j ∗ a−s

1 )
)
ρ(x j,s)

−1.
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Therefore this gives a G-valued 1-cocycle on T̂ as constructed in Section 4. Thus
the chain given by (9-1) is a cycle represented by the cyclic branched cover Ĉl and
the representation induced from the arc coloring A. �

9B. We end this section by comparing the shadow cocycle invariant of the (2, p)-
torus knot (p: odd) for the 3-cocycle obtained in Section 7 and the Dijkgraaf–Witten
invariant of the lens space L(p, 1).

Let G be a finite group and α be a cocycle of H 3(G; A), where A is an abelian
group. Dijkgraaf and Witten defined an invariant of closed oriented 3-manifolds for
each α. For an oriented closed manifold M , it is defined by∑

ρ:π1(M)→G

〈ρ∗α, [M]〉 ∈ Z[A],

where ρ∗α is the pull-back of α by the classifying map M → BG correspond-
ing to ρ. Since L(p, 1) is a double branched cover along the (2, p)-torus knot,
the cycle obtained from a shadow coloring by Rp gives rise to a group 3-cycle
of D2p represented by L(p, 1) by Theorem 9.1. Since every representation of
π1(L(p, 1)) ∼= Z/p into D2p reduces to a representation into Z/p, it is natural
to ask whether the shadow cocycle invariant for our quandle 3-cocycle coincides
with the Dijkgraaf–Witten invariant for b1b2 ∈ H 3(Z/p;Z/p). As we remarked
in the introduction, these invariants coincide up to some constant by the result of
Hatakenaka and Nosaka [2012] when p is prime.

Let S be the shadow coloring indicated in Figure 12. Since the homology class
[C(S)] does not change under the action of Rp on the shadow coloring S (see
Lemma 4.5 of [Inoue and Kabaya 2010]), we assume that x = 0. As computed in
Section 7B, the evaluation of the C(S) at the 3-cocycle derived from b1b2 is equal
to −4y2 mod p. Therefore the shadow cocycle invariant is

p
p−1∑
y=0

t−4y2
= p

p−1∑
y=0

t−y2
∈ Z[t]/(t p

− 1)∼= Z[Z/p].

We compute the Dijkgraaf–Witten invariant of the lens space L(p, q) for the
group 3-cocycle b1b2 ∈ H 3(Z/p;Z/p). Although this was computed in [Murakami
et al. 1992], we give a proof based on a triangulation. We represent L(p, q) by
an ordered 3-cycle and give a labeling of 1-simplices as indicated in Figure 15.
Here the triple a, b and c must satisfy a p

= 1 and b = aqbc. Using multiplicative
notation, the evaluation of b1b2 on this cycle is

p−1∑
i=0

b1b2
(
[a|ia+ b| − qa]

)
=

p−1∑
i=0

a · b2(ia+ b,−qa)=−qa2.
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b

a

c
a3bc

a

abc

a2bc
a4bc

ab

a2b

a3b

a4b
a

a

a

a

b

bc

Figure 15. A triangulation of L(5, q) and a labeling where a5
= 1

and b = aqbc.

The second equality follows from the fact that ia+b runs over Z/p and from (7-1)
when a is a unit, and also when a is not a unit by a similar argument. Therefore the
Dijkgraaf–Witten invariant of L(p, q) is equal to

p−1∑
a=0

t−qa2
∈ Z[t]/(t p

− 1)∼= Z[Z/p].

Therefore this coincides with the shadow cocycle invariant up to a constant.

Acknowledgements

The author thanks Takefumi Nosaka for useful discussions. He also thanks the
referees for helpful comments for improving the exposition.

References

[Benson 1991] D. J. Benson, Representations and cohomology, I: Basic representation theory of
finite groups and associative algebras, Cambridge Studies in Advanced Mathematics 30, Cambridge
University Press, 1991. MR 92m:20005 Zbl 0718.20001

[Brown 1982] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer,
New York, 1982. MR 83k:20002 Zbl 0584.20036

[Carter et al. 2003] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, “Quandle
cohomology and state-sum invariants of knotted curves and surfaces”, Trans. Amer. Math. Soc.
355:10 (2003), 3947–3989. MR 2005b:57048 Zbl 1028.57003

[Clauwens 2011] F. Clauwens, “The algebra of rack and quandle cohomology”, J. Knot Theory
Ramifications 20:11 (2011), 1487–1535. MR 2854230 Zbl 05998125



CYCLIC BRANCHED COVERINGS OF KNOTS AND QUANDLE HOMOLOGY 347

[Eisermann 2003] M. Eisermann, “Homological characterization of the unknot”, J. Pure Appl. Algebra
177:2 (2003), 131–157. MR 2003j:57009 Zbl 1013.57002

[Eisermann 2007] M. Eisermann, “Knot colouring polynomials”, Pacific J. Math. 231:2 (2007),
305–336. MR 2008j:57014 Zbl 1152.57010

[Etingof and Graña 2003] P. Etingof and M. Graña, “On rack cohomology”, J. Pure Appl. Algebra
177:1 (2003), 49–59. MR 2004e:55006 Zbl 1054.16028

[Fenn et al. 1995] R. Fenn, C. Rourke, and B. Sanderson, “Trunks and classifying spaces”, Appl.
Categ. Structures 3:4 (1995), 321–356. MR 96i:57023 Zbl 0853.55021

[Hatakenaka and Nosaka 2012] E. Hatakenaka and T. Nosaka, “Some topological aspects of 4-fold
symmetric quandle invariants of 3-manifolds”, Int. J. Math. 23:7 (2012), Art. ID 1250064.

[Inoue and Kabaya 2010] A. Inoue and Y. Kabaya, “Quandle homology and complex volume”,
preprint, 2010. arXiv 1012.2923v1

[Joyce 1982] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra
23:1 (1982), 37–65. MR 83m:57007 Zbl 0474.57003

[Kamada 2007] S. Kamada, “Quandles with good involutions, their homologies and knot invariants”,
pp. 101–108 in Intelligence of low dimensional topology 2006 (Hiroshima, 2006), edited by J. S.
Carter et al., Ser. Knots Everything 40, World Sci., Hackensack, NJ, 2007. MR 2009a:57042
Zbl 1145.57008

[Mochizuki 2003] T. Mochizuki, “Some calculations of cohomology groups of finite Alexander
quandles”, J. Pure Appl. Algebra 179:3 (2003), 287–330. MR 2004b:55013 Zbl 1036.18009

[Murakami et al. 1992] H. Murakami, T. Ohtsuki, and M. Okada, “Invariants of three-manifolds
derived from linking matrices of framed links”, Osaka J. Math. 29:3 (1992), 545–572. MR 93h:57013
Zbl 0776.57009

[Neumann 2004] W. D. Neumann, “Extended Bloch group and the Cheeger–Chern–Simons class”,
Geom. Topol. 8 (2004), 413–474. MR 2005e:57042 Zbl 1053.57010

[Nosaka 2009] T. Nosaka, “On quandle homology groups of Alexander quandles of prime order”,
preprint, 2009, available at http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1680.pdf. To appear
in Trans. Amer. Math. Soc.

[Nosaka 2010] T. Nosaka, “Quandle homotopy invariants of knotted surfaces”, preprint, 2010.
arXiv 1011.6035

[Rolfsen 1976] D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish,
Berkeley, CA, 1976. MR 58 #24236 Zbl 0339.55004

[Weeks 2005] J. Weeks, “Computation of hyperbolic structures in knot theory”, pp. 461–480 in
Handbook of knot theory, edited by W. Menasco and M. Thistlethwaite, Elsevier, Amsterdam, 2005.
MR 2006k:57027 Zbl 1096.57015

Received November 9, 2011. Revised April 13, 2012.

YUICHI KABAYA

DEPARTMENT OF MATHEMATICS

OSAKA UNIVERSITY

TOYONAKA, OSAKA 560-0043
JAPAN

y-kabaya@cr.math.sci.osaka-u.ac.jp





PACIFIC JOURNAL OF MATHEMATICS
Vol. 259, No. 2, 2012

dx.doi.org/10.2140/pjm.2012.259.349

ON A CLASS OF SEMIHEREDITARY
CROSSED-PRODUCT ORDERS

JOHN S. KAUTA

Let F be a field, let V be a valuation ring of F of arbitrary Krull dimension
(rank), let K be a finite Galois extension of F with group G, and let S be the
integral closure of V in K . Let f : G × G 7→ K \ {0} be a normalized two-
cocycle such that f (G × G) ⊆ S \ {0}, but we do not require that f should
take values in the group of multiplicative units of S. One can construct a
crossed-product V-algebra A f =

∑
σ∈G Sxσ in a natural way, which is a V-

order in the crossed-product F-algebra (K/F, G, f ). If V is unramified
and defectless in K , we show that A f is semihereditary if and only if for all
σ, τ ∈G and every maximal ideal M of S, f (σ, τ) 6∈M2. If in addition J(V )
is not a principal ideal of V , then A f is semihereditary if and only if it is an
Azumaya algebra over V .

1. Introduction

In this paper we study certain orders over valuation rings in central simple algebras.
If R is a ring, then J (R) will denote its Jacobson radical, U (R) its group of
multiplicative units, and R# the subset of all the nonzero elements. The residue
ring R/J (R) will be denoted by R. Given the ring R, it is called primary if J (R)
is a maximal ideal of R. It is called hereditary if one-sided ideals are projective
R-modules. It is called semihereditary (respectively Bézout) if finitely generated
one-sided ideals are projective R-modules (respectively are principal). Let V be a
valuation ring of a field F . If Q is a finite-dimensional central simple F-algebra,
then a subring R of Q is called an order in Q if RF = Q. If in addition V ⊆ R and
R is integral over V , then R is called a V-order. If a V-order R is maximal among
the V-orders of Q with respect to inclusion, then R is called a maximal V-order (or
just a maximal order if the context is clear). A V-order R of Q is called an extremal
V-order (or simply extremal when the context is clear) if for every V-order B in Q
with B ⊇ R and J (B) ⊇ J (R), we have B = R. If R is an order in Q, then it is

MSC2010: 13F30, 16H05, 16E60, 16S35, 16H10.
Keywords: crossed-product orders, semihereditary orders, hereditary orders, Azumaya algebras,

Dubrovin valuation rings.
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called a Dubrovin valuation ring of Q (or a valuation ring of Q in short) if it is
semihereditary and primary (see [Dubrovin 1982; 1984]).

In this paper, V will denote a commutative valuation ring of arbitrary Krull
dimension (rank). Let F be its field of quotients, let K/F be a finite Galois extension
with group G, and let S be the integral closure of V in K . If f ∈ Z2(G,U (K ))
is a normalized two-cocycle such that f (G ×G) ⊆ S#, then one can construct a
“crossed-product” V-algebra

A f =
∑
σ∈G

Sxσ ,

with the usual rules of multiplication (xσ s= σ(s)xσ for all s ∈ S, σ ∈G and xσ xτ =
f (σ, τ )xστ ). Then A f is associative, with identity 1 = x1, and center V = V x1.
Further, A f is a V-order in the crossed-product F-algebra 6 f =

∑
σ∈G K xσ =

(K/F,G, f ). Following [Haile 1987], we let H = {σ ∈ G | f (σ, σ−1) ∈ U (S)}.
Then H is a subgroup of G.

In this paper, we will always assume that V is unramified and defectless in K (for
the definitions of these terms, see [Endler 1972]). By [Endler 1972, Theorem 18.6],
S is a finitely generated V-module, hence A f is always finitely generated over V . If
V1 is a valuation ring of K lying over V then {σ ∈ G | σ(x)− x ∈ J (V1) ∀x ∈ V1}

is called the inertial group of V1 over F . By [Kauta 2001, Lemma 1], the condition
that V is unramified and defectless in K is equivalent to saying that the inertial
group of V1 over F is trivial, since K/F is a finite Galois extension.

These orders were first studied in [Haile 1987], and later in [Haile and Morandi
1993; Kauta 2012]. In [Haile 1987; Kauta 2012], only the case when V is a discrete
valuation ring (DVR) was considered. In [Kauta 2012], hereditary properties of
crossed-product orders were examined. In [Haile 1987; Haile and Morandi 1993],
valuation ring properties of the crossed-product orders were explored, and the
latter considered the cases when either V has arbitrary Krull dimension but is
indecomposed in K , or V is a discrete finite-rank valuation ring, that is, its value
group is Z⊕ · · ·⊕Z. When V is a DVR, then any V-order in 6 f containing S is
a crossed-product order of the form Ag for some two-cocycle g : G × G 7→ S#,
with g cohomologous to f over K , by [Haile 1987, Proposition 1.3], but this
need not be the case in general. While [Haile and Morandi 1993] considered any
V-order in 6 f containing S, some of which were not of the type described above
and so in that sense its scope was wider than ours, in this paper we shall only be
concerned with crossed-product orders Ag where g is either f (almost always), or
is cohomologous to f over K , that is, if there are elements {cσ | σ ∈ G} ⊆ K # such
that g(σ, τ )= cσσ(cτ )c−1

στ f (σ, τ ) for all σ, τ ∈ G, a fact denoted by g∼K f .
The purpose of this paper is to generalize the results of [Kauta 2012] to the case

when V is not necessarily a DVR. The main results of this paper are as follows:
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A f is semihereditary if and only if for all σ, τ ∈ G and every maximal ideal M of
S, f (σ, τ ) 6∈ M2; if J (V ) is not a principal ideal of V , then A f is semihereditary
if and only if it is an Azumaya algebra over V . As in [Kauta 2012], the utility of
these criteria lie in their simplicity.

Although in our case the valuation ring V need not be a DVR, some of the steps
in the proofs in [Haile 1987; Kauta 2012] remain valid, mutatis mutandis, owing to
the theory developed in [Kauta 1997a; 1997b]. We shall take full advantage of this
whenever the opportunity arises. Aside from the difficulties inherent when dealing
with V-orders that are not necessarily noetherian, the hurdles encountered in this
theory arise mainly due to the fact that the two-cocycle f is not assumed to take on
values in U (S).

2. Preliminaries

In this section, we gather together various results that will help us prove the main
results of this paper, which are in the next section. For the convenience of the reader,
we have included complete proofs whenever it warrants, although the arguments
are sometimes routine.

The following lemma is essentially embedded in the proof of [Kauta 1997a,
Proposition 1.8], and the remark that follows it.

Lemma 2.1. Let A be a finitely generated extremal V-order in a finite-dimensional
central simple F-algebra Q.

(1) If B is a V-order of Q containing A, then B is also a finitely generated extremal
order. If in addition B is a maximal V-order, then it is a valuation ring of Q.

(2) If W is an overring of V in F with V $ W , then W A is a valuation ring of Q
with center W .

Proof. Let B be a V-order containing A. By [Kauta 1997a, Proposition 1.8], A
is semihereditary, hence B is semihereditary by [Morandi 1992, Lemma 4.10],
and therefore B is extremal by [Kauta 1997a, Theorem 1.5]. Since [B/J (B) :
V/J (V )] ≤ [6 f : F] <∞, there exists a1, a2, . . . , am ∈ B such that B = a1V +
a2V + · · · + am V + J (B). But by [Kauta 1997a, Proposition 1.4], J (B)⊆ J (A),
since A is extremal. Therefore B= a1V+a2V+· · ·+am V+A, a finitely generated
V-order. If, in addition, B is a maximal V-order, then by the remark after [Kauta
1997a, Proposition 1.8], B is a valuation ring of Q.

Now let W be a proper overring of V in F . Let C be a maximal V-order
containing A. Then C is a valuation ring of Q, as seen above, hence WC is a
valuation ring of Q with center W . Since A is an extremal V-order, we have
J (C)⊆ J (A), thus WC =W J (V )C ⊆W J (C)⊆W A⊆WC , so that W A=WC .
Thus W A is always a valuation ring of Q. �
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Since A f is finitely generated over V , we immediately have the following lemma,
because of [Kauta 1997a, Proposition 1.8], the remark that follows it, and the fact
that Bézout V-orders are maximal orders by [Morandi 1992, Theorem 3.4].

Lemma 2.2. Given the crossed-product order A f ,

(1) it is an extremal order if and only if it is semihereditary and

(2) it is a maximal order if and only if it is a valuation ring, if and only if it is
Bézout.

Lemma 2.3. Let W be a valuation ring of F such that V $ W , and let R =W S.

(1) Then R is the integral closure of W in K , and W is also unramified and
defectless in K .

(2) Let t ∈ S satisfy t 6∈ M2 for every maximal ideal M of S. Then t ∈U (R). If in
addition J (V ) is a nonprincipal ideal of V , then t ∈U (S).

Proof. The ring R is obviously integral over W . Since it contains S, it is also
integrally closed in K , hence it is the integral closure of W in K .

Now let V1⊆W1 be valuation rings of K lying over V and W respectively. Then
J (W1)⊆ J (V1); hence the inertial group of W1 over F , namely

{σ ∈ G | σ(x)− x ∈ J (W1) ∀x ∈W1},

is contained in the inertial group of V1 over F , {σ ∈G | σ(x)− x ∈ J (V1) ∀x ∈ V1}.
Since V is unramified and defectless in K , the latter group is trivial, forcing W to
be unramified and defectless in K .

Let W1 be a valuation ring of K lying over W , and let V1 be a valuation ring of K
lying over V such that V1 ⊆W1, as in the preceding paragraph. Let M = J (V1)∩ S,
a generic maximal ideal of S. We claim that M2

= J (V1)
2
∩ S. To see this, note

that
M2
= (J (V1)∩ S)(J (V1)∩ S)⊆ J (V1)

2
∩ S

and

M2V1 = (J (V1)∩ S)(J (V1)∩ S)V1 = J (V1)
2
= (J (V1)

2
∩ S)V1.

If V ′ is an extension of V to K different from V1, then M2V ′=V ′= (J (V1)
2
∩S)V ′.

Thus M2
= J (V1)

2
∩ S as desired. If t ∈ S satisfies t 6∈ M2, then t 6∈ J (V1)

2. Since
J (W1) $ J (V1)

2, we have t ∈ U (W1). Since W1 was an arbitrary extension of
W in K , we conclude that t ∈ U (R). If J (V ) is a nonprincipal ideal of V , then
J (V1)

2
= J (V1), hence t ∈U (V1) for every such extension V1 of V to K , and we

conclude that t ∈U (S). �

Part (4) of the following lemma was originally proved in [Haile 1987] when V
is a DVR. The same arguments work when V is an arbitrary valuation ring.
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Lemma 2.4. Given a σ ∈ G, let Iσ =
⋂

M , where the intersection is taken over
those maximal ideals M of S for which f (σ, σ−1) 6∈ M. Then:

(1) Iσ = {x ∈ S | x f (σ, σ−1) ∈ J (V )S}.

(2) I σ
−1

σ = Iσ−1 .

(3) If f (σ, σ−1) 6∈ M2 for every maximal ideal M of S, then Iσ f (σ, σ−1) =

J (V )S.

(4) J (A f )=
∑

σ∈G Iσ xσ .

Proof. Let x ∈ S. Clearly, if x ∈ Iσ then x f (σ, σ−1) ∈ J (V )S. On the other hand,
if x 6∈ Iσ then there exists a maximal ideal M of S such that x, f (σ, σ−1) 6∈ M ,
hence x f (σ, σ−1) 6∈ M , and thus x f (σ, σ−1) 6∈ J (V )S.

The second statement is proved in the same manner as [Kauta 2012, Sublemma].
To see that the third statement holds, we note that Iσ f (σ, σ−1) ⊆ J (V )S. We
claim that Iσ f (σ, σ−1) = J (V )S. To see this, let M be a maximal ideal of
S. If f (σ, σ−1) 6∈ M , then (Iσ f (σ, σ−1))SM = J (SM) = (J (V )S)SM . On the
other hand, if f (σ, σ−1) ∈ M then, since f (σ, σ−1) 6∈ M2, we have J (SM)

2 $
Iσ f (σ, σ−1)SM ⊆ J (SM), hence Iσ f (σ, σ−1)SM = J (SM) = (J (V )S)SM , and
thus Iσ f (σ, σ−1)= J (V )S. By [Haile and Morandi 1993, Lemma 1.3], J (A f )=∑

σ∈G(J (A f )∩ Sxσ ). Therefore the fourth statement can be verified in exactly the
same manner as [Haile 1987, Proposition 3.1(b)], because of the observations made
above. �

The following lemma is a generalization of [Haile 1987, Proposition 1.3].

Lemma 2.5. Let B ⊆ 6 f be a V-order. There is a normalized cocycle g : G ×
G 7→ S#, g∼K f , such that B = Ag (viewed as a subalgebra of 6 f in a natural
way) if and only if B ⊇ S and B is finitely generated over V . When this occurs,
B =

∑
σ∈G Skσ xσ for some kσ ∈ K #.

Proof. Suppose B⊇ S. By [Haile and Morandi 1993, Lemma 1.3], B=
∑

σ∈G Bσ xσ ,
where each Bσ is a nonzero S-submodule of K . If in addition B is finitely generated
over V , then each Bσ is finitely generated over V : if B =

∑n
i=1 V yi then, if we

write yi =
∑

τ∈G k(i)τ xτ with k(i)τ ∈ K , we see that Bσ is generated by {k(i)σ }ni=1
over V . Since S is a commutative Bézout domain with K as its field of quotients,
Bσ = Skσ for some kσ ∈ K #. Thus we get B =

∑
σ∈G Skσ xσ . Since B is integral

over V , B1 = S and so we can choose k1 = 1. Define g : G × G 7→ S# by
g(σ, τ )kστ xστ = (kσ xσ )(kτ xτ ), as in [Haile 1987, Proposition 1.3]. Since k1 = 1,
g is also a normalized two-cocycle. The converse is obvious. �

Lemma 2.6. Suppose S is a valuation ring of K . Then

J (V )A f is a maximal ideal of A f ⇐⇒ H =G ⇐⇒ A f is Azumaya over V .
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Proof. Suppose J (V )A f is a maximal ideal of A f . Note that A f /J (V )A f =∑
σ∈G Sx̃σ . By [Haile et al. 1983, Theorem 10.1(c)], J =

∑
σ 6∈H Sx̃σ is an ideal of

A f /J (V )A f . Since A f /J (V )A f is simple, J = 0, hence H = G. �

We set up additional notation, following [Haile 1987; Kauta 2012]. Let L be an
intermediate field of F and K , let GL be the Galois group of K over L , let U be a
valuation ring of L lying over V , and let T be the integral closure of U in K . Then
one can obtain a two-cocycle fL ,U : GL ×GL 7→ T # from f by restricting f to
GL ×GL , and embedding S# in T #. As before, A fL ,U =

∑
σ∈GL

T xσ is a U -order
in 6 fL ,U =

∑
σ∈GL

K xσ = (K/L ,GL , fL ,U ), and U is unramified and defectless
in K . If M is a maximal ideal of S, and L is the decomposition field of M and
U = L ∩ SM , then we will denote fL ,U by fM , A fL ,U by A fM , 6 fL ,U by 6 fM , L by
KM , and the decomposition group GL by DM , as in [Haile 1987]. Further, we let
HM = {σ ∈ DM | fM(σ, σ

−1) ∈U (SM)}, a subgroup of DM .
Given a maximal ideal M of S, let M = M1,M2, . . . ,Mr be the complete list

of maximal ideals of S, let Ui = SMi ∩ KMi with U = U1, and let (Ki , Si ) be a
Henselization of (K , SMi ). Let (Fh, Vh) be the unique Henselization of (F, V )
contained in (K1, S1). We note that (Fh, Vh) is also a Henselization of (KM ,U ).
By [Haile et al. 1995, Proposition 11], we have S⊗V Vh ∼= S1⊕ S2⊕ · · ·⊕ Sr .

Part (1) of the following lemma was originally proved in [Haile 1987] in the
case when V is a DVR. Virtually the same proof holds in the general case. Part (2c)
is a generalization of [Haile 1987, Corollary 3.11].

Lemma 2.7. Let the notation be as above.

(1) The crossed-product order A f is primary if and only if for every maximal ideal
M of S there is a set of right coset representatives g1, g2, . . . , gr of DM in G
(that is, G is the disjoint union

⋃
i DM gi ) such that for all i , f (gi , g−1

i ) 6∈ M.

(2) Assume the crossed-product order A f is primary. Then:

(a) A f ⊗V Vh ∼= Mr (A fM ⊗U Vh).
(b) As a result of (a), A f /J (A f )∼= Mr (A fM/J (A fM )).
(c) Also as a result of (a), A f is a valuation ring of 6 f if and only if A fM is a

valuation ring of 6 fM for some maximal ideal M of S. When this occurs,
A fM is a valuation ring of 6 fM for every maximal ideal M of S.

(d) A f is Azumaya over V if and only if HM = DM for some maximal ideal
M of S. When this occurs, HM = DM for every maximal ideal M of S.

Proof. The proof of [Haile 1987, Theorem 3.2], appropriately adapted, works
here as well to establish part (1). We outline the argument, for the convenience
of the reader: For a σ ∈ G, let Iσ be as in Lemma 2.4, and, for a maximal ideal
M of S, set M̂ :=

⋂
N max, N 6=M N . If I is an ideal of A f then, by [Haile and

Morandi 1993, Lemma 1.3], I =
∑

σ∈G(I ∩ Sxσ ), so A f is primary if and only if
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the following condition holds: if σ ∈ G and T is an ideal of S such that T 6⊆ Iσ ,
then A f T xσ A f = A f .

If A f is primary and M is a maximal ideal of S, then A f = A f M̂x1 A f . Therefore
if G =

⋃r
j=1 h j DM is a left coset decomposition, then

S =
∑

j

M̂h j
( ∑

d∈DM

f (h j d, d−1h−1
j )
)
,

as in the proof of [Haile 1987, Theorem 3.2], so that, if we fix i , 1 ≤ i ≤ r , and
localize at Mhi , we get

SMhi =

∑
j 6=i

J (SMhi )
( ∑

d∈DM

f (h j d, d−1h−1
j )
)
+ SMhi

( ∑
d∈DM

f (hi d, d−1h−1
i )
)
,

and hence
∑

d∈DM
f (hi d, d−1h−1

i ) 6∈Mhi . So there is an element di ∈ DM such that
f (hi di , d−1

i h−1
i ) 6∈ Mhi . Let gi = d−1

i h−1
i . Then g1, g2, . . . , gr have the desired

properties.
For the converse, suppose σ ∈ G and T is an ideal of S such that T 6⊆ Iσ . We

need to show that A f T xσ A f = A f . Since T 6⊆ Iσ , there is a maximal ideal M of S
such that f (σ, σ−1) 6∈ M and T 6⊆ M . The argument in [Haile 1987, Theorem 3.2]
shows that A f T xσ A f ⊇

∑r
i=1 Ti , where Ti = T g−1

i f g−1
i (σ, σ−1gi ) f (g−1

i , gi ) are
ideals of S satisfying the condition Ti 6⊆ Mg−1

i . Inasmuch as g−1
1 , g−1

2 , . . . , g−1
r

form a complete set of left coset representatives of DM in G, the ideal
∑r

i=1 Ti

is not contained in any maximal ideal of S. Therefore
∑r

i=1 Ti = S, and so
A f T xσ A f = A f .

Using part (1) and the fact that S⊗V Vh ∼= S1⊕ S2⊕ · · ·⊕ Sr , we can construct
a full set of matrix units in A f ⊗V Vh and hence verify part (2a), as in the proof of
[Haile 1987, Theorem 3.12] (see also the remark following that theorem). Part (2b)
follows from (2a) and [Kauta 1997a, Lemma 3.1]; part (2c) follows from (2a); and
(2d) follows from (2a) and Lemma 2.6. �

3. The main results

We now give the main results of this paper. There are essentially two parallel
theories: one takes effect when J (V ) is a principal ideal of V , and the other when it
is not. In the former case, the order A f displays characteristics akin to the situation
when V is a DVR. Our theory, however, yields surprising results in the latter case.
It turns out in this case that the property that A f is Azumaya over V is equivalent
to a much weaker property: that it is an extremal V-order in 6 f .

Proposition 3.1. The order A f is Azumaya over V if and only if H = G.

Proof. Suppose A f is Azumaya over V . Let M be a maximal ideal of S. By
Lemma 2.7(1), there is a set of right coset representatives g1, g2, . . . , gr of DM
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in G such that f (gi , g−1
i ) 6∈ M . If σ ∈ G, then σ = hgi for some h ∈ DM and

some i . Since A f is Azumaya, HM = DM by Lemma 2.7(2d), hence we have
f (h−1, h) 6∈ M . Because

f h−1
(hgi , g−1

i h−1) f h−1
(h, gi ) f gi (g−1

i , h−1)= f (h−1, h) f (gi , g−1
i ),

we conclude that f (σ, σ−1) 6∈M . Since M is arbitrary, f (σ, σ−1)∈U (S) for every
σ ∈ G, so that H = G.

The converse is well-known and straightforward to demonstrate. �

It is perhaps instructive to compare the above proposition to [Kauta 2001, Theo-
rem 3].

Recall that J (V ) is a nonprincipal ideal of V if and only if J (V )2 = J (V ).

Proposition 3.2. Suppose J (V ) is a nonprincipal ideal of V . Then the following
statements about the crossed-product order A f are equivalent:

(1) A f is an extremal V-order in 6 f .

(2) A f is a semihereditary V-order.

(3) A f is a maximal V-order in 6 f .

(4) A f is a Bézout V-order.

(5) A f is a valuation ring of 6 f .

(6) A f is Azumaya over V .

Proof. By Lemma 2.2, it suffices to demonstrate that (1)⇒ (5)⇒ (6). So suppose A f

is an extremal V-order. Let B be a maximal V-order containing A f . By Lemma 2.1,
B is a valuation ring finitely generated over V . By Lemma 2.5, we get that
B=

∑
σ∈G Skσ xσ for some kσ ∈ K #. Since A f is extremal, we have J (B)⊆ J (A f )

by [Kauta 1997a, Proposition 1.4], so J (V )B ⊆ A f . Therefore
∑

σ∈G J (S)kσ xσ =
J (V )B = J (V )2 B ⊆ J (V )A f =

∑
σ∈G J (S)xσ , so that J (S)kσ ⊆ J (S). Hence for

each maximal ideal M of S, we have SM J (S)kσ ⊆ SM J (S), that is, J (SM)kσ ⊆
J (SM). This shows that kσ ∈ SM for all M and so kσ ∈ S for every σ ∈ G, and thus
A f = B, a valuation ring.

Now suppose A f is a valuation ring of 6 f . By Lemma 2.7(2), to show that
A f is Azumaya over V , we may as well assume S is a valuation ring of K . By
[Dubrovin 1984, §2, Theorem 1], J (A f )= J (V )A f , and so A f is Azumaya over
V by Lemma 2.6. �

Remark. It follows from Lemma 2.3(2) and Proposition 3.1 that, if J (V ) is a
nonprincipal ideal of V , then the crossed-product order A f is extremal if and only
if for all τ, γ ∈ G and every maximal ideal M of S, f (τ, γ ) 6∈ M2.
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If W is a valuation ring of F such that V $ W , then we will denote by B f the
W-order W A f =

∑
σ∈G Rxσ , where R =W S is the integral closure of W in K by

Lemma 2.3. Recall that W is also unramified and defectless in K .

Proposition 3.3. Suppose J (V ) is a principal ideal of V . Then A f is semiheredi-
tary if and only if for all τ, γ ∈ G and every maximal ideal M of S, f (τ, γ ) 6∈ M2.

Proof. The result holds when the Krull dimension of V is one, by [Kauta 2012,
Corollary], since V is a DVR in this case. So let us assume from now on that the
Krull dimension of V is greater than one.

Let p =
⋂

n≥1 J (V )n . Then p is a prime ideal of V , W = Vp is a minimal
overring of V in F , and Ṽ = V/J (W ) is a DVR of W . Set B f =W A f , as above.

Suppose A f is semihereditary. We will show that for each τ ∈ G and each
maximal ideal M of S, f (τ, τ−1) 6∈ M2.

First, assume that V is indecomposed in K . By [Haile and Morandi 1993,
Proposition 2.6], A f is primary, hence it is a valuation ring of 6 f . Therefore
B f is Azumaya over W , by [Haile and Morandi 1993, Proposition 2.10], and
f (G ×G) ⊆ U (R), by Proposition 3.1. Observe that R is a valuation ring of K
lying over W and R is Galois over W , with group G, and B f /J (B f )=

∑
σ∈G Rx̃σ

is a crossed-product W-algebra. Further, A f /J (B f ) has center Ṽ , a DVR of W , and
is a crossed-product Ṽ-order in B f /J (B f ) of the type under consideration in this
paper, since Ṽ is unramified in R and f (G×G)⊆ S ∩U (R). Since the crossed-
product Ṽ-order A f /J (B f ) is a valuation ring of B f /J (B f ) and hence hereditary,
it follows from [Kauta 2012, Theorem] that for each τ ∈ G, f (τ, τ−1) 6∈ J (S)2.

Suppose V is not necessarily indecomposed in K , but assume A f is a valuation
ring. Fix a maximal ideal M of S. By Lemma 2.7(1), there is a set of right coset
representatives g1, g2, . . . , gr of DM in G such that f (gi , g−1

i ) 6∈ M . If τ ∈ G,
then τ = hgi for some h ∈ DM and some i . By Lemma 2.7(2), A fM is a valuation
ring of 6 fM . Hence, by the preceding paragraph, fM(h−1, h) 6∈ M2, and thus
f (h−1, h) 6∈ M2. But the following holds:

f h−1
(hgi , g−1

i h−1) f h−1
(h, gi ) f gi (g−1

i , h−1)= f (h−1, h) f (gi , g−1
i ).

Therefore we must have f (τ, τ−1) 6∈ M2.
Now suppose that A f is not necessarily a valuation ring. To show that for each

τ ∈ G and each maximal ideal M of S we have f (τ, τ−1) 6∈ M2, one only needs to
emulate the corresponding steps in the proof of [Kauta 2012, Theorem], equipped
with the following four observations:

1. Any maximal V-order containing A f is a valuation ring, by Lemma 2.1, hence
A f is the intersection of finitely many valuation rings all with center V , since J (V )
is a principal ideal of V , by [Kauta 1997b, Theorem 2.5].
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2. If B is one such valuation ring containing A f , then B = Ag =
∑

τ∈G Skτ xτ
for some kτ ∈ K #, where g : G × G 7→ S# is some normalized two-cocycle, by
Lemma 2.1(1) and Lemma 2.5. Fix σ ∈ G and a maximal ideal N of S. We may
choose B such that kσ ∈U (SN ), as in the proof of [Kauta 2012, Theorem].

3. Both J (A f ) and J (Ag) are as in Lemma 2.4, that is, J (A f ) =
∑

σ∈G Iσ xσ
(respectively J (B f )=

∑
σ∈G Jσ kσ xσ ) where Iσ =

⋂
M (respectively Jσ =

⋂
M),

as M runs through all maximal ideals of S for which f (σ, σ−1) 6∈ M (respectively
g(σ, σ−1) 6∈ M). We have J (Ag)⊆ J (A f ) by [Kauta 1997a, Theorem 1.5].

4. By Lemma 2.4, I σ
−1

σ = Iσ−1 , J σ
−1

σ = Jσ−1 , and Jσ−1 g(σ−1, σ )= J (V )S.

We conclude, as in the proof of [Kauta 2012, Theorem], that

(1) J (V )S ⊆ kσ Iσ f (σ, σ−1).

Since kσ ∈U (SN ), if f (σ, σ−1) ∈ N 2 then, localizing both sides of (1) at N we get
J (SN )⊆ J (SN )

2, a contradiction, since J (V ) is a principal ideal of V . Therefore
for each τ ∈G and each maximal ideal M of S, f (τ, τ−1) 6∈ M2. Since the cocycle
identity f τ (τ−1, τγ ) f (τ, γ )= f (τ, τ−1) holds, we conclude that for all τ, γ ∈ G
and every maximal ideal M of S, f (τ, γ ) 6∈ M2.

Conversely, suppose f (τ, γ ) 6∈ M2 for all τ, γ ∈ G, and every maximal ideal M
of S. Let Ol(J (A f )) = {x ∈ 6 f | x J (A f ) ⊆ J (A f )}. We will first establish that
Ol(J (A f ))= A f , again emulating the relevant steps in the proof of [Kauta 2012,
Theorem]. To achieve this, it suffices to show that Ol(J (A f ))=

∑
τ∈G Skτ xτ for

some kτ ∈ K #, and that Iτ f (τ, τ−1) = J (V )S for each τ ∈ G, where Iτ is as in
Lemma 2.4. The second assertion follows from Lemma 2.4(3). As for the first one,
we first note that Ol(J (A f )) is a V-order in 6 f , by [Kauta 1997a, Corollary 1.3].
By Lemma 2.5, Ol(J (A f )) =

∑
τ∈G Skτ xτ for some kτ ∈ K # if and only if it is

finitely generated over V .
Since for all τ, γ ∈ G and every maximal ideal M of S we have f (τ, γ ) 6∈ M2,

we conclude from Lemma 2.3 that f (G × G) ⊆ U (R), hence B f is Azumaya
over W . Therefore J (B f ) = J (W )B f = J (W )(W A f ) = J (W )A f ⊆ J (A f ),
and A f /J (B f ) is a Ṽ-order in B f /J (B f ). Since Ol(J (A f )) is a V-order con-
taining A f , Ol(J (A f ))W is a W-order containing B f , so Ol(J (A f ))W = B f ,
since B f is a maximal W-order in 6 f , and hence Ol(J (A f )) ⊆ B f . Therefore
Ol(J (A f ))/J (B f ) is a Ṽ-order in B f /J (B f ), a central simple W-algebra. Since Ṽ
is a DVR of W , Ol(J (A f ))/J (B f ) must be finitely generated over Ṽ , by [Reiner
2003, Theorem 10.3], hence there exists a1, a2, . . . , an ∈ Ol(J (A f )) such that
Ol(J (A f ))= a1V +a2V +· · ·+anV + J (B f )= a1V +a2V +· · ·+anV + A f , a
finitely generated V-module. Thus Ol(J (A f ))= A f .

As in the proof of [Morandi 1992, Lemma 4.11], we have Ol(J (A f /J (B f )))=

Ol(J (A f )/J (B f )) = Ol(J (A f ))/J (B f ) = A f /J (B f ), where Ol(J (A f /J (B f )))



ON A CLASS OF SEMIHEREDITARY CROSSED-PRODUCT ORDERS 359

and Ol(J (A f )/J (B f )) are defined accordingly. Since Ṽ is a DVR of W , A f /J (B f )

is a hereditary Ṽ-order in the central simple W-algebra B f /J (B f ), hence A f is
semihereditary by [Morandi 1992, Lemma 4.11]. �

We summarize these results as follows.

Theorem 3.4. Given a crossed-product order A f :

(1) It is semihereditary if and only if for all τ, γ ∈ G and every maximal ideal M
of S, f (τ, γ ) 6∈ M2; if and only if for each γ ∈ G and each maximal ideal M
of S, f (τ, τ−1) 6∈ M2.

(2) If J (V ) is a nonprincipal ideal of V , then A f is semihereditary if and only if it
is Azumaya over V , if and only if H = G.

We now lump together several corollaries of the theorem above, generalizing
results in [Kauta 2012].

Corollary 3.5. (1) Given a crossed-product order A f :

(a) It is a valuation ring if and only if given any maximal ideal M of S,
f (τ, τ−1) 6∈ M2 for each τ ∈ G, and there exists a set of right coset
representatives g1, g2, . . . , gr of DM in G (that is, G is the disjoint union⋃

i DM gi ) such that for all i , f (gi , g−1
i ) 6∈ M.

(b) If V is indecomposed in K , then it is a valuation ring if and only if for
each τ ∈ G, f (τ, τ−1) 6∈ J (S)2.

(2) Suppose the crossed-product order A f is primary. Then it is a valuation ring
if and only if there exists a maximal ideal M of S such that for each τ ∈ DM ,
f (τ, τ−1) 6∈ M2.

(3) Suppose the crossed-product order A f is semihereditary. Then A fL ,U is a
semihereditary order in 6 fL ,U for each intermediate field L of F and K , and
every valuation ring U of L lying over V .

(4) Suppose the crossed-product order A f is semihereditary. Then A fM is a valua-
tion ring of 6 fM for each maximal ideal M of S.

We end by observing yet another peculiarity of these crossed-product orders.
The proposition below not only strengthens Lemma 2.1(2) when the V-order A is
taken to be the crossed-product order A f , but also generalizes [Haile and Morandi
1993, Proposition 2.10] to the case where V is not necessarily indecomposed in K .

Proposition 3.6. Suppose the crossed-product order A f is extremal and W is a
valuation ring of F with V $ W . Then W A f is Azumaya over W .

Proof. This follows from Lemma 2.2(1), Theorem 3.4(1), Lemma 2.3, and Proposi-
tion 3.1. �
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AN EXPLICIT FORMULA FOR
SPHERICAL CURVES WITH CONSTANT TORSION

DEMETRE KAZARAS AND IVAN STERLING

We give an explicit formula for all curves of constant torsion in the unit
two-sphere. Our approach uses hypergeometric functions to solve relevant
ordinary differential equations.

1. Introduction

The purpose of this article is to give an explicit formula for all curves of constant
torsion τ in the unit two-sphere S2(1). These curves and their basic properties
have been known since the 1890s, and some of these properties are discussed in
the Appendix. Some example curves, computed with a standard ODE package,
with τ = 0.1, 0.5, 1, 2 are shown in Figure 1. Though their existence and some

Figure 1. The curves of torsion τ = 0.1, 0.5, 1, 2 on the unit sphere.

MSC2010: 53A04.
Keywords: constant torsion curves, spherical curves.
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of their general properties were known, our explicit formulas for them, in terms of
hypergeometric functions, are new.

Curves of constant torsion are also of interest because all asymptotic curves
on pseudospherical surfaces (that is, surfaces in R3 with constant negative Gauss
curvature) are of constant torsion. Furthermore, any pair of curves with constant
torsion ±τ , intersecting at one point, define an essentially unique pseudospherical
surface. A complete classification of curves of constant torsion in R3, in the context
of integrable geometry, is a work in progress and is related to the corresponding
unfinished classification of pseudospherical surfaces.

The authors would like to thank the referees and the editor for their suggestions
to improve the original version of this paper.

2. General setting

2.1. General curves in R3. Let

γ : (a, b)−→ R3

be a regular (that is, nonzero speed) C∞ curve in R3 with nonzero curvature. The
speed v, curvature κ and torsion τ of γ are given by

v = ‖γ ′‖, κ =
‖γ ′× γ ′′‖

‖γ ′‖3
, τ =

[γ ′γ ′′γ ′′′]

‖γ ′× γ ′′‖2
.

The unit tangent T is given by

(1) T = γ
′

v
.

The unit normal and unit binormal are given by

N = T ′

vκ
and B = T × N .

These are related by the Frenet formulas

(2)
T ′ = vκN
N ′ = −vκT +vτ B
B ′ = −vτN .

Curves γ with prescribed differentiable curvature κ > 0 and torsion τ can be found
by integrating (2) and (1). Up to reparametrization (see below) a curve in R3 is
determined, up to a rigid motion of R3, by its curvature κ and torsion τ .

2.2. Changing parametrizations. Given γ (t), the arc length function s(t) of γ (t)
is given by

s(t)=
∫ t

a
‖γ ′(u)‖ du.
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Note that since s(t) is increasing, it has an inverse t (s). To obtain a unit-speed
reparametrization γ unit of γ we let

γ unit(s) := γ (t (s)).

We denote the parameter of a unit-speed curve by the letter s.
On the other hand, if we are given a unit-speed curve γ unit(s), we may wish

to find a reparametrization γ of γ unit by letting t (s) be some special monotone
function. In that case we have

γ (t) := γ unit(s(t)),

where s(t) is the inverse of t (s).

2.3. Spherical curves. We call γ a spherical curve if γ (t) ∈ S2(r) for all t (for
fixed r > 0). One can show (see [Gray et al. 2006], for example) that the speed,
curvature and torsion of a spherical curve satisfy

(3) κ2τ 2(κ2r2
− 1)= κ ′ 2v2.

2.4. Effect of homothety on curvature and torsion. If two curves γ, γ̃ are related
by γ̃ (t) := λγ (t), then κ̃(t)= κ(t)/λ and τ̃ (t)= τ(t)/λ. Thus, a curve of constant
torsion τ1 on a sphere of radius r1 corresponds by homothety to a curve of constant
torsion τ2 = (r1/r2) τ1 on a sphere of radius r2.

In other words, any spherical curve of constant positive torsion corresponds
to precisely one spherical curve with τ = 1 as well as to precisely one curve of
constant positive torsion on the unit sphere. Without loss of generality, we consider
only spherical curves of constant positive torsion on the unit sphere.

2.5. Constant torsion unit-speed curves on the unit sphere. Let r = 1. If τ is a
positive constant and γ : (a, b)→ S2(1) is of unit speed, then (3) is an ordinary
differential equation in κ:

(4) κ ′2 = κ2τ 2(κ2
− 1).

(Notice that κ ≥ 1 holds for any curve on the unit sphere.) The general solution to
(4) is given by

(5) κ = csc(τ s+C), −C
τ
< s < −C+π

τ
.

Notice we use the parameter s instead of t since γ is a unit-speed curve. Further-
more, κ(s) is decreasing on (

−C
τ
,
−C+π/2

τ

)
.
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2.6. Our goal. As mentioned, a unit-speed curve γ is determined up to rigid mo-
tion by its curvature and torsion. However, in general it is not possible to explicitly
solve for γ given κ > 0 and τ > 0. Spherical curves of constant torsion provide
an interesting and natural example to study. They were considered by classical
geometers and the formula (5) was known. Even though the formula for κ is so
simple, no explicit solutions for γ were found. This is most likely because the
integration methods that we found necessary were not developed until decades later.
By choosing a special reparametrization and using functions defined in the 1940s,
we were successful in obtaining an explicit formula for γ involving hypergeometric
functions.

3. Explicit formulas

3.1. The radius of curvature parametrization. In curve theory parametrization
by the curvature is called the “natural parametrization”. In our case, when the
natural parametrization is used, the domain of definition lies outside the radius
of convergence of the resulting hypergeometric solutions. To avoid having to deal
with the problem of analytically continuing hypergeometric functions beyond their
radii of convergence we instead parametrize by the reciprocal of the curvature,
which is called the radius of curvature.

We seek unit-speed curves γ unit
: (−C/τ, (−C + π

2 )/τ)→ S2(1) of constant
torsion τ > 0 on the unit sphere. In order to simplify the Frenet equations, we
reparametrize γ unit by t (s) = 1/κ(s) = sin(τ s + C). Since 1/κ(s) is increasing
on its domain, the inverse s(t), s : (0, 1)−→ (−C/τ, (−C+ π

2 )/τ), exists and we
have

γ (t)= γ unit(s(t))= γ unit
(sin−1(t)−C

τ

)
, 0< t < 1.

One can recover γ unit from γ by reversing the process. Note that

v = ‖γ ′‖ = ‖γ unit ′
‖|s ′(t)| = |s ′(t)| = 1

τ
√

1−t2
.

With κ = 1/t the Frenet equations (2) become

T ′ = vN/t(6a)

N ′ =−vT/t + vτ B(6b)

B ′ = −vτN .(6c)

Recall γ ′ = vT . Thus as a preliminary step we will compute T . Namely, we
want to solve (6) for T .
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From (6a) and (6b) we have

N = t
√

1− t2τT ′,(7)

B =
√

1− t2 N ′+ 1
tτ

T .(8)

Equations (7) and (6c) yield

(9) B ′ =−τ tT ′.

On the other hand differentiating (7) yields

(10) N ′ = τ
√

1−t2

(
t (1− t2)T ′′+ (1− 2t2)T ′

)
.

Plugging this into (8) yields

(11) B = −1
tτ
(
t2(t2
− 1)τ 2T ′′+ t (2t2

− 1)τ 2T ′− T
)
.

Hence

(12) B ′ = −1
t2τ

(
t3(t2
− 1)τ 2T ′′′+ t2(5t2

− 2)τ 2T ′′+ t (4t2τ 2
− 1)T ′+ T

)
.

Equating (9) and (12) and simplifying we arrive at

(13) t3(t2
− 1)τ 2T ′′′+ t2(5t2

− 2)τ 2T ′′+ t (3t2τ 2
− 1)T ′+ T = 0.

This is a third-order linear homogeneous differential equation with nonconstant
coefficients. In general it is not possible to find a closed form solution for such
an equation. However, this is one of the special cases where one can find hyper-
geometric type solutions. These methods were developed in the 1940s, and hence
were not available to the classical (1890s) geometers.

3.2. Initial conditions. To arrive at initial conditions for our ODE, we find initial
conditions for T , N , and B and use the Frenet equations (6) to arrive at initial
conditions for T , T ′, and T ′′. We let T = (T1, T2, T3), N = (N1, N2, N3), and
B = (B1, B2, B3). For V = T , N , B, T ′, or T ′′ we use the notation Vi0 := Vi (t0).

T and N are unit vectors (‖T ‖ = 1 and ‖N‖ = 1) so we have

|T10 | ≤ 1, |T20 | ≤
√

1− T10, T30 =

√
1− T 2

10
− T 2

20
,

|N10 | ≤ 1, |N20 | ≤
√

1− N10, N30 =

√
1− N 2

10
− N 2

20
.

Also T is orthogonal to N (T · N = 0),

N10 T10 + N20 T20 + N30 T30 = 0.
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Since B = T × N , we have

B10 = T20 N30 − T30 N20, B20 = T30 N10 − T10 N30, B30 = T10 N20 − T20 N10 .

We will, without loss of generality and up to rigid motion, choose N0 = (0, 1, 0),
T0 = (T10, T20, T30)= (1, 0, 0), and t0 = 1

2 . Now that we have initial conditions for
T , N , and B, we will use the Frenet equations to express T ′0 and T ′′0 in terms of
T0, N0, and B0,

T ′0 =
v0 N0

t0
, T ′′0 = (v

′

0t0+ v0)N0− v
2
0 t2

0 T0+ v
2
0τ t0 B0.

The set of initial conditions t0= 1
2 , T0=(T10, T20, T30)=(1, 0, 0), and N0=(0, 1, 0)

yields

T ′0 =
(

0, 4
√

3τ
, 0
)

and T ′′0 =
(
−16
3τ 2 ,

−16
3
√

3τ
,

8
3τ

)
.

3.3. Solving for T via hypergeometric functions. The Barnes generalized hyper-
geometric function [Itō 1987] is defined by

p Fq(a1, a2, . . . , ap; b1, b2, . . . , bq; ta) :=

∞∑
n=1

(a1)n . . . (ap)n
(b1)n . . . (bq)n

tan

n!
.

Note the use of the Pochhammer symbols (x)n := 0(x + n)/0(x). We will also
use

2 F reg
1 (a, b, c, ta) := 2 F1(a, b; c; ta)

0[c]
.

By direct substitution (see for example Section 46 of [Rainville 1971]) it is straight-
forward to check that the following is a solution to (13):

T = (T1, T2, T3), T j =

3∑
l=1

c jl Sl,

where

S1 = i t 3 F2

(1
2
,

1
2
,

3
2
;

3
2
−

i
2τ
,

3
2
+

i
2τ
; t2
)
,

S2 = (−1)−i/(2τ)t−i/(2τ)
3 F2

(
1− i

2τ
,−

i
2τ
,−

i
2τ
;

1
2
−

i
2τ
, 1− i

τ
; t2
)
,

S3 = (−1)i/(2τ)t i/(2τ)
3 F2

(
1+ i

2τ
,

i
2τ
,

i
2τ
;

1
2
+

i
2τ
, 1+ i

τ
; t2
)
,

the c jl are constants, and i =
√
−1. Note that S1 is pure imaginary and that S3 is

the complex conjugate of S2. For proper complex constants c jl , T is a real valued
vector function. By plugging in the initial conditions of the last section we can
solve for the c jl .
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3.4. Solving for γ . Recall that γ (t) =
∫
vT dt . Since we have found T in terms

of hypergeometric functions, we must compute the following type of integrals:∫
h(t) p Fq(a1, a2, . . . , ap; b1, b2, . . . , bq; , t2)

τ
√

1− t2
dt

:=

∫ h(t)
∑
∞

n=1
(a1)n ...(ap)n
(b1)n ...(bq )n

t2n

n!

τ
√

1− t2
dt = α

τ

∞∑
n=1

(a1)n . . . (ap)n
(b1)n . . . (bq)nn!

∫
tβn
√

1−t2
dt.

Where α, β are constants. We repeat this process for each Sl , using the notation
γ = (U1,U2,U3). For S1,

U1 :=

∫
S1

τ
√

1− t2
dt =

∫ i t 3 F2
( 1

2 ,
1
2 ,

3
2 ;

3
2 −

i
2τ ,

3
2 +

i
2τ ; t

2
)

τ
√

1− t2
dt

=

∞∑
n=0

d1n

∫
t2n+1
√

1−t2
dt,

where

d1n =
i
(
1+ τ 2

)
0
(1

2 + n
)2
0
( 3

2 + n
)

sech
(
π
2τ

)
2
√
πτ 3n!0

( 3
2 + n− i

2τ

)
0
(3

2 + n+ i
2τ

) .
For S2,

U2 :=

∫
S2

τ
√

1−t2
dt

=

∫
(−1)−i/(2τ)t−i/(2τ)

3 F2
(
1− i

2τ ,−
i

2τ ,−
i

2τ ;
1
2 −

i
2τ , 1− i

τ
; t2
)

τ
√

1− t2
dt

=

∞∑
n=0

d2n

∫
t2n−i/τ
√

1−t2
dt,

where

d2n =
e
π
2τ 2−

i
τ 0
(
n− i

2τ

)2
0
(
1+ n− i

2τ

)
0
(
−i+τ

2τ

)2

√
πτ0

(
1+ n

)
0
(
1+ n− i

τ

)
0
(
−

i
2τ

)2
0
(
n+ −i+τ

2τ

) .
For S3,

U3 :=

∫
S3

τ
√

1−t2
dt

=

∫
(−1)i/(2τ)t i/(2τ)

3 F2
(
1+ i

2τ ,
i

2τ ,
i

2τ ;
1
2 +

i
2τ , 1+ i

τ
; t2
)

τ
√

1− t2
dt

=

∞∑
n=0

d3n

∫
t2n+ i

τ

√
1−t2

dt,
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where

d3n =
e−

π
2τ 2

i
τ 0
(
n+ i

2τ

)2
0
(
1+ n+ i

2τ

)
0
( i+τ

2τ

)2

√
πτ0

(
1+ n

)
0
(
1+ n+ i

τ

)
0
( i

2τ

)2
0
(
n+ i+τ

2τ

) .
Once again we are lucky and for each Ul we can evaluate the integrals. In each
case they are hypergeometric,

U1 =

∞∑
n=0

1
2

n! d1n 2 F reg
1

(1
2
, 1+ n, 2+ n, t2

)
,

U2 =

∞∑
n=0

1
2
0
(

n+
−i + τ

2τ

)
d2n 2 F reg

1

(1
2
, n+ −i+τ

2τ
,

3
2
+ n− i

2τ
, t2
)
,

U3 =

∞∑
n=0

1
2
0
(

n+
i + τ
2τ

)
d3n 2 F reg

1

(1
2
, n+ i+τ

2τ
,

3
2
+ n+ i

2τ
, t2
)
.

Each 2 F reg
1 also has a power series,

2 F reg
1

(1
2
, 1+ n, 2+ n, t2

)
=

∞∑
m=0

e1m t2m,

2 F reg
1

(1
2
, n+ −i+τ

2τ
,

3
2
+ n− i

2τ
, t2
)
=

∞∑
m=0

e2m t2m,

2 F reg
1

(1
2
, n+ i+τ

2τ
,

3
2
+ n+ i

2τ
, t2
)
=

∞∑
m=0

e3m t2m,

where

e1m =
0
( 1

2 +m
)

(n+m+ 1)
√
π0(1+ n)0(1+m)

,

e2m =
2τ0

( 1
2 +m

)
√
π0(2nτ + 2mτ + τ − i)0(1+m)0(n+ (−i + τ)/2τ)

,

e3m =
2τ0

( 1
2 +m

)
√
π0(2nτ + 2mτ + τ + i)0(1+m)0(n+ (i + τ)/2τ)

.

Thus

U1 =

∞∑
m=0

∞∑
n=0

1
2

n! d1n e1m t2m+2n+2,

U2 =

∞∑
m=0

∞∑
n=0

1
2
0
(

n+ −i+τ
2τ

)
d2n e2m t2m+2n+2,

U3 =

∞∑
m=0

∞∑
n=0

1
2
0
(

n+ i+τ
2τ

)
d3n e3m t2m+2n+2.
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Figure 2. The curve of torsion τ = 1 on the unit sphere.

These complicated double sums combine nicely and simplify as

U1 =
i

2
√
πτ

∞∑
k=0

0
( 1

2 + k
)

0(2+ k)

× 4 F3

(1
2
,

1
2
,

3
2
,−k; 1

2
− k, 3

2
−

i
2τ
,

3
2
+

i
2τ
; 1
)

t2+2k,

U2 =
eπ/(2τ)
√
π

∞∑
k=0

0
( 1

2 + k
)

(−i + (1+ 2k)τ )0(1+ k)

× 4 F3

(
−k, 1− i

2τ
,−

i
2τ
,−

i
2τ
;

1
2
− k, 1

2
−

i
2τ
, 1− i

τ
; 1
)

t1−i/τ+2k,

U3 =
e−π/(2τ)
√
π

∞∑
k=0

0
( 1

2 + k
)

(i + (1+ 2k)τ )0(1+ k)

× 4 F3

(
−k, 1+ i

2τ
,

i
2τ
,

i
2τ
;

1
2
− k, 1

2
+

i
2τ
, 1+ i

τ
; 1
)

t1+i/τ+2k .

Thus we can write γ = (γ1, γ2, γ3) as a power series in t , where

γ j =

3∑
l=1

c jlUl .

The curve with τ = 1 is given in Figure 2, this time using the explicit formula.

Appendix

The purpose of this appendix is to address questions and issues about the curves
raised by the referees and the editor.

For τ = 0, the curves are also planar and are precisely the set of circles lying
on the sphere. If we consider curves corresponding to solutions (5) with C = 0,
and k(π2 /τ)= csc ((π2 /τ)τ )= 1, then as τ varies from 0 to∞ the curves numeri-
cally appear to vary (in a nonuniform way) from an infinitely covered great circle,
through a family of spiral “clothoid” like curves.
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Figure 3. Curves of constant torsion approaching a circle.

The editor pointed out that if we consider those solutions to (5) with C = 0, and
k(s0) = csc(s0τ) > 1, then the corresponding curves approach a “small circle” on
S2(1) of constant curvature k(s0). This is an interesting example of nonuniform
convergence. The curves as a whole converge pointwise to an infinitely covered
great circle, while it is still possible to find sequences of “tails” that converge to
infinitely covered small circles. This phenomenon is indicated in Figure 3, where
one sees a sequence of curves converging to a small circle. More details of this
simple yet interesting behavior will be written up elsewhere.

We will mention a few of the qualitative properties of these curves. Let us
consider the case of curves in S2(1) with a fixed initial point and varying τ . All
curves of constant torsion differ from one of these by a rigid motion. In [Cesàro
1926, page 185], it is shown that the curves are embedded, spiral infinitely often
about a limiting endpoint, and are reflectionally symmetric through the initial point.
(In Figure 1 we show only the upper half of the curves.) Cesàro [1926, page 185]
also shows that as τ varies from 0 to ∞, the length varies from ∞ to 0; see also
Equation (5).

One referee asked if it would be possible to foliate S2(1) with curves of constant
torsion (other than by the just using circles). It may be possible to foliate S2(1),
in some convoluted way, by packing S2(1) with pieces of curves of constant tor-
sion; however our conjecture would be that it is not possible to foliate it in any
“reasonable” way.

The reasoning is as follows. It seems to be a difficult problem to find an explicit
formula for the upper endpoint in terms of the τ and the initial point. Nevertheless,
numerically as τ varies from 0 to∞ the upper endpoint steadily moves downward
from the north pole to the initial point. In particular this would imply that the
curves corresponding to an infinitesimal change in τ would (repeatedly) intersect.
It would follow that any foliation of the S2(1) by curves of constant torsion would
have to include curves with common endpoints that differ by a rigid motion; a
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rotation about the upper endpoint. This type of foliation could only work in some
radius about the upper endpoint, because the effect of a rotation on the opposite
lower endpoint would result in (repeated) intersections. In summary, the numerics
strongly indicate that there is no foliation (singular or not) of S2(1) by curves of
constant torsion.

Weiner [1977] proved that there exist arbitrarily short closed constant torsion
curves in R3. More recently, Musso [2001] studied those curves of constant tor-
sion in R3 whose normal vectors sweep out elastic curves in S2(1). Ivey [2000]
generalizes Musso’s results and gives examples of closed constant torsion curves
of various knot types. The examples in the current paper complement these known
examples.
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Editor’s note

I was pleased to receive this interesting and unusual new work submitted to the
Pacific Journal of Mathematics. It has also found referee approval for the main
substance of the new material it offers. I am however uneasy with some assertions
in the Appendix; to the best I can interpret them, I find myself in some disagree-
ment. The authors have indicated that they prefer not to alter the statements, and
have correctly pointed out that the impact of the appendix material on the main
thrust of the paper is peripheral. In the view that differences over ancillary matters
should not impede publication of new discoveries, I have recommended publication
coupled with this subordinate comment.

Robert Finn
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COMPARING SEMINORMS ON HOMOLOGY

JEAN-FRANÇOIS LAFONT AND CHRISTOPHE PITTET

We compare the l1-seminorm ‖·‖1 and the manifold seminorm ‖·‖man on
n-dimensional integral homology classes. Crowley and Löh showed that for
any topological space X and any α ∈ Hn(X;Z), with n 6= 3, the equality
‖α‖man = ‖α‖1 holds. We compute the simplicial volume of the 3-dimen-
sional Tomei manifold and apply Gaifullin’s desingularization to establish
the existence of a constant δ3 ≈ 0.0115416, with the property that for any X
and any α ∈ H3(X;Z), one has the inequality

δ3‖α‖man ≤ ‖α‖1 ≤ ‖α‖man.

1. Introduction

Let X be a topological space and let K be either the field of rational numbers
or the field of real numbers. Let α ∈ Hn(X, K ) be a class in the n-dimensional
singular homology of X with coefficients in K . By definition there is a finite linear
combination of continuous maps σi :1→ X defined on the standard n-dimensional
simplex, with coefficients ai in K , which represents α. The l1-(semi)norm on
singular homology is defined as

‖α‖1 = inf
{∑
|ai | :

[∑
aiσi

]
= α

}
;

see [Gromov 1982, 0.2].
If α ∈ Hn(X,Z) is an integral class, we may apply to it the natural change-of-

coefficients morphism
H∗(X,Z)→ H∗(X,R)

and view it as a real class (which may vanish) and consider its l1-norm, also denoted
‖α‖1. This measures the optimal “size” (in the l1-norm) of a real representative

Lafont was supported by the NSF, under grants DMS-0906483, DMS-1207782, and by an Alfred P.
Sloan Research Fellowship. Pittet was supported by a Research Membership in Quantitative Geometry
offered by the Mathematical Sciences Research Institute. The authors would also like to thank the
MRI for providing financial support for a collaborative visit by Pittet to the Ohio State University.
MSC2010: primary 53C23; secondary 57M50.
Keywords: l1-norm, simplicial volume, singular homology, manifold norm, Steenrod’s realization

problem, Thurston norm, Tomei manifold.
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for the integral class. When M is a closed oriented manifold, the l1-norm of its
fundamental class [M] ∈ Hn(M;Z) is called the simplicial volume of M , and will
be denoted by ‖M‖.

Rather than looking at all chains representing the class α, one could instead
restrict oneself to chains which satisfy some additional geometric constraint. To this
end, let us consider the set of all closed smooth oriented manifolds and continuous
maps (M, f : M→ X) such that f sends the fundamental class of M to α. Recall
[Thom 1954, Théorème III.9] that if n ≥ 7, this set may be empty, even if X is a
finite polyhedron. On integral homology, we consider the subadditive function

µ(α)= inf{‖M‖ : f∗[M] = α},

(with the usual convention that the infimum of the empty set is +∞) and the
corresponding manifold (semi)norm

‖α‖man = inf
m∈N

{
µ(m ·α)

m

}
.

Thom [1954, Théorème III.4] has shown that the manifold norm is finite when X is
a finite polyhedron. Since any homology class can be represented as the image of a
finite polyhedron, it follows from Thom’s result that the manifold norm is finite for
any topological space.

It is immediate from the definitions that ‖ · ‖1 ≤ ‖ · ‖man holds on Hn(X,Z), for
any n, and any topological space X .

Theorem 1.1. For each degree n, there exists a constant δn > 0, such that for any
topological space X and any class α ∈ Hn(X,Z), we have

δn‖α‖man ≤ ‖α‖1 ≤ ‖α‖man.

One can take δn = 1 if n 6= 3, and δ3 ≈ 0.0115416.

After some preliminary material in Sections 2 and 3, we provide a proof of
Theorem 1.1 in Sections 4 and 5. Section 4 shows the existence of the δn , whereas
Section 5 is devoted to identifying the optimal values of the δn . It is straightforward
to show that the norms are equal if n ≤ 2 (that is, one can take δ2= 1). Crowley and
Löh [2012, Proposition 4.3] showed that for degree n ≥ 4, one can take δn = 1 (see
Proposition 5.1 below). So in all cases except possibly in degree = 3, one actually
has the equality ‖α‖1 = ‖α‖man. We do not know if the optimal value of δ3 is 1.

Shortly after this paper was written, Gaifullin posted a preprint [2012a] containing
some closely related results. In fact, our Theorem 1.1 can be deduced from the
results in [Gaifullin 2012a, Section 6], though without an explicit estimate for δ3.
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2. Gluing simplices along their faces

Our first goal is to realize an integral class β as the image of a 1-complex [Hatcher
2002, Section 2.1] which is a disjoint union of n-dimensional pseudomanifolds
[Spanier 1981, Chapter 3, Example C] whose number of n-simplices is controlled
in terms of β. The precise statement we need is the following.

Proposition 2.1. Let X be a topological space and β ∈ Hn(X,Z) an integral class
on X of degree n represented by a singular cycle

∑
i miσi , mi ∈ Z. Then there is a

1-complex Q and a continuous map g : Q→ X with the following properties.

(1) The number of n-dimensional simplices of Q is
∑

i |mi |.

(2) The 1-complex Q is topologically a finite disjoint union of oriented n-dimen-
sional pseudomanifolds without boundary.

(3) g∗[Q] = β, that is, with appropriate orientations on each pseudomanifold, g
sends the sum of the fundamental classes of the pseudomanifolds forming Q to
the class β.

Remark 2.2. If n ≤ 2, we can choose Q so that the pseudomanifolds are manifolds.

All this is well-known and can be deduced from [Hatcher 2002, Chapter 2]. We
sketch the proof for the convenience of the reader.

Proof. The statement is trivial if n = 0, hence we assume n ≥ 1. In the cycle∑
i miσi , we consider each singular n-simplex σi whose coefficient mi is negative.

We precompose σi with an affine automorphism of the standard n-simplex that
reverses the orientation and changes the sign of mi . This leads to a representative
of the same class β with positive coefficients mi ∈ N. Let us define

T =
∑

i

mi ,

and let U be the disjoint union of T standard n-simplices. Repeating mi times each
singular simplex σi , we write our cycle

T∑
i=1

σi

and we obtain a continuous map

σ :U → X

whose restriction to the i-th copy of the standard n-simplex is σi . Each term of the
boundary

∂

( T∑
i=1

σi

)
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is the restriction of some σi to an (n− 1)-face of the i-th n-simplex of U (times a
coefficient which is either 1 or−1 because we repeat the terms). If two such singular
(n−1)-simplices are equal (as maps defined on the standard (n−1)-simplex) and if
their coefficients are opposite, they form what we call a canceling pair. We choose
a maximal collection of canceling pairs, and for each pair we identify the two
(n− 1)-faces of U on which the two terms of the pair coincide. The topological
space defined as the quotient of U with respect to the equivalence relation defined
by these identifications has a 1-complex structure Q with T n-simplices. It has
no boundary because we chose a maximal family of canceling pairs and because∑T

i=1 σi is a cycle. This also implies that each connected component of Q is an
n-dimensional oriented pseudomanifold. The map σ : U → X factors through
Q. The quotient map g : Q→ X is continuous and g∗[Q] = β. This proves the
proposition.

If n ≤ 2, one checks that each link of each vertex of Q is a sphere. This proves
the remark. �

3. Gaifullin’s desingularization

We need a result of Gaifullin, which provides a constructive desingularization of an
oriented pseudomanifold (see [[2008]; 2012b] for a more detailed explanation). Let
us briefly describe this result. Gaifullin establishes the existence, in each dimension
n, of a closed oriented n-manifold M having the following universal property. Given
any oriented n-dimensional pseudomanifold P with K top-dimensional simplices,
and with a regular coloring of the vertex set by (n+ 1) colors (that is, any adjacent
vertices are of different colors), there exists

• a finite cover π : M̂→ M , of degree 1
2 K 5ω |Pω|,

• a map f : M̂→ P with the property that

f∗[M̂] = 2n−15ω |Pω| · [P] ∈ Hn(P;Z).

The degrees of the maps involve the integer 5ω|Pω| (which is the product of
the cardinalities of the finite sets Pω), whose precise definition [Gaifullin 2008,
page 563] we will not need. We merely point out that the term 5ω|Pω| depends
solely on the combinatorics of P , and appears in the expressions for both the degree
of the covering map π , and of the “desingularization” map f .

The universal manifolds M are explicitly described, and are the Tomei manifolds.
For the convenience of the reader, we provide some discussion of the Tomei
manifolds in the Appendix, which also establishes some specific properties of the
3-dimensional Tomei manifold which are used in the proof of Proposition 5.2.

Finally, we make a brief comment concerning simplicial complexes versus 1-
complexes. The difference between these two classes is that, for 1-complexes,
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one does not restrict the gluing of simplices to be along a single face of distinct
simplices. While Gaifullin’s result is stated in the setting where P is a simplicial
complex, the constraint on the gluings of simplices is not used in his proofs. As such,
his desingularization process works equally well when applied to 1-complexes
(assuming of course that there exists a regular vertex (n+ 1)-coloring). We thank
the anonymous referee for pointing this out to us.

4. Existence of the δn

In this section, we show that there exist constants δn satisfying the conclusion of
Theorem 1.1.

Let α ∈ Hn(X,Z) and let ε > 0. The change-of-coefficients morphism

Hn(X,Z)→ Hn(X,R)

factors through Hn(X,Q), and the map

Hn(X,Q)→ Hn(X,R)

is an isometric injection. Hence we can find a representative∑
i

riσi

of α with ri ∈Q such that

(1)
∑

i

|ri | ≤ ‖α‖1+ ε.

Let m be the least common multiple of all the denominators of the reduced fractions
of the ri . The chain ∑

i

mriσi

is an integral chain representing the class

β = mα ∈ Hn(X,Z).

Now we apply Proposition 2.1 to the integral class β. This gives us a 1-complex
Q and a continuous map g : Q→ X with the following properties:

(i) The number of n-dimensional simplices of Q is

m
∑

i

|ri | ≤ m(‖α‖1+ ε).

(ii) Q consists of a finite disjoint union of oriented n-dimensional pseudomanifolds
without boundary.
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(iii) g maps the sum of the fundamental classes of the pseudomanifolds in Q to
the class β, that is, g∗[Q] = β.

Notice that in the case where Q is a manifold (that is automatic if n=2, as explained
at the end of the proof of Proposition 2.1), the inequality

‖α‖man ≤ ‖α‖1

follows, since for any ε > 0 we have

‖Q‖/m ≤ ‖α‖1+ ε.

If Q is not a manifold — that is, if at least one of the connected components of
Q is not a manifold but only a pseudomanifold — a desingularization process is
needed to produce a manifold. We first consider the case when Q is connected. Let
P denote the first barycentric subdivision of the 1-complex Q. The number of
n-dimensional simplices of the barycentric division of the standard n-simplex is
(n+ 1)!, so the number K of top-dimensional simplices in P is

K = (n+ 1)!m
∑

i

|ri |.

Moreover, the vertex set of P clearly has a regular coloring by (n+ 1) colors: each
vertex v lies in the interior of a unique cell σv from the original 1-complex Q, and
we can color the vertex v with the color 1+ dim(σv) ∈ {1, . . . , n+ 1}. So we can
now apply Gaifullin’s desingularization process to the pseudomanifold P , obtaining
the following diagram of spaces and maps:

M M̂
πoo f // P

g // X .

We also know that

(a) g∗[P] = β = m ·α ∈ Hn(X;Z),

(b) f∗[M̂] = 2n−15ω |Pω| · [P] ∈ Hn(P;Z).

The map π is a covering map of degree 1
2 K 5ω |Pω|, so we can also compute the

simplicial volume of M̂ :

‖M̂‖ = 1
2 K 5ω |Pω| ‖M‖.

Combining (a) and (b), we see that the composite map g ◦ f : M̂→ X allows us to
represent the homology class [m · 2n−15ω|Pω|] ·α ∈ Hn(X;Z) as the image of the
fundamental class of the oriented manifold M̂ . From the definition of the manifold
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seminorm, we obtain

‖α‖man ≤
1

m ·2n−15ω|Pω|
‖M̂‖ =

1
2 K 5ω |Pω|

m · 2n−15ω |Pω|
‖M‖

=
(n+ 1)!m

∑
i |ri |

m · 2n ‖M‖ ≤ ‖M‖ (n+1)!
2n (‖α‖+ ε).

Letting ε go to zero completes the proof, with the explicit value

δn =
2n

(n+1)! ‖M‖

where M is the n-dimensional Tomei manifold appearing in Gaifullin’s desingu-
larization procedure. In the case where P =

⊔
i Pi has several connected com-

ponents Pi , let d be the least common multiple of the 5ω|(Pi )ω|, and for each
i , let mi = d/5ω|(Pi )ω|. Exactly the same proof applies with M̂ =

⊔
i
⊔

mi
M̂i ,

f =
⊔

i
⊔

mi
fi , and π =

⊔
i
⊔

mi
πi .

5. Estimating the δn

In this section, we complete the proof of Theorem 1.1 by estimating the δn . As
explained in the previous section, one can take δ2 = 1. Crowley and Löh [2012]
have shown that for n ≥ 4, one can take δn = 1. Their result is stated in the a priori
more restrictive setting of finite CW-complexes, but it is straightforward to deduce
the general case from that special case. For completeness, we include a proof of
this result.

Proposition 5.1. In degrees n ≥ 4, we can take δn = 1, that is, for any topological
space X and any class α ∈ Hn(X,Z) of degree n ≥ 4, one has the equality

‖α‖1 = ‖α‖man.

Proof. The inequality ‖α‖1 ≤ ‖α‖man is immediate from the definitions, so let us
focus on the converse. Proceeding as in the proof of Theorem 1.1, given any ε > 0,
we can find a corresponding integral chain∑

i

mriσi

representing a class

β = mα ∈ Hn(X,Z)

and where the rational numbers ri satisfy

(2)
∑

i

|ri | ≤ ‖α‖1+ ε/2
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Now apply Proposition 2.1 to the integral class β, obtaining a 1-complex Q and
a continuous map g : Q → X such that g∗[Q] = β. As Q itself is a finite CW-
complex of dimension n ≥ 4, [Crowley and Löh 2012, Prop. 4.3] implies that
‖[Q]‖1 = ‖[Q]‖man. Since we have a realization of Q as a 1-complex with exactly
m
∑

i |ri | top-dimensional simplices, we obtain

‖[Q]‖man = ‖[Q]‖1 ≤ m
∑

i

|ri |.

Consider the positive real number mε/2> 0. From the definition of the manifold
norm, we can find a closed oriented manifold N , and a continuous map h : N→ Q
of degree d, with the property that h∗[N ] = d · [Q], and satisfying

(3)
‖N‖

d
≤ ‖Q‖man+mε/2≤ m

∑
i

|ri | +mε/2.

The composite map g◦h : N→ X sends the fundamental class [N ] to d ·β = d ·mα.
Using this map to estimate the manifold norm of α, we obtain

‖α‖man ≤
‖N‖
d m

≤
1
m

(
m
∑

i

|ri | +mε/2
)

≤

∑
i

|ri | + ε/2

≤ ‖α‖1+ ε,

where the second inequality was deduced from (3), and the last inequality from
(2). Finally, letting ε > 0 go to zero, we obtain ‖α‖man ≤ ‖α‖1, completing the
proof. �

It is tempting to guess that the optimal value of δ3 is also 1. Our method of proof
gives a substantially lower value of δ3, which is explicitly given by the following.

Proposition 5.2. The optimal value of δ3 is ≥ V3/(24V8)≈ 0.0115416, where V3

and V8 are the volumes of the 3-dimensional regular ideal hyperbolic tetrahedron
and octahedron, respectively.

Proof. The proof of Theorem 1.1 yields the general value

δn =
2n

(n+1)! ‖M‖

where M is the n-dimensional Tomei manifold. Specializing to dimension n = 3,
and using the fact that ‖M3

‖ = 8V8/V3 (see Lemma A.2 below), we obtain the
claim. �
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Appendix: Tomei manifolds

The universal manifolds M used in Gaifullin’s desingularization are the Tomei
manifolds. For the convenience of the reader, we provide a brief description of
these manifolds. We also establish some results concerning the 3-dimensional
Tomei manifold that are used in estimating the constant δ3 arising in our proof of
Theorem 1.1 (see Proposition 5.2).

A matrix A = [ai j ] is tridiagonal if ai j = 0 for all indices satisfying |i − j |> 1.
The n-dimensional Tomei manifold consists of all (n+ 1)× (n+ 1) real symmetric
tridiagonal matrices, with fixed simple spectrum λ0 < λ1 < · · ·< λn (the manifold
is independent of the choice of simple spectrum). These manifolds were introduced
by Tomei [1984] and further studied by Davis [1987]. An important result of Tomei
is that these manifolds support a very natural cellular decomposition, which we
now describe.

First, recall the definition of the n-dimensional permutahedron 5n . The per-
mutahedron is an n-dimensional, simple, convex polytope, obtained as the convex
hull of a specific configuration of points in Rn+1. If the symmetric group Sn+1

acts on Rn+1 by permuting the coordinates, the permutahedron 5n is defined to be
the convex hull of the Sn+1-orbit of the point (1, 2, . . . , n+ 1) ∈ Rn+1. Denote by
S this specific Sn+1-orbit, so that 5n

= Conv(S) (see Figure 1 for an illustration
of 53).

The facets (codimension one faces) of the permutahedron 5n are indexed by the
2n+1
− 2 nonempty proper subsets ω ( {1, . . . , n+ 1}, as follows. Given a subset

ω, define the subset Sω ⊂ S by

Sω := {Ex ∈ S | ∀i ∈ ω,∀ j 6∈ ω, xi < x j }.

Figure 1. The 3-dimensional permutahedron 53.
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In other words, a vertex Ex ∈S lies in Sω if the integers {1, . . . , |ω|} occur precisely
in the coordinates whose index lies in ω. The facet Fω is then defined to be the
convex hull Conv(Sω). From this, it easily follows that two distinct facets Fω1, Fω2

intersect if and only if ω1 ( ω2 or ω2 ( ω1. One also has that any codimension k
face of 5n , being of the form Fω1 ∩ · · · ∩ Fωk for some choice of distinct facets,
corresponds (after possibly reindexing) to a unique length k chainω1 (ω2 ( · · ·(ωk

of nonempty proper subsets of {1, . . . , n+ 1}.
Tomei [1984] showed that the n-dimensional Tomei manifold M has a particularly

simple tiling by 2n copies of the n-dimensional permutahedron 5n . Let e1, . . . , en

be the standard generators for Zn
2 . Then the n-dimensional Tomei manifold can be

identified with (Zn
2 ×5

n)/∼, where the equivalence relation is given by (g, x)∼
(e|ω|g, x) whenever x ∈ Fω.

Example. For a concrete example, when n = 3, the permutahedron 53 is the
truncated octahedron (see Figure 1). It has 6 square facets (parametrized by subsets
ω ( {1, 2, 3, 4} with |ω| = 2) and 8 hexagonal facets (parametrized by the ω with
|ω| = 1, 3). Figure 2 includes some vertex coordinates and labels some of the facets
with the corresponding subset of {1, 2, 3, 4}.

In the corresponding Tomei manifold M3, tessellated by eight copies of 53, one
can easily see that each edge of the tessellation lies on exactly four copies of 53.
Now consider the 24 squares appearing in the tessellation of M . The union of all
these squares forms a collection of six tori embedded in M , each tessellated by
four squares. Note that, from the definition of the gluings, each square bounds two
copies of 53, whose indices in Z3 differ in the middle coordinate (corresponding to
the generator e2). This implies that the collection of six tori separate M3 into two
copies of a manifold N . Each of the two copies of N is tessellated by four copies
of 53, and there is a Z2-involution on M3 which fixes the collection of tori and
interchanges the two copies of N . The involution can be easily described in terms
of the description M = (Z3

2×5
3)/∼: it sends each element (g, x) to (e2 · g, x).

A nice consequence of Gaifullin’s work is the following elementary result.

Lemma A.1. If M is a Tomei manifold, ‖M‖> 0.

Proof. Let N be a closed hyperbolic manifold of the same dimension as M . It
follows from work of Gromov and Thurston that ‖N‖ > 0 (see [Thurston 1980,
Chapter 6]). Take an arbitrary triangulation of N , pass to the barycentric subdivision,
and apply Gaifullin’s desingularization. This gives us a finite cover M̂→ M with
a map f : M̂ → N , of degree d 6= 0. Since ‖N‖ > 0, the obvious inequality
‖M̂‖/d ≥ ‖N‖ immediately forces ‖M̂‖ > 0. But the simplicial volume scales
under covering maps, so we conclude that ‖M‖> 0, as desired. �

In general, the computation of the exact value of the simplicial volume is an ex-
tremely difficult problem. For the 3-dimensional Tomei manifold, we can, however,
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give an exact computation. Let V8 denote the volume of a regular ideal hyperbolic
octahedron and V3 the volume of a regular ideal hyperbolic tetrahedron. These
volumes can be expressed in terms of the Lobachevsky function

3(θ) := −

∫ θ

0
log |2 sin t | dt

and are exactly equal to V8 = 83(π/4) and V3 = 23(π/6) (see [Thurston 1980,
Section 7.2]). Up to five decimal places, V8 ≈ 3.66386 and V3 ≈ 1.01494.

Lemma A.2. The 3-dimensional Tomei manifold M3 has simplicial volume ‖M‖=
8V8/V3 (which is ≈ 28.8794).

Proof. Closed 3-manifolds are one of the few classes of manifolds for which the
simplicial volume is known. Recall that for hyperbolic 3-manifolds, the simplicial
volume is proportional to the hyperbolic volume, with constant of proportionality
1/V3. For Seifert fibered 3-manifolds, the existence of an S1-action immediately
implies that the simplicial volume is zero. For a general closed, orientable 3-
manifold, the validity of Thurston’s geometrization conjecture (recently established

3124

3214

4123
4213

4312

4321

3421

24311432

1342

1243

1324

1423

2413

3412

2314

1234

2134

{3}

{1}

{1,2,3}

{2,3}

{3,4}

{1,3}

{1,3,4}

Figure 2. A portion of 53. Vertices are labeled by their coordi-
nates in R4 (parentheses and commas omitted to avoid cluttering
the picture). Facets are labeled with the corresponding subset
ω ⊂ {1, 2, 3, 4}.
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by Perelman) implies that there is a decomposition into geometric pieces. Since
simplicial volume is additive under connected sums (in dimensions ≥ 3) and under
gluings along tori (see [Gromov 1982, Section 3.5]), this implies that the simplicial
volume of any closed, orientable 3-manifold is proportional (with constant 1/V3)
to the sum of the (hyperbolic) volumes of the hyperbolic pieces in its geometric
decomposition.

Let us apply this procedure to the Tomei manifold M . Recall that M is the
double of a 3-manifold N with ∂N consisting of four tori. From the gluing formula
we deduce that ‖M‖ = 2‖N‖. To compute ‖N‖, recall that N is tessellated by four
copies of the 3-dimensional permutahedron 53, with the collection of square faces
of all the 53 forming the boundary tori of N . This implies that the interior of N
is tessellated by copies of 53 with the square boundary faces removed. Next we
claim that Int(N ) supports a finite volume hyperbolic metric.

Under this tessellation, each interior edge of N lies on exactly four of the53. Let
O⊂ H3 denote the regular ideal hyperbolic octahedron. This octahedron has all six
vertices on the boundary at infinity of H3, and has all incident pairs of faces forming
angles of π/2. A copy of the permutahedron53 can be obtained by removing small
horoball neighborhoods of each of the ideal vertices. Each hexagonal face of 53

corresponds to a triangular face of O. So one can form a manifold N 0 by gluing
together four copies of O, using the same gluing pattern as in the formation of N .
Using isometries to glue together the sides of O, one obtains a metric on N 0 which
is hyperbolic, except possibly along the 1-skeleton of N 0. To check whether or not
one has a singularity along the edges of N 0, one just needs to calculate the total
angle transverse to the edge. But recall that along each edge in N 0, one has four
copies of O coming together. Since each edge in O has an internal angle of π/2,
the total angle transverse to each edge of N 0 is equal to 2π . We conclude that N 0

supports a complete hyperbolic metric, with hyperbolic volume = 4V8.
N is obtained from N 0 by removing a neighborhood of the ideal vertices in each

O in the tessellation of N 0. This means that N is obtained from the noncompact,
finite volume, hyperbolic manifold N 0 by truncating the cusps. It follows that
Int(N ) is diffeomorphic to N 0. Since cutting M open along the collection of tori
results in two copies of Int(N )= N 0, a manifold supporting a hyperbolic metric, we
have that this is exactly the geometric decomposition of M predicted by Thurston’s
geometrization conjecture (cf. [Davis 1987, page 105, footnote 2]). Our discussion
above implies that ‖M‖ = 2 Vol(N 0)/V3 = 8V8/V3, completing the proof. �
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RELATIVELY MAXIMUM VOLUME RIGIDITY IN
ALEXANDROV GEOMETRY

NAN LI AND XIAOCHUN RONG

Given compact metric spaces X and Z with Hausdorff dimension n, if there
is a distance-nonincreasing onto map f : Z → X , then the Hausdorff n-
volumes satisfy vol(X)≤ vol(Z). The relatively maximum volume conjecture
says that if X and Z are both Alexandrov spaces and vol(X) = vol(Z), X is
isometric to a gluing space produced from Z along its boundary ∂Z and f
is length-preserving. We partially verify this conjecture and give a further
classification for compact Alexandrov n-spaces with relatively maximum
volume in terms of a fixed radius and space of directions. We also give
an elementary proof for a pointed version of the Bishop–Gromov relative
volume comparison with rigidity in Alexandrov geometry.

Introduction

Let Z be a compact metric space with Hausdorff dimension α. Consider all com-
pact metric spaces X with Hausdorff dimension α such that there is a distance-
nonincreasing onto map f : Z → X . We let “vol” denote the Hausdorff measure
(or volume) in the top dimension. Then vol X ≤ vol Z . A natural question is to
determine X (in terms of Z ) when vol X = vol Z . We refer to this as a relatively
maximum volume rigidity problem.

A possible answer to the relatively maximum volume rigidity problem is closely
related to the regularity of underlying geometric and topological structures. For
instance, if Z and X are closed Riemannian n-manifolds, f is an isometry (see
Corollary 0.2). On the other hand, taking any measure-zero subset S in Z (a
Riemannian manifold) and identifying S with a point p ∈ S, the projection map,
Z → X = Z/(S ∼ p), is a distance-nonincreasing onto map, and it is hopeless to
have some rigidity on Y in terms of X .

In this paper, we will study the relatively maximum volume rigidity problem in
Alexandrov geometry, partly because an Alexandrov space X has a “right” geo-
metric structure for this problem (see Conjecture 0.1 below). For instance, for

Both authors are partially supported by NSF grant DMS 0805928 and by a research fund from Capital
Normal University.
MSC2010: 53C21, 53C23, 53C24.
Keywords: volume, radius, Alexandrov space, rigidity, stability .
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p ∈ X , the gradient-exponential map, g expp : Tp X → X , becomes a distance-
nonincreasing map, when Tp X is equipped with the κ-cone metric via the cosine
law on the space form S2

κ ; see [Burago et al. 1992]. When taking Z to be a closed
r -ball at the vertex (for κ > 0, r ≤ π/(2√κ) or r = π/√κ), the relatively volume
rigidity problem (see Theorem B) indeed extends the (absolutely) maximum radius-
volume rigidity theorem proved in [Grove and Petersen 1992]; see Theorem 0.3.

The recent study of Alexandrov spaces was initiated by Burago, Gromov, and
Perelman [Burago et al. 1992] and has gotten a lot of attention lately. An Alexan-
drov space with curvature curv≥κ is a length metric space such that each point has
a neighborhood in which the Toponogov triangle comparison holds with respect
to the space form of constant curvature κ . In the rest of the paper, we will freely
use basic notions on an Alexandrov space from [Burago et al. 1992] and [Petrunin
2007]; for example, the space of directions, the gradient-exponential maps, and
(n, δ)-strained points, among others. Let Alexn(κ) denote the collection of com-
pact Alexandrov n-spaces with curv≥ κ .

Note that the boundary gluing will automatically yield a distance-nonincreasing
onto (projection) map, which also preserves the volume (see Examples 2.14 and
2.15). We propose the following relatively maximum volume rigidity conjecture
for Alexandrov spaces.

Conjecture 0.1. Consider Z , X ∈Alexn(κ), and let f : Z→ X be a distance-non-
increasing onto map. If vol Z = vol X , X is isometric to a gluing space produced
from Z along its boundary ∂Z and f is length-preserving. In particular, Z is
isometric to X if ∂Z =∅ or if f is injective.

Our goal in this paper is to partially verify Conjecture 0.1 and give a classifica-
tion for the boundary gluing maps in a special case (see Theorem A, Corollary 0.2,
and Theorem B).

We now begin to state the main results. Throughout this paper, τ(δ) denotes a
function in δ such that τ(δ)→ 0 as δ→ 0. Our first result verifies Conjecture 0.1
for the case where f preserves non-(n, δ)-strained points up to an error τ(δ). For
X ∈ Alexn(κ) and δ > 0, let X δ ⊆ X denote the set of all (n, δ)-strained points.
Then a small ball centered at an (n, δ)-strained point is almost isometric to an open
subset in Rn [Burago et al. 1992].

Theorem A. Let Z , X be Alexandrov n-spaces (not necessarily complete) with
curvature curv ≥ κ and vol Z = vol X. Suppose that f : Z → X is a distance-
nonincreasing onto map such that for any δ > 0, f −1(X δ) ⊆ Z τ(δ). Then f is an
isometry.

A point z in Z is called regular if the space of directions6x is isometric to a unit
sphere. Clearly, the space Z with all points regular is a topological manifold, but
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Z may not be isometric to any Riemannian manifold (for example, the doubling
of two flat disks). Theorem A includes the following case:

Corollary 0.2. Let Z , X ∈ Alexn(κ) with vol Z = vol X and all points in Z reg-
ular (for example, Z is a Riemannian manifold). If f : Z → X is a distance-
nonincreasing onto map, f is an isometry.

In Alexandrov geometry, perhaps the most natural distance-nonincreasing onto
map is the gradient-exponential map g expp : Cκ(6p)→ X , p ∈ X ∈ Alexn(κ),
where Cκ(6p) denotes the tangent cone Tp X equipped with a κ-cone metric via
the cosine law in S2

κ [Burago et al. 1992]. Since g expp is distance-nonincreasing
and preserves any r -ball, we immediately get the pointed version of the Bishop
type volume comparison:

vol BR(p)≤ vol C R
κ (6p),

where C R
κ (6p) denotes the open R-ball in Cκ(6p) at the vertex õ. We show that

when the equality holds, g expp will satisfy the conditions in Theorem A (Lemmas
2.4 and 2.5) and thus open ball C R

κ (6p) is isometric to BR(p) with respect to
intrinsic metrics (see Theorem 2.1).

We prove an important case of Conjecture 0.1, which gives a classification of
Alexandrov spaces with relatively maximum volume: given any κ , R > 0 and 6 ∈
Alexn−1(1), let AR

κ (6) be the collection of Alexandrov n-spaces X 3 p satisfying

curv≥ κ, X = B R(p), 6p =6.
Then vol X ≤ vol C R

κ (6)= v(6, κ, R). When vol X = v(6, κ, R), we say that X
has the relatively maximum volume.

Theorem B (relatively maximum volume rigidity). Let X ∈ AR
κ (6) such that

vol X = v(6, κ, R). Then X is isometric to C R
κ (6)/x ∼ φ(x) and R ≤ π/(2√κ)

or R = π/√κ for κ > 0, where φ : 6 × {R} → 6 × {R} is an isometric invo-
lution (which can be trivial). Conversely, given any isometric involution φ on 6,
C R
κ (6)/x ∼ φ(x) ∈AR

κ (6) and has the relatively maximum volume.

Theorem B verifies Conjecture 0.1 for the case f = g expp : Z =C R
κ (6p)→ X ,

together with a further classification for the boundary identification. Note that
Theorem B implies that if k > 0 and π/(2

√
κ) < R < π/

√
κ ,

max{vol X, X ∈AR
κ (6)}< v(6, κ, R).

For the case where X is a limit of Riemannian manifolds, a classification was given
in [Grove and Petersen 1992]. A general classification is more complicated, and
we wish to discuss it elsewhere.
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As mentioned earlier, Theorem B extends this radius-volume rigidity theorem:

Theorem 0.3 [Grove and Petersen 1992]. Let Mi
dG H−→ X be a Gromov–Hausdorff

convergent sequence of Riemannian n-manifolds such that

secMi ≥ κ, rad(Mi )= R, vol Mi → vol C R
κ (S

n−1
1 ),

where rad(Mi )=min{r, Br (p)=Mi , p ∈Mi }. Then R≤π/(2√κ) or R=π/√κ
for κ > 0, and X is isometric to the quotient of C R

κ (S
n−1
1 ) by the equivalence rela-

tion x ∼φ(x), where φ : ∂C R
κ (S

n−1
1 )→ ∂C R

κ (S
n−1
1 ) is either the antipodal map or a

reflection in a totally geodesic hypersurface. Moreover, each Mi is homeomorphic
to an n-sphere or a real projective n-space.

Note that vol X = vol C R
κ (S

n−1
1 ). Choosing pi ∈ Mi such that Mi = B R(pi ),

pi → p ∈ X and 6p = Sn−1
1 . By now Theorem B implies the rigidity part

of Theorem 0.3 (a generalization of the homeomorphic rigidity in Theorem 0.3
will be given in Theorem C). Theorem B also implies the following extension of
Theorem 0.3.

Theorem 0.4 [Shteingold 1994]. Let X ∈ Ar
κ(S

n−1
1 ) with vol X = v(Sn−1

1 , κ, r).
Then X = Cr

κ(S
n−1
1 )/x ∼ φ(x), x ∈ Sn−1

1 × {r}, where φ is the reflection on an
`-dimensional totally geodesic subsphere, 1≤ `≤ n (φ is trivial for `= n.)

A further problem concerning Theorem B is to determine the homeomorphic
type of X . We have solved this problem for X being a topological manifold (see
Theorem 0.3).

Theorem C. Given 6 ∈ Alexn−1(1), κ and R > 0, there exists a constant ε =
ε(6, κ, R) > 0 such that if X ∈ AR

κ (6) with vol X > v(6, κ, R) − ε and X
is a closed topological manifold, X is homeomorphic to Sn

1 or a real projective
space RPn .

Note that 6 in Theorem C is not necessarily a topological manifold; for in-
stance, X = C1(C1(N )), the twice spherical suspensions over a Poincaré sphere
N , satisfies Theorem C, but 6 = C1(N ) is not a topological manifold. However,
X is homeomorphic to a 5-sphere, by [Kapovitch 2002].

In the proof of Theorem B, we establish a pointed version of the Bishop volume
comparison with rigidity (Theorem 2.1). In general, we will prove the following
pointed version of the Bishop–Gromov relative volume comparison with rigidity.

For p ∈ X ∈ Alexn(κ), let Ar
R(p) denote the annulus {x ∈ X : r < |px | < R},

0≤ r < R, and let Ar
R(6p) denote the corresponding annulus in Cκ(6p).

Theorem D (pointed Bishop–Gromov relative volume comparison). Let

X ∈ Alexn(κ).
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Then, for any p ∈ X and R3 > R2 > R1 ≥ 0,

vol AR1
R3
(p)

vol AR2
R3
(p)
≥ vol AR1

R3
(6p)

vol AR2
R3
(6p)

, or equivalently,
vol AR1

R2
(p)

vol AR2
R3
(p)
≥ vol AR1

R2
(6p)

vol AR2
R3
(6p)

.

In particular,
vol BR1(p)
vol BR3(p)

≥ vol C R1
κ (6p)

vol C R3
κ (6p)

.

If any of these inequalities becomes an equality, the open ball BR3(p) is isometric
to C R3

κ (6p) with respect to the intrinsic metrics.

Remark 0.5. The Riemannian version of the Bishop–Gromov relative comparison
for Alexandrov spaces (that is, the model space is Sn

κ ) was stated in [Burago et al.
1992]; compare [Burago et al. 2001]. A notable difference between Theorem D
and the Riemannian version is in the rigidity part: the latter is the absolute max-
imum volume rigidity and its model space is unique, while the former may be
viewed as the relatively maximum volume rigidity (relatively to 6p), whose model
spaces are of infinitely many possibilities. Moreover, the proof of Theorem D is
considerably difficult; for instance, a dimension-inductive argument (which works
in the Riemannian version) does not work.

Remark 0.6. By Lemma 2.1 in [Li 2010], we see that

vol C R
κ (6p)

vol Cr
κ(6p)

= vol BR(Sn
κ )

vol Br (Sn
κ )
,

and thus the monotonicity part of Theorem D coincides with that in the Riemannian
version. We point out that our proof of the volume ratio monotonicity in Theorem D
is different from one suggested in [Burago et al. 1992]; we take an elementary
(calculus) approach via finding an (unconventional) partition suitable for triangle
comparison arguments, while a proof in [Burago et al. 2001] relies on a coarea
formula for Alexandrov spaces. We point out that in the case where κ ≤ 0, a weak
form of the above monotonicity was previously obtained in [Liu and Shen 1994,
Proposition 1].

We now give some indication on our approach to Theorem A and Theorem B. In
the proof of Theorem A, we show that f is a homeomorphism and f preserves the
length of curves. Based on basic properties of an Alexandrov space (not necessarily
complete), any curve c in X can be approximated by piecewise geodesics ci in X δi

(δi → 0) such that lengths L(ci ) → L(c). Thus, it suffices to show that when
restricting to f −1(X δ) and X δ, respectively, f is injective and f −1 preserves the
length of any geodesic up to an error τ(δ)→ 0 as δ→ 0, respectively. We derive
this with a volume formula for tube-like ε-balls in X δ, which can be treated as a
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replacement of the volume formula of a thin tube around a curve. The proof of the
volume formula is based on the fact that a small ball at an (n, δ)-strained point can
be almost isometrically embedded into Rn; see [Burago et al. 1992].

Our approach to Theorem B consists of two steps: first, establishing the open
ball rigidity: the gradient-exponential map g expp : C R

κ (6p) → BR(p) ⊂ X is
an isometry with respect to the intrinsic distance. We achieve this by showing
that g expp satisfies the condition in Theorem A; see Lemmas 2.4 and 2.5. Con-
sequently, X = C R

κ (6p)/ ∼, where ∼ is a relation on 6p × {R}: x̃ ∼ ỹ if and
only if g expp(x̃) = g expp(ỹ). Observe that if x̃ 6= ỹ ∈ 6p × {R} with x̃ ∼ ỹ,
then the g expp-images of the two geodesics [õx̃] and [õ ỹ] together form a lo-
cal geodesic at g expp x̃ = g expp ỹ. Because a geodesic does not bifurcate, any
equivalent class contains at most two points and thus we obtain an involution
φ : 6p × {R} → 6p × {R} such that X = C R

κ (6)/x̃ ∼ φ(x̃), x̃ ∈ 6p × {R}. The
main difficulty is to show that φ is an isometry. Our main technical lemma says
that φ is almost 1-bi-Lipschitz up to a uniform error:

∣∣∣∣
|φ(x̃)φ(ỹ)|
|x̃ ỹ| − 1

∣∣∣∣≤ 20 x̃ ỹ|

for |x̃ ỹ| small (see Lemma 2.12). This implies that φ is continuous and preserves
the length of a path, and thus φ is distance-nonincreasing. Consequently, φ is an
isometry since φ is an involution. Note that without the curvature lower bound,
this does not, in general, imply that the metric on X =C R

κ (6)/x̃ ∼ φ(x̃) coincides
with the induced metric. For example, X =C1

0(S
1
1)/(x̃ ∼ x̃)= B1(R

2) is equipped
with the length metric and coincides with the Euclidean metric when restricted to
the interior, and L(γ ) is half of the Euclidean arc length for any γ ⊂ ∂X . Our
proof relies on the curvature lower bound as well as the cone metric.

Let L p(X) = g expp(6 × {R}), which locally divides a tubular neighborhood
of L p(X) into two components U1, U2. The main difficulty in proving the above
inequality is that a geodesic in X connecting two points a, b ∈ L p(X) may in-
tersect with L p(X) at many points other than a, b (called crossing points). We
show that if a geodesic is not contained in L p(X), the crossing points are discrete
(Corollary 2.9). Thus we can reduce the proof to the case where c1=[ab]⊂U1 has
no crossing point. It’s sufficient to construct a noncrossing piecewise intrinsic geo-
desic c2⊂U2 connecting a, b, and show that length(c2) is close to length(c1)=|ab|
up to a second order error (Lemma 2.12).

We remark that the present proof, in an essential way, relies on the κ-cone metric
structure; and we believe that establishing a similar inequality in general will be
the main obstacle in Conjecture 0.1.

Theorems A, B, C and D are proved in Sections 1, 2, 3 and 4, respectively.
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1. Proof of Theorem A: (n, δ)-strained isometries

Let f : Z→ X be as in Theorem A. We will establish that f is an isometry through
the following properties:

(i) If a distance-nonincreasing onto map f preserves the volume of the total
spaces, then f and f −1 preserve volumes of any subsets (see Lemma 1.1).

(ii) Based on a local bi-Lipschitz embedding property (see Lemma 1.2), we show
that for δ suitably small, f is injective on f −1(X δ)⊆ Z τ(δ). In particular, for
any curve c ⊂ X δ, f −1(c)⊆ Z τ(δ) is a curve (see Lemma 1.3).

(iii) Our main technical lemma is a volume formula for a tube of ε-balls (which
can be treated as a replacement for an ε-tube around a curve, see Lemma 1.4).
Together with (i) and (ii), this formula implies that f −1 preserves the length
of any geodesic in X δ up to an error τ(δ). Because for any small δ < 1/(8n),
the set X δ is dense in X (see Lemma 1.6), we are able to show that f is also
distance nondecreasing and thus f is an isometry.

Lemma 1.1. Let f : Z → X be a distance-nonincreasing onto map of two metric
spaces of equal Hausdorff dimension. If vol X = vol Z , then, for any subset A⊆ Z
and B ⊆ X ,

vol A = vol f (A), vol B = vol f −1(B).

Proof. We argue by contradiction. If vol A > vol f (A), then

vol Z = vol A+ vol(Z − A) > vol f (A)+ vol f (Z − A)≥ vol f (Z)= vol X,

a contradiction. Similarly, one can check that vol f −1(B)= vol B. �

Let X δ(ρ) denote the union of points with an (n, δ)-strainer {(ai , bi )} of radius
ρ > 0, where ρ = min

1≤i≤n
{|pai |, |pbi |}> 0.

Lemma 1.2 [Burago et al. 1992, Theorem 9.4]. Let X ∈Alexn(κ). If p∈ X δ(ρ), the
map ψ : X→Rn defined by ψ(x)= (|a1x |, . . . , |anx |) maps a small neighborhood
U of p τ(δ, δ1)-almost isometrically onto a domain in Rn , that is,

∣∣|ψ(x)ψ(y)| − |xy|∣∣< τ(δ, δ1)|xy|
for any x, y ∈ U , where δ1 = ρ−1 diam(U ). In particular, ψ is a τ(δ)-almost
isometric embedding when restricting to Bδρ(p).

A consequence of Lemma 1.2 is that

1− τ(δ)≤ vol Bε(p)
vol Bε(Rn)

≤ 1+ τ(δ)

for any p ∈ X δ(ρ) and ε ≤ δρ.
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Lemma 1.3. Let the assumptions be as in Theorem A. Then f : f −1(X δ)→ X δ

is injective. Consequently, if γ ⊂ X δ is a continuous curve, f −1(γ ) is also a
continuous curve.

Proof. We argue by contradiction, assuming z1 6= z2 ∈ f −1(X δ) such that f (z1)=
f (z2) = x . We may assume that z1 and z2 have τ(δ)-strainers of radius ρ > 0.
Choose 4ε < |z1z2| and ε < δρ. By Lemma 1.1 and the above consequence of
Lemma 1.2, we get

1= vol f −1(Bε(x))
vol Bε(x)

≥ vol Bε(z1)+ vol Bε(z2)

vol Bε(x)
≥ 2(1− τ(δ)),

a contradiction. �

We now develop a formula which estimates the volume of an ε-ball tube with a
higher order error. Let x1, x2, . . . , xN+1 be N+1 points in X δ(ρ). We first give an
estimate of the volume of the ε-ball tube

⋃N+1
i=1 Bε(xi ) in terms of

∑N
i=1 |xi xi+1|

and ε, δ with errors.

Lemma 1.4 (volume of an ε-ball tube). Let X ∈ Alexn(κ) and xi ∈ X δ(ρ), i =
1, 2, . . . , N+1 satisfy that 0< |xi xi+1|<2ε�δρ and Bε(xi )∩Bε(x j )∩Bε(xk)=∅
for i 6= j 6= k. Then the volume of the ε-ball tube

⋃N+1
i=1 Bε(xi ) (see Figure 1)

satisfies

(1-1) (1+ τ(δ)) vol
N+1⋃

i=1

Bε(xi )= vol Bε(Rn)

+ 2ε vol Bε(Rn−1)

N∑

i=1

∫ π/2

θi

sinn(t) dt,

where θi ∈ [0, π/2] such that cos θi = |xi xi+1|/(2ε). If , in addition, |xi xi+1| ≤ ε2

for all 1≤ i ≤ N ,

(1-2) (1+ τ(δ)) vol
N+1⋃

i=1

Bε(xi )= vol Bε(Rn)

+ vol Bε(Rn−1)

N∑

i=1

|xi xi+1| + O(εn+1)

N∑

i=1

|xi xi+1|.

Because Bε(xi−1)∪ Bε(xi )∪ Bε(xi+1)⊂ Bδρ(xi ), which is τ(δ)-almost isomet-
rically embedded into Rn , one can divide

⋃N+1
i=1 Bε(xi ) into small pieces 0±(xi ),

whose volumes are (1+τ(δ))-proportional to the volumes of the following “trape-
zoidal balls”

0
h±i
ε (R

n)

in Rn . This allows us to reduce the calculation to Euclidean space.
We define the trapezoidal ball 0h

r (R
n) in Rn+ = {(x1, x2, . . . , xn) : xn ≥ 0} in the

following way. Let u ∈ Rn+ be a point with |ou| = h ≤ r . Then the hyper plane H
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Bδρ(xi )

N+1⋃

i=1

Bǫ(xi )

xi−1

xi

xi+1
x1

xN+1

Ŵ+(xi )Ŵ−(xi )

A
−(x1) A

+(xN+1)

Figure 1

passing through u and perpendicular to −→ou divides the half ball Br (R
n)∩Rn+ into

two subsets. Let 0h
r (R

n) be the subset which contains the origin (see Figure 3).
It’s easy to see that vol0h

r (R
n) depends only on h and r , and not on the direction−→ou, as long as H ∩ Br (R

n)⊂ Rn+.

Lemma 1.5. Let 0h
r (R

n) be a trapezoidal ball defined as above. Then

vol0h
r (R

n)= r vol Br (R
n−1)

∫ π/2

θ

sinn(t) dt,

where θ ∈ [0, π/2] such that r cos θ = h.

Proof. Let s=r cos t ∈[0, h] be the parameter for the height with the corresponding
angle t ∈ [θ, π/2]. Then

vol0h
r (R

n)=
∫ h

0
vol Br sin t(R

n−1)ds =
∫ π/2

θ

vol Br sin t(R
n−1)r sin(t)dt

= r vol Br (R
n−1)

∫ π/2

θ

sinn(t)dt. �

Proof of the volume formula, Lemma 1.4. Because Bε(xi ) ∩ Bε(xi+1) 6= ∅ and
Bε(xi )∩ Bε(x j )∩ Bε(xk)=∅ for any i 6= j 6= k, we can decompose

⋃N+1
i=1 Bε(xi )

as the following (see Figure 2): let

A+(xi )= {q ∈ Bε(xi ) : |qxi | ≤ |qxi+1|}, A−(xi )= {q ∈ Bε(xi ) : |qxi | ≤ |qxi−1|}.
For i = 2, 3, . . . , N , let

H+(xi )= A+(xi )∩ A−(xi+1)= {q ∈ Bε(xi )∩ Bε(xi+1) : |qxi | = |qxi+1|},
H−(xi )= A−(xi )∩ A+(xi−1)= {q ∈ Bε(xi )∩ Bε(xi−1) : |qxi | = |qxi−1|},
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Ŵh

r
(Rn)

θ

r

h

o

u

θ
rh

o

u

Figure 2

and

0+(xi )=
{
q ∈ A+(xi )∩ A−(xi ) : d(q, H+(xi ))≤ d(q, H−(xi ))

}
,

0−(xi )=
{
q ∈ A+(xi )∩ A−(xi ) : d(q, H+(xi ))≥ d(q, H−(xi ))

}
.

By the construction,

N+1⋃

i=1

Bε(xi )= A−(x1)∪
( N⋃

i=2

0±(xi )

)
∪ A+(xN+1).

Note that H±(xi ), i = 2, . . . , N consist of all the possible intersections of any two
of A−(x1), 0±(xi ), i = 2, . . . , N , and A+(xN+1) and vol H±(xi )= 0. We have

(1-3) vol
N+1⋃

i=1

Bε(xi )

= vol A−(x1)+ vol A+(xN+1)+
N∑

i=2

vol0+(xi )+
N∑

i=2

vol0−(xi ).

Because Bε(xi−1)∪ Bε(xi )∪ Bε(xi+1) ⊂ Bδρ(xi ), which is homeomorphically
and τ(δ)-almost isometrically embedded into Rn , we have that

(1+ τ(δ)) vol0±(xi )= vol0
h±i
ε (R

n),

(1+ τ(δ)) vol A+(x1)= 1
2 vol Bε(Rn)+ vol0

h+1
ε (R

n),

(1+ τ(δ)) vol A−(xN+1)= 1
2 vol Bε(Rn)+ vol0

h−N+1
ε (Rn),

where h+i = 1
2 |xi xi+1|, h−i = 1

2 |xi xi−1|. Note that it’s our convention that the same
symbol τ(δ) may represent different functions of δ, as long as τ(δ)→ 0 as δ→ 0.
Together with (1-3) and the fact that h+i = h−i+1, we get

(1-4) (1+ τ(δ)) vol
N+1⋃

i=1

Bε(xi )= vol Bε(Rn)+ 2
N∑

i=1

vol0
h+i
ε (R

n).
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Let θi ∈ [0, π/2] such that cos θi = h+i /ε= |xi xi+1|/(2ε). By Lemma 1.5, we have

vol0
h+i
ε (R

n)= ε vol Bε(Rn−1)

∫ π/2

θi

sinn(t) dt.

Plugging this into (1-4), we get (1-1).
To get (1-2), we need to write

∫ π/2
θi

sinn(t) dt in terms of |xi xi+1|. Let

g(s)=
∫ π/2

θ

sinn(t) dt,

where θ ∈ [0, π/2] with cos θ = s/(2ε). Noting that θ = π/2 if and only if s = 0,
we have g(0)= 0. Furthermore,

g′(s)=− sinn θ · dθ
ds
=− sinn θ · 1

−2ε sin θ
= sinn−1 θ

2ε
;

g′′(s)= 1
2ε
(n− 1) sinn−2 θ cos θ · 1

−2ε sin θ
= n−1
−4ε2 sinn−3 θ cos θ;

and thus g′(0)= 1/(2ε), g′′(0)= 0, and g′′′(0)= cn/ε
3. The Taylor expansion of

g at s = 0 is

g(s)=
∫ π/2

θ

sinn(t) dt = 0+ s
2ε
+ 1
ε3 · O(s3).

Letting s = |xi xi+1| ≤ ε2, we get
∫ π/2

θi

sinn(t) dt = 1
2ε
|xi xi+1| + O(ε)|xi xi+1|.

Plugging this into (1-1), we get (1-2). �

In the rest of this section we assume that f : Z→ X is a distance-nonincreasing
onto map such that f −1(X δ) ⊂ Z τ(δ). By Lemma 1.3, f is homeomorphic on
f −1(X δ).

Lemma 1.6. Let the assumptions be as in Theorem A. Let x, y ∈ X δ. For δ > 0
sufficiently small, there exists a small constant c= c(ρ, δ)> 0 such that if |xy| ≤ c,
| f −1(x) f −1(y)| ≤ 2|xy|.
Proof. Assume that |xy| = ε� δρ and | f −1(x) f −1(y)|> 2ε. Consider the metric
balls Bε(x) and Bε(y). By Lemma 1.4,

(1+ τ(δ)) vol(Bε(x)∪ Bε(y))

= vol Bε(Rn)+ 2ε vol Bε(Rn−1)

∫ π/2

π/3
sinn(t) dt + O(εn+1).

Since Bε( f −1(x))∩ Bε( f −1(y))=∅, we have

(1+ τ(δ)) vol(Bε( f −1(x))∪ Bε( f −1(y)))= 2 vol Bε(Rn).
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Because f is distance-nonincreasing,

Bε( f −1(x))∪ Bε( f −1(y))⊂ f −1(Bε(x)∪ Bε(y)).

Together with the fact that f −1 is volume-preserving, we get

1= vol f −1(Bε(x)∪ Bε(y))
vol(Bε(x)∪ Bε(y))

≥ (1− τ(δ)) · 2 vol Bε(Rn)

vol Bε(Rn)+ 2ε vol Bε(Rn−1)
∫ π/2
π/3 sinn(t) dt + O(εn+1)

= (1− τ(δ)) · 2 ∫ π/20 sinn(t) dt
∫ π/2

0 sinn(t) dt + ∫ π/2
π/3 sinn(t) dt + O(ε)

.

(See Lemma 1.5, θ = 0.) This leads to a contradiction for sufficiently small ε
and δ. �

In the proof of Theorem A, we will need the following result.

Lemma 1.7 [Burago et al. 1992, 10.6.1]. Let X ∈Alexn(κ). For a fixed sufficiently
small δ > 0, the union of interior points which do not admit any (n, δ)-strainer has
Hausdorff dimension ≤ n− 2. In particular, X δ is dense.

Proof of Theorem A. Since f is distance-nonincreasing, it suffices to show that f
is distance nondecreasing, that is, for any ã, b̃ ∈ Z , |ab| ≥ |ãb̃|, where a = f (ã)
and b = f (b̃).

For any small ε1, by Lemma 1.7, there are ãε1, b̃ε1 ∈ Z τ(δ), aε1 = f (ãε1), bε1 =
f (b̃ε1) ∈ X δ, such that |aaε1 | ≤ |ããε1 |< ε1, |bbε1 | ≤ |b̃b̃ε1 |< ε1.

Case 1. Assume that there exists a minimal geodesic [aε1bε1] ⊂ X . Then, because
the spaces of directions are isometric along the interior of a geodesic, [aε1bε1]⊂ X2δ

[Petrunin 1998]. By Lemma 1.3 (which will be frequently used without mention),
f −1([aε1bε1]) is also a continuous curve. Because [aε1bε1] is compact, we may let
ρ > 0 such that [aε1bε1] ⊂ X2δ(ρ) and f −1([aε1bε1]) ⊂ Z τ(δ)(ρ). Let {xi }N+1

i=1 be
an ε-partition of [aε1bε1], where x1 = aε1 , xN+1 = bε1 for ε� δρ. Because [aε1bε1]
is a geodesic, Lemma 1.4 can be applied on the partition {xi }N+1

i=1 . Thus we get

(1+ τ(δ)) vol
N+1⋃

i=1

Bε(xi )

= vol Bε(Rn)+ vol Bε(Rn−1)

N∑

i=1

|xi xi+1| + O(εn+1)

N∑

i=1

|xi xi+1|

= vol Bε(Rn−1) |aε1bε1 | + O(εn).

Let zi = f −1(xi ). By Lemma 1.6, |zi zi+1| ≤ 2|xi xi+1| = 2ε. Together with the fact
that f is distance-nonincreasing, one can easily check that

⋃N+1
i=1 Bε(zi ) satisfies
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the condition of Lemma 1.4. Then we have

(1+ τ(δ)) vol
N+1⋃

i=1

Bε(zi )= vol Bε(Rn−1)

N∑

i=1

|zi zi+1| + O(εn).

Because f is distance-nonincreasing and volume-preserving,

1= vol f −1
(⋃N+1

i=1 Bε(xi )
)

vol
⋃N+1

i=1 Bε(xi )
≥ vol

⋃N+1
i=1 Bε(zi )

vol
⋃N+1

i=1 Bε(xi )

= (1− τ(δ)) vol Bε(Rn−1)
∑N

i=1 |zi zi+1| + O(εn)

vol Bε(Rn−1) |aε1bε1 | + O(εn)
,

= (1− τ(δ))
∑N

i=1 |zi zi+1| + O(ε)
|aε1bε1 | + O(ε)

≥ (1− τ(δ)) |ãε1 b̃ε1 | + O(ε)
|aε1bε1 | + O(ε)

.

Letting ε→ 0, we get

|aε1bε1 | ≥ (1− τ(δ))|ãε1 b̃ε1 |.
Case 2. Assume that there is no minimal geodesic in X δ from aε1 to bε1 (since
X may not be complete). Because spaces of directions along the interior of a
geodesic are isometric to each other [Petrunin 1997], we may assume a curve c1

in X δ from aε1 to bε1 such that L(c1) < |aε1bε1 | + ε1. Since c1(t) is a compact
subset in the open set X δ, we may assume η > 0 such that an η-tube of c1 is also
contained in X δ. Consequently, we may assume a piecewise geodesic c in X δ such
that L(c)≤ L(c1)≤ |aε1bε1 |+ε1. Applying Case 1 to each geodesic segment of c,
we conclude that

|aε1bε1 | ≥ L(c)− ε1 ≥ (1− τ(δ))|ãε1 b̃ε1 | − ε1.

In either Case 1 or Case 2, we have

|ab| ≥ |aε1bε1 | − 2ε1 ≥ (1− τ(δ))|ãε1 b̃ε1 | − 3ε1

≥ (1− τ(δ)) (|ãb̃| − 2ε1)− 3ε1.

Letting δ→ 0, ε1→ 0, we get |ab| ≥ |ãb̃|. �

2. Proof of Theorem B: Relatively maximum volume

Our proof of the classification part in Theorem B is divided into the following two
theorems: open ball rigidity (Theorem 2.1) and isometric involution (Theorem 2.2).
Recall that õ denotes the vertex of the cone C R

κ (6p) and thus g expp(õ)= p.
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Theorem 2.1. Under the assumptions of Theorem B,

g expp : C R
κ (6)→ BR(p)

is an isometry with respect to the intrinsic metrics. In particular, g expp = expp.

By Theorem 2.1, X = C R
κ (6p)/x ∼ x ′, where the equivalent relation x ∼ x ′ if

and only if expp x = expp x ′ and x, x ′ ∈6p×{R}.
Theorem 2.2. Let X =C R

κ (6p)/x ∼ x ′ ∈Alexn(κ) be defined as above. Then each
equivalent class contains at most two points. Moreover, the induced involution
φ :6p×{R} →6p×{R}, φ(x)= x ′ (where x ∼ x ′) is an isometry.

Recall that the induced gradient-exponential map g expp :C R
κ (6)→ B R(p)= X

is distance-nonincreasing and onto. Indeed, the open ball rigidity is essentially a
consequence of Theorem A and the general property that exp−1

p : X→ Tp X : exp−1
p

preserves (n, δ)-strained points up to a constant depending on δ (see Lemma 2.4).
In the proof, let’s recall the following property from [Burago et al. 1992]:

Lemma 2.3 [Burago et al. 1992, Lemmas 7.5 and 11.2]. Let p ∈ X ∈ Alexn(κ).
Then, for any δ > 0, there is a small neighborhood Up of p such that, for any
triangle4pab with a, b∈Up, each angle of4pab⊂ X differs from the comparison
angle of 4̃pab ⊂ S2

κ by less than δ.

Lemma 2.4. Let q ∈ X δ. Then for any p ∈ X , ↑q
p∈6τ(δ)p . Consequently,

exp−1
p (q) ∈ C R

κ (6p)
τ(δ).

Proof. Since q ∈ X δ, by Lemma 1.2, we may assume an (n, 2δ)-strainer {(ai , bi )}
for q1 ∈ [pq] and near q , such that bn = q, an ∈ [pq1]. Because the spaces of
directions are isometric along the interior of a geodesic [Petrunin 1998], there is
q ′ ∈ [pq] ∩Up which has an (n, τ (δ))-strainer {(a′i , b′i )}. By the same reason as
above, we can assume that a′n ∈ [pq ′] and b′n ∈ [q ′q].

In addition, we can assume that |q ′a′i |, |q ′b′i | are short so that a′i , b′i ∈ Up and
]a′i pq ′,]b′i pq ′ < 5δ. We claim that

{(↑a′i
p ,↑b′i

p
)}n−1

i=1

forms an (n− 1, τ (δ))-strainer at ↑q
p∈6p. It’s easy to see that

]a′i pq ′ = ]̃a′i pq ′+ τ(δ)= |a
′
i q
′|

|pq ′| + τ(δ).
Thus

cos ]̃ ↑a′i
p ↑q ′

p ↑x j
p = |a

′
i q
′|2+ |x j q ′|2− |a′i x j |

2|a′i q ′| |x j q| + τ(δ)= cos ]̃a′i q
′x j + τ(δ),

where i, j = 1, 2, . . . , n− 1, x j = a′j or b′j . �
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To conclude the open ball rigidity by applying Theorem A, we need to check
that g exp−1

p (X
δ)⊆ C R

κ (6p)
τ(δ). We do this by showing that g expp = expp when

vol X = v(6p, κ, R).

Lemma 2.5. If vol BR(p)= vol C R
κ (6p), the gradient exponential map is actually

an exponential map expp : C R
κ (6p)→ B R(p) which preserves the distance along

the radial direction.

Proof. Clearly, the map exp−1
p : B R(p)→C R

κ (6p) (If there is more than one image,
we will pick one) is distance nondecreasing. Because

vol C R
κ (6p)= vol X ≤ vol exp−1

p (X)≤ vol C R
κ (6p),

exp−1
p (X) is dense in C R

κ (6p). For any z ∈ C R
κ (6p), there is a sequence xi ∈ X ,

such that exp−1
p (xi ) = zi → z. Let expp : C R

κ (6p)→ X ; expp(z) = limi→∞ xi .
Such an expp is well defined, since if there is another sequence exp−1

p (x
′
i )= z′i→ z,

d( lim
i→∞

xi , lim
i→∞

x ′i )= lim
i→∞

d(xi , x ′i )≤ lim
i→∞

d(zi , z′i )= 0.

It’s clear that expp, defined as an extension of exp−1
p , is distance-nonincreasing.

Moreover, it preserves the distance along the radial direction.
We now show that any geodesic from p= expp(õ) to q = expp(q̃) ∈ BR(p) can

be extended. Therefore expp is a bijection, since geodesics do not bifurcate. Let
[õq̃] be the geodesic in C R

κ (6p) such that expp([õq̃]) = [pq], and q̃ ′ ∈ C R
κ (6p)

the extended point of [õq̃]. Then

|pq| + |qq ′| ≤ |õq̃| + |q̃q̃ ′| = |õq̃ ′| = |pq ′|,
which forces [pq] ∪ [qq ′] to be a geodesic. �

Proof of Theorem 2.1. For X ∈ AR
κ (6) with vol X = v(6, κ, R), by Lemmas 2.4

and 2.5, we see that expp :C R
κ (6)→ BR(p) is a distance-nonincreasing onto map

that satisfies the assumptions in Theorem A (note that expp :C R
κ (6p)→ B R(p)= X

may not satisfy the assumptions of Theorem A). �

In the proof of Theorem 2.2, our main technical lemma is Lemma 2.12. Let
φ : 6× {R} → 6× {R} be defined as in Theorem 2.2. We first observe that φ is
an involution. Let L p(X)= expp(6×{R})= {x ∈ X : |px | = R}.
Lemma 2.6. Let X = C R

κ (6)/x ∼ x ′ ∈ Alexn(κ) be defined as in Theorem 2.2.
For any q ∈ L p(X), if q̃1 6= q̃2 with expp(q̃1) = expp(q̃2) = q , then the loop
expp([õq̃1]) ∪ expp([õq̃2]) forms a local geodesic at q. Consequently, exp−1

p (q)
contains at most two points.

Proof. It’s clear that expp([õq̃i ]) are minimal geodesics, i = 1, 2. Let xi ∈ X
be a point on expp([õq̃i ]) and x̃i = exp−1

p (xi ), i = 1, 2. We claim that if x1, x2
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are both close enough to q , the geodesic [x1x2] intersects with L p(X). If not,
[x1x2] ⊂ BR(p). By the assumption, |x1x2|X = |x̃1 x̃2|C R

κ (6)
. Let x1, x2→ q . We

get that |x1x2|X → 0 and |x̃1 x̃2|C R
κ (6)
→ |q̃1q̃2|C R

κ (6)
> 0, a contradiction.

Let a ∈ [x1x2] ∩ L p(X). It remains to show that a = q . For i = 1, 2,

|xi a| ≥ |pa| − |pxi | = |pq| − |pxi | = |xi q|.
Thus

|x1q| + |x2q| ≤ |x1a| + |x2a| = |x1x2|,
which forces both of the above inequalities to be equalities, and thus a = q . �

As a corollary of Lemma 2.6, we conclude that for X ∈ AR
κ (6), κ > 0, and

π/(2
√
κ) < R < π/

√
κ , vol C R

κ (6) is not the optimal upper bound for vol X ; see
[Grove and Petersen 1992]. Equivalently, we have:

Corollary 2.7. Assume X ∈ AR
κ (6) with vol(X) = vol C R

κ (6) and κ > 0. Then
R ≤ π/(2√κ) or R = π/√κ . In the second case, X = Cκ(6) which is the k-
suspension of 6.

Proof. Assume π/(2
√
κ) < R < π/

√
κ . Let p ∈ X such that 6p = 6. It’s

clear that radp(X) = R. We claim that L p(X) = {q} has only one point. Then by
Lemma 2.6, 6p×{R}= exp−1

p (q) contains at most two points, a contradiction. Let
a 6= b∈ L p(X). Consider the triangle4pab and the compared triangle 4̃pab∈ S2

κ .
Take c ∈ [ab] and the corresponding c̃ ∈ [ãb̃] with |ac| = |ãc̃|. By the triangle
comparison, |pc| ≥ | p̃c̃|> R, a contradiction. Note that the case where R=π/√κ
follows from Theorem 2.1. �

It remains to show that φ is an isometry. The following lemma plays an impor-
tant role in the study of the angles in the gluing space X .

Lemma 2.8. Let a, b ∈ Cκ(6). Then ]apb = ]̃apb and ]pab = ]̃pab.

Proof. The proofs are essentially the same for different κ . For simplicity, we only
give a proof for κ = 0. Note that ]apb = ]̃apb by the definition of Cκ(6).

To see ]pab = ]̃pab, shortly extend the geodesic [pa] to a′ and apply the
cosine law to the triangles 4aa′b, 4pa′b, and 4pab. We get

|a′b|2 = |aa′|2+ |ab|2− 2|aa′| |ab| cos ]̃a′ab,(2-1)

|a′b|2 = |pa′|2+ |pb|2− 2|pa′| |pb| cos]apb(2-2)

= (|pa| + |aa′|)2+ |pb|2− 2(|pa| + |aa′|)|pb| cos]apb,

|ab|2 = |pa|2+ |pb|2− 2|pa| |pb| cos]apb.(2-3)
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Calculating (2-1)+ (2-3)− (2-2), we get

0= |ab| cos ]̃a′ab+ |pa| − |pb| cos]apb

≥ |ab| cos]a′ab+ |pa| − |pb| cos]apb

=−|ab| cos]pab+ |pa| − |pb| cos]apb.

Since ]pab ≥ ]̃pab and ]apb = ]̃apb, the above inequality implies

|pa| ≤ |ab| cos]pab+ |pb| cos]apb

≤ |ab| cos ]̃pab+ |pb| cos ]̃apb = |pa|,
which forces ]pab = ]̃pab. �

Corollary 2.9. Let x, y ∈ X be two points. If [xy] ∩ L p(X) 6= ∅, then either
[xy] ⊂ L p(X) or [xy] ∩ L p(X) is finite.

Proof. Let x /∈ L p(X). We show that [xy]∩ L p(X) is finite. Let a ∈ [xy]∩ L p(X)
be the accumulation point which is closest to x . Clearly a 6= x since x /∈ L p(X).
Thus there is a geodesic segment [ba] of [xy] with [ba] − {a} ⊂ BR(p). Since
|pb|< |pa| = R, by Lemma 2.8,

]pab = ]̃pab < π

2
.

On the other hand, because there are ai ∈ [xy] ∩ L p(X) with ai → a as i →∞
and |pa| = |pai | = R, by the first variation formula, we get

]pay = π
2
.

Therefore π = ]pab+]pay < π , a contradiction. �

As another corollary, we prove Theorem 2.2 for the special case κ > 0 and
R = π/(2√κ).
Corollary 2.10. Theorem 2.2 holds for the case κ > 0 and R = π/(2√κ).
Proof. Let x, y ∈ L p(X), x̃1, x̃2, ỹ1, ỹ2 ∈ 6×{R} with expp(x̃1)= expp(x̃2)= x ,
expp(ỹ1) = expp(ỹ2) = y. We will show that |x̃1 ỹ1|C R

κ (6)
= |x̃2 ỹ2|C R

κ (6)
. Assume

|x̃1 ỹ1|C R
κ (6)

> |x̃2 ỹ2|C R
κ (6)

. Then there is a point a /∈ L p(X) (take exp−1
p (a) close

to x1) such that [ay] ∩ L p(X) contains a point b 6= y. Because expp is distance-
nonincreasing and 6×{π/(2√κ)} is totally geodesic, [by] ⊂ L p(X), which con-
tradicts Corollary 2.9. �

Let Fix(φ) = {x̃ ∈ 6 × {R} : φ(x̃) = x̃} be the fixed points set. Let L1
p(X) =

expp(Fix(φ)) denote the image. Due to Lemma 2.6, let L2
p(X)= L p(X)− L1

p(X)
denote the points that are identified from exactly two points, that is, for any

x ∈ L2
p(X),
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exp−1(x)= {x̃+, x̃−} contains exactly two points.
In the rest of the proof of Theorem 2.2, by Corollaries 2.9 and 2.10 and their

proofs, we can always assume R < π/(2
√
κ) for κ > 0 and that for any x, y ∈ X ,

[xy] ∩ L p(X) is finite if it is not empty. Moreover, the following corollary shows
that ]xy[ ∩L p(X) ⊂ L2

p(X), where ]xy[ denotes the geodesic connecting x, y
without the end points.

Corollary 2.11. Let the assumption be as in Theorem 2.2. Assume R < π/(2
√
κ)

when κ > 0. For any x, y ∈ X , if q ∈ ]xy[ ∩L p(X), q ∈ L2
p(X).

Proof. Without losing generality, we assume x, y /∈ L p(X) and ]xy[ ∩L p(X)={q}.
If q ∈ L1

p(X), by Lemma 2.8, ]xqp = ]̃xqp < π/2 and ]yqp = ]̃yqp < π/2.
Thus ]xqp+]yqp < π , which contradicts the fact that [xy] is a geodesic. �

Now we are ready to prove our main technical lemma. Let x ∈ L2
p(X) and

{x̃+, x̃−} = exp−1
p (x) denote the preimage. Then there are exactly two geodesics

expp([õx̃+]), expp([õx̃−]) connecting x to p. To distinguish geodesics and angles,
we use the following notation.

• Let [px+] and [px−] denote expp([õx̃+]) and expp([õx̃−]) respectively.

In addition, for y ∈ L2
p(X) and exp−1

p (y)= {ỹ+, ỹ−}:
• let [x±y±] denote expp([x̃± ỹ±]);
• let |x±y±| denote the length of the geodesics [x±y±];
• let ]x± py± denote the angle between [px±] and [py±] at p;

• let ]px±y± denote the angle between [px±] and [x±y±] at x .

Lemma 2.12. Let the assumptions be as in Theorem 2.2. Assume R < π/(2
√
κ)

when κ > 0. Then, for any x̃ 6= ỹ ∈6×{R} with |x̃ ỹ| sufficiently small,
∣∣∣∣
|φ(x̃)φ(ỹ)|
|x̃ ỹ| − 1

∣∣∣∣≤ 20 |x̃ ỹ|.

Proof. For simplicity, we give a proof for the case κ = 0. The other cases can
be carried out similarly. Throughout the proof, we will frequently use lemmas 2.6
and 2.8 and Corollary 2.11 without mentioning it. We will also assume that for
any a, b ∈ X , [ab] ∩ L p(X) is finite if it is not empty.

Clearly, φ preserves the distance when x and y are both in L1
p(X). Let

x ∈ L2
p(X), y ∈ L p(X)

(if y ∈ L1
p(X), ỹ+ = ỹ− will denote the same point and the argument will still

go through). Because [xy] ∩ L p(X) is finite, not losing generality, assume [xy] =



RELATIVELY MAXIMUM VOLUME RIGIDITY IN ALEXANDROV GEOMETRY 405

p

x

u0

a1
b1

yu1

a2

α1
β1

[+]

[−]

Figure 3

[x−y−]. Thus]x− py−≤]x+ py+. Let β0=]x− py−. Since |x−y−|=2R sin β0
2

and |x+y+| = 2R sin(]x+ py+/2), it’s sufficient to show that

(2-4) 10β2
0 +β0 ≥ ]x+ py+.

Take u0 ∈ [px+] with |u0x+| = ε. Let [u0 y] be a geodesic. If

[(u0 y)] ∩ L p(X) 6=∅,

let a1(6= y) and b1 (b1 can be y) be the first and second intersection points in
[u0 y] ∩ L p(X) along the direction ↑y

u0 (see Figure 3). Assign ± to exp−1
p (a1),

exp−1
p (b1) such that ]pa+1 u0 < π/2. Let α1 = ]x+ pa+1 and β1 = ]a−1 pb−1 . In

the case of [(u0 y)] ∩ L p(X)=∅, we take b1 = a1 = y and β1 = 0.
Because [u0a+1 ] ∗ [a−1 b−1 ] ∗ [b+1 y] is a minimal geodesic, by triangle inequality,

|u0x | + |xy| ≥ |u0a+1 | + |a−1 b−1 | + |b1 y|.
This implies

(2-5) ε+ 2R sin
β0

2
≥ |u0a+1 | + 2R sin

β1

2
.

Applying the cosine law (the form in Lemma 4.7(5)) in 4pu0a1 with the angle
]u0 pa+1 = α1, we get that

|u0a+1 | =
√
ε2+ 4R(R− ε) sin2 α1

2
≥ 2(R− ε) sin

α1

2
.

Thus

(2-6) ε+ 2R sin
β0

2
≥ 2(R− ε) sin

α1

2
+ 2R sin

β1

2
.
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If [(u0 y)]∩L p(X)=∅, we stop here. If [(u0 y)]∩L p(X) 6=∅, we proceed with
u1 ∈ [pa+1 ] and |u1a1| = ε. Let [u1b1] be a geodesic. Again, if [(u1b1)]∩L p(X) 6=
∅, let a2(6= y) and b2 (can be b1) be the first and second intersection points in
[u1b1]∩L p(X) along the direction ↑b1

u1
. Assign± to exp−1

p (a2), exp−1
p (b2) such that

]pa+2 u1 <π/2. Let α2 =]a+1 pa+2 and β2 =]a−2 pb−2 . If [(u1b1)] ∩ L p(X)=∅,
a2=b2=b1, β2=0, and we stop the process. Proceed inductively until [(uN bN )]∩
L p(X) = ∅, which yields that aN+1 = bN+1 = bN and βN+1 = 0. We claim that
N is finite, and, moreover,

(2-7) (N + 1)ε < 5R β2
0 .

For each 0≤ i ≤ N , we have

ε+ 2R sin
βi

2
≥ |ui a+i+1| + 2R sin

βi+1

2
,(2-8)

ε+ 2R sin
βi

2
≥ 2(R− ε) sin

αi+1

2
+ 2R sin

βi+1

2
,(2-9)

where αi =]a+i pa+i+1, βi =]a−i pb−i . Summing up (2-9) for i = 0, 1, . . . , N and
applying (2-7), we get

5R β2
0 + 2R sin

β0

2
≥ (N + 1)ε+ 2R sin

β0

2

≥ 2(R− ε)
N∑

i=1

sin
αi

2
≥ 2(R− ε) sin

∑N
i=1 αi

2

≥ 2(R− ε) sin
]x+ pbN

2
.

Since bN → b1→ y+ when taking ε→ 0, (2-4) follows.
It remains to show (2-7). A sum of (2-8) for i = 0, 1, . . . , N indicates that the

upper bound of N relies on an estimate of |ui a+i+1| in terms of ε and βi+1. Noting
that ai+1 = [ui bi+1]∩ ([pa+i+1]∗ [pa−i+1]) and [pa+i+1]∗ [pa−i+1] is a local geodesic
at ai+1, we have ]pa+i+1ui = ]pa−i+1bi+1 = π/2− βi+1/2. Applying the cosine
law in triangle 4pui a+i+1, we get

(R− ε)2 = R2+ |ui a+i+1|2− 2R|ui a+i+1| sin
βi+1

2
,

that is,

|ui a+i+1|2− 2R sin
βi

2
|ui a+i+1| + Rε− ε2 = 0.

Solving for |ui a+i+1| and taking into account that ε > 0 is small, we have

|ui a+i+1| ≥ R sin
βi+1

2
−
√(

R sin
βi+1

2

)2− (Rε− ε2) >
ε

4 sin(βi+1/2)
.
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Note that βi is decreasing, which is implied by (2-8) and |ui a+i+1| > |ui a+i | = ε.
We get

(2-10) |ui a+i+1|> ε

4 sin(β0/2)
.

Plugging (2-10) into (2-8), we get

(2-11) ε+ 2R sin
βi

2
>

ε

4 sin(β0/2)
+ 2R sin

βi+1

2
.

Summing up (2-11) for i = 0, 1, . . . , N , we get

(N + 1)ε+ 2R sin
β0

2
> (N + 1) ε

4 sin(β0/2)
.

Therefore

(N + 1)ε <
8R sin2(β0/2)
1− 4 sin(β0/2)

< 5R β2
0 . �

Proof of Theorem 2.2, assuming R < π/(2
√
κ) when κ > 0. By Lemma 2.12, φ

is a continuous involution and thus a homeomorphism. It reduces to show that
φ : 6 × {R} → 6 × {R} preserves the length of any curve c : [0, 1] → 6 × {R}.
Given δ, ε > 0, we may assume a partition P : 0 = t0 < t1 < · · · < tN = 1 with
|c(ti )c(ti+1)| ≤ δ such that the length of the curve satisfies

L(c) <
N−1∑

i=0

|c(ti )c(ti+1)| + ε2 , L(φ(c)) <
N−1∑

i=0

|φ(c(ti ))φ(c(ti+1))| + ε2 .

Then

|L(c)− L(φ(c))| ≤
N−1∑

i=0

∣∣|c(ti )c(ti+1)| − |φ(c(ti ))φ(c(ti+1))|
∣∣+ ε

≤
N−1∑

i=0

20 |c(ti )c(ti+1)|2+ ε

≤ 20 δ
N−1∑

i=0

|c(ti )c(ti+1)| + ε

≤ 20 δ L(c)+ ε.
Since ε > 0 and δ > 0 can be chosen arbitrarily small, we get the desired result. �

Completion of Proof of Theorem B. By Theorems 2.1 and 2.2, we identify X with
C R
κ (6p)/x ∼ φ(x). We show that the metric on X coincides with the metric in-

duced from the identification x ∼ φ(x). It’s equivalent to show that

expp : C R
κ (6p)→ X
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preserves lengths of geodesics. Let γ ⊂C R
κ (6p) be a geodesic and σ = f (γ ). Since

L(γ )≥ L(σ ), it remains to show that L(σ )≥ L(γ ). Because either γ ⊂6×{R} or
γ ∩(6×{R}) has at most two points, we need only check for the case γ ⊂6×{R},
that is, σ ⊂ L p(X). For any ε > 0, let {xi }2N+1

i=0 ⊂ σ be an ε-partition and

L(σ )= lim
ε→0

2N∑

i=0

|xi xi+1|.

Let ai ∈ γ so that expp(ai ) = xi . Choose b2k ∈ C R
κ (6), k = 0, 1, . . . , N , with

|a2k − b2k | < ε4. Let b2k+1 = a2k+1 for k = 0, 1, . . . , N and yi = expp(bi ) for
i = 0, 1, . . . 2N + 1. Then |yi − xi | ≤ |bi − ai |< ε4 and thus

L(σ )= lim
ε→0

2N∑

i=0

|yi yi+1|.

We claim that [yi yi+1] ∩ L p(X) is either yi or yi+1. By Corollary 2.9, let

u, v ∈ [yi yi+1] ∩ L p(X)

and there is no crossing point in between. Without losing generality, we assume
yi /∈ L p(X) and |yi u| < |yiv|. Let [u−v−] ⊂ [yi yi+1]. Because the involution φ
is an isometry (Theorem 2.2), L([u+v+]) = L([u−v−]). Thus [yi u] ∪ [u+v+] 6=
[yi u] ∪ [u−v−] is also a geodesic, which yields a bifurcation of geodesics.

By the claimed property, we have that |yi yi+1|= |bi bi+1|. Since
∑2N

i=0 |bi bi+1|≥
L(γ ), we have

L(σ )= lim
ε→0

2N∑

i=0

|yi yi+1| = lim
ε→0

2N∑

i=0

|bi bi+1| ≥ L(γ ).

It remains to show that for 6 ∈ Alexn−1(1), if φ : 6 × {R} → 6 × {R} is an
isometric involution, X = C R

κ (6)/(x ∼ φ(x)) ∈ Alexn(κ).

Case 1. Assume ∂6 = ∅. Take two copies of C R
κ (6), marked as C R

κ (6)1 and
C R
κ (6)2, whose vertices are p1 and p2, respectively. Gluing along their boundaries

by φ, we obtain a double space X̂ = C R
κ (6)1 ∪φ C R

κ (6)2. By the gluing theorem
[Petrunin 1997], X̂ ∈ Alexn(κ).

Now we extend the isometric Z2-action by φ on 6 to an isometric Ẑ2-action on
X̂ such that X = X̂/Ẑ2, and thus X ∈ Alexn(κ). For any u ∈ C R

κ (6)1, extend the
geodesic [p1u]C R

κ (6)1
to u1 ∈ (6 × {R})1. Let φ̂(u) be the point on the geodesic

[p2φ(u1)]C R
κ (6)2

such that |p2φ̂(u)|= |p1u| (so φ̂ :C R
κ (6)1→C R

κ (6)2). Switching

the roles of C R
κ (6)1 and C R

κ (6)2, we extend φ to an isometric involution φ̂ :
C R
κ (6)2 → C R

κ (6)1. Clearly, φ̂ : X̂ → X̂ is an isometric involution such that
X = X̂/φ̂.
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Case 2. Assume ∂6 6= ∅. Let 6̂ = 6+ ∪6− denote the double of 6. We first
extend the isometric involution φ on 6 to φ̂ : 6̂→ 6̂ by φ̂(x±) = φ(x)∓, where
x+ = x− ∈ 6. We then define another isometric involution ψ : 6̂ → 6̂ by the
reflection on ∂6, ψ(x±)= x∓. Then ψ̂(φ̂(x±))= ψ̂(φ(x)±)= φ(x)∓ = φ̂(x∓)=
φ̂(ψ̂(x±)). This implies that 6̂ admits a Z2 ⊕ Z2-action. Clearly, the Z2 ⊕ Z2-
action extends uniquely to an isometric Z2 ⊕ Z2-action on Cr

κ(6̂). By Case 1,
we extend only the φ̂-action to X̂ such that Cr

κ(6̂)/x ∼ φ̂(x) ∈ Alexn(κ). Then
X = [Cr

κ(6̂)/x ∼ φ̂(x)]/ψ̂ ∈ Alexn(κ). �

By Theorem B, the isometric classification of X ∈Ar
κ(6) with relatively max-

imum volume reduces to the isometric classification of all (n − 1)-dimensional
Alexandrov spaces 6 with curv ≥ 1 and the equivariant isometric Z2-actions on
6. For n = 2, one easily gets a complete list:

Corollary 2.13. Any 2-dimensional compact Alexandrov space with curv≥ κ and
relatively maximum volume is isometric to one of the following:

Cr
κ(S

1
θ )/φi (i = 1, 2, 3) or Cr

κ([0, θ])/ψi (i = 1, 2),

where S1
θ denotes a circle of length 2θ with 0<θ ≤π and φi : S1

θ→ S1
θ (respectively

ψi : [0, θ] → [0, θ]) is trivial, a reflection or the antipodal map respectively for
i = 1, 2 and 3 (respectively i = 1 and 2).

Example 2.14 (cf. [Grove and Petersen 1992]). Let Z =D2 be a 2-dimensional flat
unit disk. Then ∂Z =S1(1) is a unit circle. Let φ : ∂Z→ ∂Z be a one-to-one map
and X =D2/x ∼ φ(x) the glued space via identification z ∼ φ(z). By Theorem B,
X is an Alexandrov space if and only if φ is an isometric involution, that is, φ is a
reflection, antipodal map, or identity, where X is homeomorphic to S2, RP2, and
D2, respectively.

Example 2.15. Consider a 2-dimensional simplex. We identify points on each side
via a reflection about the mid point. Then we get a tetrahedron, in which one vertex
is glued from the three vertices of the simplex.

3. Proof of Theorem C: Relatively almost maximum volume

In the proof of Theorem C, we need the following result.

Theorem 3.1 [Bredon 1972, Theorem 5.5]. Let M be a G-manifold. G is a finite
group. Assume that, for a given prime p and all p-subgroups, P ⊆ G satisfies

Hi (M P;Zp)= 0, i ≤ q (including P = {e}).
Then Hi (M/G;Zp) = 0 for all i ≤ q. Moreover, if this holds for all prime p and
Hi (M;Z)= 0 for i ≤ q , then Hi (M/G;Z)= 0 for i ≤ q.
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Proof of Theorem C. We first show that if X ∈Ar
κ(6) with vol X = v(6, κ, r), X

is homeomorphic to Sn or CPn .
By Theorem B, X is isometric to C R

κ (6))/x ∼ φ(x) and φ : 6 → 6 is an
isometric involution. To determine the homeomorphism type of X , we consider
the double space X̂ =C R

κ (6))
+∪φ C R

κ (6))
−. As seen in the proof of Theorem B,

X̂ ∈ Alexn(κ) and φ extends an isometric Z2-action on X̂ such that X̂/Z2.
We claim that X̂ is a homeomorphism sphere. First, X̂ is a topological manifold

if every point q̂ ∈ ∂C R
κ (6)) ↪→ X̂ is a manifold point. According to [Wu 1997],

a point x in an Alexandrov space is a manifold point if and only if 6x is simply
connected. Because 6q̂ is a suspension of 6q̂(6), q̂ is a manifold point. By the
Poincaré conjecture (in all dimensions), our claim reduces to the following: X̂ is
an integral homotopy sphere. Because X̂ is a suspension, X̂ is simply connected,
and thus it suffices to show that X̂ is a homology sphere. Because C R

κ (6) is con-
tractible, from the Mayer–Vietoris exact sequence of

(
C R
κ (6)

+,C R
κ (6)

−), it is
easy to see that X̂ is an integral homology sphere.

If the Z2-action is free, X = X̂/Z2 is homeomorphic to RPn . Otherwise, X is
a simply connected topological manifold (the induced map, π1(X̂)→ π1(X) is an
onto map). Again, it suffices to show that X is an integral homology sphere. By
the Smith theorem, the Z2-fixed point set X̂Z2 is a Z2-homology sphere. By now
we can apply Theorem 3.1 to conclude the claim.

We prove Theorem C by contradiction; assume a sequence X i ∈ Ar
κ(6) such

that vol X i > vol C R
κ (6)− εi (εi = i−1) and none of X i is homeomorphic to Sn or

RPn . Without loss of generality, we may assume that

(X i , pi )
dG H−→ (X, p) ∈ Alexn(κ),

where X i = Br (pi ). By Perelman’s stability theorem [Kapovitch 2007; Perelman
1991], X i is homeomorphic to X for i large. In particular, X is a topological man-
ifold. We claim that X ∈Ar

κ(6p) satisfies vol X = v(6p, κ, r). By the above, we
then conclude that X is homeomorphic to Sn or RPn , and thus X i is homeomorphic
to X for i large, a contradiction.

To see the claim,

vol X = lim
i→∞

vol X i = lim
i→∞

(vol C R
κ (6)− εi )= vol C R

κ (6).

On the other hand, we shall construct a distance-nonincreasing map, φ :6→6p.
Consequently, vol6p ≤ vol6 and thus

vol X ≤ vol C R
κ (6p)≤ vol C R

κ (6)≤ vol X.

Let A = {vi } ⊂ 6 be a countable dense subset and fi : (X i , pi )→ (X, p) a se-
quence of εi -Gromov–Hausdorff approximations, εi → 0. For v1, the sequence
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{ fi (g exppi
v)} ⊂ X contains a converging subsequence

fi1(g exppi1
q(v))→ x1 ∈ X.

Then [px1] =w1 ∈6p (which may not be unique). We define φ(v1)=w1. For v2

and { fi1}, repeating the above, we obtain w2 ∈6p and define φ(v2)=w2. Iterating
this process, we define a map φ : A→ 6p, φ(vi ) = wi . It is easy to check that φ
is distance-nonincreasing and thus φ extends uniquely to a distance-nonincreasing
map from 6 to 6p. �

4. Proof of Theorem D:
Pointed Bishop–Gromov relative volume comparison

Assuming the monotonicity in Theorem D, the rigidity part follows by Lemma 4.3
and Theorem 2.1. For p ∈ X ∈ Alexn(κ), let Ar

R(p) (or briefly Ar
R) denote the

annulus {x ∈ X : r < |px | ≤ R}, 0≤ r < R, and let Ar
R(6p) (or briefly Ãr

R) denote
the corresponding annulus in Cκ(6p). Let Br denote A0

r and let B̃r denote Ã0
r .

Let’s recall the following two lemmas.

Lemma 4.1 [Li 2010, Lemma 2.1]. Let 6 ∈Alexn−1(1) and 0< r ≤ π/√κ . Then

vol Cr
κ(6)= vol6

∫ r

0
snn−1
κ (t) dt.

Lemma 4.2 [Li 2010, Theorem B]. Let U be an open subset in X ∈ Alexn(κ).
Then there is a constant c(n) depending only on n such that

Vrn (U )= Vrn (U )= c(n)Hausn(U )= c(n)Hausn(U ),

where Vrn and Hausn represent the n-dimensional rough volume and Hausdorff
measure, respectively.

Lemma 4.3. If the monotonicity in Theorem B holds,

vol Br

vol B̃r
= vol BR

vol B̃R

for some 0< r < R (R ≤ π/√κ for κ > 0) if and only if vol BR = vol B̃R .

Proof. Assume vol BR = vol B̃R . The desired equation follows by the monotonic-
ity:

1= vol BR

vol B̃R
≤ vol Br

vol B̃r
≤ lim

r≥t→0

vol Bt

vol B̃t
= 1.

Assume
vol Br

vol B̃r
= vol BR

vol B̃R



412 NAN LI AND XIAOCHUN RONG

for some 0< r < R. Then for any t < r ,

vol Bt

vol Ar
R
+ vol At

R

vol Ar
R
= vol BR

vol Ar
R
= vol B̃R

vol Ãr
R
= vol B̃t

vol Ãr
R
+ vol Ãt

R

vol Ãr
R
.

By the monotonicity, we have

vol At
R

vol Ar
R
≥ vol Ãt

R

vol Ãr
R
.

Also,
vol Bt

vol Ar
R
= vol Bt

vol At
r
· vol At

r

vol Ar
R
≥ vol B̃t

vol Ãt
r
· vol Ãt

r

vol Ãr
R
= vol B̃t

vol Ãr
R
.

Consequently

vol Bt

vol Ar
R
= vol B̃t

vol Ãr
R
, orequivalently,

vol Bt

vol B̃t
= vol Ar

R

vol Ãr
R
.

Letting t→ 0, we get vol Ar
R = vol Ãr

R . Thus

1≥ vol BR

vol B̃R
≥ vol Ar

R

vol Ãr
R
= 1. �

Now it remains to show the monotonicity in Theorem D. We take an elementary
approach by expressing the monotonicity as a form of “Riemann sum” (see (4-5))
and using the Toponogov triangle comparison to bound each term in terms of the
desired form (see Corollary 4.6). To achieve this goal, we choose a special infinite
partition (see (4-5) and (4-6)).

We start the proof of Theorem D by deriving an equivalent form of the mono-
tonicity. For 0≤ R1 < R2 < R3 (<π/

√
κ when κ > 0), and p ∈ X , by Lemma 4.1,

the monotonicity has the following integral form:

vol AR1
R3

vol AR1
R2

≤
∫ R3

R1
snn−1
κ (t) dt

∫ R2
R1

snn−1
κ (t) dt

,

which is equivalent to

(4-1) I1 = log

[
vol AR1

R3

vol AR1
R2

]
≤ log

[∫ R3
R1

snn−1
κ (t) dt

∫ R2
R1

snn−1
κ (t) dt

]
= I2.

Fixing a small δ > 0, let m = [(R3 − R2)/δ] + 1, 1 = (R3 − R2)/m ≈ δ, and
r j = R2+ j1, 0≤ j ≤ m. Then

AR1
R2
= AR1

r0
⊂ AR1

r1
⊂ · · · ⊂ AR1

rm
= AR1

R3
.
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Using the Taylor expansion log(1/x) = 1− x + O((1− x)2), we may rewrite the
left hand side of (4-1) as

(4-2) I1 =
m∑

j=1

log
vol Ar j

R1

vol Ar j−1
R1

=
m∑

j=1

[(
1− vol Ar j−1

R1

vol Ar j
R1

)
+ O(δ2)

]

=
m∑

j=1

vol Ar j
r j−1

vol Ar j
R1

+ O(δ).

Let φ(r)= ∫ r
R1

snn−1
κ (t) dt . Then the right hand side of (4-1) can be written as

(4-3) I2 = log
φ(R3)

φ(R2)
=
∫ R3

R2

φ′(t)
φ(t)

dt

=
m∑

j=1

φ′(r j )

φ(r j )
δ+ τ(δ)

=
m∑

j=1

δ snn−1
κ (r j )∫ r j

R1
snn−1
κ (t) dt

+ τ(δ).

Comparing (4-1) to (4-2) and (4-3), it’s sufficient to show

(4-4)
vol Ar j

r j−1

vol Ar j
R1

≤ δ snn−1
κ (r j )∫ r j

R1
snn−1
κ (t) dt

.

We further divide Ar j
R1

into thinner annuli: given a monotonic sequence

{ai }∞i=1 ⊂ [0, 1]
such that a j→ 0, {air j }∞i=1 is an infinite partition for [0, r j ], and (4-4) is equivalent
to

(4-5)
vol Ar j

R1

vol Ar j
r j−1

=
∞∑

i=1

vol Aai+1r j
ai r j

vol Ar j
r j−1

≥
∫ r j

R1
snn−1
κ (t) dt

δ snn−1
κ (r j )

.

To show (4-5), we need an estimate for vol Aai+1r j
ai r j / vol Ar j

r j−1 from below (see
Corollary 4.6). Assume δ is so small that R−δ > 0 and r−λδ > 0. Let x ∈ AR

R−δ.
We define a map, φ : AR

R−δ→ Ar
r−λδ, where f (x) is the point on a minimal geodesic

[px] (if not unique, we pick one of them) such that

|p f (x)| = r − λ(R− |px |).
Because a geodesic in X does not branch, φ is well-defined and is injective.

In the proof of Theorem D, the following is a main technical lemma, which
asserts that φ behaves like a bi-Lipschitz function.
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Lemma 4.4. Let δ > 0 be sufficiently small, λ= (snκ r/(snκ R)), and

φ : ÃR
R−δ→ Ãr

r−λδ

be defined as above. Then

c(κ, δ) λ≤ snκ(|φ(x)φ(y)|/2)
snκ(|xy|/2) ≤ c(κ, δ)−1λ,

where

c(κ, δ)=





1 κ = 0,

1− 2δ
snκ R+ δ κ > 0,

1− δ coshκ R
R

κ < 0

.

Because the proof of Lemma 4.4 is technical and somewhat tedious, we will
delay it to the end of this section.

Lemma 4.5. Let U and V be two open subsets of X ∈Alexn(κ), and let φ : V→U
be an injection. If φ satisfies snκ(|φ(x)φ(y)|/2)≥ c snκ(|xy|/2) for any x, y ∈ V ,
vol U ≥ cn vol V , where c is a constant.

Proof. By Lemma 4.2, it suffices to prove for rough volume. Recall that the n-
dimensional rough volume of a subset V is

Vrn (V )= lim
ε→0

εnβV (ε),

where βV (ε) denotes the number of points in an ε-net {xi } on V .
By the assumption, {φ(xi )} is a 2 sn−1

κ (c snκ(ε/2))-net in U . We get

βU

(
2 sn−1

κ

(
c snκ

ε

2

))
≥ βV (ε),

or in another form,

εn
(
2 sn−1

κ (c snκ(ε/2))
)n

(
2 sn−1

κ

(
c snκ

ε

2

))n
βU

(
2 sn−1

κ

(
snκ

ε

2

))
≥ εnβV (ε).

Letting ε→ 0, we get (1/cn)Vrn (U )≥ Vrn (V ). �

Corollary 4.6. Let p ∈ X ∈ Alexn(κ), δ > 0 small. Then

vol Ar
r−λδ

vol AR
R−δ
≥ (1− τ(δ))

(
snκ r
snκ R

)n

.

Proof. Consider the map φ : AR
R−δ → Ar

r−λδ and φ̃ : ÃR
R−δ → Ãr

r−λδ defined as
above. For any x, y ∈ AR

R−δ, take two points x̃, ỹ ∈ Cκ(6p) such that |õx̃ | = |px |,
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|õ ỹ| = |py|, and |x̃ ỹ| = |xy|. By condition B (see [Burago et al. 1992]), it’s easy
to see that | f (x) f (y)| ≥ |φ̃(x̃)φ̃(ỹ)|. Thus, by Lemma 4.4, we have

snκ
| f (x) f (y)|

2
≥ snκ

|φ̃(x̃)φ̃(ỹ)|
2

≥ (1− τ(δ)) snκ
|x̃ ỹ|

2
= (1− τ(δ)) snκ

|xy|
2
.

Then we get the desired estimate by Lemma 4.5. �

Proof of the monotonicity in Theorem D. Continuing from the earlier discussion,
the proof reduces to verifying (4-5). We now take δ > 0 sufficiently small, and
choose the sequence {ai }∞i=0 as

(4-6) a0 = 1, ai+1 = ai − snκ(air j )

r j snκ r j
δ, i = 0, 1, . . .

Then

0< ai+1 ≤




(
1− δ

r j

)
ai , if κ ≥ 0,

(
1− δ

snκ r j

)
ai , if κ < 0,

and thus ai→0 and is monotonically decreasing. For each 0≤ i<∞ and 0≤ j≤m,
consider the map, φ : Ar j

r j−δ → Aai r j
ai r j−λi δ

= Aai r j
ai+1r j , with λi = snκ(air j )/snκ(r j ).

By Corollary 4.6, we obtain that

vol Aai r j
ai+1r j )

vol Ar j
r j−δ

≥ (1− τ(δ))
(

snκ(air j )

snκ r j

)n

.

Observe that for δ→ 0, {ai } will become more dense, and thus we can take Nδ > 0
such that aNδr j ≥ R1 and aNδr j→ R1 as δ→ 0. Summing up for i = 0, 1, . . . , Nδ,
we get

vol AR1
r j

vol Ar j
r j−δ
≥
∑Nδ

i=0 vol Aai r j
ai+1r j )

vol Ar j
r j−δ

≥
Nδ∑

i=0

(1− τ(δ))
(

snκ(air j )

snκ r j

)n

≥ (1− τ(δ)) 1
δ snn−1

κ (r j )

Nδ∑

i=0

snn−1
κ (air j )

δ snκ(air j )

snκ r j

= (1− τ(δ)) 1
δ snn−1

κ (r j )

(∫ r j

R1

snn−1
κ (t) dt + τ(δ)

)

= (1− τ(δ))
∫ r j

R1
snn−1
κ (t) dt

δ snn−1
κ (r j )

,
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or the following equivalent form:

vol Ar j
r j−δ

vol AR1
r j

≤ (1+ τ(δ)) δ snn−1
κ (r j )∫ r j

R1
snn−1
κ (t) dt

.

Summing up for all j and together with (4-2) and (4-3), we get

I1+ O(δ)≤ (1+ τ(δ))I2+ τ(δ).
Letting δ→ 0, we get the desired inequality. �

The rest of this section is devoted to a proof of Lemma 4.4. The following are
some properties used in the proof.

Lemma 4.7. (1) For λ ∈ [0, 1] and x ∈ [0, π], sin λx ≥ λ sin x.

(2) For λ ∈ [0, 1] and x ≥ 0, sinh λx ≤ λ sinh x.

(3) For λ≥ 0 and x ≥ 0, sin λx/(λ sin x)≥ 1− (λx)2/6.

(4) For λ≥ 0 and x ≥ 0, sinh λx/(λ sinh x)≥ x/sinh x ≥ 1− x.

(5) Let 4pab be a triangle in S2
κ . The cosine law can be written as

sn2
κ

|ab|
2
= sn2

κ

|pa|−|pb|
2

+ sin2 ]apb
2

snκ |pa| snκ |pb|.
Proof.

(1) Let h(x)= sin λx − λ sin x . Then

h′(x)= λ cos λx − λ cos x = λ(cos λx − cos x)≥ 0,

since 0≤ λx ≤ x ≤ π .

(2) Let h(x)= sinh λx − λ sinh x . Then

h′(x)= λ cosh λx − λ cosh x = λ(cosh λx − cosh x)≤ 0,

since 0≤ λx ≤ x .

(3) For x > 0, one can show that x ≥ sin x ≥ x − x3/6. Then

sin λx
λ sin x

≥ λx−(λx)3/6
λx

= 1− (λx)2/6.

(4) The first equality is easy to see through sinh λx ≥ λx . Obviously, the second
equality is true for x ≥ 1. For 0< x < 1,

sinh x = x + x3

6
+ · · · ≤ x(1+ x + x2+ · · · )= x

1−x
.

(5) Follows by trigonometric metric identities. �

Proof of Lemma 4.4. By scaling, we only need to check for κ = 1,−1 and κ = 0.
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Case 1 (κ = 1). Noting that

|px ′| − |py′|
|px | − |py| =

λ(|px | − |py|)
|px | − |py| = λ,

by Lemma 4.7(3) and 0≤ ∣∣|px | − |py|∣∣≤ δ < 1
2 sin R, we have

sin

∣∣|px ′| − |py′|∣∣
2

= sin
(
λ

∣∣|px | − |py|∣∣
2

)

≥
(

1− (λδ)
2

6

)
λ sin

∣∣|px | − |py|∣∣
2

≥
(

1− δ2

6 sin2 R

)
λ sin

∣∣|px | − |py|∣∣
2

≥
(

1− 2δ
sin R+δ

)
λ sin

∣∣|px | − |py|∣∣
2

= τ1λ sin

∣∣|px | − |py|∣∣
2

.

Thus

τ1λ≤
sin(

∣∣|px ′| − |py′|∣∣/2)
sin(

∣∣|px | − |py|∣∣/2) ≤
λ
∣∣|px | − |py|∣∣/2

sin(
∣∣|px | − |py|∣∣/2) ≤ λ

δ

sin δ
≤ τ−1

1 λ.(4-7)

For any x ∈ ÃR
R−δ, by Lemma 4.7(1), we have

sin |px ′|≥ |px ′|
r

sin r≥ r − λδ
r

sin r= r − (sin r/ sin R) δ
r

sin r≥
(

1− δ

sin R

)
sin r,

which, together with

sin |px ′| − sin r = 2 sin
|px ′| − r

2
cos
|px ′| + r

2
≤ r − |px ′| ≤ λδ,

gives us
(

1− δ

sin R

)
sin r ≤ sin |px ′| ≤ sin r + λδ =

(
1+ δ

sin R

)
sin r.

Similarly,

sin |px | ≥ |px |
R

sin R ≥ R−δ
R

sin R ≥
(

1− δ

sin R

)
sin R

and

sin |px | − sin R = 2 sin
|px | − R

2
cos
|px | + R

2
≤ R− |px | ≤ δ,

hence
(

1− δ

sin R

)
sin R ≤ sin |px | ≤ sin R+ δ =

(
1+ δ

sin R

)
sin R.
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So

(4-8) c1
sin r
sin R

≤ sin |px ′|
sin |px | ≤ c−1

1
sin r
sin R

.

Let θ =]xpy. Since |xy|/2≤π/2, by the cosine law and inequalities (4-7), (4-8),

c2
1λ

2 ≤ sin2(|x ′y′|/2)
sin2(|xy|/2)

= sin2((|px ′| − |py′|)/2)+ sin2(θ/2) sin |px ′| sin |py′|
sin2((|px | − |py|)/2)+ sin2(θ/2) sin |px | sin |py| ≤ c−2

1 λ2.

Case 2 (κ =−1). By Lemma 4.7(2),

λδ = sinh r
sinh R

· R
cosh R

<
r
R

R = r,

which, together with Lemma 4.7(4), gives

(4-9) λ≥ sinh(
∣∣|px ′| − |py′|∣∣/2)

sinh(
∣∣|px | − |py|∣∣/2) =

sinh(λ
∣∣|px | − |py|∣∣/2)

sinh(
∣∣|px | − |py|∣∣/2) ≥ (1− δ)λ≥ c−1λ,

since
cosh R

R
≥ 1+R2/2

R
> 1.

If δ < R/cosh R < R, we have

λδ

2r
<

r
R
· δ

2r
= δ

2R
< 1.

Hence we can apply Lemma 4.7(2) with λ= (sinh r)/ sinh R ≤ r/R, to get

sinh r−sinh(r−λδ)
sinh r

≤ 2 sinh(λδ/2) cosh r
sinh r

≤ λδ
r

cosh r ≤ δ cosh R
R

.

Thus
sinh(r − λδ)≥

(
1− δ cosh R

R

)
sinh r.

For x ′ ∈ Ãr
r−λδ,
(

1− δ cosh R
R

)
sinh r ≤ sinh(r − λδ)≤ sinh |px ′| ≤ sinh r.

For x ∈ ÃR
R−λδ,

sinh R−sinh(R−δ)
sinh R

≤ 2 sinh(δ/2) cosh R
sinh R

≤ δ cosh R
R

,

and (
1− δ cosh R

R

)
sinh R ≤ sinh(R− λδ)≤ sinh |px | ≤ sinh R.
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Then

(4-10) c−1
sinh r
sinh R

≤ sinh |px ′|
sinh |px | ≤ c−1

−1
sinh r
sinh R

.

By inequalities (4-9), (4-10), and the cosine law, we get

c2
−1λ

2 ≤ sinh2(|x ′y′|/2)
sinh2(|xy|/2)

= sinh2((|px ′| − |py′|)/2)+ sin2(θ/2) sinh |px ′| sinh |py′|
sinh2((|px | − |py|)/2)+ sin2(θ/2) sinh |px | sinh |py| ≤ c−2

−1λ
2.

Case 3 (κ = 0). This is straightforward. �
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PROPERNESS, CAUCHY INDIVISIBILITY
AND THE WEIL COMPLETION
OF A GROUP OF ISOMETRIES

ANTONIOS MANOUSSOS AND POLYCHRONIS STRANTZALOS

Investigating the impact of local compactness and connectedness in the the-
ory of proper actions on locally compact and connected spaces, we introduce
a new class of isometric actions on separable metric spaces called Cauchy-
indivisible actions. The new class coincides with that of proper actions on
locally compact metric spaces, without assuming connectivity, and, as ex-
amples show, may be different in general. In order to provide some basic
theory for this new class of actions, we embed a Cauchy-indivisible action
in a proper action of a semigroup in the completion of the underlying space.
We show that, if this semigroup is a group, there are remarkable connec-
tions between Cauchy indivisibility and properness, while the original group
has a Weil completion and vice versa. Further connections in this direction
establish a relation between Borel sections for Cauchy-indivisible actions
and fundamental sets for proper actions. Some open questions are added.

1. Introduction

In the paper at hand, having in mind the fruitful theory of proper transformation
groups on locally compact and connected spaces, we propose an analogous class
of actions, not necessarily proper, without assuming local compactness and con-
nectedness of the underlying spaces. So, we introduce a new, rather natural, class
of metric actions on separable (not necessarily connected) metric spaces called
Cauchy-indivisible. Note that isometric actions constitute nowadays an important
part of the theory of proper actions and that the group of isometries of a locally
compact and connected metric space acts properly on it.

As the following definition shows, Cauchy-indivisible actions are characterized
by an isotropic behavior of divergent nets of the acting group with respect to the
basic metric notion of a Cauchy sequence. Recall that zi →∞ in Z means that
the net {zi } does not have any convergent subnet in the space Z .

During this research the first author was fully supported by SFB 701 “Spektrale Strukturen und
Topologische Methoden in der Mathematik” at the University of Bielefeld, Germany.
MSC2010: primary 37B05, 54H20; secondary 54H15.
Keywords: proper action, Weil completion, Cauchy indivisibility, Borel section, fundamental set.
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Definition 1.1. Let (G, X) be a continuous action of a topological group G on a
metric space X . The action is said to be Cauchy-indivisible if the following holds:
If {gi } is a net in G such that gi →∞ in G and {gi x} is a Cauchy net in X for
some x ∈ X then {gi x} is a Cauchy net for every x ∈ X .

It turns out that a Cauchy-indivisible action on a locally compact or complete
metric space is proper and vice versa (see Section 3), and that in general the two
notions may differ (see Section 4). In both cases the underlying space is not as-
sumed to be connected. The omission of this assumption in the locally compact
case, as well the omission of local compactness in the main part of the paper at
hand is an advantage coming from the fact that Cauchy indivisibility essentially
reflects the global character of self-maps of X compared with the local properties
or the connectedness of the underlying space. So we can generalize the framework
of proper actions and go beyond, provided that this new framework leads

(a) to interesting results in the non locally compact case, and

(b) enables a better understanding of proper actions on locally compact spaces.

Concerning requirement (b) we note that in Theorem 3.3 we give an answer to
the open question of characterizing proper actions on nonconnected locally com-
pact metric spaces and in Theorem 7.4 we establish an interconnection between
Borel sections (which occur in Cauchy-indivisible actions on separable spaces, see
Proposition 7.1) and fundamental sets that characterize proper isometric actions.
Recall that a section of an action (G, X) is a subset of X which contains only one
point from each orbit. A Borel section is a section that is a Borel subset of X
(useful, for example, in measure theory).

Theorem 7.4. Let G be a group which acts properly on a locally compact space
X , and suppose that the orbit space G\X is paracompact. Let S be a section for
the action (G, X).

(i) For every open neighborhood U of S we can construct a closed fundamental
set Fc and an open fundamental set Fo such that Fc ⊂ Fo ⊂U.

(ii) If , in addition, (X, d) is a separable metric space, in which case the action
(G, X) is Cauchy-indivisible, then there exists a Borel section SB , which is
also a fundamental set, such that SB ⊂ Fc ⊂ Fo ⊂U.

Note that SB in (ii) of the above theorem is a “minimal” fundamental set, because
of its construction, and as such may lead to applications.

The new notion of “like properness” seems to be suitable for structure theorems,
as our first results indicate. Concerning requirement (a) above, in Section 5, which
is the main part of the paper at hand, we consider a separable metric space (X, d)
such that the natural evaluation action of the group of isometries Iso(X) on X is
Cauchy-indivisible. Let X̂ denote the completion of (X, d) and let E be the Ellis
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semigroup of the lifted group Îso(X) in C(X̂ , X̂), that is, the pointwise closure of
Îso(X) in C(X̂ , X̂). Let

H = {h ∈ C(X̂ , X̂) | there exists a sequence {gn} ⊂ Iso(X)
with gn→∞ in Iso(X) and ĝn→ h in C(X̂ , X̂)},

Xl = {hx | h ∈ H, x ∈ X},

X p = {hx | h ∈ H ∩ Iso(X̂), x ∈ X}.

With this notation and the previously mentioned assumptions, among other results
we show the following.

Theorem 5.13. The set X ∪ X p is the maximal subset of X ∪ Xl that contains X
such that the map

ω : E × (X ∪ X p)→ (X ∪ X p)× X̂ ,

with ω( f, y)= (y, f y), f ∈ E , and where y ∈ X ∪ X p is proper.

The interest in this theorem lies in the fact that an action (G, X) is proper if the
map G× X→ X× X defined by (g, x) 7→ (x, gx) is proper, see [Bourbaki 1966a,
Definition 1, p. 250].

We recall that a topological group has a Weil completion with respect to the
uniformity of pointwise convergence if it can be embedded densely in a complete
group with respect to its left uniform structure.

Proposition 5.18. The following are equivalent:

(i) The map ω : E × (X ∪ Xl)→ (X ∪ Xl)× X̂ is proper.

(ii) E is a group (precisely a closed subgroup of Iso(X̂)).

(iii) Iso(X) has a Weil completion.

Corollary 5.20. If E is a group the action (Iso(X), X) is embedded densely in the
proper action (E, X ∪ Xl) such that the following equivariant diagram commutes:

(Iso(X), X)

��

// X

��
(E, X ∪ Xl) // X̂ ,

where X → X ∪ Xl is the inclusion map and the map Iso(X)→ E is defined by
g 7→ ĝ for every g ∈ Iso(X). By “densely” we mean that X is dense in X ∪ Xl and
Îso(X) is dense in E.
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The above result may lead to further structure theorems, see Question 5.21.

Proposition 7.1. If the Ellis semigroup E is a group then the action (E, X ∪ Xl)

has a Borel section.

As Theorem 7.4(ii) mentioned above indicates, the notion of a Borel section,
which according to the above result is a feature of the Cauchy-indivisible actions
on separable metric spaces, is remarkably related to that of a fundamental set in the
locally compact case and may be, similarly, used for structural theorems. So, it is
interesting to ask whether the existing Borel section for the action (E, X ∪ Xl) can
be reduced to a Borel section for the initial action (Iso(X), X), see Question 7.7.

In order to indicate or to exclude possible directions for further investigation con-
cerning Cauchy-indivisible actions, we study various examples, see Examples 5.14,
5.17, 5.23, and 7.3. Among them, an example that may be of independent interest
is the following (see Section 6): Consider the action (Iso(Iso(Z)), Iso(Z)), where
Z is the discrete space of the integers, with suitable metrics on the acting group
Iso(Iso(Z)) and the underlying space Iso(Z). We show that this action is proper
and Cauchy-indivisible while the Ellis semigroup is not a group and Iso(Iso(Z))
has no Weil completion.

2. Basic notions and notation

For what follows, in addition to the notation established in the introduction, (X, d)
will denote a metric space with metric d and Iso(X)will denote its group of (surjec-
tive) isometries of X endowed with the topology of pointwise convergence. With
this topology Iso(X) is a topological group [Bourbaki 1966b, Chapter X, §3.5,
Corollary]. Let (X̂ , d̂) stand for the completion of (X, d). For a Cauchy sequence
{xn} in X let [xn] ∈ X̂ denote the limit point of {xn} in X̂ . We denote by ĝ and
Îso(X) the lift of g ∈ Iso(X) and the lift of the group Iso(X), respectively, in
C(X̂ , X̂), the space of the continuous self-maps of X̂ (which is considered with
the topology of pointwise convergence).

A continuous action of a topological group G on a topological space X is a
continuous map G×X→ X with (g, x) 7→ gx , g ∈G, x ∈ X such that (e, g) 7→ x ,
for every x ∈ X where e denotes the unit element of G, and (h, (g, x)) 7→ (hg)x
for every h, g ∈ G, and x ∈ X . When the action map is known we will denote the
action simply by (G, X). Let U ⊂ X , then GU := {gx | g ∈G, x ∈U }. Especially,
if U = {x} then the set Gx := G{x} is called the orbit of x ∈ X under G. The
subgroup Gx := {g ∈ G | gx = x} of G is called the isotropy group of x ∈ X .
The natural evaluation action of Iso(X) on X (denoted by (Iso(X), X)) is the map
Iso(X)× X→ X with (g, x) 7→ g(x), g ∈ Iso(X), and x ∈ X . If we endow Iso(X)
with the topology of pointwise convergence this action is always continuous. As
usual, S(x, ε) will denote the open ball centered at x with radius ε > 0.
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Definition 2.1. A continuous action (G, X) is (equivalently to the Bourbaki defi-
nition) proper if J (x)=∅, for every x ∈ X , where

J (x)=
{

y ∈ X
∣∣ there exist nets {xi } in X, and {gi } in G

with gi →∞, lim xi = x and lim gi xi = y
}

denotes the extended (prolongational) limit set of x ∈ X .

It is easily seen that in the special case of actions by isometries J (x) = L(x)
holds for every x ∈ X , where

L(x)=
{

y ∈ X
∣∣ there exists a net {gi } in G with gi →∞ and lim gi x = y

}
denotes the limit set of x ∈ X under the action of G on X . Hence an action by
isometries (G, X) is proper if and only if L(x)=∅ for every x ∈ X .

3. Cauchy indivisibility and proper actions
on locally compact metric spaces

In this section we show that for group actions on locally compact metric spaces
the notions of properness and Cauchy indivisibility coincide. We start with the
following easily proved observation.

Lemma 3.1. Let (X, d) be a locally compact metric space and {gi } ⊂ Iso(X) be a
net such that {gi x} is a Cauchy net for some x ∈ X. Then there exists a point y ∈ X
such that gi x→ y.

Proposition 3.2. Let (X, d) be a locally compact metric space. The action (Iso(X),
X) is proper if and only if it is Cauchy-indivisible.

Proof. Assume that (Iso(X), X) is Cauchy-indivisible. We will show that the limit
sets L(x) are empty for every x ∈ X . Assume the contrary, that is, there exist a net
{gi } in Iso(X) and x, y ∈ X such that gi →∞ and gi x → y. We will show that
gi → h for some h ∈ Iso(X), which is a contradiction of the assumption gi →∞.
Since (Iso(X), X) is Cauchy-indivisible then {gi x} is a Cauchy net, for every x ∈ X .
Therefore, by the previous lemma, there is a map h : X→ X defined by h(x) := y
such that gi → h pointwise on X and h preserves the metric d. Observe that
g−1

i y→ x since d(g−1
i y, x) = d(y, gi x). Applying Cauchy indivisibility for the

action (Iso(X), X) and the previous lemma again, we conclude that there exists a
map f : X→ X such that g−1

i → f pointwise on X and f preserves the metric d .
Obviously f is the inverse map of h, hence h ∈ Iso(X).

The converse implication follows easily in a similar way. �

If X is locally compact and G acts properly on X (hence G is a locally com-
pact group), it is well known, see, for example, [Koszul 1965], that there exists a
G-invariant compatible metric on X . Compatible means that this metric induces
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the topology of X . Hence, the previous proposition states the following result that
characterizes the properness of actions on locally compact metric spaces indepen-
dently of the connectedness of the underlying space.

Theorem 3.3. Let (X, d) be a locally compact metric space. An action (G, X) is
proper if and only if it is Cauchy-indivisible.

Remark 3.4. The previous theorem also holds, and can be similarly proved, if we
replace the full group of isometries of X by a closed subgroup of it or if we replace
the local compactness of X by completeness.

4. Cauchy indivisibility vs. properness

In this section we provide examples showing that Cauchy indivisibility and proper-
ness are distinct notions for isometric actions on separable and non locally com-
pact metric spaces. We also provide some criteria for the coexistence of Cauchy-
indivisible and proper actions on the basis of the dynamical behavior of the lifting
of the action (Iso(X), X) in the completion of the underlying space.

Remark 4.1. The example in Section 6 shows that the two notions may coexist
also in the case when X is neither locally compact nor complete.

The following example shows that the action (Iso(X), X) can be proper and not
Cauchy-indivisible.

Example 4.2. Let X be the set Q of the rational numbers endowed with the Eu-
clidean metric. It is easy to see that the action (Iso(X), X) is proper. Take a
sequence of rational numbers {qn} such that qn→ a, where a is an irrational. Let
{gn} ⊂ Iso(X) with gnx := (−1)nx +qn for every x ∈ X , then gn→∞ in Iso(X).
Since gn0 = qn for every n ∈ N, the sequence {gn0} is Cauchy. But for x 6= 0 the
sequence {gnx} has two limit points in R and hence cannot be a Cauchy sequence.

The next example shows that the action (Iso(X), X) can be Cauchy-indivisible
and not proper.

Example 4.3. Let X be the set Q+
√

2N endowed with the Euclidean metric. Its
group of isometries is Q acting by translations (reflections are excluded because
of the addend

√
2N). Therefore, (Iso(X), X) is Cauchy-indivisible. However, the

action (Iso(X), X) is not proper. To see that take a sequence of rational numbers
{qn} such that qn →

√
2. Let {gn} ⊂ Iso(X) with gnx := x + qn . Observe that

g−1
n

√
2→ 0 /∈ X . Therefore gn→∞ in Iso(X). Since gn

√
2→ 2

√
2∈ X the limit

set L(
√

2) is not empty, so the action (Iso(X), X) is not proper.

Motivated by these examples we give necessary and sufficient conditions for a
Cauchy-indivisible action (Iso(X), X) to be proper and vice versa:

Proposition 4.4. Let Iso(X) be Cauchy-indivisible. The following are equivalent:
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(i) The action (Iso(X), X) is proper.

(ii) If h is in the pointwise closure of Îso(X) in C(X̂ , X̂) then either h(X)⊂ X or
h(X)⊂ X̂ \ X.

Proof. Assume that the action (Iso(X), X) is proper and h is in the pointwise
closure of Îso(X) in C(X̂ , X̂). Then there is a net {ĝi } in Îso(X) such that ĝi → h
pointwise in X̂ . If h(X)∩ X 6=∅ then there is some x ∈ X such that ĝi x→ hx ∈
X . Since the action (Iso(X), X) is proper the net {gi } has a convergent subnet in
Iso(X). Then it is easy to see that h ∈ Îso(X), hence h(X)⊂ X .

Assume now that condition (ii) holds. We will show that the limit sets L(x) are
empty for every x ∈ X , hence the action (Iso(X), X) is proper. We will proceed
by contradiction. Assume that there exist x, y ∈ X and a net {gi } in Iso(X) with
gi x → y and gi →∞ in Iso(X). Since {gi x} is a Cauchy net in X and Iso(X)
is Cauchy-indivisible then {gi x} is a Cauchy net for every x ∈ X , hence {gi x}
converges in X̂ for every x ∈ X . So, we can define a map h : X → X̂ by letting
hx := lim ĝi x . It is easy to see that h preserves the metric d̂ on X . Thus, if
w ∈ X̂ and {xn} ⊂ X is a sequence in X such that xn → w in X̂ then {hxn} is a
Cauchy sequence in X , hence it converges to a point in X̂ which is independent
of the choice of the sequence {xn}. Then, by [Bourbaki 1966a, Chapter I, §8.5,
Theorem 1], the map h : X → X̂ has a unique continuous extension on X̂ . It
is easy to see that ĝi → h pointwise on X̂ , thus h is in the pointwise closure of
Îso(X) in C(X̂ , X̂). Since gi x → y then hx = y where x, y ∈ X . So using our
hypothesis h(X)⊂ X . Since gi preserves the metric d then g−1

i y→ x . Using the
same arguments as before we have that h ∈ Îso(X) hence the net {gi } converges in
Iso(X), a contradiction of the assumption gi →∞ in Iso(X). �

Proposition 4.5. Assume that (Iso(X), X) is a proper action. The following are
equivalent:

(i) Iso(X) is Cauchy-indivisible.

(ii) Let {gi } ⊂ Iso(X) a net with gi →∞ and {gi x} be a Cauchy net for some
x ∈ X. If y ∈ X then the net {gi y} cannot have more than one limit point in
the completion X̂ of X.

Proof. The direction from (i) to (ii) is trivial. If the converse implication does not
hold, then there is a Cauchy net {gi x} such that there is y ∈ X , an ε>0, and subnets
{gik y} and {gil y} of {gi y} such that d(gik y, gil y) ≥ ε for every index k, l. Since
{gi x} is a Cauchy net in X then we may assume that d(gik x, gil x)→ 0. Hence,
d(g−1

ik
gil x, x)→0. We can define a new net {hi, j }⊂ Iso(X) by letting hi, j := g−1

j gi

for every pair of indices (i, j), with direction defined by (i1, j1) ≤ (i2, j2) if and
only if i1 ≤ i2 and j1 ≤ j2. Therefore, hik ,il x → x . Since (Iso(X), X) is proper
there is a subnet {hikm ,ilm

} and some g ∈ Iso(X) such that hikm ,ilm
→ g. Hence
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{hikm ,ilm
y} is a Cauchy net in X , therefore for every ε′> 0 there exists an index m0

such that

d(g−1
ikm

gilm
y, g−1

ikn
giln

y) < ε′ for every m, n ≥ m0.

By taking m = n ≥ m0 it is easy to see that {gilm
y} is a Cauchy net and if we

follow the same procedure we can also show that {gikm
y} is a Cauchy net. Since

d(gikm
y, gilm

y) ≥ ε for every index m the net {gi y} has two limit points in the
completion X̂ of X , a contradiction of our hypothesis. �

5. Cauchy-indivisible isometric actions
on separable metric spaces

In this section (X, d) will denote a separable metric space such that the action
(Iso(X), X) is Cauchy-indivisible.

We show the adequacy of sequences in the definition of Cauchy indivisibility:

Proposition 5.1. In the definition of Cauchy indivisibility for isometric actions nets
can be replaced by sequences.

Proof. Assume that if {gn} is a sequence in Iso(X) such that gn →∞ and {gnx}
is a Cauchy sequence in X for some x ∈ X then {gnx} is a Cauchy sequence for
every x ∈ X . Let { fi } be a net in Iso(X) such that fi →∞ and { fi x} is a Cauchy
net in X for some x ∈ X . We will show that { fi x} is a Cauchy net in X for every
x ∈ X . We argue by contradiction. Suppose that there exists y ∈ X such that { fi y}
is not a Cauchy net. Hence, there is an ε > 0 and subnets { fik } and { fil } such that
d( fik y, fil y) ≥ ε for every k, l. Since { fi x} is a Cauchy net in X there is a point
z ∈ X̂ such that f̂i x→ z. Hence, the subnets { f̂ik x} and { f̂il x} also converge to z.
So we may find sequences { f̂ikn

x} and { f̂iln
x} such that f̂ikn

x→ z and f̂iln
x→ z.

Therefore, { fikn
x} and { filn

x} are Cauchy sequences in X and d( fikn
y, filn

y) ≥ ε
for every n ∈ N. Let {hn} ⊂ Iso(X) with

h4n−3 = fik2n−1
, h4n−2 = fil2n−1

, h4n−1 = fil2n
, and h4n = fik2n

,

n = 1, 2, . . . . It is easy to see that ĥnx→ z, hence {hnx} is a Cauchy sequence in
X . Moreover, {hn y} is not a Cauchy sequence in X since d( fikn

y, filn
y) ≥ ε for

every n ∈ N and for the same reason hn→∞ in Iso(X), which is a contradiction
of our hypothesis. �

Definition 5.2. Fix a dense sequence D={xi }⊂ X in X̂ . Since the metric d̂/(1+d̂)
is an equivalent metric to d̂ on X (and also gives the same groups of isometries on
X and X̂ and the same Cauchy sequences) we may assume that d̂ is bounded by 1.
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We define δ : Iso(X̂)× Iso(X̂)→ R+ by

δ( f, g)=
∞∑

i=1

1
2i d̂( f xi , gxi )

for every f, g ∈ Iso(X̂). It is easy to see that δ is a left-invariant metric on Iso(X̂).

Proposition 5.3. The uniformity of pointwise convergence, the left uniformity, and
the uniformity induced by δ on Iso(X̂) and Iso(X) coincide, independently of
Cauchy indivisibility.

Proof. The proof is similar to the proof of [Hjorth 2008, Lemma 2.11]. �

Proposition 5.4. The pointwise closures of Iso(X) in C(X, X) and of Iso(X̂) in
C(X̂ , X̂) endowed with the metric δ are separable metric spaces.

Proof. It follows easily using the same arguments as in the proof of [Hjorth 2008,
Lemma 2.11] and [Bourbaki 1966b, Chapter X, §3, Exercise 6(b), p. 327]. �

The following lemma will be used often in the sequel.

Lemma 5.5. Let {gn} be a sequence in Iso(X) such that {gnx} is a Cauchy se-
quence in X for some x ∈ X and gn→∞. Then

(i) {gnxn} is a Cauchy sequence for every Cauchy sequence {xn} in X and

(ii) if {xk} is Cauchy sequence in X then ĝn[xk] → [gk xk] in X̂ .

Proof. (i) The proof follows by the triangle inequality and the fact that {gnxn0} is
a Cauchy sequence, for suitable n0 ∈ N.

(ii) By (i), {gk xk} is a Cauchy sequence in X , hence [gk xk] ∈ X̂ . The rest of the
proof is similar to that of (i). �

Corollary 5.6. If {gn} is a sequence in Iso(X) such that gn →∞ andi {gnx} is
a Cauchy sequence in X for some x ∈ X , then {ĝn} converges pointwise on X̂ to
some h ∈C(X̂ , X̂) which preserves the metric d̂. In addition, if {g−1

n y} is a Cauchy
sequence for some y ∈ X , then {ĝn} converges pointwise on X̂ to some h ∈ Iso(X̂).

Proof. The proof is an immediate consequence of Lemma 5.5(ii) if we set h : X̂→ X̂
with h[xk] := [gk xk] for every [xk] ∈ X̂ . �

Corollary 5.6 enables the following equivalent expressions of the corresponding
sets defined in the introduction:

Notation 5.7. We have

H=
{
h∈C(X̂ , X̂)

∣∣ there exists a sequence {gn}⊂ Iso(X) with gn→∞ in Iso(X),

{gnx} is a Cauchy sequence for some x ∈ X and ĝn→ h in C(X̂ , X̂)
}
.

Xl denotes the set of the limit points of the action (Iso(X), X) in X̂ ; specifically,
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Xl =
{

y ∈ X̂
∣∣ there exists a sequence {gn} ⊂ Iso(X) with gn→∞ in Iso(X),

such that {gnx} is a Cauchy sequence for some x ∈ X and y = [gk x]
}
.

X p denotes the set of the special limit points of (Iso(X), X) in X̂ ; specifically,

X p =
{

y ∈ X̂
∣∣ there exists a sequence {gn} ⊂ Iso(X) with gn→∞ in Iso(X),

such that {gnx} and {g−1
n x} are Cauchy sequences for some x∈X and y=[gk x]

}
.

Proposition 5.8. If {gn} is a sequence in Iso(X) such that gn→ f on X for some
f in C(X, X), then ĝn→ f̂ on X̂ and f̂ ∈ Iso(X̂).

Proof. If {gn} has a convergent subsequence {gnk } to some point g ∈ Iso(X) then
f = g on X and it is easily seen that ĝn→ ĝ pointwise on X̂ . �

With the notation established in the introduction, we have

Proposition 5.9. The set E is

(i) the union Îso(X)∪ H ,

(ii) complete with respect to the uniformity of pointwise convergence on X̂ , and

(iii) a semigroup, the Ellis semigroup of Îso(X) in C(X̂ , X̂), that is, the pointwise
closure of Îso(X) in C(X̂ , X̂).

Proof. For part (i), take a sequence {ĝn} in Îso(X) such that ĝn → h for some
h ∈ C(X̂ , X̂). If {gn} has a convergent subsequence to some g ∈ Iso(X) then, by
Proposition 5.8, h = ĝ ∈ Îso(X). Let gn →∞ in Iso(X) and take some x ∈ X .
Since ĝnx→ hx , then {gnx} is a Cauchy sequence in X and therefore h ∈ H . Parts
(ii) and (iii) follow from [Hjorth 2008, Lemmata 2.10 and 2.11] by noticing that a
sequence {gn} in Iso(X) is Cauchy with respect to the left uniformity of Iso(X) if
and only if {gnx} is Cauchy in X for every x ∈ X . �

Remark 5.10. As the example in Section 6 shows, the Ellis semigroup E is not,
in general, a group. However:

Proposition 5.11. The Ellis semigroup E is a group if and only if Xl = X p.

Proof. Assume that E is a group and let y ∈ Xl . Hence, there is a sequence
{gn} ⊂ Iso(X) with gn→∞ in Iso(X) and a map h ∈ C(X̂ , X̂) such that ĝn→ h
pointwise on X̂ and y = hx for some x ∈ X . Since E is a group then h has an
inverse h−1. Thus ĝ−1

n → h−1. The last implies that {g−1
n x} is a Cauchy sequence

in X , therefore y ∈ X p.
To show the converse implication, assume that Xl = X p and take some h ∈ E .

By Proposition 5.9(i),
h ∈ Îso(X)∪ H.
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So, if h ∈ Îso(X) obviously it has an inverse. Assume that h ∈ H . Hence, there
is a sequence {gn} ⊂ Iso(X) with gn→∞ in Iso(X) such that ĝn→ h pointwise
on X̂ . So [gnx] ∈ Xl for every x ∈ X . But Xl = X p, hence {g−1

n x} is a Cauchy
sequence. Applying Corollary 5.6, h ∈ Iso(X̂) so it has an inverse in E . �

Lemma 5.12. The set X ∪ Xl is E-invariant.

Proof. It is easy to verify that X and Xl are Îso(X)-invariant. We will show
that they are also H -invariant. Let h ∈ H and x ∈ X . By the definition of H
there is some sequence {gn} in Iso(X) such that gn →∞ in Iso(X) and ĝn → h
pointwise on X̂ . If [ fnx] ∈ Xl , for some sequence { fn}⊂ Iso(X) and x ∈ X then, by
Corollary 5.6, h[ fnx] = [gn fnx]. If the sequence {gn fn} has a convergent subse-
quence in Iso(X) then the Cauchy sequence {gn fnx} has a convergent subsequence
in X , so it converges in X . So h[ fnx] = [gn fnx] ∈ X . Otherwise gn fn→∞ and
h[ fnx] = [gn fnx] ∈ Xl . �

Theorem 5.13. The set X ∪ X p is the maximal subset of X ∪ Xl that contains X
such that the map

ω : E × (X ∪ X p)→ (X ∪ X p)× X̂ ,

with ω( f, y)= (y, f y), f ∈ E , and y ∈ X ∪ X p, is proper.

Proof. We first show that the map ω : E × (X ∪ X p)→ (X ∪ X p)× X̂ is proper.
Since the evaluation map E×(X∪X p)→ X̂ is isometric and action-like, according
to Section 2, it suffices to show that the limit sets L(x) are empty for every x ∈
X ∪ X p. Let { fn} be a sequence in E such that fn y→ z for some y ∈ X ∪ X p and
z := [zk] ∈ X̂ .

Case I. Assume that y ∈ X . If { fn} has a subsequence { fnk } in Îso(X) then either
the restriction of { fnk } on X has a convergent subsequence in Iso(X) hence, by
Proposition 5.8, the sequence { fnk } converges pointwise to some point of Îso(X)⊂
E , or fn→∞ in Iso(X). In this case, since { fn y} is a Cauchy sequence in X , the
sequence { fn} converges pointwise to some point of H ⊂ E by Corollary 5.6.

Assume, now, that { fn} is in H and consider the dense sequence D = {xi } in X
which we used to define the metric δ; see Definition 5.2. So, there is a sequence
{xin } in D such that xin → y. By the definition of H and Proposition 5.3, there is
a sequence {gn} in Iso(X) such that

(5-1) δ(ĝn, fn) <
1

in2in
.

Hence, using the form of the metric δ, we conclude that

d̂(ĝnxin , fnxin ) <
1
in
.
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Moreover,

d̂(ĝn y, z)≤ d̂(ĝnxin , fnxin )+ d̂( fnxin , fn y)+ d̂( fn y, z)

= d̂(ĝnxin , fnxin )+ d̂(xin , y)+ d̂( fn y, z).

Therefore, gn y→ z. Arguing as in the beginning of the proof, {gn} has a convergent
subsequence to a point of E , hence by (5-1), the same holds for the sequence { fn}.

Case II. Assume that y ∈ X p. Hence, there exists a sequence {pk} ⊂ Iso(X) with
pk →∞ in Iso(X), an isometry h1 ∈ Iso(X̂) such that p̂k → h1 pointwise on X̂ ,
and h1x := [pk x] = y for some x ∈ X . If { fn} has a subsequence { fnk } in Îso(X)
then either the restriction of { fnk } on X has a convergent subsequence in Iso(X)
hence, by Proposition 5.8, the sequence { fnk } converges pointwise to some point of
Îso(X)⊂ E , or fn→∞ in Iso(X). If the latter holds, then we will show that there
is a Cauchy sequence of the form { fni pki x} in X for some subsequences { fni } and
{pki } of { fn} and {pk}, respectively (the problem is that we do not know if { fnx}
or { fn pnx} is a Cauchy sequence in X for some x ∈ X ).

Let i be a positive integer. Since fn[pk x] → z and z := [zk] ∈ X̂ , there is a
positive integer n0 that depends only on i such that

d̂( fn[pk x], [zk]) <
1
i

for every n ≥ n0(i). Therefore

lim
k

d( fn pk x, zk) := d̂( fn[pk x], [zk]) <
1
i

for every n ≥ n0(i). Hence, using induction, we may find strictly increasing se-
quences of positive integers {ni } and {ki } such that

(5-2) d( fni pki x, zki ) <
1
i

for every positive integer i . Since {zki } is a Cauchy sequence then by (5-2),
{ fni pki x} is a Cauchy sequence in X .

Now, either { fni pki } has a convergent subsequence in Iso(X) (without loss of
generality and for the economy of the proof we may assume that { fni pki } con-
verges in Iso(X)) or fni pki →∞ in Iso(X). In both cases, by Corollary 5.6 and
Proposition 5.8, there is h2 ∈ C(X̂ , X̂) such that f̂ni p̂ki = f̂ni pki → h2 pointwise
on X̂ . We will show that f̂ni → h2h−1

1 pointwise on X̂ . Take w ∈ X̂ . Since
h1 ∈ Iso(X̂), there is some u ∈ X̂ such that h1(u)= w. Hence

d̂( fniw, h2h−1
1 w)= d̂( fni h1u, h2u)≤ d̂( fni h1u, f̂ni pki u)+ d̂( f̂ni pki u, h2u)

= d̂(h1u, p̂ki u)+ d̂( f̂ni pki u, h2u),
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which converges to 0, since p̂ki → h1 and f̂ni pki → h2 pointwise on X̂ . Hence
{ fnx} is a Cauchy sequence for every x ∈ X . Since we assumed that fn →∞ in
Iso(X) then, by Corollary 5.6, { fn} converges pointwise on X̂ to h2h−1

1 ∈ E .
To finish the proof of the second case assume that { fn} is in H . Then arguing

as in the first case we can show that { fn} has a convergent subsequence to a point
of E .

Next, we show that if Y is a subset of X ∪ Xl that contains X such that the map

ω : E × Y → Y × X̂

is proper then Y ⊂ X ∪ X p. To see that take a point [gk x] ∈ Y \ X . This means
that {gk} is a sequence in Iso(X) such that gk → ∞ in Iso(X) and {gk x} is a
Cauchy sequence in X . By Lemma 5.5(ii), ĝnx → [gk x] and, by Corollary 5.6,
{ĝn} converges pointwise on X̂ to some h ∈ C(X̂ , X̂). Note that x ∈ X ⊂ Y .
Since ĝnx → [gk x] and ĝn preserves the metric d̂ then ĝ−1

n [gk x] → x . Hence,
by the properness of ω, we may assume that {ĝ−1

n } has a subsequence {ĝ−1
nk
} that

converges pointwise to some f ∈ E . This makes h a surjection, hence h ∈ Iso(X̂).
Therefore, [gk x] ∈ X p, so Y \ X ⊂ X p. �

Note that, as the following example shows, it may happen that X p = Xl 6= ∅,
X∪X p 6= X̂ , and the set X∪X p is not the maximal subset of X̂ such that the action
(E, X ∪ X p) is proper.

Example 5.14. Take

X := {(x, y) ∈ R | x ∈Q+
√

2N, y > 0},

endowed with the Euclidean metric. Its group of isometries is the additive group
of the rational numbers acting by horizontal translations. Therefore, (Iso(X), X)
is Cauchy-indivisible. Obviously X̂ is the closed upper half-plane, X p = Xl 6=∅,
X∪X p is the open upper half-plane, and E is the additive group of the real numbers
acting by horizontal translations on X̂ . Hence E acts properly on X̂ .

Remark 5.15. The sets X p and Xl constructed in Theorem 5.13 are optimal in the
sense that if one may think to replace the sets X p and Xl with the following more
general sets

X∗l =
{

y ∈ X̂
∣∣ there exists a sequence {gn} ⊂ Iso(X) and some x ∈ X

such that gn→∞ in Iso(X), {gnx} is a Cauchy sequence,

and y = [gk xk], for some [xk] ∈ X̂
}
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and

X∗p =
{

y ∈ X̂
∣∣ there exists a sequence {gn} ⊂ Iso(X) and some x ∈ X

such that gn→∞ in Iso(X), {gnx} and {g−1
n x} are Cauchy sequences,

and y = [gk xk], for some [xk] ∈ X̂
}
,

and ask if the set X ∪ X∗p is the maximal subset of the completion X̂ such that the
map ω∗ : E × (X ∪ X∗p)→ (X ∪ X∗p)× X̂ with ω∗( f, y) = (y, f y), f ∈ E , and
y ∈ X ∪ X∗p is proper this is not true in general. This follows from the following
assertion and Example 5.17, which shows that there is a metric space X such that
(Iso(X), X) is Cauchy-indivisible, X p 6=∅, and the map ω∗ as above is not proper.

Assertion 5.16. If X∗p 6=∅ (equivalently X p 6=∅) then X∗p = X̂ .

Proof. Let y = [xk] in X̂ . By assumption, there exists a sequence {gn} ⊂ Iso(X)
and a point x ∈ X such that gn→∞ in Iso(X) and the sequences {gnx} and {g−1

n x}
are Cauchy. By Lemma 5.5, {gnxn} is a Cauchy sequence in X and g−1

k [gk xk] →

[g−1
k gk xk] = [xk] = y. Hence, y ∈ X∗p. �

Example 5.17. This is a combination of Example 4.3 and of a 3-dimensional vari-
ation of the “river metric” [Engelking 1989, Example 4.1.6]. Let

X = {(x, y, z) | x ∈Q+
√

2N, y ∈Q+
√

2N, z > 0}.

For every pair of points w1 = (x1, y1, z1), w2 = (x2, y2, z2) ∈ X define

d(w1, w2) :=

{
|y1− y2| + |z1−z2|, if x1 = x2,

|y1| + |y2| + |x1−x2| + |z1−z2|, if x1 6= x2.

We can easily verify that d is a metric on X . The group of isometries Iso(X, d)
consists of all the maps g : X→ X of the form

g(x, y, z)= (x + p, y+ q, z), p, q ∈Q.

The action (Iso(X), X) is Cauchy-indivisible since X does not contain the xy-plane
(the last coordinate of the points of X is positive). Then

X p = {(x, y, z) | x ∈Q+
√

2N, y ∈ R, z > 0}.

To see that take x ∈Q+
√

2N, y∈R, and z>0 and choose k∈N such that y−
√

2k /∈
Q. Let {qn} be a sequence of rational numbers such that qn → y −

√
2k. Hence,

if we let {gn} ⊂ Iso(X) with gn(x, y, z) := (x, y + qn, z) then gn(x,
√

2k, z) =
(x, qn +

√
2k, z)→ (x, y, z). Hence (x, y, z) ∈ X p. Observe that

X̂ = {(x, y, z) | x ∈Q+
√

2N, y ∈ R, z ≥ 0},
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and E consists of all the maps g : X̂→ X̂ with

g(x, y, z)= (x + p, y+ r, z), p ∈Q, r ∈ R.

However, the map ω̂ : E× X̂→ X̂× X̂ with ω̂( f, w)= (w, fw), f ∈ E , andw∈ X̂ is
not proper since if we take a sequence of rational numbers {pn} such that pn→

√
2

and let {gn}⊂ E with gn(x, y, z)= (x+ pn, y, z) then gn(x, 0, 0)→ (x+
√

2, 0, 0)
for each x ∈ Q+

√
2N. The sequence {gn} diverges in E since, for instance, the

distance of the points gn(
√

2,
√

2, 1) = (qn +
√

2,
√

2, 1) from any point of X is
eventually at least

√
2. Hence the limit set L((x, 0, 0)) is not empty.

A question that arises naturally from Theorem 5.13 is if the action of the El-
lis semigroup E on X ∪ Xl is proper. Surprisingly, as the following proposition
shows, this is equivalent to the existence of a Weil completion (with respect to the
uniformity of pointwise convergence) for the group Iso(X). But first let us recall a
few things about the Weil completion of Iso(X), defined in the introduction. The
uniformity of pointwise convergence on X coincides with the left uniformity of
Iso(X) (see [Bourbaki 1966a, Chapter III, §3.1 and Chapter X, §3, Exercise 19(a),
p. 332]) and Iso(X) has Weil completion with respect to this uniformity if the left
and the right uniformities coincide; see [Bourbaki 1966a, Chapter III, §3.4 and §3,
Exercise 3, p. 306]. Note that the left completion of Iso(X) does not depend on
the choice of a left-invariant metric on Iso(X); see [Hjorth 2008, Lemma 2.9].

Proposition 5.18. The following are equivalent:

(i) The map ω : E × (X ∪ Xl)→ (X ∪ Xl)× X̂ is proper.

(ii) E is a group (precisely a closed subgroup of Iso(X̂)).

(iii) Iso(X) has a Weil completion with respect to the uniformity of pointwise con-
vergence (in this case E is the Weil completion of Iso(X)).

Proof. We show that (i) implies (ii) and vice versa. Suppose that ω is proper. Take
some h ∈ E . Since E is a semigroup, see Proposition 5.9(iii), we have only to show
that h has an inverse in E . If h = ĝ ∈ Îso(X) for some g ∈ Iso(X), then ĝ−1 is the
inverse of h in Îso(X)⊂ E . If h ∈ H there is a sequence {gn} in Iso(X) such that
gn→∞ in Iso(X) and ĝn→ h pointwise on X̂ . Hence, if x ∈ X then ĝnx→ hx .
Since ĝn preserves the metric d̂ then ĝ−1

n hx = ĝ−1
n hx → x . By Lemma 5.12,

hx ∈ X ∪ Xl , hence, by the properness of ω, {ĝ−1
n } has a convergent subsequence

{ĝ−1
nk
} to some f ∈ E . This makes h a surjection, hence h ∈ Iso(X̂) and h has

an inverse in E . To show the converse implication note that if E is a group then
Xl = X p; see Proposition 5.11. Hence, by Theorem 5.13, the map ω is proper.

To finish the proof of the proposition let us show that (iii) implies (ii) and vice
versa. Note that Iso(X) has a Weil completion if and only if the map with g 7→ g−1

for every g ∈ Iso(X) maps Cauchy sequences of Iso(X) to Cauchy sequences; see



436 ANTONIOS MANOUSSOS AND POLYCHRONIS STRANTZALOS

[Bourbaki 1966a, Chapter III, §3.4, Theorem 1]. It is easy to check that in the case
when Iso(X) is Cauchy-indivisible this is equivalent to Xl = X p. Equivalently, by
Proposition 5.11, E is a group. �

Remark 5.19. In the case when Iso(X) is a locally compact group, for example,
if X is a locally compact space and Iso(X) acts properly on it (as it is known in the
case X is connected), then by [Bourbaki 1966a, Chapter III, §3, Exercise 8, p. 307],
Iso(X) has a locally compact completion hence E is a locally compact group.

We summarize with the following.

Corollary 5.20. If E is a group the action (Iso(X), X) is embedded densely in the
proper action (E, X ∪ Xl) such that the following equivariant diagram commutes:

(Iso(X), X)

��

// X

��
(E, X ∪ Xl)

// X̂,

where X → X ∪ Xl is the inclusion map and the map Iso(X)→ E is defined by
g 7→ ĝ for every g ∈ Iso(X). By “densely” we mean that X is dense in X ∪ Xl and
Îso(X) is dense in E.

Question 5.21. The above embedding of a Cauchy-indivisible action as a dense
subaction of a proper one establishes a remarkable connection between Cauchy-
indivisible and proper actions, and at the same time proposes an interesting ques-
tion: Is there any analogy with the situation of embedding of a proper action (on
a locally compact and connected space) in an appropriate zero-dimensional com-
pactification, like in [Abels 1972; Manoussos and Strantzalos 2007]? Namely, can
we obtain any structurally informative correspondence between divergent nets in
Iso(X) and suitable subsets of Xl?

Remark 5.22. As we will see in the example described in Section 6 it may happen
that X p 6= Xl and X ∪ Xl = X̂ .

In view of possible questions for refinements of Corollary 5.20 we note that
it may happen that X ∪ X p = X̂ and E is not dense in Iso(X̂), as the following
example shows:

Example 5.23. There is a separable metric space (X, d) such that (Iso(X), X) is
Cauchy-indivisible, proper, X ∪ X p = X̂ , and Iso(X) has a Weil completion which
does not coincide with the group Iso(X̂).

Proof. We let X be the set Q +
√

2N endowed with the Euclidean metric; see
Example 4.3. It is easy to check that X∪X p = X∪Xl =R, see also Example 5.17,
hence by Propositions 5.11 and 5.18, Iso(X) has a Weil completion (or just ob-
serve that Iso(X) is an abelian group and use [Bourbaki 1966a, Chapter III, §3.5,
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Theorem 2]). But all the reflections of the space are excluded, hence the pointwise
closure E of Îso(X) does not coincide with Iso(R). �

6. An example of a proper Cauchy-indivisible action
of a group which has no Weil completion

In this section we show that there is a separable metric space X such that the action
(Iso(X), X) is proper and Cauchy-indivisible, and the Ellis semigroup E is not a
group. Equivalently, in view of Proposition 5.18, Iso(X) has no Weil completion.
Consider the space of the integers Z with the discrete metric d, that is, if m, n ∈ Z

then d(m, n) = 0 if m = n and d(m, n) = 1 otherwise. The group of isometries
Iso(Z) consists of all the self bijections of Z and is an example of a topological
group that has no Weil completion. To see that take fn : Z→ Z with fnz = z for
−n < z < 0, fn(−n)= 0, and fnz = z+1 otherwise. Then it is easy to verify that
fn→ f , where f z= z for z< 0, and f z= z+1 for z≥ 0. Hence { fnz} is a Cauchy
sequence in Z for every z ∈ Z, therefore { fn} is a Cauchy sequence in Iso(Z) with
respect to the uniformity of pointwise convergence on Z. But { f −1

n 0} = {−n} is
not a Cauchy sequence, so neither is { f −1

n }. Thus, by [Bourbaki 1966a, Chapter
III, §3.4, Theorem 1], Iso(Z) has no Weil completion. The problem is that the
action (Iso(Z),Z) is not Cauchy-indivisible. To see that notice that { f −1

n 1} = {0}
but { f −1

n 0} = {−n} is not a Cauchy sequence. Nevertheless, the group Iso(Iso(Z))
is Cauchy-indivisible and has no Weil completion as we show in the following.

Take an enumeration A = {zi } of Z and equip Iso(Z) with the metric

%( f, g)=
∞∑

i=1

1
3i d( f zi , gzi )

for f, g ∈ Iso(Z). In view of Proposition 5.3 the uniformity of pointwise conver-
gence, the left uniformity, and the uniformity induced by % on Iso(Z) coincide
(the choice of 1

3 instead of 1
2 in Definition 5.2 will be clarified in the proof of

Lemma 6.1). Note that (Iso(Z), %) is a separable metric space. We will show that
Iso(Iso(Z)) is Cauchy-indivisible but has no Weil completion.

Lemma 6.1. If T ∈ Iso(Iso(Z)) and f, g ∈ Iso(Z) then

d(T ( f )z, T (g)z)= d( f z, gz)

for every z ∈ Z .

Proof. Since %(T ( f ), T (g))= %( f, g) then

∞∑
i=1

1
3i d(T ( f )zi , T (g)zi )=

∞∑
i=1

1
3i d( f zi , gzi ).
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Since the values of d are 0 or 1 then d(T ( f )zn, T (g)zn)= d( f zn, gzn), for every
zn ∈ A = Z (here is the role of the choice of 1

3 instead of 1
2 ). �

Proposition 6.2. If T ∈ Iso(Iso(Z)) and f ∈ Iso(Z) then T ( f )= T (e) ◦ f , where
e is the unit element of Iso(Z).

Proof. Let zk and zl be two distinct integers and let g∈ Iso(Z) be such that gzk= zl ,
gzl = zk , and gz= z elsewhere. We show that T (g)= T (e)◦g. If z 6= zk, zl then, by
Lemma 6.1, d(T (g)z, T (e)z)= d(gz, z)= 0. Hence T (g)z = T (e)z = T (e)◦ gz.
Moreover

d(T (g)zk, T (e)zk)= d(gzk, zk)= d(zl, zk)= 1

and, similarly, d(T (g)zl, T (e)zl) = 1. Since T (g)zk 6= T (g)z = T (e)z for z 6=
zk, zl and T (e) is surjective then T (g)zk = T (e)zl = T (e) ◦ gzk and, similarly,
T (g)zl = T (e) ◦ gzl . Therefore T (g)= T (e) ◦ g.

Fix f ∈ Iso(Z) and some z ∈ Z. If f z = z then T ( f )z = T (e)z = T (e) ◦ f z
since d(T ( f )z, T (e)z) = d( f z, z) = 0. If f z 6= z, let g ∈ Iso(Z) with gz = f z,
g f z = z, and gw = w elsewhere. Since d(T ( f )z, T (g)z) = d( f z, gz) = 0 then
T ( f )z = T (g)z. Using the result of the previous paragraph, T ( f )z = T (g)z =
T (e) ◦ gz = T (e) ◦ f z. Since z was arbitrary then T ( f )= T (e) ◦ f . �

Corollary 6.3. Let L , T ∈ Iso(Iso(Z)). Then L ◦T (e)= L(e)◦T (e) and T−1(e)=
(T (e))−1.

Proof. Since T ( f )= T (e) ◦ f for every T ∈ Iso(Iso(Z)) and f ∈ Iso(Z), then

L ◦ T ( f )= L(T ( f ))= L(e) ◦ T ( f )= L(e) ◦ T (e) ◦ f.

Hence, L(e) ◦ T (e) = L ◦ T (e). If I denotes the identity on Iso(Iso(Z)), then
f = I ( f )= I (e) ◦ f . Hence I (e)= e and T−1(e)= (T (e))−1. �

Proposition 6.4. The map B : Iso(Iso(Z))→ Iso(Z) with B(T )=T (e) is a uniform
group isomorphism with respect to the uniformities of pointwise convergence on the
underlying spaces Iso(Z) and Z, respectively.

Proof. By Proposition 5.3 we can equip Iso(Iso(Z)) with a left-invariant metric
σ such that the uniformity of pointwise convergence, the left uniformity, and the
uniformity induced by σ on Iso(Iso(Z)) coincide. Let Ln, Tn ∈ Iso(Iso(Z)) such
that σ(Ln, Tn)→ 0, hence σ(T−1

n Ln, I )→ 0. Therefore T−1
n Ln→ I pointwise on

Iso(Z) so T−1
n Ln(e)→ e, thus %(Ln(e), Tn(e))→ 0. For the converse, note that if

%(T−1
n Ln(e), e)→ 0 then %(T−1

n Ln(e) ◦ f, f )→ 0 for every f ∈ Iso(Z) since the
map Iso(Z)→ Iso(Z) with g 7→ g f is continuous. Hence T−1

n Ln → I pointwise
on Iso(Z). Corollary 6.3 implies that B is also group isomorphism. �

Proposition 6.5. The group Iso(Iso(Z)) is Cauchy-indivisible and has no Weil
completion.
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Proof. Let us show firstly that Iso(Iso(Z)) is Cauchy-indivisible. Let {Tn} ⊂

Iso(Iso(Z)) and f ∈ Iso(Z) such that {Tn( f )} is a Cauchy sequence in Iso(Z).
Take some g ∈ Iso(Z). Since {Tn( f )} is a Cauchy sequence in Iso(Z) then it is
easy to see that {Tn( f )z} is a Cauchy sequence for every z ∈ Z. Equivalently,
{Tn( f ) f −1gz} is a Cauchy sequence for every z ∈ Z. By Proposition 6.2,

Tn( f ) f −1gz = Tn(e) ◦ f f −1gz = Tn(e) ◦ gz = Tn(g)z.

Therefore {Tn(g)} is a Cauchy sequence in Iso(Iso(Z)) for every g ∈ Iso(Z), hence
Iso(Iso(Z)) is Cauchy-indivisible.

Since by the previous proposition the groups Iso(Iso(Z)) and Iso(Z) are uni-
formly isomorphic and the group Iso(Z) has no Weil completion then the same
also holds for Iso(Iso(Z)). �

Proposition 6.6. The action (Iso(Iso(Z)), Iso(Z)) is proper.

Proof. Let f, g∈ Iso(Z) and {Tn}⊂ Iso(Iso(Z)) be a sequence such that Tn( f )→ g.
Hence, by Proposition 6.2, Tn(e) ◦ f → g thus Tn(e)→ g f −1. Therefore {Tn(h)}
converges for every h ∈ Iso(Z). Since (Tn(e))−1

→ f g−1 it is easy to verify that
{Tn} converges in Iso(Iso(Z)) hence the action (Iso(Iso(Z)), Iso(Z)) is proper. �

Remark 6.7. Notice that Iso(Iso(Z)) is not locally compact since it has no Weil
completion (Iso(Z) is, of course, not locally compact).

7. Borel sections, fundamental sets, and Cauchy indivisibility

As it is indicated in the introduction a section of an action (G, X) is a subset of
X which contains only one point from each orbit. If a section is a Borel subset of
X it called a Borel section. Concerning the existence of Borel sections, if (Y, d)
is a separable metric space and R is an equivalence relation on Y such that the
R-saturation of each open set is Borel, then there is a Borel set S whose intersection
with each R-equivalence class which is complete with respect to d is nonempty,
and whose intersection with each R-equivalence class is at most one point; see
[Kallman and Mauldin 1978, Lemma 2]. The problem of the existence of a Borel
section for a continuous Polish action is of remarkable significance because the
existence of a Borel section is equivalent to many interesting facts, like that the
underlying space has only trivial ergodic measures and that the orbit space has a
standard Borel structure and has no nontrivial atoms. Recall that an action (G, X)
is called Polish if both G and X are Polish spaces, that is, they are separable
and metrizable by a complete metric. Keeping the previous in mind we have the
following:

Proposition 7.1. If the Ellis semigroup E is a group then the action (E, X ∪ Xl)

has a Borel section.
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Proof. Assume that the Ellis semigroup E is a group. Since by Proposition 5.11 we
have Xl = X p and by Proposition 5.18 the map ω : E× (X ∪ Xl)→ (X ∪ Xl)× X̃
is proper then each orbit Ex , x ∈ X ∪ Xl , is closed in X̃ . Hence, by [Kallman and
Mauldin 1978, Lemma 2] there exists a Borel set S ⊂ X̃ such that S ∩ (X ∪ Xl)

is a Borel section (with respect to the relative topology of X ∪ Xl) for the action
(E, X ∪ Xl). �

A very useful notion in the theory of proper actions on locally compact spaces
with paracompact orbit spaces is the notion of a fundamental set.

Let G be a topological group which acts continuously on a topological space X
and A, B ⊂ X . Let us call the set G AB := {g ∈ G : g A ∩ B 6= ∅} the transporter
from A to B.

Definition 7.2. A subset F of X is called a fundamental set for the action (G, X)
if the following holds.

(i) G F = X .

(ii) For every x ∈ X there exists a neighborhood V ⊂ X of x such that the trans-
porter GV F of V to F has compact closure in G.

For locally compact spaces we can replace condition (ii) with the following
equivalent condition.

(iia) The transporter G K F from K to F has compact closure in G for every non-
empty compact subset K of X .

Note that the existence of a fundamental set implies that the action group G is
locally compact and the action (G, X) is proper.

The notion of a fundamental set is relative to the notion of a section but it is dif-
ferent in general, in the sense that there are cases where a section is a fundamental
set, cases where a fundamental set fails to be a section, and cases where a section
fails to be a fundamental set. A section may not be Borel or even if it is Borel may
not be contained in any fundamental set, as the following example shows.

Example 7.3. The action (Z,R) with (z, r) 7→ r + z, z ∈ Z, r ∈ R, is proper and
it has a Borel section which is not contained in any fundamental set. Indeed, it is
easy to see that the set

S :=
(
[0, 1)

∖⋃
n∈N

{1
n

})
∪

⋃
n∈N

{
n+ 1

n

}
is a section because the interval [0, 1) is a section (and a fundamental set) for the
action (Z,R). Take an open ball B centered at 0 with radius ε > 0. Then there
exists n0 ∈ N such that 1/n < ε for every n ≥ n0. Let A be a subset of R that
contains S. Hence {n | n ≥ n0} is a subset of the transporter ZBS ⊂ ZB A, so A
cannot be a fundamental set.
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It is also possible to construct a section which is not Borel. Take a set D⊂[0, 1)
which is not a Borel set and consider the set S1 := D∪{x+2 | x ∈R\D}. Obviously
S1 is a section which is not a Borel subset of the reals.

Nevertheless sections, Borel sections, and fundamental sets have a very strong
connection as the following theorem shows.

Theorem 7.4. Let G be a group which acts properly on a locally compact space
X , and suppose that the orbit space G\X is paracompact. Let S be a section for
the action (G, X). Then

(i) For every open neighborhood U of S we can construct a closed fundamental
set Fc and an open fundamental set Fo such that Fc ⊂ Fo ⊂U.

(ii) If , in addition, (X, d) is a separable metric space, in which case the action
(G, X) is Cauchy-indivisible, by Theorem 3.3, then there exists a Borel section
SB , which is also a fundamental set, such that SB ⊂ Fc ⊂ Fo ⊂U.

Proof. (i) Since U is open it is a union of open balls, let us say Si , i ∈ I . Let
p : X→G\X be the natural map x 7→Gx . Then p(Si ), i ∈ I , is an open covering
of the locally compact and paracompact space G\X . Hence, there is a locally finite
refinement {W j }, j ∈ J , which consists of open subsets of G\X with compact
closures such that W j ⊂ p(Si j ), for some i j ∈ I . Now we can follow the classical
proof for the existence of fundamental sets; see [Koszul 1965, Lemma 2, p. 8].
Let {V j } be an open covering of G\X such that V j ⊂ W j for every j ∈ J . Fix an
index j ∈ J and consider the restriction of the natural map p : X → G\X on the
open ball Si j . Since Si j is locally compact then there exists an open set Ui j ⊂ Si j

with compact closure and a compact set Ki j ⊂ Ui j ⊂ Si j such that p(Ui j ) = W j

and p(Ki j ) = V j . Let Fc :=
⋃

j Ki j and Fo :=
⋃

j Ui j . The family {Ui j } j∈J is
locally finite in X hence the set Fc is closed; see [Bourbaki 1966a, Chapter I, §1.5,
Proposition 4]. Moreover, G Fc = X . Take a point x ∈ X and neighborhood A
of x with compact closure. Since the covering {W j } j∈J is locally finite, then the
transporters G AUi j

from A to Ui j are nonempty for only finitely many j ∈ J . Since
the sets A and Ui j have compact closure and the action (G, X) is proper, then
the transporter G AFo of A to Fo has compact closure in G. Thus, Fc and Fo are
fundamental sets and by construction Fc ⊂ Fo ⊂U .

(ii) Let Fc be a closed fundamental set for the action (G, X) like in (i). Define
a relation R on Fc with xRy, x, y ∈ Fc if and only if y ∈ Gx . We will find
a Borel section for the closed fundamental set Fc with respect to the previous
natural relation on Fc and then we will show that it is, also, a Borel section for
the action (G, X). Obviously R is an equivalence relation on the separable metric
space (Fc, d). Since the action (G, X) is proper each orbit Gx is closed in X ,
for every x ∈ X . The R-equivalence class of a point x ∈ Fc is Gx ∩ Fc, hence it
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is a closed subset of X , thus it is a complete space with respect to the metric d .
If U is an open subset of Fc with respect to the relative topology of Fc then the
R-saturation of U is the set GU ∩ Fc which is open in Fc hence it is a Borel set.
Therefore we can apply [Kallman and Mauldin 1978, Lemma 2] to find a Borel
section SB ⊂ Fc for the equivalence relation R. Moreover, SB is a Borel section
(and a fundamental set) for the action (G, X), since it is contained in the closed
fundamental set Fc. �

Remark 7.5. Note that the assumption that the orbit space G\X is paracompact is
automatically satisfied for proper isometric actions. So we can apply Theorem 7.4
in both cases.

Remark 7.6. The statement of Theorem 7.4 cannot be improved by asserting that
“There always exists a section S homeomorphic to the orbit space,” even if we
omit the requirement that a neighborhood U of S is given, as the following simple
example shows: Let ϕ be the rotation by π/2 on the unit circle and G be the group
with two elements generated by ϕ. The orbit space is homeomorphic to the half-
open interval (0, 1] endowed with a non-Euclidean topology (that is, a sequence
tending to 0 converges to 1), therefore it cannot be embedded in S1.

An answer to the question of whether S can be chosen to be homeomorphic to
the orbit space may lead to interesting structure-theorems.

Question 7.7. As Theorem 7.4(ii) indicates the notion of a Borel section is re-
markably related to that of a fundamental set in the locally compact case and may
be, similarly, used for structural theorems. Note that the Borel section SB , because
of its construction, is a minimal fundamental set for the action (G, X), that is, for
each point x ∈ X the transporter G{x}SB = gGx for some g ∈G. So, it is interesting
to ask whether the existing Borel section for the action (E, X∪Xl) can be reduced,
or lead, to a Borel section for the initial action (Iso(X), X).
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THETA LIFTS OF STRONGLY POSITIVE DISCRETE SERIES:
THE CASE OF (S̃p(n), O(V ))

IVAN MATIĆ

Let F denote a nonarchimedean local field of characteristic zero with odd
residual characteristic. Using the results of Gan and Savin, in this paper
we determine the first occurrence indices and theta lifts of strongly posi-
tive discrete series representations of metaplectic groups over F in terms of
our recent classification of this class of representations. Also, we determine
the first occurrence indices of some strongly positive representations of odd
orthogonal groups.

1. Introduction

One of the main issues in the local theta correspondence is a precise determination
of the theta lifts of irreducible representations. This problem is by now completely
solved for cuspidal representations [Mœglin et al. 1987, Théorème principal] and for
discrete series for the dual pair (Sp(n), O(V )) [Muić 2004, Theorems 4.2 and 4.3].
Muić used an inductive procedure to investigate certain embeddings of theta lifts
of discrete series representations so as to obtain explicit information about the
structure of these lifts and to derive the first occurrence indices.

The description given there is based on the classification of discrete series of
the classical groups given in [Mœglin 2002; Mœglin and Tadić 2002], which relies
on certain conjectures called the basic assumption (we emphasize that Arthur has
recently announced a proof of his conjectures about the stable transfer coming from
the twisted endoscopy, which should imply the basic assumption). On the other
hand, we have recently classified the strongly positive discrete series of metaplectic
groups, and our classification uses no hypothesis and can be applied much more
generally. It is natural to try to relate this classification to the determination of the
lifts of those representations. Thus, it is the purpose of this paper to determine
the first occurrence indices of the strongly positive discrete series for the dual pair
(S̃p(n), O(V )), where S̃p(n) is the universal cover of Sp(n), and to obtain as much
information about the structure of theta lifts of such representations as possible.

Muić [2008] has obtained some fundamental results on the structure of theta

MSC2010: primary 22E35, 22E50; secondary 11F27.
Keywords: theta correspondence, metaplectic groups, strongly positive representations.
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lifts of discrete series without using the Mœglin–Tadić classification. Although
very powerful, the methods used there could not provide an explicit description of
the first occurrence indices. Nevertheless, his results have recently been rewritten
by Gan and Savin [2012] for the dual pair (S̃p(n), O(V )) over a nonarchimedean
field of characteristic zero with odd residual characteristic. Another crucial result
of their paper is a natural correspondence between irreducible representations on a
certain level of metaplectic and odd orthogonal towers, which partially generalizes
results of Waldspurger [1984; 1991].

These results are of much importance for us, because they allow us to start
our investigation of the first occurrence index with the lift that is a discrete series
representation at a quite low level of the tower. The disadvantage of this approach
is that it prevents us from determining both first occurrence indices when lifting
from the metaplectic tower. So we determine just the lower one.

We do not adopt the methods used in [Muić 2004], choosing rather to describe
theta lifts of strongly positive discrete series directly from their cuspidal supports.
The advantage of using this method lies in the fact that the structure of the obtained
theta lifts can be explicitly described in a purely combinatorial way.

We now describe the contents of this paper. The next section presents some
preliminaries, while in Section 3, we summarize without proofs the relevant material
on the strongly positive discrete series. In that section we also obtain some useful
embeddings of the general discrete series representations. Section 4 provides a
detailed exposition of the results about Howe correspondence, which will be used
through the paper. Section 5 is the technical heart of the paper, containing several
results regarding the theta lifts of irreducible representations.

In Section 6, we state and prove our main results about the lifts of strongly
positive irreducible representations of the metaplectic groups, using case-by-case
consideration. In Section 7, we determine the first occurrence indices of certain
strongly positive representations of the odd orthogonal groups. The observed cases
happen to be quite similar in both directions, so the proofs made in the sixth section
help us shorten those in the seventh one.

However, for the sake of completeness and to avoid possible confusion, we
discuss the details of the lifts of representations of the metaplectic groups and those
of the orthogonal ones in separate sections.

2. Notations and preliminaries

Let F be a nonarchimedean local field of characteristic zero with odd residual
characteristic.

For a reductive group G, let Irr(G) stand for the set of isomorphism classes of
irreducible admissible (genuine) representations of G.
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First we discuss the groups that we consider.
Let V0 be an anisotropic quadratic space over F of odd dimension. Then its

dimension can only be 1 or 3. For more details about the invariants of this space,
such as the quadratic character χV0 related to the quadratic form on V0, we refer
the reader to [Kudla 1986] and [Kudla and Rallis 2005]. In each step we add a
hyperbolic plane and obtain an enlarged quadratic space, a tower of quadratic spaces,
and a tower of corresponding orthogonal groups. In the case when r hyperbolic
planes are added to the anisotropic space, the enlarged quadratic space will be
denoted by Vr , while a corresponding orthogonal group will be denoted by O(Vr ).
Set mr = (1/2) dim Vr .

To a fixed quadratic character χV0 , one can attach two odd orthogonal towers,
one with dim V0 = 1 (+-tower) and the other with dim V0 = 3 (−-tower), as in
Chapter V of [Kudla 1996]. In that case, for corresponding orthogonal groups of
the spaces obtained by adding r hyperbolic planes, we write O(V+r ) and O(V−r ).

Let S1(n) be the Grothendieck group of the category of all admissible represen-
tations of finite length of O(Vn) (that is, a free abelian group over the set of all
irreducible representations of O(Vn)), and define S1 =

⊕
n≥0 S1(n).

Let S̃p(n) be the metaplectic group of rank n, the unique nontrivial two-fold
central extension of symplectic group Sp(n, F). In other words, the following holds:

1→ µ2→ S̃p(n)→ Sp(n, F)→ 1,

where µ2 = {1,−1}. The multiplication in S̃p(n) (which is as a set given by
Sp(n, F)×µ2) is given by Rao’s cocycle [Ranga Rao 1993]. More details on the
structural theory of metaplectic groups can be found in [Hanzer and Muić 2010],
[Kudla 1996], and [Ranga Rao 1993].

In this paper we are interested only in genuine representations of S̃p(n) (that is,
those that do not factor through µ2). So, let S2(n) be the Grothendieck group of
the category of all admissible genuine representations of finite length of S̃p(n) and
define S2 =

⊕
n≥0 S2(n).

Let G̃L(n, F) be a double cover of GL(n, F), where the multiplication is given
by

(g1, ε1)(g2, ε2)= (g1g2, ε1ε2(detg1, detg2)F ).

Here εi ∈ µ2, i = 1, 2, and ( · , · )F denotes the Hilbert symbol of the field F .
The pair (Sp(n), O(Vr )) is a reductive dual pair in Sp(n · dim Vr ). Since the

dimension of the space Vr is odd, the theta correspondence relates the representations
of the metaplectic group S̃p(n) and those of the orthogonal group O(Vr ). We use
the abbreviation n1 = n · dim Vr . Let ωn1,ψ be the Weil representation of S̃p(n1)

depending on the nontrivial additive character ψ , and let ωn,r denote the pull-back
of that representation to the pair (S̃p(n), O(Vr )).
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Here and subsequently, ψ denotes a nontrivial additive character of F . Further,
we fix a character χV,ψ of G̃L(n, F) given by

χV,ψ(g, ε)= χV (det g)εγ (det g, 1
2ψ)

−1.

Here γ denotes the Weil invariant, while χV is a character related to the quadratic
form on O(Vr ). We write α = χ2

V,ψ and observe that α is a quadratic character on
GL(n, F).

Let
Rgen
=

⊕
n≥0

Rgen(n),

where Rgen(n) denotes the Grothendieck group of smooth genuine representations
of finite length of G̃L(n, F). Similarly, define

R=
⊕
n≥0

R(n),

where R(n) denotes the Grothendieck group of smooth genuine representations of
finite length of GL(n, F).

To simplify the notation, in the sequel we write

R′ =

{
R in the orthogonal case,
Rgen in the metaplectic case,

and
S′ =

{
S1 in the orthogonal case,
S2 in the metaplectic case.

By ν we denote the character of GL(n, F) defined by |det|F .
An irreducible representation σ ∈ S′ is called strongly positive if for each

representation νs1ρ1× ν
s2ρ2× · · · × ν

skρk o σcusp, where ρi ∈R′, i = 1, 2, . . . , k
are irreducible cuspidal unitary representations, σcusp ∈ S′ is an irreducible cuspidal
representation, and si ∈ R, i = 1, 2, . . . , k such that

σ ↪→ νs1ρ1× ν
s2ρ2× · · ·× ν

skρk o σcusp,

we have si > 0 for each i .
Irreducible strongly positive representations are called strongly positive discrete

series.
If ρ ∈ R′(m) is an irreducible unitary cuspidal representation, we say that

1 = {νaρ, νa+1ρ, . . . , νa+kρ} is a segment, where a ∈ R and k ∈ Z≥0; and we
abbreviate {νaρ, νa+1ρ, . . . , νa+kρ} as [νaρ, νa+kρ]. We denote by δ(1) the
unique irreducible subrepresentation of νa+kρ× νa+k−1ρ× · · ·× νaρ. This δ(1)
is an essentially square-integrable representation attached to the segment 1.
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For every irreducible cuspidal representation ρ ∈R′(m), there exists a unique
e(ρ) ∈ R such that the representation ν−e(ρ)ρ is a unitary cuspidal representation.
From now on, let e

(
[νaρ, νbρ]

)
= (a+ b)/2.

For an ordered partition s = (n1, n2, . . . , n j ) of some m ≤ n, we denote by Ps

a standard parabolic subgroup of Sp(n, F) (consisting of block upper-triangular
matrices) whose Levi factor equals

GL(n1)×GL(n2)× · · ·×GL(n j )×Sp(n− |s|, F),

where |s| =m =
∑ j

i=1 ni . Then the standard parabolic subgroup P̃s of S̃p(n) is the
preimage of Ps in S̃p(n). We have the analogous notation for the Levi subgroups of
the metaplectic groups, which are described in more detail in Section 2.2 of [Hanzer
and Muić 2010]. The standard parabolic subgroups (containing the upper triangular
Borel subgroup) of O(Vr ) have an analogous description to the standard parabolic
subgroups of Sp(n, F). If P̃s is a standard parabolic subgroup of S̃p(n) described
above, or Ps is a similar standard parabolic subgroup of O(Vr ), the normalized
Jacquet module of a smooth representation σ of S̃p(n) (resp. O(Vr )) with respect
to P̃s (resp. Ps) is denoted by R P̃s (σ ) (resp. RPs (σ )). From now on, RP1(π)(χ)

(or R P̃1(π)(χ)) stands for the isotypic component of RP1(π) along the generalized
character χ .

Also, in dealing with Jacquet modules of ωn,r , we use the shorthand RP1(ωn,r )

(resp. R P̃1(ωn,r )) for RS̃p(n)×P1(ωn,r ) (resp. R P̃1×O(Vm)(ωn,r )), following the nota-
tion of [Hanzer and Muić 2011].

For any irreducible representation π ∈ S′(n), there exist an ordered partition
s = (n1, n2, . . . , n j ) of some m ≤ n, cuspidal representations ρi ∈ Irr(R′(ni )), and
πcusp∈ S′(n−|s|) such that π is an irreducible subquotient of the induced representa-
tion ρ1×ρ2×· · ·×ρ j oπcusp. In this situation, we write [π ]=[ρ1, ρ2, . . . , ρ j ;πcusp],
following the notation used in [Kudla 1996].

Let σ ∈ S′(n) denote an irreducible representation. To simplify notation, set
P ′s = Ps in the orthogonal case and P ′s = P̃s in the metaplectic one. We define
µ∗(σ ) ∈R′⊗ S′ by

µ∗(σ )=

n∑
k=0

s.s.(P ′(k)(σ )),

where s.s. denotes the semisimplification. We extend µ∗ linearly to the whole of S′.
In the following lemma, we recall a useful formula for calculations with Jacquet

modules, which is valid in both the orthogonal and metaplectic cases [Tadić 1995;
Hanzer and Muić 2010]. Set α′ = α in the metaplectic case, while in the orthogonal
case α′ denotes a trivial character.

Lemma 2.1. Let ρ ∈R′ be an irreducible cuspidal representation and let a, b ∈ R

be such that a+b ∈ Z≥0. Let σ ∈ S′ be an admissible representation of finite length.
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Write µ∗(σ )=
∑

π,σ ′ π ⊗ σ
′. Then the following holds:

(1) µ∗
(
δ
(
[ν−aρ, νbρ]

)
o σ

)
=

b∑
i=−a−1

b∑
j=i

∑
π,σ ′

δ
(
[ν−iα′ρ̃, νaα′ρ̃]

)
×δ
(
[ν j+1ρ, νbρ]

)
×π ⊗ δ

(
[νi+1ρ, ν jρ]

)
o σ ′.

We omit δ
(
[νxρ, ν yρ]

)
if x > y.

We take a moment to recall the formulation of the second Frobenius isomorphism.
Generally, for some reductive group G ′, its parabolic subgroup P ′ with the

Levi subgroup M ′, and its opposite parabolic subgroup P ′, the second Frobenius
isomorphism is

HomG ′
(
IndG ′

M ′(π),5
)
∼= HomM ′

(
π, RP ′(5)

)
,

for some smooth representation π (resp. 5) of the group M ′ (resp. G ′). We denote
the space of the representation π by Vπ .

The above isomorphism can be explicitly described in the following way: let 9
denote the embedding

9 : Vπ ↪→ RP ′
(
IndG ′

M ′(Vπ )
)
,

which corresponds to the open cell P ′P ′ in G ′ [Bernstein 1987]. Now, for some
T ∈ HomG ′

(
IndG ′

M ′(π),5
)
, compose 9 with the corresponding mapping

TP ′ : RP ′
(
IndG ′

M ′(π)
)
→ RP ′(5).

3. Embeddings of discrete series

In this section we recall the classification of strongly positive discrete series and
obtain further embeddings of general discrete series that will be used later.

In the following theorem, we gather the results obtained in Section 5 of [Matić
2011]. The arguments used there rely on Jacquet module methods, and build up in
an essentially combinatorial way from the cuspidal reducibility values. Moreover,
the underlying combinatorics are essentially the same for classical groups. Thus,
our classification is valid for both metaplectic and orthogonal groups.

Theorem 3.1. We define a collection of pairs (Jord, σ ′), where σ ′ is an irreducible
cuspidal representation of some S′(nσ ′) and Jord has the following form: Jord =⋃k

i=1
⋃ki

j=1{(ρi , b(i)j )}, where:

• {ρ1, ρ2, . . . , ρk} is a (possibly empty) set of mutually nonisomorphic irredu-
cible self-dual cuspidal representations of some R′(m1),R′(m2), . . . ,R′(mk)

such that νaρi ρi o σ ′ reduces for aρi > 0 (this defines aρi ).

• ki = daρi e, the smallest integer that is not smaller than aρi .
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• For each i = 1, . . . , k, the sequence b(i)1 , . . . , b(i)ki
consists of real numbers such

that aρi−b(i)j is an integer, for j =1, 2, . . . , ki and−1<b(i)1 <b(i)2 < · · ·<b(i)ki
.

There is a bijective correspondence between the set of all irreducible strongly
positive representations in S′ and the set of all pairs (Jord, σ ′).

We describe this correspondence more precisely. The pair corresponding to an
irreducible strongly positive representation σ ∈ S′ is denoted by

(
Jord(σ ), σ ′(σ )

)
.

Suppose that cuspidal support of σ is contained in the set

{νxρ1, . . . , ν
xρk, σcusp : x ∈ R},

with k minimal (here ρi denotes an irreducible cuspidal self-dual representation of
some R′(nρi )).

Let aρi > 0, i = 1, 2, . . . , k denote the unique positive s ∈ R such that the
representation νsρi o σcusp reduces. Set ki = daρi e. For each i = 1, 2, . . . , k,
there exists a unique increasing sequence of real numbers b(i)1 , b(i)2 , . . . , b(i)ki

, where

aρi −b(i)j is an integer, for j = 1, 2, . . . , ki and b(i)1 >−1, such that σ is the unique
irreducible subrepresentation of the induced representation( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o σcusp.

Now, Jord(σ )=
⋃k

i=1
⋃ki

j=1{(ρi , b(i)j )} and σ ′(σ )= σcusp.

We note that results of [Arthur 2011] should imply that every aρi in the previous
theorem is half integral.

This classification implies some interesting properties of strongly positive discrete
series, which are listed in the next two lemmas.

Lemma 3.2 [Matić 2012, Lemma 3.5]. Let σ ∈ S′ be a strongly positive discrete
series. Then σ is uniquely determined by [σ ].

The next result follows rather straightforwardly from the classification above:

Lemma 3.3. Let σ ∈ S′ denote a strongly positive discrete series and suppose
that νxρ appears in [σ ], where ρ ∈ R′ is an irreducible unitarizable cuspidal
representation and |x | ≤ 1. Then the representation νxρ appears in [σ ] with
multiplicity one. Also, if ν yρ appears in [σ ] for some y 6= x , then |y|> 1.

Proof. It is enough to prove the lemma for x ≥ 0, since otherwise the same
conclusion can be drawn for |x |.

We write σ as the unique irreducible subrepresentation of the induced represen-
tation of the form ( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o σcusp.
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Obviously, ρ is isomorphic to ρl for some l ∈ {1, 2, . . . , k}.
By the assumption of the lemma, there is some j ∈ {1, 2, . . . , kl} such that

aρl − kl + j ≤ x ≤ b(l)j . Strong positivity of σ implies x > 0. Since aρl − kl + j > 1
for j ≥ 2, it follows that νxρ appears in the segment[

νaρl−kl+1ρl, ν
b(l)1 ρl

]
and νxρ does not appear in

[
νaρl−kl+ jρl, ν

b(l)j ρl
]
, for j ≥ 2. Further, using x−1≤ 0,

we obtain x = aρl − kl + 1.
Consequently, νxρ appears in [σ ] with multiplicity one.
The inequality |y|> 1 for y 6= x such that ν yρ appears in [σ ] is a consequence

of the fact that |y| − x is a positive integer and x > 0. �

The principal significance of the following lemma is that it allows us to obtain
certain embeddings of general discrete series.

Lemma 3.4. Suppose that π ∈ S′(n) is an irreducible representation that is not in
the discrete series. Then there exists an embedding of the form

π ↪→ δ
(
[νaρ, νbρ]

)
oπ ′,

where a+ b ≤ 0 and ρ ∈R′ and π ′ ∈ S′ are irreducible representations.

Proof. We adopt the approach from Section 3 of [Matić 2011], which was motivated
by [Muić 2006]. Suppose that

π ↪→ ρ1× ρ2× · · ·× ρk oπcusp

is an embedding of the representation π contradicting Casselman’s square-integra-
bility criterion (whose metaplectic version is written in [Ban and Jantzen 2009]),
ρi ∈R′ is an irreducible cuspidal representation for i ∈ {1, 2, . . . , k}, and πcusp ∈

S′(n′) is an irreducible cuspidal representation. Further, we consider all possible
embeddings of the form

π ↪→ δ(11)× δ(12)× · · ·× δ(1m)oπcusp,

contradicting the square-integrability criterion, where 11 + 12 + · · · + 1m =

{ρ1, ρ2, . . . , ρk}, viewed as the equality of multisets. Clearly, e(1i )≤ 0 for some
i ∈ {1, 2, . . . ,m}. The set of all such embeddings is obviously finite and nonempty.

Each δ(1i ) is an irreducible representation of some R′(ni ) (this defines ni ), for
i = 1, 2, . . . ,m. To every such embedding we attach an (n− n′)-tuple(

e(11), . . . , e(11), e(12), . . . , e(12), . . . , e(1m), . . . , e(1m)
)
∈ Rn−n′,

where e(1i ) appears ni times.
Denote by

π ↪→ δ(1′1)× δ(1
′

2)× · · ·× δ(1
′

m′)oπcusp
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the minimal such embedding with respect to the lexicographic ordering on Rn−n′ .
In the same way as in the proof of Theorem 3.3 of [Matić 2011], we conclude
e(1′1)≤ e(1′2)≤ · · · ≤ e(1′m′). This gives e(1′1)≤ 0. Now Lemma 3.2 of [Mœglin
and Tadić 2002] finishes the proof. �

We are ready to describe useful embeddings of general discrete series (this
parallels the result of Lemma 3.1 of [Mœglin 2002]).

Theorem 3.5. Let σ ∈ S′(n) denote a discrete series representation. Then there
exists an embedding of the form

σ ↪→ δ
(
[νa1ρ1, ν

b1ρ1]
)
× δ

(
[νa2ρ2, ν

b2ρ2]
)
× · · ·× δ

(
[νakρk, ν

bkρk]
)
o σsp,

where ai ≤ 0 and ai + bi > 0, and ρi ∈ R′ is an irreducible representation for
i = 1, 2, . . . , k, while σsp ∈ S′ is a strongly positive discrete series (we allow k = 0).

Proof. If σ is a strongly positive discrete series, then k = 0 and σ ' σsp. Thus, we
may suppose that σ is not strongly positive.

Again, we start with an embedding of the representation σ of the form

σ ↪→ ρ1× ρ2× · · ·× ρk o σcusp,

where each ρi ∈R′ is an irreducible cuspidal representation and σcusp ∈ S′(n′) is a
partial cuspidal support of σ , and consider all possible embeddings of the form

σ ↪→ δ(11)× δ(12)× · · ·× δ(1m)o σcusp,

where 11+12+ · · ·+1m = {ρ1, ρ2, . . . , ρl}, viewed as the equality of multisets.
In the same way as in the proof of the previous lemma, to every such embedding
we attach an element of Rn−n′ and denote by

(2) σ ↪→ δ(1′1)× δ(1
′

2)× · · ·× δ(1
′

m′)o σcusp

the minimal such embedding with respect to the lexicographic ordering on Rn−n′ .
Analysis similar to that in the proof of Theorem 3.3 of [Matić 2011] shows e(1′1)≤
e(1′2)≤ · · · ≤ e(1′m′).

Write each element of the multiset {ρ1, ρ2, . . . , ρl} in form ρi = ν
aiρi,u , where

ρi,u is an irreducible unitary cuspidal representation. Define

a =min{ai : 1≤ i ≤ l}.

The assumption that σ is not strongly positive yields a≤0. Suppose that νaρ appears
in the segment 1′i , with i minimal (for appropriate ρ). Then 1′i = [ν

aρ, νbρ], for
some b.

If the segment 1′i is not connected in the sense of Zelevinsky with any of the
segments 1′1, . . . ,1

′

i−1, we obtain the embedding

σ ↪→ δ(1′i )× δ(1
′

1)× · · ·× δ(1
′

m′)o σcusp.
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Suppose that there is some segment 1′j , 1≤ j ≤ i − 1, such that the segments 1′i
and 1′j are connected in the sense of Zelevinsky. We choose the largest such j and
denote it by j again. Also, we write 1′j = [ν

a′ρ, νb′ρ]. The intertwining operator
δ(1′j )× δ(1

′

i )→ δ(1′i )× δ(1
′

j ) gives the maps

σ ↪→ δ(1′1)× · · ·× δ(1
′

j )× δ(1
′

i )× · · ·× δ(1
′

m′)o σcusp

→ δ(1′1)× · · ·× δ(1
′

i )× δ(1
′

j )× · · ·× δ(1
′

m′)o σcusp.

Observe that the kernel of the previous intertwining operator equals

δ(1′1)× · · ·× δ
(
[νaρ, νb′ρ]

)
× δ

(
[νa′ρ, νbρ]

)
× · · ·× δ(1′m′)o σcusp.

Since e(1′j )≤ e(1′i ), the inequality a < a′ implies e
(
[νaρ, νb′ρ]

)
< e(1′j ). Thus,

the minimality of the embedding (2) shows that σ is not contained in the kernel of
the observed intertwining operator, which gives

σ ↪→ δ(1′1)× · · ·× δ(1
′

i )× δ(1
′

j )× · · ·× δ(1
′

m′)o σcusp.

Repeated application of the above procedure enables us to obtain the embedding

σ ↪→ δ(1′i )× δ(1
′

1)× · · ·× δ(1
′

m′)o σcusp.

Lemma 3.2 of [Mœglin and Tadić 2002] implies that there is some irreducible
representation σ1 such that σ ↪→ δ

(
[νaρ, νbρ]

)
o σ1. Square-integrability of σ

shows a+ b > 0. We claim that σ1 is a discrete series representation.
Suppose, on the contrary, that σ1 is not in the discrete series. Then the pre-

vious lemma shows that it can be written as a subrepresentation of the induced
representation of the form δ

(
[νxρ ′, ν yρ ′]

)
o σ ′1, where x + y ≤ 0. Thus, σ ↪→

δ
(
[νaρ, νbρ]

)
× δ

(
[νxρ ′, ν yρ ′]

)
o σ ′1. Square-integrability of the representations

σ shows that the segments [νaρ, νbρ] and [νxρ ′, ν yρ ′] are connected in the sense
of Zelevinsky, and consequently σ ↪→ δ

(
[νaρ, ν yρ]

)
× δ

(
[νxρ ′, νbρ ′]

)
o σ ′1.

The choice of a shows that a ≤ x , which leads to a + y ≤ x + y ≤ 0; that is,
e
(
[νaρ, ν yρ]

)
≤ 0, contradicting the square-integrability of σ . In this way we have

proved that σ1 is also a discrete series representation.
We continue in this fashion to obtain that either σ1 is strongly positive or it

can be written as a subrepresentation of the induced representation of the form
δ
(
[νa′ρ ′, νb′ρ ′]

)
o σ2, where a′ ≤ 0 and σ2 ∈ S′ is a discrete series representation.

Repeating this procedure, after a finite number of steps we obtain the claim of the
theorem. �

4. Howe’s correspondence and results of Gan and Savin and of Kudla

In this section we review some results about Howe correspondence.
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For an irreducible genuine smooth representation σ ∈ S2(n), let 2(σ, r) be a
smooth representation of O(Vr ), given as the full lift of σ to the r-level of the
orthogonal tower, that is, the biggest quotient of ωn,r on which S̃p(n) acts as a
multiple of σ . As a representation of S̃p(n)×O(Vr ) it has a form σ ⊗2(σ, r). We
write 2+(σ, r) (resp. 2−(σ, r)) for the lift on the +-tower (resp. −-tower), when
emphasizing the tower.

Similarly, if τ is an irreducible representation of O(Vr ), then one has its full lift
2(τ, n), which is a smooth representation of S̃p(n).

In the following theorem we summarize some basic results about the theta
correspondence.

Theorem 4.1 [Kudla 1996; Mœglin et al. 1987]. Let σ denote an irreducible
genuine representation of S̃p(n). Then there exists an integer r ≥ 0 such that
2(σ, r) 6= 0. The smallest such r is called the first occurrence index of σ in the
orthogonal tower. Also, 2(σ, r ′) 6= 0 for r ′ ≥ r .

The representation 2(σ, r) is either zero or it has finite length. If the residual
characteristic of field F is other than 2, then 2(σ, r) is either zero or it has a
unique irreducible quotient. Following [Muić 2004], we write σ(r) for this unique
irreducible quotient.

The analogous statements hold for 2(τ, n) if τ is an irreducible representation
of O(Vr ).

Now we state the results of Gan and Savin [2012, Section 6 and Theorem 8.1]
that serve as a cornerstone for our determination of lifts of the strongly positive
discrete series.

Theorem 4.2. Let F be a nonarchimedean local field of characteristic 0 with odd
residual characteristic. For each nontrivial additive character ψ of F , there is an
injection

2ψ : Irr(S̃p(n))→ Irr(O(V+n ))t Irr(O(V−n−1))

given by the theta correspondence (with respect to ψ). Suppose that σ ∈ Irr(S̃p(n))
and τ ∈ Irr(O(V )) correspond under2ψ . Then σ is a discrete series representation
if and only if τ is a discrete series representation.

Let σcusp denote an irreducible cuspidal genuine representation of S̃p(n′). We
write 2(σ, r) for the smooth isotypic component of σ in ωn,r . Since σcusp is
cuspidal, for the smallest r ′ such that 2(σcusp, r ′) 6= 0, we have that 2(σcusp, r ′) is
an irreducible cuspidal representation of O(Vr ′); we denote it by τcusp.

Let ρ ∈R be an irreducible cuspidal self-contragredient representation. Results
of Silberger [1980] (in the orthogonal case) and of Hanzer and Muić [2011] (in
the metaplectic case) show that there exist unique nonnegative real numbers s1 and
s2 such that the induced representations νs1ρo τcusp and νs2χV,ψρo σcusp reduce.
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If ρ is not a trivial character of F×, then s1 = s2. Otherwise, the representation
νs1 o τcusp reduces for s1 = |n′ − mr ′ |, while the representation νs2χV,ψ o σcusp

reduces for s2 = |mr ′ − n′− 1|, where mr ′ = (1/2) dim Vr ′ .
We take a moment to state the results from Section 2 of [Kudla 1986], which

happen to be crucial for our investigation.

Theorem 4.3. Let τ ∈ S1(r) denote an irreducible representation and suppose
[τ ] = [ρ1, ρ2, . . . , ρk; τcusp], with τcusp ∈ S1(r ′) being an irreducible cuspidal
representation. Let σcusp = τ(n′) be the first nonzero lift of the representation
τcusp and observe that σcusp ∈ S2(n′) is an irreducible cuspidal representation. Let
σ denote an irreducible quotient of 2(τ, n). We have the following possibilities:

• If n ≥ n′+ r − r ′, then

[σ ] =
[
χV,ψν

mr−n, χV,ψν
mr−n+1, . . . , χV,ψν

mr ′−n′−1,

χV,ψρ1, χV,ψρ2, . . . , χV,ψρk; σcusp
]
.

• If n < n′ + r − r ′, set t = r − r ′ − n + n′. Then there exist i1, i2, . . . , it ∈

{1, 2, . . . , k} such that ρi j = ν
mr−n− j for j = 1, 2, . . . , t and

[σ ] =
[
χV,ψρ1, . . . , χ̂V,ψρi1, . . . , χ̂V,ψρit , . . . , χV,ψρk; σcusp

]
,

where χ̂V,ψρi means that we omit χV,ψρi .

Similarly, let σ ∈ S2(n) denote an irreducible representation and suppose
[σ ]=[χV,ψρ1, χV,ψρ2, . . . , χV,ψρk; σcusp], with σcusp∈ S2(n′) being an irreducible
cuspidal representation. Let τcusp = σ(r ′) be the first nonzero lift of the representa-
tion σcusp, and observe that τcusp ∈ S1(r ′) is an irreducible cuspidal representation.
Let τ denote an irreducible quotient of 2(σ, r). We have the following possibilities:

• If r ≥ r ′+ n− n′, then

[τ ] = [νmr−n−1, νmr−n−2, . . . , νmr ′−n′, ρ1, ρ2, . . . , ρk; τcusp].

• If r < r ′ + n − n′, set t = r ′ − n′ + n − r . Then there exist i1, i2, . . . , it ∈

{1, 2, . . . , k} such that ρi j = ν
mr−n+ j−1 for j = 1, 2, . . . , t and

[τ ] = [ρ1, . . . , ρ̂i1, . . . , ρ̂it , . . . , ρk; τcusp],

where ρ̂i means that we omit ρi .

The next theorem that we need is Kudla’s filtration of Jacquet modules of the
oscillatory representation:

Theorem 4.4 [Kudla 1986, Theorem 2.8]. Let ωn,r denote the oscillatory repre-
sentation of the group S̃p(n) × O(Vr ) corresponding to the nontrivial additive
character ψ .
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• Let Pj denote the standard maximal parabolic subgroup of O(Vr ). Then
Jacquet module RPj (ωn,r ) has S̃p(n)× M j -invariant filtration given by I jk ,
0≤ k ≤ j , where

I jk ' IndS̃p(n)×M j
Pjk×P̃k×O(Vr− j )

(γ jk ⊗6
′

k ⊗ωn−k,r− j ).

Here, Pjk is a standard parabolic subgroup of GL( j, F) corresponding to the
partition ( j − k, k), γ jk is a character of GL( j − k, F)× G̃L(k, F) given by

γ jk(g1, g2)= ν
−(mr−n−( j−k+1)/2)(g1)χV,ψ(g2),

and 6′k is a twist of the standard representation of GL(k, F)×GL(k, F) on
the space of smooth locally constant compactly supported complex-valued
functions C∞c (GL(k, F)):

6′k(g1, g2) f (g)= ν−(mr− j+(k−1)/2)νmr− j+(k−1)/2 f (g−1
1 gg2).

In particular, a quotient I j0 equals ν−(mr−n−( j+1)/2)
⊗ωn,r− j and a subrepre-

sentation I j j equals

IndS̃p(n)×M j
GL( j,F)×P̃j×O(Vr− j )

(χV,ψ ⊗6
′

j ⊗ωn− j,r− j ).

• Let P̃j denote the standard maximal parabolic subgroup of S̃p(n). Then
Jacquet module R P̃j (ωn,r ) has M̃j × O(Vr )-invariant filtration given by J jk ,
0≤ k ≤ j , where

J jk ' Ind M̃j×O(Vr )

P̃jk×Pk×S̃p(n− j)(β jk ⊗6
′

k ⊗ωn− j,r−k).

Here, P̃jk is a standard parabolic subgroup of G̃L( j, F) corresponding to the
partition ( j − k, k), β jk is a character of G̃L( j − k, F)× G̃L(k, F) given by

β jk(g1, g2)=
(
χV,ψν

mr−n−( j−k−1)/2)(g1)χV,ψ(g2),

and 6′k is a twist of the standard representation of GL(k, F)×GL(k, F) on
the space of smooth locally constant compactly supported complex-valued
functions C∞c (GL(k, F)):

6′k(g1, g2) f (g)= νmr+(k+1)/2ν−(mr+(k+1)/2) f (g−1
1 gg2).

In particular, a quotient J j0 equals χV,ψν
mr−n+( j−1)/2

⊗ωn− j,r and a subrep-
resentation J j j equals Ind M̃j×O(Vr )

G̃L( j,F)×Pj×S̃p(n− j)(χV,ψ ⊗6
′

j ⊗ωn− j,r− j ).

5. Some technical results on lifts

The purpose of this section is to state and prove many technical results that will be
of particular importance in the following sections.
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An elementary but useful criterion for pushing down the lifts of irreducible
representations is established by the following two propositions.

Proposition 5.1. Let τ ∈ S1(r) be an irreducible representation.

(1) Suppose that 2(τ, n) 6= 0. Then R P̃1(2(τ, n+ 1))(χV,ψν
mr−(n+1)) 6= 0.

(2) Suppose that RP1(τ )(ν
mr−(n+1))= 0. Then 2(τ, n) 6= 0 if and only if

R P̃1(2(τ, n+ 1))(χV,ψν
mr−(n+1)) 6= 0.

Proof. The proof follows the same lines as that of Theorem 4.5 of [Hanzer and
Muić 2011].

Assume that2(τ, n) 6= 0. Then there exists an epimorphism ωn,r→ τ⊗2(τ, n).
Kudla’s filtration gives the epimorphisms

R P̃1(ωn+1,r )→ χV,ψν
mr−(n+1)

⊗ωn,r → χV,ψν
mr−(n+1)

⊗ τ ⊗2(τ, n).

Using Frobenius reciprocity, we get a nontrivial intertwining

2(τ, n+ 1)→ χV,ψν
mr−(n+1) o2(τ, n).

This obviously proves the first statement of the proposition.
It remains to prove sufficiency in the second statement. The condition

R P̃1(2(τ, n+ 1))(χV,ψν
mr−(n+1)) 6= 0

gives 2(τ, n + 1) 6= 0, which gives an epimorphism ωn+1,r → τ ⊗2(τ, n + 1).
Applying Jacquet modules, we get an epimorphism

R P̃1(ωn+1,r )→ τ ⊗χV,ψν
mr−(n+1)

⊗ σ ′

for some irreducible representation σ ′ ∈ S1(n). If we suppose that the restriction of
this epimorphism to a subrepresentation J11 is nonzero, second Frobenius reciprocity
gives a nonzero intertwining map

χV,ψ ⊗6
′

1⊗ωn,r−1→ R̃P1 (̃τ )⊗χV,ψν
mr−(n+1)

⊗ σ ′.

From this intertwining, we deduce τ ↪→νmr−(n+1)oτ ′ for some irreducible represen-
tation τ ′ ∈ S2(r−1), contradicting the assumption of the proposition. Consequently,
there exists a nonzero intertwining J10 → τ ⊗ χV,ψν

mr−(n+1)
⊗ σ ′, which gives

2(τ, n) 6= 0. �

We omit the proof of the next proposition, since it is completely analogous to
the proof of the previous one.

Proposition 5.2. Let σ ∈ S2(n) be an irreducible representation.

(1) Suppose that 2(σ, r) 6= 0. Then RP1(2(σ, r + 1))(ν−(mr+1−n−1)) 6= 0.
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(2) Suppose that R P̃1(σ )(χV,ψν
−(mr+1−n−1))= 0. Then 2(σ, r) 6= 0 if and only if

RP1(2(σ, r + 1))(ν−(mr+1−n−1)) 6= 0.

Now we prove an important result regarding the square-integrability of the lifts
of strongly positive discrete series. In particular, this result gives an alternative and
essentially combinatorial proof of a special case of the results of [Muić 2008].

Proposition 5.3. Let σ ∈ S2(n) denote a strongly positive discrete series. Suppose
that 2(σ, r) 6= 0, for some r such that mr ≤ n+ 1

2 , and that

R P̃1(σ )(χV,ψν
−(mk−n−1))= 0

for k ≥ r + 1. Then σ(r) is a discrete series representation.

Proof. We prove this proposition by downwards induction on r , starting with an r
such that mr = n+ 1

2 . If mr = n+ 1
2 , Theorem 4.2 shows our claim. Thus, suppose

that the claim holds for some r + 1 such that mr+1 ≤ n+ 1
2 . We prove it for r .

It may be easily concluded from the proof of Proposition 5.1 (in the same way
as in the proof of Lemma 5.1 of [Muić 2004]) that there is a nonzero intertwining
σ(r) ↪→ ν−(mr−n−1) o σ(r − 1).

Note that in our case, mr <n+ 1
2 , which implies−(mr−n−1)≥ 3

2 . Now, suppose
that σ(r −1) is not a discrete series representation. According to Lemma 3.4, there
is an embedding σ(r − 1) ↪→ δ

(
[νaρ, νbρ]

)
o σ ′, where a + b ≤ 0. Obviously,

a ≤ 0.
Since mr−n−1≤− 3

2 , the strong positivity of the representation σ and Lemma 3.3
together with Theorem 4.3 imply there is at most one x ∈ R, 0< |x | ≤ 1 such that
νxρ appears in [σ(r−1)]. Therefore, b≤ 0 and the representation ν−(mr−n−1)

×νbρ

is irreducible and isomorphic to νbρ× ν−(mr−n−1).
We thus get the embeddings and isomorphisms

σ(r) ↪→ ν−(mr−n−1) o σ(r − 1) ↪→ ν−(mr−n−1)
× δ

(
[νaρ, νbρ]

)
o σ ′

↪→ ν−(mr−n−1)
× νbρ× δ

(
[νaρ, νb−1ρ]

)
o σ ′

' νbρ× ν−(mr−n−1)
× δ

(
[νaρ, νb−1ρ]

)
o σ ′,

contradicting square-integrability of σ(r). This proves the proposition. �

In pretty much the same way one can also prove:

Corollary 5.4. Let τ ∈ S1(r) denote a strongly positive discrete series. Suppose
that 2(τ, n) 6= 0, for some n such that mr ≥ n+ 1

2 . Then τ(n) is a discrete series
representation.

The last two propositions of this section contain rather important results on
the transfer of certain embeddings by the theta lifts. We omit the proofs, since
these results can be obtained in a completely analogous way as in [Muić 2004,
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Remark 5.2], that is, by precise examination of the filtration of Jacquet modules
quoted in Theorem 4.4.

Proposition 5.5. Suppose that the representation σ ∈ Irr(S̃p(n)) may be written
as an irreducible subrepresentation of the induced representation of the form
δ
(
[νaρ, νbρ]

)
o σ ′, where ρ is an irreducible cuspidal genuine representation,

σ ′ ∈ Irr(S̃p(n′)), and b− a ≥ 0. Let 2(σ, r) 6= 0. Then one of the following holds:

• There is an irreducible representation τ of some O(Vr ′) such that σ(r) is a
subrepresentation of δ

(
[νaχ−1

V,ψρ, ν
bχ−1

V,ψρ]
)
o τ .

• There is an irreducible representation τ of some O(Vr ′) such that σ(r) is a
subrepresentation of δ

(
[νa+1χ−1

V,ψρ, ν
bχ−1

V,ψρ]
)
o τ .

The latter situation is impossible unless (a, ρ)= (mr − n, χV,ψ).

Proposition 5.6. Suppose that the representation τ ∈ Irr(O(Vr )) may be written
as an irreducible subrepresentation of the induced representation of the form
δ
(
[νaρ, νbρ]

)
o τ ′, where ρ is an irreducible cuspidal representation and τ ′ ∈

Irr(O(Vr ′)) and b− a ≥ 0. Let 2(τ, n) 6= 0. Then one of the following holds:

• There is an irreducible representation σ of some S̃p(n′) such that τ(n) is a
subrepresentation of δ

(
[νaχV,ψρ, ν

bχV,ψρ]
)
o σ .

• There is an irreducible representation σ of some S̃p(n′) such that τ(n) is a
subrepresentation of δ

(
[νa+1χV,ψρ, ν

bχV,ψρ]
)
o σ.

The latter situation is impossible unless (a, ρ)= (n−mr + 1, 1F×).

6. Lifts of strongly positive discrete series of the metaplectic groups

In this section we determine the structure of certain lifts of the strongly positive
discrete series of the metaplectic groups. We also obtain precise information about
the first occurrence of strongly positive discrete series in the orthogonal tower,
depending on its cuspidal support.

Let σ ∈ Irr(S̃p(n)) denote a strongly positive discrete series. According to
the classification given in Theorem 3.1, we may write σ as a unique irreducible
subrepresentation of the induced representation( k∏

i=1

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp,(3)

with k minimal and ki minimal for i = 1, 2, . . . , k, where

σcusp ∈ Irr(S̃p(n′))
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is an irreducible cuspidal representation and ρi an irreducible cuspidal representation
of GL(nρi , F) (this defines nρi ) for i = 1, 2, . . . , k. We note that the minimality of
k and ki for i = 1, 2, . . . , k implies that there are no empty segments in (3).

Theorem 4.2 shows that either 2+(σ, n) 6= 0 or 2−(σ, n− 1) 6= 0.
The following theorem describes the first occurrence indices of the strongly

positive discrete series of the metaplectic group.

Theorem 6.1. Let σ ∈ Irr(S̃p(n)) be a strongly positive discrete series. If

2+(σ, n) 6= 0,

let (ε, r)= (+, n); otherwise let (ε, r)= (−, n−1). Suppose that σcusp ∈ Irr(S̃p(n′))
is a partial cuspidal support of σ and τcusp ∈ Irr(O(V ε

r ′)) is the first nonzero lift
of σcusp. Further, set M = {|x | : χV,ψν

x appears in [σ ]} and denote by amin the
minimal element of M. If M =∅, let amin = n′− 1

2 dim V ε
r ′ + 2.

If amin =
1
2 or n′ = r ′+ 1

2(dim V ε
0 − 1), then the first occurrence index of σ is r .

Otherwise, the first occurrence index of σ is r − amin+
3
2 .

The rest of this section is devoted to the proof of Theorem 6.1. The proof is
divided into several cases depending on the structure of the cuspidal support of σ
and on the first nonzero lift of σcusp.

In this section, mr denotes 1
2 dim V ε

r = n + 1
2 and σ(l) denotes the unique

irreducible quotient of the representation 2ε(σ, l).
Observe that Proposition 5.2 implies that the representation σ(l) is not a discrete

series representation for l > r .
There are two main cases that we consider.
Suppose the representation χV,ψν

1/2 does not appear in [σ ]. Since mr − n = 1
2 ,

Theorem 4.3 yields n′ ≥ r ′+ 1
2(dim(V ε

0 )− 1). We have two possibilities:

• n′ = r ′+ 1
2(dim(V ε

0 )− 1):

In this case, both representations χV,ψν
s o σcusp and νs o τcusp reduce for s = 1

2 .
Therefore, by Theorem 3.1, there is no representation of the form χ,ψν

s appearing in
[σ ]. Further, Theorem 3.5 of [Hanzer and Muić 2011] implies that the representation
χV,ψν

sρi o σcusp reduces if and only if the representation νsρi o τcusp reduces.
One of the main results of [Gan and Savin 2012] states that σ(r) is a discrete

series representation. Applying Equation (2), we obtain the embedding

σ(r) ↪→ δ
(
[νa1ρ ′1, ν

b1ρ ′1]
)
× δ

(
[νa2ρ ′2, ν

b2ρ ′2]
)
× · · ·× δ

(
[νalρ ′l , ν

blρ ′l ]
)
o τsp,

where ai ≤ 0 and ρ ′i ∈ {ρ1, ρ2, . . . , ρk} for i = 1, 2, . . . , l, and τsp ∈ Irr(O(V ε
r ′)) is

a strongly positive discrete series for some r ′.
Since the representation σ is strongly positive, Theorem 4.3 and Lemma 3.3

show that for every i ∈ {1, 2, . . . , k}, there is at most one representation of the
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form νxρi that appears in [σ(r)] with 0 ≤ |x | < 1. In the same way as in the
proof of Proposition 5.3, we deduce σ(r)' τsp, that is, σ(r) is a strongly positive
representation.

It is now easy to see, using Lemma 3.2, that σ(r) is a unique irreducible subrep-
resentation of the induced representation( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Suppose that2ε(σ, r−1) 6= 0. Then Proposition 5.2 implies RP1(2
ε(σ, r))(ν1/2) 6=

0, which is impossible. Thus, r is the first occurrence index of σ .

• n′ > r ′+ 1
2(dim(V ε

0 )− 1).

In this case, the representation χV,ψν
s o σcusp reduces for s = n′−mr ′ + 1, and

the representation νs o τcusp reduces for s = n′−mr ′ .
Observe that [σ(r)] is obtained from [σ ] by multiplying by χ−1

V,ψ all represen-
tations of the form χV,ψν

xρi appearing in [σ ], adding the representations ν−1/2,
ν−3/2, . . . , νmr ′−n′ , and replacing σcusp with τcusp.

There are two possible cases that we consider:

(1) Some representation of the form χV,ψν
s , s ∈R appears in [σ ]: We may suppose

that ρ1 is a trivial representation. Note that aρ1 − k1+ 1 is strictly greater than 1
2

and that aρ1 equals n′−mr ′ + 1.
For simplicity of notation, let a j stand for aρ1 − k1 + j , for j = 1, 2, . . . , k1.

Again, we know that σ(r) is a discrete series representation. Inspecting its cuspidal
support more precisely, it is not hard to see that it has to be strongly positive.
Using Lemma 3.2, we get that σ(r) can be obtained as the unique irreducible
subrepresentation of

ν1/2
× ν3/2

× · · ·× νa1−2
×

( k1∏
j=1

δ
(
[νa j−1, ν

b(1)j ]
))

×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

If a1 ≥
5
2 , Theorem 5.3 of [Matić 2012] implies RP1(σ (r))(ν

1/2) 6= 0. If a1 =
3
2 ,

the same result shows that RP1(σ (r))(ν
1/2) = 0 (since b(1)1 ≥ a1 >

1
2 ). Using

Proposition 5.2, we conclude that 2ε(σ, r −1) 6= 0 if a1 ≥
5
2 , and 2ε(σ, r −1)= 0

otherwise.
If a1 ≥

5
2 , combining the square-integrability of σ(r − 1) (by Proposition 5.3)

with the fact that [σ(r − 1)] is obtained from [σ(r)] by subtracting ν1/2, we get
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that σ(r − 1) is a strongly positive discrete series that can be realized as a unique
irreducible subrepresentation of

ν3/2
× ν5/2

× · · ·× νa1−2
×

( k1∏
j=1

δ
(
[νa j−1, ν

b(1)j ]
))

×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Proceeding with the same analysis as above, we obtain that 2ε(σ, r − l) 6= 0 for
l = 1, 2, . . . , r − a1+

3
2 and that σ(r − l) is a strongly positive discrete series that

can be realized as a unique irreducible subrepresentation of

νl+1/2
× νl+3/2

× · · ·× νa1−2
×

( k1∏
j=1

δ
(
[νa j−1, ν

b(1)j ]
))

×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Further, it is easy to check that the first occurrence index of σ equals r − a1+
3
2 .

(2) There is no representation of the form χV,ψν
s , s ∈ R appearing in [σ ]: As in

the previous case, we conclude that σ(r) is a strongly positive discrete series. An
easy computation shows that σ(r) is a unique irreducible subrepresentation of the
induced representation

ν1/2
× ν3/2

× · · ·× νn′−mr ′ ×

( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Now Theorem 5.3 of [Matić 2012] shows that RP1(σ (r))(ν
1/2) 6= 0. Because

R P̃1(σ )(χV,ψν
1/2)= 0, part (2) of Proposition 5.2 implies 2ε(σ, r − 1) 6= 0.

Note that [σ(r − 1)] and [σ(r)] differ by ν1/2. Proposition 5.3 now shows that
σ(r − 1) is a discrete series representation, and we again conclude that it must be
strongly positive. Thus, σ(r − 1) is a unique irreducible subrepresentation of the
induced representation

ν3/2
× ν5/2

× · · ·× νn′−mr ′ ×

( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

If n′−mr ′ >
1
2 , in the same way as above we deduce 2ε(σ, r−2) 6= 0. We continue

in this fashion, obtaining that 2ε(σ, r − j) 6= 0 for j = 1, 2, . . . , n′−mr ′ +
1
2 , and

that σ(r − j) is a strongly positive discrete series that can be characterized as the
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unique irreducible subrepresentation of

ν j+(1/2)
× ν j+(3/2)

× · · ·× νn′−mr ′ ×

( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

From Proposition 5.2, we conclude that the first occurrence index of σ equals

r − n′+mr ′ −
1
2 = r − (n′− 1

2 dim V ε
r ′ + 2)+ 3

2 .

Second, suppose that the representation χV,ψν
1/2 appears in [σ ]. There is no

loss of generality in assuming that ρ1 is a trivial representation. We have to examine
the following three possibilities:

• n′ = r ′+ 1
2(dim(V ε

0 )− 1):

Observe that in this case both representations χV,ψν
s oσcusp and νs oτcusp reduce

for s = 1
2 . Obviously, Theorem 3.1 implies k1 = 1.

Observe that [σ(r)] is obtained from [σ ] simply by replacing σcusp with τcusp

and multiplying all G̃L-members of [σ ] by χ−1
V,ψ ; consequently, the discrete series

σ(r) may be realized as the unique irreducible subrepresentation of

δ
(
[ν1/2, νb(1)1 ]

)
×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

We note that for each i ∈ {1, 2, . . . , k}, there is at most one x ∈ R, 0≤ |x | ≤ 1 such
that νxρi appears in [σ(r)], and thus τ has to be strongly positive.

Obviously, RP1(σ (r))(ν
1/2) 6= 0 if and only if b(1)1 =

1
2 .

If b(1)1 > 1
2 , using Proposition 5.2, we directly conclude that 2ε(σ, r − 1) = 0.

Suppose that b(1)1 =
1
2 . If 2ε(σ, r − 1) 6= 0, we get that ν1/2 does not appear in

[σ(r − 1)], contradicting Proposition 5.5 (we are in the first case there). Thus, r is
the first occurrence index of σ .

• n′ < r ′+ 1
2(dim(V ε

0 )− 1):

In this case, the representation χV,ψν
s o σcusp reduces for s = mr ′ − n′− 1 and

the representation νs o τcusp reduces for s = mr ′ − n′.
According to Theorem 4.3, [σ(r)] is obtained from [σ ] by multiplying all G̃L-

members of [σ ] by χ−1
V,ψ , subtracting the representations ν1/2, ν3/2, . . . , νmr ′−n′−1,

and replacing σcusp with τcusp. In the same way as before, we conclude that σ(r)
is a strongly positive discrete series that is characterized as a unique irreducible
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subrepresentation of

δ
(
[ν3/2, νb(1)1 ]

)
× δ

(
[ν5/2, νb(1)2 ]

)
× · · ·× δ

(
[νmr ′−n′, ν

b(1)k1 ]
)

×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Since ν1/2 does not appear in [σ(r)], it follows that r is the first occurrence index
of σ .

• n′ > r ′+ 1
2(dim(V ε

0 )− 1):

Now the representation χV,ψν
s o σcusp reduces for s = n′ −mr ′ + 1, and the

representation νs o τcusp reduces for s = n′−mr ′ .
Theorem 4.3 now shows that [σ(r)] is obtained from [σ ] by multiplying all

G̃L-members of [σ ] by χ−1
V,ψ , adding the representations ν−1/2, ν−3/2, . . ., νmr ′−n′ ,

and replacing σcusp with τcusp.
From Theorem 4.2, we know that the representation σ(r) is in the discrete series.

But ν1/2 appears in [σ(r)] with multiplicity two, and consequently σ(r) can’t be a
strongly positive representation (by Lemma 3.3).

In what follows, we use Theorem 3.5 to describe discrete series σ(r) as precisely
as we can. So, we write σ(r) as a subrepresentation of the induced representation
of the form

δ
(
[νa′1ρ ′1, ν

b′1ρ ′1]
)
× δ

(
[νa′2ρ ′2, ν

b′2ρ ′2]
)
× · · ·× δ

(
[νa′lρ ′l , ν

b′lρ ′l ]
)
o τsp,

where ρ ′i ∈ {ρ1, ρ2, . . . , ρk}, a′i ≤ 0, and a′i + b′i > 0 for i = 1, 2, . . . , l. Further,
τsp is an irreducible strongly positive representation such that [τsp] is contained in
[σ(r)]. Hence, at least one of the representations ν1/2 and ν−1/2 has to appear in
some segment [νa′iρ ′i , ν

b′iρ ′i ], i ∈ {1, 2, . . . , l}. Since a′i ≤ 0 and b′i > 0, both these
representations appear in this segment.

Our next claim is that l = 1. Suppose, on the contrary, that l > 1.
Then there is some j ∈ {1, 2, . . . , l}, j 6= i such that ν1/2 /∈ [ν

a′jρ ′j , ν
b′jρ ′j ]. But

the union of the segments [νa′i , νb′i ] and [νa′jρ ′j , ν
b′jρ ′j ] is contained in [σ(r)], so

there is at most one x , 0≤ |x | ≤ 1 such that νxρ ′j appears in [νa′jρ ′j , ν
b′jρ ′j ]. This

contradicts the fact that the ends of segment [νa′jρ ′j , ν
b′jρ ′j ] satisfy a′j ≤ 0 and b′j > 0.

Thus, l = 1 and ρ ′1 ∼= 1F× .
In this way we obtain the following embedding:

σ(r) ↪→ δ
(
[νa′1, νb′1]

)
o τsp.

Since a′1 ≤ 0, using Proposition 5.6 we obtain a contradiction with the strong
positivity of σ . Therefore, this case is impossible and Theorem 6.1 is proved.



466 IVAN MATIĆ

The results obtained closely parallel those contained in Theorem 4.2 of [Muić
2004] for the dual pair (Sp(n), O(V )).

7. Lifts of strongly positive discrete series of the orthogonal groups

The purpose of this section is to determine the first occurrence indices of strongly
positive discrete series of the odd orthogonal groups that appear in the correspon-
dence given by Theorem 4.2, and to provide a description of the lifts of such
representations in the metaplectic tower.

Thus, we let τ ∈ Irr(O(Vr )) denote a strongly positive discrete series such that
2(τ,mr −

1
2) 6= 0, and realize it as a unique irreducible subrepresentation of the

induced representation of the form( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp,

with k minimal and ki minimal for i = 1, 2, . . . , k, where τcusp ∈ Irr(O(Vr ′)) is a
cuspidal representation and ρi an irreducible cuspidal representation of GL(nρi , F)
(this defines nρi ) for i = 1, 2, . . . , k.

Note that Proposition 5.1 yields that the representation τ(l) is not a discrete
series representation for l > mr −

1
2 .

In the following theorem, we describe the first occurrence indices of certain
strongly positive discrete series of the odd orthogonal groups.

Theorem 7.1. Let τ ∈ Irr(O(Vr )) be a strongly positive discrete series with a
nonzero lift on the (mr −

1
2)-th level of the metaplectic tower. Suppose that τcusp ∈

Irr(O(Vr ′)) is a partial cuspidal support of τ and that σcusp ∈ Irr(S̃p(n′)) is the first
nonzero lift of τcusp. Let n = mr −

1
2 . Further, define M = {|x | : νx appears in [τ ]}

and denote by amin the minimal element of M. If M =∅, let amin = mr ′ − n′+ 1.
If amin =

1
2 or r ′ = n′− 1

2(dim(V0)− 1), then the first occurrence index of τ is n.
Otherwise, the first occurrence index of τ is n− amin+

3
2 .

The remaining part of this section is devoted to the proof this theorem.
Again, we have two main cases to discuss.
First, assume that ν1/2 does not appear in [τ ]. This implies

r ′ ≥ n′− 1
2(dim(V0)− 1).

This leaves us two possibilities:

• r ′ = n′− 1
2(dim(V0)− 1):

In this case, both representations χV,ψν
s o σcusp and νs o τcusp reduce for s = 1

2 .
From the classification of strongly positive discrete series, elaborated in Section 2,
we deduce that there are no representations of the form νs appearing in [τ ].
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Applying Theorem 4.2, we obtain that τ(n) is a discrete series representation,
and in the same way as before, we may conclude that it is strongly positive. This
yields the embedding

τ(n) ↪→
( k∏

i=1

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

) )
o σcusp.

Proposition 5.1 implies 2(τ, n− 1)= 0, so n is the first occurrence index of τ .

• r ′ > n′− 1
2(dim(V0)− 1):

In this case, the representation νs o τcusp reduces for s = mr ′ − n′ and the
representation χV,ψν

s o σcusp reduces for s = mr ′ − n′− 1.
Theorem 4.3 shows that [τ(n)] is obtained from [τ ] by multiplying all elements

of R appearing in [τ ] by χV,ψ , adding the representations χV,ψν
1/2, χV,ψν

3/2, . . . ,
χV,ψν

mr ′−n′−1, and replacing τcusp with σcusp.
There are two main cases to consider:

(1) There is no representation of the form νs appearing in [τ ], for s ∈ R: As
before, we conclude that τ(n) is a strongly positive discrete series that is a unique
irreducible subrepresentation of

χV,ψν
1/2
×χV,ψν

3/2
× · · ·×χV,ψν

mr ′−n′−1

×

( k∏
i=1

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp.

Theorem 5.3 of [Matić 2012] implies RP1(τ (n))(χV,ψν
1/2) 6= 0. Since

RP1(τ )(ν
1/2)= 0,

part (2) of Proposition 5.1 shows 2(σ, n− 1) 6= 0.
From Corollary 5.4, we obtain that τ(n− l) is a discrete series representation

for each l > 0 such that 2(τ, n− l) 6= 0. In the same way as above, we see that it
must be strongly positive.

Since [τ(n− l)] is obtained from [τ(n)] by subtraction of the representations
χV,ψν

1/2, χV,ψν
3/2, . . . , χV,ψν

(2l−1)/2, for l ∈ {1, 2, . . ., mr ′−n′− 1
2}, it is not hard

to see, using Proposition 5.1, that 2(τ, n− l) 6= 0 for l ∈ {1, 2, . . . ,mr ′ − n′− 1
2}.

Furthermore, τ(n − l) is a unique irreducible subrepresentation of the induced
representation

χV,ψν
(2l+1)/2

×χV,ψν
(2l+3)/2

× · · ·×χV,ψν
mr ′−n′−1

×

( k∏
i=1

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp,

for l ∈ {1, 2, . . . ,mr ′ − n′− 1
2}.
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There is no representation of the form χV,ψν
s appearing in [τ(n−mr ′ + n′+ 1

2)],
so Proposition 5.1 shows that the first occurrence index of τ equals n−mr ′+n′+ 1

2 .

(2) There is some representation of the form νs appearing in [τ ]: We may suppose
that ρ1 is a trivial representation. Obviously, aρ1 − k1+ 1 is strictly greater than 1

2
and aρ1 equals mr ′ − n′.

For brevity, let a j stand for aρ1 − k1+ j , for j = 1, 2, . . . , k1. Since χV,ψν
1/2

appears in [τ(n)] with multiplicity one, it follows that τ(n1) is a strongly positive
representation for each n1 ≤ n such that 2(τ, n1) 6= 0.

Also, τ(n) is the unique irreducible subrepresentation of

χV,ψν
1/2
×χV,ψν

3/2
× · · ·×χV,ψν

a1−2
×

( k1∏
j=1

δ
(
[χV,ψν

a j−1, χV,ψν
b(1)j ]

))

×

( k∏
i=2

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp.

Arguing in the same way as in the analogous situation in the metaplectic case, we
deduce that 2(τ, n− l) 6= 0 for l ∈ {1, 2, . . . , a1−

3
2} and that n−a1+

3
2 is the first

occurrence index of τ . Further, τ(n− l) is a unique irreducible representation of
the induced representation

χV,ψν
l+1/2
×χV,ψν

l+3/2
× · · ·×χV,ψν

a1−2
×

( k1∏
j=1

δ
(
[χV,ψν

a j−1, χV,ψν
b(1)j ]

))

×

( k∏
i=2

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp,

for l ∈ {1, 2, . . . , a1−
3
2}.

It remains to consider the case when the representation ν1/2 appears in [τ ].
Without loss of generality, we may suppose that ρ1 is a trivial character. Similarly
to the previous section, we have to examine three possibilities.

• r ′ = n′− 1
2(dim(V0)− 1):

The specificity of this case is that both induced representations νs o τcusp and
χV,ψν

s o σcusp reduce for s = 1
2 . On account of Theorem 3.1, we have k1 = 1 and

aρ1 =
1
2 .

Furthermore, [τ(n)] is obtained from [τ ] by replacing τcusp with σcusp and multi-
plying all other members of [τ ] by χV,ψ .

From the equality of cuspidal reducibilities for τcusp and σcusp, it may be con-
cluded that τ(n) is the strongly positive discrete series that is a unique irreducible
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subrepresentation of

δ
(
[χV,ψν

1/2, χV,ψν
b(1)1 ]

)
×

( k∏
i=2

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp.

Suppose that the lift2(τ, n−1) is nonzero. Then Proposition 5.1, enhanced by The-
orem 5.3 of [Matić 2012], implies b(1)1 =

1
2 . From Theorem 4.3, it follows that there

is no representation χV,ψν
1/2 appearing in [τ(n− 1)], contrary to Proposition 5.6.

It follows that n is the first occurrence index of τ .

• r ′ < n′− 1
2(dim(V0)− 1):

The induced representation νs o τcusp reduces for s = n′ −mr ′ and the induced
representation χV,ψν

soσcusp reduces for s=n′−mr ′+1. According to Theorem 4.3,
[τ(n)] is obtained from [τ ] by replacing τcusp with σcusp, multiplying GL-members
of [τ ] by χV,ψ , and then subtracting the representations χV,ψν

1/2, χV,ψν
3/2, . . . ,

χV,ψν
n′−mr ′ .

The strong positivity of the representation τ and the above discussion show that
for each i ∈ {1, 2, . . . , k}, there is at most one x , |x | ≤ 1 such that χV,ψν

x appears
in [τ(n)]. Since τ(n) is in the discrete series, from Theorem 3.5 we see that it is
strongly positive.

An easy computation shows that τ(n) is a unique irreducible subrepresentation
of the induced representation

δ
(
[χV,ψν

3/2, χV,ψν
b(1)1 ]

)
× δ

(
[χV,ψν

5/2, χV,ψν
b(1)2 ]

)
× · · ·

× δ
(
[χV,ψν

n′−mr ′+1, χV,ψν
b(1)k1 ]

)
×

( k∏
i=2

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j χV,ψρi ]

))
o σcusp.

That n is the first occurrence index of τ follows directly from Proposition 5.1.

• r ′ > n′− 1
2(dim(V0)− 1):

The induced representation νs o τcusp reduces for s = mr ′ − n′, and the represen-
tation χV,ψν

s o σcusp reduces for s = mr ′ − n′ − 1. The representation χV,ψν
1/2

appears in [τ(n)] with multiplicity two, since [τ(n)] is obtained from [τ ] by re-
placing τcusp with σcusp, multiplying other members of [τ ] by χV,ψ , and adding
χV,ψν

1/2, χV,ψν
3/2, . . . , χV,ψν

mr ′−n′−1.
According to Lemma 3.3, τ(n) is not a strongly positive discrete series, but the

results in [Gan and Savin 2012] show that it is a discrete series representation.
Applying Theorem 3.5 and analysis similar to that in the last case considered

in the previous section, we write τ(n) as an irreducible subrepresentation of the



470 IVAN MATIĆ

induced representation of the form

δ
(
[χV,ψν

a, χV,ψν
b
]
)
o σsp,

where a ≤ 0, a+ b > 0, and σsp ∈ S2 is a strongly positive discrete series.
Using Proposition 5.5, we obtain an embedding that contradicts the strong

positivity of τ . Consequently, this case is not possible.
This completes the proof of Theorem 7.1.

Acknowledgements

The author would like to thank Goran Muić for suggesting this problem. The
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TUNNEL ONE, FIBERED LINKS

MATT RATHBUN

For a fibered link of tunnel number one in S3, with fiber F and unknotting
tunnel τ , we show that τ can be isotoped to lie in F.

1. Introduction and motivation

The study of fibered knots and links is as important today as ever. Giroux’s corre-
spondence [2002] between open book decompositions and contact structures min-
gles classical fibered links with more modern contact geometry. Sutured manifold
theory continues to reveal information about fibrations (see, for instance, [Ni 2009;
Scharlemann and Thompson 2009]). And fibered links are related to the newest
advances in Floer homology, as knot Floer homology detects fibered links [Ni
2007] and sutured Floer homology intersects both contact geometry and sutured
manifold theory.

Tunnel number one links are among the most studied links. Much of the work on
tunnel number one links revolves around trying to isotope the tunnel to sit nicely
with respect to some additional structure in the 3-manifold, including a hyper-
bolic metric [Adams 1995; Adams and Reid 1996; Akiyoshi et al. 1997; Cooper
et al. 2010], polyhedral decompositions [Sakuma and Weeks 1995; Heath and Song
2005], bridge decompositions [Goda et al. 2000; Lackenby 2005], Seifert surfaces
[Scharlemann and Thompson 2003], and fibrations [Sakuma 1996]. These studies,
and others, have led to the classification of tunnels for many classes of knots and
links, including torus knots [Boileau et al. 1988], satellite knots [Morimoto and
Sakuma 1991], nonsimple links [Eudave Muñoz and Uchida 1996], 2-bridge knots
[Morimoto and Sakuma 1991; Kobayashi 1999], and 2-bridge links [Morimoto
1994; Jones 1995].

Further, the Berge conjecture states that if a knot admits a lens space Dehn
surgery, then it is in one of the families of knots classified by John Berge. Many
are working on this long-standing conjecture, with recent progress contributed by
Ozsváth and Szabó [2005], Hedden [2007], Baker, Grigsby, and Hedden [2008],

The author would like to thank Abigail Thompson. The author was supported in part by NSF VIGRE
Grants DMS-0135345 and DMS-0636297, and the RTG Grant DMS-0739208.
MSC2010: primary 57M25; secondary 57M27.
Keywords: tunnel, fibered, knot, link, monodromy.

473



474 MATT RATHBUN

Saito [2007], and Williams [2007], among others. Yi Ni [2007] recently proved
that if a knot admits a lens space surgery, then it is a fibered knot. Additionally, all
Berge knots are both fibered and tunnel number one, so further understanding of
tunnel one, fibered knots could have profound impacts on the conjecture.

Jesse Johnson [2008] investigated genus-2 Heegaard splittings of closed surface
bundles over the circle. This paper looks at the relationship between unknotting
tunnels and fibrations for link complements.

Theorem 1.1. Let K be an oriented, fibered, tunnel number one link in S3, with
fiber F , and unknotting tunnel τ . Then τ can be isotoped to lie in F.

2. Background and definitions

3-manifolds.

Notation 1. Let A be subset of a 3-manifold M . We fix some notation. Let n(A)
denote a small open neighborhood of A in M . If F is a properly embedded surface
in M, let M |F = M \ n(F). If S is the boundary of M , we will refer to S|∂F =
S \ n(∂F). For convenience, we will also sometimes refer to this as S|F .

Definition 2.1. Let F be a surface properly embedded in a 3-manifold M . Then F
is said to be compressible if there exists a disk D embedded in M with ∂D= D∩F
an essential curve in F , and D is called a compressing disk for F . If F is not
compressible, and is not a 2-sphere, then it is called incompressible. The surface
F is said to be boundary compressible if there exists a disk D embedded in M
with D ∩ F = α ⊂ ∂D, D ∩ ∂M = β ⊂ ∂D, where α is an essential arc in F ,
α∩β= ∂α= ∂β, and α∪β= ∂D. In this case, D is called a boundary compression
disk. If F is not boundary compressible, it is called boundary incompressible.

Definition 2.2. A compression body V is the result of taking the product of a
surface with [0, 1], attaching 2-handles along S×{0}, and then attaching 3-handles
along any resulting 2-sphere components. The surface S× {1} is called ∂+V , and
∂V \ ∂+V is called ∂−V . A handlebody is a compression body where ∂−V = ∅.
A Heegaard splitting is a triple (S, V,W ), where S is a surface, V and W are
compression bodies, ∂+V = ∂+W = S, and M = V ∪S W .

Definition 2.3. Let K be a knot in a 3-manifold M , and let λ be an essential closed
curve in ∂n(K ). Let M ′ be the manifold obtained from M by removing n(K ), and
attaching a solid torus S1

×D2 to M\n(K ) via a homeomorphism of the boundaries
such that {pt.}×∂D2 is identified with the curve λ. Then M ′ is said to be the result
of λ-sloped Dehn surgery on M .
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Tunnels.

Definition 2.4. A link L in S3 is called a tunnel number one link if there exists
an arc τ properly embedded in S3

\ n(L) such that S3
\ n(L ∪ τ) is a handlebody.

Then τ is called a tunnel for L .

Observe that the complement of a tunnel number one link has a genus-2 Hee-
gaard splitting. Also, note that a tunnel one link has at most two components,
and if it has two components, then any tunnel must have one endpoint on each
component.

More generally, a knot is tunnel number n if n is the smallest number such that
there exists a collection of arcs {τ1, . . . , τn} such that S3

\ n(L ∪ τ1 ∪ · · · ∪ τn) is a
handlebody.

Fibered links.

Definition 2.5. Let L ⊂ S3 be a link. A Seifert surface for L is a compact, ori-
entable surface F embedded in S3 with no closed components such that ∂F = L .

Definition 2.6. A map f : E→ B is a fibration with fiber F if for every point p∈ B,
there is a neighborhood U of p and a homeomorphism h : f −1(U )→U × F such
that f =π1◦h, where π1 :U×F→U is projection to the first factor. The space E
is called the total space, and B is called the base space. Each set f −1(b) is called
a fiber, and is homeomorphic to F .

Definition 2.7. A link L ⊂ S3 is said to be fibered if there is a fibration of S3
\n(L)

over S1, and the fibration is well-behaved near L . That is, each component L i of
L has a neighborhood S1

×D2, with L i ∼= S1
×{0} such that f

∣∣
S1×(D2\{0}) is given

by (x, y)→ y/|y|.

Each fiber of a fibered link is a Seifert surface for the link. The complement
of a fibered link is foliated by copies of this Seifert surface. Cutting along one of
these Seifert surfaces produces a surface cross the interval.

Definition 2.8. Let K be a fibered link in S3. Then S3
\ n(K ) can be obtained

from F × I , with F a fiber, by identification (x, 0) ∼ (h(x), 1), for x ∈ F , where
h : F → F is an orientation-preserving homeomorphism which is the identity on
∂F . We call h a monodromy map.

Theorems. Our starting point is the following theorem.

Theorem 2.9 [Scharlemann and Thompson 2003]. Suppose K is a knot in S3, and
τ an unknotting tunnel for K . Then τ may be slid and isotoped until it is disjoint
from some minimal-genus Seifert surface for K .
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The proof consists of arranging K , τ , and a compressing disk for S3
\n(K ∪ τ)

in some minimal fashion, and showing that if K ∩ τ 6= ∅, this would lead to a
contradiction with those minimality assumptions. The result still holds for two-
component fibered links.

Theorem 2.10. Suppose K is an oriented, fibered link, and τ is an unknotting
tunnel for K . Then τ may be slid and isotoped until it is disjoint from a fiber of K .

Our proof will largely mimic [Scharlemann and Thompson 2003].

Proof. By Theorem 2.9, if K has just one component, then an unknotting tunnel
can be isotoped and slid to be disjoint from a minimal-genus Seifert surface. But
in a fibered knot complement, a fiber is the unique minimal-genus Seifert surface,
so the result follows. Henceforth, let us assume that K is a two-component link,
and let the two components of K be K1 and K2. Observe that τ has one endpoint
on each of the components of K . Choose a fiber F , and slide and isotope τ , so
as to minimize the number of intersections between τ and F . Our goal will be to
prove that τ ∩ F =∅.

Suppose, to the contrary, that after the slides and isotopies above, τ ∩ F is
nonempty. Let E be an essential disk in the handlebody S3

\ n(K ∪ τ), chosen to
minimize the number |E ∩ F | of components in E ∩ F . If |E ∩ F | = 0, then the
incompressible F would lie in a solid torus, namely (a component of) S3

\ n(K ∪
τ ∪ E), and so be an annulus. The only fibered link with fiber an annulus is the
Hopf link, in which case the result holds. So we may assume that |E ∩ F | > 0.
Furthermore, since F is incompressible, we may assume that E∩F consists entirely
of arcs.

Let e be an outermost arc of E ∩ F in E , cutting off a subdisk E0 from E . If
e were inessential in F \ τ , then we could surger E along the trivial subdisk cut
off by e. The result would be two disks, at least one of which is also essential in
S3
\n(K∪τ), but with one fewer intersection with F , contradicting our assumption

of minimality. Thus, the arc e is essential in F \ τ . Let f = ∂(E0) \ e, an arc in
∂n(K ∪ τ) with each end either on a longitude ∂F ⊂ ∂n(K ) or a meridian disk of
τ corresponding to a point of τ ∩ F .

Now, either no meridian of τ is incident to an end of f , a meridian of τ is
incident to exactly one end of f , or there is a meridian which is incident to both
ends of f .

(1) If no meridian of τ is incident to an end of f , then both ends of f lie on
∂F ⊂ ∂n(K ). If the interior of f runs over τ , we have finished, for f is
disjoint from F . Otherwise, the interior of f lies entirely in ∂n(K ), and e is
either essential in F , or it is inessential.
(a) If e is essential in F , then E0 would be a boundary compression disk for

F , contradicting the minimality of the genus of F .
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(b) If e is inessential in F , then the disk D0 that it cuts off from F necessarily
contains points of τ (since e is essential in F \ τ ). But then we could
replace D0 by E0, and the loop formed by f and ∂D0 \e is either a trivial
loop on one of the torus components of ∂n(K ), or it is an essential loop.

(i) If the loop formed by f and ∂D0 \e is a trivial loop on the torus, say,
∂n(K1), then the new surface would, again, be a Seifert surface for
K , consistent with the orientation of K (and so be a fiber), but with
fewer points of intersection F ∩ τ .

(ii) If the loop formed by f and ∂D0 \ e is essential in ∂n(K1), then the
original disk E0 could be slid across D0 to show that K1 is unknotted.
But the interior of the disk D0 is disjoint from K2, so K must be a
split link, and split links do not fiber.

(2) If a meridian of τ is incident to exactly one end of f , then we can use E0

to describe a simple isotopy of τ by sliding τ along E0 which reduces the
number of intersections between τ and F .

(3) If both ends of f lie on the same meridian of τ , then e forms a loop in F , and
the ends of f adjacent to e both run along the same subarc τ0 of τ . Since f
is disjoint from F , τ0 terminates on, say, ∂n(K1).

Then since the interior of f is disjoint from F , f must intersect ∂n(K1)

either in an inessential arc in the torus or in a longitudinal arc. That is, if
τ0 ∩ ∂n(K1) were collapsed to a point p, then f would either represent a
trivial loop in π1(∂n(K1), p), or a nontrivial element. The former case is
impossible, because the trivial disk cut off by f cannot contain the other
end of τ (since the other end of τ is on ∂n(K2)). Thus, the disk could be
isotoped away, reducing |E∩F |. It follows that f intersects the torus ∂n(K1)

in a longitudinal arc. Then, n(τ0 ∪ E0) is a thickened annulus A, defining
a parallelism in S3 between K1 and the loop e on F . Now, the boundary
component of A on ∂n(K1) can be slid across ∂n(K1), away from e, onto F ,
parallel to ∂F in F . Since K is a fibered link, the image of A, call it A′, is a
product annulus in S3

\ n(K ∪ F)∼= F × I . But then this demonstrates that e
itself is parallel to ∂F in F . Then, substituting A for the annulus between e
and ∂F in F would create a Seifert surface of the same genus, still consistent
with the orientation of K , and thus a fiber, but with fewer intersections with τ .

In all cases, we obtain contradictions, and conclude that τ and F can be arranged
to be disjoint. �

Another theorem that we will find useful is also given by Scharlemann and
Thompson. Ni [2009] proves a more general result, though we will not need it
here.
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Theorem 2.11 [Scharlemann and Thompson 2009]. Suppose F is a compact ori-
entable surface, L is a knot in F × I , and (F × I )surg is the 3-manifold obtained
by some nontrivial surgery on L. If F × {0} compresses in (F × I )surg, then L is
parallel to an essential simple closed curve in F×{0}. Moreover, the annulus that
describes the parallelism determines the slope of the surgery.

The proof relies on sutured manifold theory, and a theorem of Gabai [1989].
Gabai proves the result for an annulus cross the interval. The idea of Scharlemann
and Thompson’s proof is to find product disks or annuli in (F× I ) disjoint from the
knot, and cut along these product pieces to reduce the complexity of the surface
in question. This, with some additional work, allows them to apply the results
of Gabai.

3. Pushing a tunnel into a fiber

Proof of Theorem 1.1. By Theorem 2.10, τ can be isotoped and slid to be disjoint
from a fiber. Let F = F ′ \ n(K ). Cut S3

\ n(K ) along F , to obtain N ∼= F × I , a
handlebody. Then τ ⊂ N .

Now, as τ is an unknotting tunnel, there exists a compressing disk for ∂n(K ∪τ)
in S3

\ n(K ∪ τ), say D′. Note that D′ ∩ F 6= ∅, for otherwise F would be an
essential surface in the solid torus (S3

\ n(K ∪ τ))|D′, and thus a disk.
Consider D′ ∩ F . Since F is incompressible and N is irreducible, by standard

innermost disk arguments we may assume there are no simple closed curves of
intersection. Let α be an arc of intersection which is outermost in D′, cutting off
a subdisk D. Then, D is a disk in N with boundary consisting of three types of
arcs: a single essential arc in F = F × {0}, α; (several) arcs in ∂n(K ), call them
νi ; and (several) arcs in ∂n(τ ), λ j . We may assume that every arc of D∩ ∂n(τ ) is
an essential spanning arc of the annulus ∂n(τ ), for trivial arcs can be removed by
isotopy.

Now, consider the double of N , along the vertical boundary ∂F × I . In other
words, let N̂ be the result of gluing two copies of N together by the identity along
∂F × I . Similarly, let τ̂ be the result of gluing two copies of τ , one in each copy
of N , along the boundary points; let D̂ come from two copies of D, one in each
copy of N , glued along the νi ; and let α̂ come from two copies of α in the same
way.

Then D̂ is a planar surface with one boundary component corresponding to α̂,
and several components coming from λ̂ j , the doubles of λ j (see Figure 1).

Then,
⋃

j λ̂ j is a collection of (parallel) simple closed curves on the torus ∂n(τ̂ ).
Call the slope determined by these curves λ. If we perform λ-surgery on τ̂ , the
result is to cap off D̂ with disks. Since α was essential in F , α̂ is essential in F̂ ,
so our capped-off surface is a compression disk for F̂ in N̂ ∼= F̂ × I .
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α

ν1

λ1

ν2

λi
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Figure 1. D̂.

By Theorem 2.11, τ̂ is parallel to an essential closed curve in F̂ ×{0}. That is,
there exists an annulus A properly embedded in F̂× I with one boundary compo-
nent on F̂ × {0}, say ψ , and the other boundary component on ∂n(τ̂ ), parallel to
τ̂ , say φ.

Since φ is parallel to τ̂ , it must be a longitude of ∂n(τ̂ ), and in particular,
|φ ∩ (∂F × I )| = 2. So there are only two possibilities for arcs of intersection
between A and ∂F × I incident to φ. Either there is one arc of intersection which
is trivial in A, or there are two arcs of intersection, both of which are essential in
A (see Figure 2). The former case is impossible, because then the subdisk of A
cut off by the arc would show that τ was parallel into ∂n(K ), which would imply
that K was trivial. Therefore, there are exactly two arcs of A∩ (∂F × I ), both of
which are essential in A.

If there were trivial arcs incident to ψ , then an outermost such arc in A would
give rise to a boundary compression for F × {0} in S3

\ n(K ). This is impossible
as well, so ∂F × I intersects A in precisely two essential arcs, with no trivial
arcs. Cutting A along these arcs provides a parallelism between τ and the arc
ψ ∩ (F ×{0})⊂ F̂ ×{0}. Thus, τ can be isotoped to lie in the fiber. �

ψ ψ

φ φ

AA

Figure 2. Arcs of A∩ ∂F × I incident to φ.
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FUSION SYMMETRIC SPACES AND SUBFACTORS

HANS WENZL

We construct analogs of the embedding of orthogonal and symplectic groups
into unitary groups in the context of fusion categories. At least some of
the resulting module categories also appear in boundary conformal field
theory. We determine when these categories are unitarizable, and explicitly
calculate the index and principal graph of the resulting subfactors.

This paper is a sequel of our previous paper [Wenzl 2012], where we introduced
a q-deformation of Brauer’s centralizer algebra for orthogonal and symplectic
groups; this algebra had already appeared more or less before in [Molev 2003];
see also the discussion in [Wenzl 2012]. It is motivated by finding a deformation
of orthogonal or symplectic subgroups of a unitary group that is compatible with
the standard quantum deformation of the big group. This has been done before
on the level of coideal subalgebras of Hopf algebras by Letzter. However, our
categorical approach also allows us to extend this to the level of fusion tensor
categories, where we find finite analogs of symmetric spaces related to the already
mentioned groups. Moreover, we can establish C∗ structures, necessary for the
construction of subfactors, in this categorical setting; this is not so obvious to see
in the setting of coideal algebras.

It is well-known how one can use a subgroup H of a (for simplicity here) finite
group G to construct a module category of the representation category Rep G of G.
This module category also appears in the context of subfactors of II1 von Neumann
factors as follows: Let R be the hyperfinite II1 factor, and let N= RG

⊂M= RH

be the fixed points under outer actions of G and H . Then the category of N−N

bimodules is equivalent to Rep G, and the module category is given via the M−N

bimodules of the inclusion N⊂M; its simple objects are labeled by the irreducible
representations of H . In particular, an important invariant called the principal graph
of the subfactor is determined by the restriction rules for representations from G
to H . Important examples of subfactors were constructed from fusion categories
whose Grothendieck semirings are quotients of the ones of semisimple Lie groups.
So a natural question to ask is whether one can perform a similar construction in this
context. More precisely, can we find restriction rules for type A fusion categories

MSC2010: 46L10.
Keywords: module tensor categories, subfactors, q-Brauer algebra.
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which describe a subfactor as before, and which will approach in the classical limit
the usual restriction rules from U(N ) to O(N ).

We answer this question in the positive in this paper via a fairly elementary
construction. We show that certain semisimple quotients of the q-Brauer algebras
have a C∗ structure and contain C∗-quotients of Hecke algebras of type A. The
subfactor is then obtained as the closure of inductive limits of such algebras. Due
to its close connection to Lie groups, we can give very explicit general formulas for
its index and its first principal graph. Observe that the Lie algebra slN decomposes
as an soN module into the direct sum soN ⊕ p, where p is a simple soN -module.
Then, the index can be expressed explicitly in terms of the weights of p; see
Theorem 3.4. As before in the group case, it can be interpreted as the quotient
of the dimension of the given fusion category by the sum of the squares of q-
dimensions of representations of orthogonal or symplectic subgroups whose labels
are in the alcove of a certain affine reflection group; however in our case, there is
no corresponding tensor category for the denominator, and the q-dimensions differ
from the ones of the corresponding quantum groups. Also, the restriction rules
for the corresponding bimodules of this subfactor, the first principal graph, can be
derived from the classical restriction rules via an action of the already mentioned
affine reflection group, similarly as it was done before for tensor product rules for
fusion categories. However, in our case, the affine reflection comes from the highest
short root of the corresponding Lie algebra in the nonsimply laced case; it is also
different from the one for fusion categories in the even-dimensional orthogonal case.

Not surprisingly for such a basic question, many related results have been obtained
before in the study of subfactors, tensor categories and boundary conformal field
theory. For N = 2, we obtain the Goodman–de la Harpe–Jones subfactors for
Dynkin diagrams Dn . Subgroups and module categories in connection with SU(3)
and SU(4) fusion categories have been studied by Ocneanu [2002] and by Evans
and Pugh [2011]; our examples for N = 3 and N = 4 appear among the series
in these works. The research in this and the just-mentioned papers has also been
influenced by closely related results in boundary conformal field theory, which
will be discussed in more detail at the end of the paper. Our examples for the
odd-dimensional orthogonal group and for symplectic groups also seem to be
closely related to type III1 subfactors constructed by Feng Xu [2009] and Antony
Wassermann [2010] by completely different methods.

The first chapter mostly contains basic material from subfactor theory which
will be needed later. In the second chapter we review and expand material on the
q-Brauer algebra as defined in [Wenzl 2012]; see also [Molev 2003]. In particular,
we define C∗-structures for certain quotients and use that to construct subfactors.
The third chapter is mainly concerned with the finer structure of these subfactors,
such as explicit closed formulas for the index and calculation of the first principal
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graph. The same techniques would also extend to other examples, such as the ones
in [Xu 2009].

1. II1 factors

1A. Periodic commuting squares. We will construct subfactors using the setup of
periodic commuting squares (going back to work of Jones and Popa) as in [Wenzl
1988a]. More precisely, we assume that we have increasing sequences of finite-
dimensional C∗ algebras A1 ⊂ A2 ⊂ · · · and B1 ⊂ B2 ⊂ · · · such that An ⊂ Bn for
all n ∈N. Let 3n and 3̃n be labeling sets for the simple components of Bn and An ,
respectively. Let Gn be the inclusion matrix for An ⊂ Bn . If we write a minimal
idempotent pµ ∈ An,µ as a sum of minimal mutually commuting idempotents of Bn ,
then the entry gλµ of Gn denotes the number of those idempotents which are in Bn,λ.
We say that our sequences of algebras are periodic with period d if there exists
an n0 ∈ N such that for any n > n0 we have bijections j between 3n and 3n+d

as well as between 3̃n and 3̃n+d that do not change the inclusion matrices for
An ⊂ Bn as well as for An ⊂ An+1 and Bn ⊂ Bn+1. This means, in particular, that
g j (λ) j (µ) = gλµ for all λ ∈3n , µ ∈ 3̃n , n > n0.

The trace functional defines inner products on the algebras An and Bn by

(b1, b2)= tr(b∗1b2).

Let eAn+1 and eBn be the orthogonal projections onto the subspaces An+1 and Bn of
Bn+1. Then, the commuting square condition says that eAn+1eBn = eAn = eBn eAn+1

for all n ∈ N. Finally, we also note that the trace tr is uniquely determined on An

and Bn by its weight vectors an and bn which are defined as follows: Let pµ be a
minimal idempotent in the simple component of An labeled by µ. Then we define
an,µ = tr(pµ), and an = (an,µ)µ, where µ runs through a labeling set of the simple
components of An . The weight vector bn for Bn is defined similarly. The following
proposition follows from [ibid.], Theorem 1.5 (where the matrix G = (gλµ) defined
here would correspond to the matrix G t in [ibid.]).

Proposition 1.1. Under the given conditions, we get a subfactor N ⊂ M whose
index [M : N] is equal to ‖an‖

2/‖bn‖
2 for any sufficiently large n. Moreover, we

have
∑

gλµan,λ = [M : N]bn,µ.

1B. Special periodic algebras. In general, it can be quite hard to determine finer
invariants of the subfactors, the so-called higher relative commutants (or centralizers)
from the generating sequence of algebras. However, under certain circumstances,
this can become quite easy. We describe such a setup. It is a moderate abstraction
of an approach which has already been used before by a number of authors. The
reader familiar with tensor categories and module categories should think of the
algebras An =EndC(X⊗n) and Bn =EndD(Y⊗X⊗n) for X an object in a C∗ tensor
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category C and Y an object in a module category D over C. In the following, we
will make the following assumptions beyond the ones in the previous subsection:

1. The algebras An will be monoidal C∗-algebras. This means we have canonical
embeddings of C∗ algebras Am ⊗ An → An+m with multiplicativity of the
trace, that is, tr(a1⊗ a2)= tr(a1) tr(a2).

2. We have canonical embeddings Bm ⊗ An→ Bn+m , again with multiplicativity
of the trace.

3. We have the commuting square condition for the sequences of algebras An⊂ Bn

and 1⊗ An−1 ⊂ An .

4. There exists d ∈N and a projection p∈ Ad such that (1m⊗p)Am+d(1⊗p)∼= Am

and (1m ⊗ p)Bm+d(1⊗ p)∼= Bm for all m ∈ N.

Examples for this setup will be given at the end of this section and in Section 2.
Moreover, any finite depth subfactor N⊂M (see [Goodman et al. 1989; Evans and
Kawahigashi 1998] for definitions) produces algebras for such a setup as follows:
Let M⊗n

=M⊗N M⊗N · · ·⊗N M (n factors). Obviously, M⊗n is an N−N as well
as an M−N bimodule. One can check that for

An = EndN−N M⊗n
⊂ Bn = EndM−N M⊗n+1

the axioms above are satisfied; here the embedding is defined by letting the elements
of An act on the second to (n + 1)− st factor of M⊗n+1. It is also possible to
define these algebras in connection of relative commutants in the Jones tower
of relative commutants (see [Bisch 1997] for details). Recall that for factors
N ⊂ M the relative commutant (or centralizer) N′ ∩M is defined to be the set
{b ∈M | ab = ba for all a ∈ N}.

Lemma 1.2. The subfactor N ⊂ M generated from the sequences of algebras
1m ⊗ An ⊂ Bn+m has relative commutant Bm . The same statement also holds with
Bn+m and Bm in the last sentence replaced by An+m and Am .

Proof. This is essentially the proof used for Theorem 3.7 in [Wenzl 1988a]. Observe
that by induction on r and assumption 4 above, we also have

(1m ⊗ p⊗r )Xm+rd(1m ⊗ p⊗r )∼= Xm

for X = A, B. It follows from Theorem 1.6 of [ibid.] that the dimension of the
relative commutant N′ ∩M is at most equal to the dimension of Bm . The claim
follows from the fact that Bm ⊗ 1n commutes with 1m ⊗ An for all n. �

1C. Bimodules and principal graphs. We calculate the first principal graph for
subfactors constructed in our setup, using fairly elementary methods from [ibid.]
as well as the bimodule approach. The latter was first used in the subfactor context
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by Ocneanu; see [Evans and Kawahigashi 1998]. For the connection between
bimodules and principal graphs, see [Bisch 1997] and for more details compatible
with our notation, see also [Erlijman and Wenzl 2007]. While most of this section
has already appeared before implicitly or explicitly, the presentation in our setup
might be useful also in other contexts.

Pick k large enough so that m = kd > n0. Hence, the inclusion matrices for
Ard ⊂ Brd coincide for all r ≥ k using the bijection of simple components as
described in Section 1A. Let3m and 3̃m be labeling sets for the simple components
of Bm and Am respectively. Let N and M be the factors generated by the increasing
sequences of algebras An and Bn respectively; see Proposition 1.1 or Lemma 1.2,
with the m there equal 0. Both of these factors have a subfactor Ñ generated by the
subalgebras

1m ⊗ An ⊂ An+m ⊂ Bn+m .

We now define for each λ ∈ 3̃m an N− Ñ bimodule Nλ as follows: It is the Hilbert
space completion of Npλ with respect to the inner product induced by tr, where pλ
is a minimal idempotent in Am,λ, the simple component of Am labeled by λ, with
obvious left and right actions by N and Ñ . To ease notation, we shall often refer to
it as an N−N bimodule, using the isomorphism between Ñ and N given by the
trace preserving maps a ∈ An 7→ 1m ⊗ a ∈ An+m .

Similarly, we define M−Ñ bimodules Mµ for anyµ∈3m which are Hilbert space
completions of Mpµ, where pµ is a minimal idempotent in the simple component
Bm,µ of Bm . Finally, we define the inclusion numbers bλµ for elements λ ∈ 3̃ and
µ ∈3m as usual (see Section 1A).

Lemma 1.3. The bimodules Nλ and Mµ are irreducible N−Ñ and M−Ñ bimodules,
respectively. We have the decomposition Mµ

∼=
⊕

λ bλµNλ as N− Ñ modules.

Proof. This is well-known (see [Erlijman and Wenzl 2007] for more details). It
follows from Lemma 1.2 that the endomorphism ring of the M− Ñ bimodule M

is given by Bm . Hence the M− Ñ bimodules Mµ are simple, as pµ was chosen to
be a minimal idempotent in Bm . One shows similarly that also the Nλ are simple
N− Ñ bimodules.

Observe that dimN Nλ = tr(pλ) and dimM Mµ = tr(pµ); see [Jones 1983]. Now
if pλ is a minimal idempotent in Am , it follows from the definitions that IndM

N Nλ :=
Mpλ is isomorphic as an M− Ñ bimodule to the direct sum ⊕bλµMµ. By Frobenius
reciprocity (see [Evans and Kawahigashi 1998; Bisch 1997]) it follows that the
module Nλ appears with multiplicity bλµ in Mµ, viewed as an N− Ñ bimodule.
Hence the N− Ñ bimodule Mµ has a submodule which is isomorphic to

⊕
λ bλµNλ.

But as Mµ has N-dimension [M : N] tr(pµ), it coincides with this submodule, by
Proposition 1.1. �
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Theorem 1.4. Let N ⊂ M be the subfactor generated by sequences of algebras
An ⊂ Bn satisfying the conditions in Section 1B. Then its first principal graph is
given by the inclusion graph for Akd ⊂ Bkd for sufficiently large k.

Proof. It is well-known that the first principal graph is given by the induction-
restriction graph of M−N and N−N bimodules appearing in the tensor products
M⊗n , n ∈ N, where M⊗n

= M⊗N M⊗N · · · ⊗N M (n factors); see [Evans and
Kawahigashi 1998; Bisch 1997]. Obviously, this graph does not change if we
replace all X −N bimodules H in this setting by X − qNq bimodules Hq, for
X = M,N and q a nonzero projection in N. The claim can now be shown for
q = p⊗k where k is chosen large enough so that kd > n0, using Lemma 1.3. �

Recall that many examples come from module tensor categories, where An =

EndC(X⊗n) and Bn = End(Y ⊗ (X⊗n)) for an object X in a tensor category C and
an object Y in the module category D over C. In this setting, the weight vectors
of our trace are given by an,λ = d̃λ/xn and bn,µ = dµ/yxn for positive quantities
dµ, d̃λ, x and y. Then we have:

Corollary 1.5. Assuming the conditions for the trace weights as just given, we have
subfactors N⊂Mµ with index [Mµ :N] = d2

µ[M :N], with N⊂M as in Theorem 1.4.

Remark 1.6. There is also a second important invariant for N ⊂ M, the dual
principal graph. It can be analogously defined as an induction-restriction graph
between irreducible M−M and M−N bimodules appearing in the tensor powers
M⊗n . Its calculation is more difficult than that of the first principal graph. This is
quite similar to the corresponding problem for subfactors coming from conformal
inclusions and related constructions; see [Xu 1998; Böckenhauer et al. 1999;
Erlijman and Wenzl 2007]. We plan to study this problem in a future publication
via suitable adaptions of techniques in those papers.

1D. The GHJ-construction. We give a well-known and well-studied example for
our current setup, which was first constructed in [Goodman et al. 1989]. Let G be a
matrix with nonnegative integer entries and norm less than 2. It is well-known that
such matrices are classified by Coxeter graphs of type ADE . We assume that the
columns of G are indexed by the even vertices, and the rows by the odd vertices.
We define C∗-algebras Bn by B0 = Cve , and B1 =⊕Md j , where ve is the number
of even vertices, and the summands of B1 are labeled by the odd vertices j , whose
dimension d j is equal to the number of even vertices to which j is connected. The
embedding Bo ⊂ B1 is given by the inclusion matrix G. Then we define recursively
Bn+1 via Jones’ basic construction [1983] for Bn−1 ⊂ Bn . Here the trace on Bn is
the unique normalized trace whose values on minimal idempotents are given by the
Perron–Frobenius vector of G t G or GG t , depending on whether n is even or odd,
and the vector is normalized such that tr(1)= 1. Then the algebra Bn+1 is generated
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by Bn , acting on itself via left multiplication, and the orthogonal projection en

onto the subspace Bn−1 of Bn , with respect to the inner product coming from the
trace. The algebra An is defined to be the subalgebra generated by the identity 1
and the projections ei , 1 ≤ i < 1. It is well-known that these algebras satisfy the
commuting square condition, that they are periodic with periodicity 2, and that the
Jones projections ei satisfy the conditions of the projection p in Section 1B. This
has already been shown in [Goodman et al. 1989].

2. q-Brauer algebras

2A. Definitions. Fix N ∈ Z and let [N ] = (q N
− q−N )/(q − q−1), where q is

considered to be a complex number. We denote by Hn(q2) the Hecke algebra of
type An−1. It is given by generators g1, g2, . . . , gn−1 which satisfy the usual braid
relations and the quadratic relation g2

i = (q
2
− 1)gi + q2. The q-Brauer algebra

Brn(N ) is the complex algebra defined via generators g1, g2, . . . , gn−1 and e and
the following relations:

(H) g1, g2, . . . , gn−1 satisfy the relations of the Hecke algebra Hn(q2).

(E1) e2
= [N ]e.

(E2) egi = gi e for i > 2, eg1 = q2e, eg2e = q N+1e and eg−1
2 e = q−1−N e.

(E3) g2g3g−1
1 g−1

2 e(2) = e(2) = e(2)g2g3g−1
1 g−1

2 , where e(2) = e(g2g3g−1
1 g−1

2 )e.

Remark 2.1. (a) Relation (E3) can be replaced by the perhaps slightly less myste-
rious relation e(2)g2g3 = e(2)g2g1 and g−1

1 g−1
2 e(2) = g−1

3 g−1
2 e(2).

(b) It is easy to see that this algebra coincides with the algebra defined in [Wenzl
2012] after substituting q there by q2, and e there by q1−N e (with the q of this
paper); this is also compatible with the different definition of [N ] in [ibid.]. We
have chosen this parametrization as it will make it easier to define a ∗-structure on
it. More precisely, if |q| = 1, there exists a complex conjugate antiautomorphism
b 7→ b∗ on Brn(N ) defined by

(2-1) e∗ = e, g∗i = g−1
i , where 1≤ i < n.

It is easy to check the relations to show this operation is well-defined.

2B. Molev representation. We give a representation of our algebra Brn(N ) in
End(V⊗n), where V = CN . For this we use the matrices used by Molev [2003] for
the definition of his q-deformation of Brauer’s centralizer algebra. His defining
relations are slightly different from ours, but Molev has informed the author that our
algebra satisfies the relations of his algebra. It turns out that also his matrices satisfy
the relations of our algebras, which we will outline here. Let R be the well-known
solution of the quantum Yang–Baxter equation for type A. For simplicity we will
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use this notation for what is often denoted as Ř. If Ei j are the matrix units for n×n
matrices, we define the following elements in End(V⊗2):

R =
∑

i

q Ei i ⊗ Ei i +
∑
i 6= j

Ei j ⊗ E j i +
∑
i< j

(q − q−1)Ei i ⊗ E j j ,

and
Q =

∑
i, j

q N+1−2i Ei j ⊗ Ei j .

Moreover, if A ∈ End(V⊗2), we define the operator Ai ∈ End(V⊗n) by

Ai = 1i−1⊗ A⊗ 1n−1−i ,

where 1k is the identity on V⊗k . Then we have the following proposition, all of
whose essential parts were already proved in [Molev 2003]. However, the relations
for our algebras are slightly different, so we spell out some of the adjustments of
the work in [ibid.] in our context below.

Proposition 2.2. The map gi 7→ q Rn−i and e 7→ Qn−1 defines a representation 8
of Brn(N ). It specializes to the usual representation of Brauer’s centralizer algebra
in End(V⊗n) for q = 1.

Proof. Most of the relations are already known or are easy to check. For example,
it is well-known that the matrices q Ri satisfy the relations of the Hecke algebra
Hn(q2). Relation (E1) is checked easily, and also the relations in (E2) are fairly
straightforward to check. It suffices to check (E3) for n = 4. For this observe that
by [ibid., (4.16)], we have

Q3 R2 R3 R1 R2 Q3 = Q1 Q3+ q N+1(q − q−1)Q3(R1+ q−11),

in our notation. Using the relation Ri = R−1
i + (q−q−1)1 for the second and third

factor of the left hand side, one derives from this

Q3 R−1
2 R−1

3 R1 R2 Q3 = Q1 Q3.

To check relation (E3), observe that

R1 R2(vi ⊗ vi ⊗ v j ⊗ v j )= R3 R2(vi ⊗ vi ⊗ v j ⊗ v j ),

where (vi ) is the standard basis for CN
= V . One derives from this that

R−1
2 R−1

1 R3 R2 Q1 Q3 = Q1 Q3.

Moreover, the same calculations above also work with Ri replaced by R−1
i and Q j

replaced by its transpose QT
j . Hence one can show as before that

R2 R3 R−1
1 R−1

2 QT
1 QT

3 = QT
1 QT

3 .
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Transposing this, using RT
i = Ri shows the last part of the claim. �

2C. Quotients. We can now rephrase the main results of [Wenzl 2012] in our
notation as follows:

Theorem 2.3. (a) There exists a well-defined functional tr on Brn(N ) defined
inductively by tr(g1)= q N+1/[N ], tr(e)= 1/[N ] and tr(bgn)= tr(b) tr(gn) for
all b ∈ Brn(N ).

(b) Let Brn(N )= Brn(N )/In , where In is the annihilator ideal of tr. Then Brn(N )
is semisimple and the inclusion Brn(N )⊂ Brn+1(N ) is well-defined for all n.

It is possible to explicitly describe the structure of the quotients Brn = Brn(N ).
To do so, we need the following definitions for the labeling sets of simple represen-
tations. More conceptually, the labeling sets 3(N , `) consist of all such diagrams
λ for which the quantities dµ(q) 6= 0 for any subdiagrams µ⊂ λ including λ itself,
where q2 is a primitive `-th root of unity and the dµ are defined in Section 2E.

Definition 2.4. Fix integers N and ` satisfying 1< |N |< `.

(i) The set 3̃(N , `) consists of all Young diagrams with at most N rows such that
the first and N -th row differ by at most `− N boxes for N > 0. If N < 0, the
Young diagrams have at most |N | columns, where the first and |N |-th column
differ by at most `− |N | boxes.

(ii) The set 3(N , `) consists of all Young diagrams λ with λi boxes in the i-th
row and λ′j boxes in the j-th column which satisfy

(a) λ′1+ λ
′

2 ≤ N and λ1 ≤ (`− N )/2 if N > 0 and `− N even,
(b) λ′1+ λ

′

2 ≤ N and λ1+ λ2 ≤ `− N if N > 0 and `− N odd,
(c) λ1 ≤ |N |/2 and λ′1+ λ

′

2 ≤ `− |N | if N < 0 is even,
(d) λ1+ λ2 ≤ |N | and λ′1+ λ

′

2 ≤ `− |N | if N < 0 is odd.

Diagrams which miss one of these inequalities only by the quantity one are called
boundary diagrams of 3(N , `); for example in case (a) if λ′1+ λ

′

2 = N + 1.

Theorem 2.5 [Wenzl 2012, Section 5]. Let q2 be a primitive `-th root of unity,
and let N be an integer satisfying 1 < |N | < `. Then the simple components of
Brn=Brn(N ) are labeled by the Young diagrams in3(N , `) with n, n−2, n−4, . . .
boxes. If Vn,λ is a simple Brn-module for such a diagram λ, it decomposes as a
Brn−1 module as

(2-2) Vn,λ ∼=
⊕
µ

Vn−1,µ,

where µ runs through diagrams in 3(N , `) obtained by removing or, if |λ| < n,
also by adding a box to λ.
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2D. Path idempotents and matrix units. We will give some details about the proof
of Theorem 2.5 which will also be needed for further results. Observe that the
restriction rule (2-2) implies that a minimal idempotent pµ in Brn−1,µ can be written
as a sum of minimal idempotents with exactly one in Brn,λ for each diagram λ in
3(N , `) that can be obtained by adding or subtracting a box fromµ. This inductively
determines a system of minimal idempotents and matrix units of Brn(q N , q) labeled
by paths and pairs of paths, respectively, in 3(N , `) of length n. Such a path is
defined to be a sequence of Young diagrams (λ(i))ni=0 where λ(0) is the empty Young
diagram, and λ(i+1) is obtained from λ(i) by adding or removing a box. It follows
from the restriction rule above that the dimension of Vn,λ is equal to the number of
paths of length n with λ(n) = λ, and that we can label a complete system of matrix
units for the simple component Brn,λ by pairs of such paths. We then have the
following lemma:

Lemma 2.6. For each pair of paths t1, t2 in 3(N ,∞) with the same endpoint we
can define the matrix unit Et1,t2 as a linear combination of products of generators
over algebraic functions (rational for path idempotents) in q with poles only at roots
of unity. More precisely, the formula for Et1,t2 is well-defined for q2 a primitive `-th
root of unity if both t1 and t2 are paths in 3(N , `).

Proof. This was proved in [Wenzl 2012], Section 5. As the result is not explicitly
stated as such, we give some details here. One observes that the two-sided ideal
generated by the element ē ∈ Brn+1 is isomorphic to Jones’ basic construction for
the algebras Brn−1 ⊂ Brn (or, strictly speaking, by certain conjugated subalgebras
which are denoted by i1(Brn) and i2(Brn−1); see Section 5.2 in [Wenzl 2012]). One
can then define path idempotents and matrix units inductively as it was done in
[Ram and Wenzl 1992, Theorem 1.4], using the formulas for the weights of traces,
which will also be reviewed in Section 2E; this is closely related to what is also
known in subfactor theory as the Ocneanu–Sunder path model [Sunder 1987]. The
complement of this ideal is a quotient of the Hecke algebra H̄n+1, for which matrix
units already were more or less defined in [Wenzl 1988a, p. 366]. �

Lemma 2.7. Let p[N ] and p[1N ] be the minimal idempotents in HN corresponding
to its one-dimensional trivial and sign representations. Then for all m > 0 we have

p̄⊗2
[1N ]

Brm+2N p̄⊗2
[1N ]
∼= Brm

for N > 0, and
p[−N ]Br−N+m p[−N ] ∼= Brm

for N < 0 even.

Proof. Let us assume N > 0 first. Observe that if p ∈ Br2N ,∅(N ), the simple com-
ponent labeled by the empty Young diagram ∅, then it follows from the restriction
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rule (2-2) (see also the equivalent version below Theorem 2.5) by induction on m
that pBrm+2N (N )p ∼= Brm(N ) for all m ≥ 0. Hence it suffices to show that p⊗2

[1N ]
is

such an idempotent.
If q= 1 and N > 0,8(Brn(N )) coincides with the commutant of the action of the

orthogonal group O(N ) on V⊗n , which is semisimple. Moreover, the trace tr is just a
multiple of the pull-back of the natural trace on End(V⊗n), so8(Brn(N ))∼=Brn(N )
at q = 1. As 8(p[1N ]) projects onto the one-dimensional determinant representation
in V⊗N , the claim follows easily in that case, using Brauer duality, that is, the fact
that 8(Brn(N )) is equal to the commutant of O(N ) on V⊗n for all n.

We will now use the fact that we can also define Brn(N ) over the field of rational
functions C(q); see [Wenzl 2012]. It follows from Lemma 2.6 that we can also
define the path idempotents for Brn(N ) over that field for paths of length n in
3(N ,∞). As the rank of an idempotent is an integer, the claim follows as well for
q a variable, and for q ∈ C not a root of unity. But as pt p̄⊗2

[1N ]
pt = 0 for any path t

of length 2N in 3(N , `) which ends in λ 6=∅, we also get rank 0 for p̄⊗2
[1N ]

at q2 a
primitive `-th root of unity in Br2N ,λ(N ). One also shows by a similar continuity
and path idempotent argument that the rank of p⊗2

[1N ]
is equal to 1 in Br2N ,∅(2n).

This finishes the proof for N > 0.
If N < 0 even, we would map the permutation (i, i + 1) to the negative of the

linear map permuting the i-th and (i +1)-st factor of V⊗n , where V =C|N |. Hence
p[−N ] would map onto the antisymmetrization of V⊗−N , on which Sp(|N |) acts
trivially. The map above extends to a map of Brn(N ) onto EndSp(|N |(V⊗n) (see
[Wenzl 1988b]), and we can now duplicate the proof for the orthogonal case. �

2E. Weights of the trace. Using the character formulas of orthogonal groups, one
can calculate the weights of tr for the algebras Brn(N ), that is, its values at minimal
idempotents of Brn(N ). We will need the following quantities for a given Young
diagram λ:

(2-3) d(i, j) =
{
λi + λ j − i − j if i ≤ j ,
−λ′i − λ

′

j + i + j − 2 if i > j .

Moreover, we define h(i, j) to be the length of the hook in the Young diagram
λ whose corner is the box in the i-th row and j-th column. We can now restate
[Wenzl 2012], Theorem 4.6 in the notations of this paper as follows:

Theorem 2.8. The weights of the Markov trace tr for the Hecke algebra H̄n(q2)

are given by ω̃λ = d̃λ/[N ]n , where |λ| = n, and for Brn(N ) they are given by
ωλ,n = dλ/[N ]n , where

d̃λ =
∏
(i, j)∈λ

[N+ j−i]
[h(i, j)]

, dλ =
∏
(i, j)∈λ

[N+d(i, j)]
[h(i, j)]

,
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where λ runs through all the Young diagrams in 3̃(N , `) with n boxes for H̄n(q2),
and through all Young diagrams in 3(N , `) with n, n− 2, n− 4, . . . boxes for Brn .

Lemma 2.9. The weights ωλ,n are positive for all λ ∈ 3(N , `) if and only if
q2
= e±2π i/` with ` > N and

(a) N > 0 and `− N even, or

(b) N < 0 odd.

Proof. The weights can be rewritten for our choice of q as

ωλ,n =
sinn(π/`)

sinn(Nπ/`)n
∏
(i, j)∈λ

sin(N+d(i, j))π/`
sin(h(i, j)π/`)

.

As h(i, j)≤ h(1, 1)= λ1+ λ
′

1− 1< ` for all boxes (i, j) of λ, it follows that all
factors in the formula above are positive for N > 0 (negative for N < 0) except
possibly the ones in the numerator under the product. If N > 0 and `− N odd, one
checks that for the diagram [`−N+1)/2]we have ωλ,|λ|<0. By the same argument,
one shows that ωλ,|λ| < 0 for λ= [(|N | + 1)/2] and N < 0. In the other two cases,
one checks that 0< |d(i, j)|< ` for all boxes (i, j) of a diagram λ ∈3(N , `). �

2F. C∗-quotients.

Proposition 2.10. If the weights ωλ,n are positive for all λ∈3(N , `), the star oper-
ation defined by e∗ = e and by g∗i = g−1

i makes the quotients Brn into C∗-algebras.

Proof. The proof goes by induction on n, with the claims for n = 1 and n = 2 easy
to check. By [Wenzl 2012], the two-sided ideal In+1 generated by e in Brn+1 is
isomorphic to Jones’ basic construction for Brn−1⊂Brn; see also the remarks before
Lemma 2.7. In particular, In+1 is spanned by elements b1eb2, with b1, b2 ∈ i1(Brn),
where i1(a) = 1n+1a1−1

n+1, with 1 = (g1g2 · · · gn−1)(g1 · · · gn−2) · · · g1. By in-
duction assumption and properties of Jones’ basic construction, this ideal has a
C∗-structure given by (b1eb2)

∗
=b∗2eb∗1 . This coincides with the ∗ operation defined

before algebraically. It was shown in [Wenzl 2012] that Brn+1 ∼= In+1 ⊕ H̄n+1,
where H̄n+1 is a semisimple quotient of the Hecke algebra Hn+1 whose simple
components are labeled by the Young diagrams λ ∈ 3(N , `) with n + 1 boxes.
All these simple representations satisfy the (k, `) condition in [Wenzl 1988a]. It
follows from that paper that the map g∗i = g−1

i induces a C∗ structure for any such
representation. This finishes the proof. �

Theorem 2.11. For each choice of N and ` with q2
= e±2π i/`, and for each

nonnegative integer m, we obtain a subfactor N ⊂ M with N′ ∩M = Brm and
with index

[M : N] = [N ]m
∑

µ∈3̃(N ,`),|µ|=k|N | d̃
2
µ∑

λ∈3(N ,`),2||λ| d
2
λ

,
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with notations as in Definition 2.4, and k fixed and sufficiently large. Moreover, its
first principal graph is given by the inclusion graph for H̄2|N |k ⊂ Br2|N |k+m for any
sufficiently large k.

Proof. We first check conditions 1–4 of Section 1B with An = H̄n and Bn =Brn(N )
for q = eπ i/` and 1 < |N | < `. Condition 1 is well-known and was checked, for
instance, in [Wenzl 1988a]. Similarly, Condition 2 follows from the results in
[Wenzl 2012], using the map b⊗ gi ∈ Brm ⊗ H̄n 7→ bgm+i . Condition 3 means
that the conditional expectation from Brn+1 to Brn maps H̄n+1 onto H̄n . But as any
element of H̄n+1 can be written as a linear combination of elements of the form
agnb, with a, b ∈ H̄n , we have for any c ∈ Brn that

tr(agnbc)= tr(gn) tr(abc)= tr(E H̄n
(agnb)c).

Hence the commuting square condition is satisfied for any four algebras of the
type above. Finally, Condition 4 follows for d = 2N and the projection p = p⊗2r

[1N ]

from Lemma 2.7.
The periodicity condition for H̄n was shown in [Wenzl 1988a] by proving that

p̄[1N ] H̄m+N p̄[1N ]
∼= H̄m , for N > 0. This induces an injective map

3̃(N , `)m→ 3̃(N , `)m+N

by adding a column of N boxes to the given Young diagram which has to become
surjective for sufficiently large m by definition of 3̃(N , `). The 2N periodicity
for the algebras Brn(N ) follows similarly using Lemma 2.7; or, see [Wenzl 2012].
The reader should have no problem adjusting this proof to the case N < 0 even,
using Lemma 2.7. �

3. S-matrix

We will need certain well-known identities, which can be found in [Kac 1990],
except for one case, which is a variation of the other ones. Because of this, we
review the material in more detail. This might also be useful to the nonexpert reader,
as the identities needed here can be derived by completely elementary methods.

3A. Lattices. Let M ⊂ L⊂Rk be two lattices of full rank. This means that they are
isomorphic to Zk as abelian groups, and each of them spans Rk over R. Moreover,
we assume that we have an inner product on Rk such that (x, y)∈Z for all x, y∈M .
We define the dual lattice M∗ to be the set of all y ∈ Rk such that (x, y) ∈ Z for all
x ∈ M ; the dual lattice L∗ is defined similarly. Obviously M ⊂ L implies L∗ ⊂ M∗.
Finally, we also assume that A= L/M is a finite abelian group. Then each γ ∈ M∗

defines a character of A via the map eγ : x ∈ L 7→ e2π i(γ,x). In particular, one can
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identify the group dual of A with M∗/L∗. Define the matrix

S̃ = 1
|L : M |1/2

(eγ (x)),

where γ and x are representatives for the cosets M∗/L∗ and L/M . Then S̃ is
the character matrix of A up to a multiple and one easily concludes that it is
unitary. More precisely, we can view it as a unitary operator between Hilbert spaces
V and V ∗ with orthonormal bases labeled by the elements of L/M and M∗/L∗

respectively.

3B. Weights of traces. We will primarily be interested in lattices related to root, co-
root and weight lattices of orthogonal and symplectic groups. We define the lattices

(3-1) Q =
{

x ∈ Zk, 2
∣∣∣∑ xi

}
and P = Zk

∪ (ε+Zk),

where ε is the element in Rk with all its coordinates equal to 1/2. Observe that
P∗ = Q with respect to the usual scalar product of Rk . Moreover, one can identify
coroot and weight lattices of so2k or so2k+1 with Q and P respectively. In particular,
we define for any γ ∈ P the functional eγ :Rk

→C by eγ (x)= e2π i(γ,x). The Weyl
group of type Bk acts as usual via permutations and sign changes on the coordinates.
Let aW =

∑
w ε(w)w, where ε(w) is the sign of the element w. Then the characters

χλ for so2k+1 and sp2k are given by χλ= aw(eλ+ρ)/aw(eρ), where ρ= (k+1/2−i)
for so2k+1 and ρ = (k+ 1− i) for sp2k , and W is the Weyl group of type Bk .

We will also need the somewhat less familiar character formulas for the full
orthogonal group O(N ): Recall that the irreducible representations of O(N ) are
labeled by Young diagrams λ with at most N boxes in the first two columns. O(N )-
modules labeled by Young diagrams λ 6= λ† restrict to isomorphic SO(N )-modules
if and only if λ′1 = N − (λ†)′1 and λ′i = (λ

†)′i for i > 1. Hence if g = exp(x) is an
element in SO(N ), it suffices to consider the quantities χλ(g)= χλ(x) for λ with
at most k rows for N = 2k or N = 2k + 1. We can now express the weights of
Theorem 2.8 in terms of these characters; in fact the formulas in Theorem 2.8 were
derived from these characters; see [Koike 1997; Wenzl 2012].

Lemma 3.1. Let dλ, d̃λ be as in Theorem 2.8 for q = eπ i/`. Moreover, we define
for |N | = 2k or N = 2k + 1 the vector ρ̌ ∈ Rk by ρ̌ = ((|N | + 1)/2− i)i . By the
discussion above, it suffices to evaluate χO(N )(ρ̌ /`) for Young diagrams λ with
λ′1 ≤ N/2, which will be assumed in the following:

(a) If N = 2k+ 1> 0, then dλ = χ
O(N )
λ (ρ̌ /`)= χ

SO(N )
λ (ρ̌ /`).

(b) If N = 2k > 0 and λ′1 ≤ k, then dλ = m(λ) det(cos(l j ρ̌ i )/ det(cos(k− j)ρ̌ i ),
where l j = (λ+ ρ) j = λ j + k − j and where m(λ) = 2 or 1, depending on
whether λ has exactly k rows or not.
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(c) If N = −2k, then dλ = (−1)|λ|χSp(|N |)
λt (ρ̌ /`) for the symplectic character

labeled by the transposed diagram λT .

(d) We have d̃λ= χ
SU(N )
λ (ρ/`) for N > 0 and d̃λ= (−1)|λ|χSU(N )

λT (ρ/`) for N < 0,
where ρ = ((|N | + 1)/2− i) ∈ R|N |.

Proof. Observe that ρ̌ is the element ρ of the Cartan subalgebra of slN , viewed as
an element of the Cartan subalgebra of the Lie subalgebra soN or spN , depending on
the case. The proof now goes as the proof of Theorem 4.6 in [Wenzl 2012], which
is essentially the one of [Koike 1997]. The fact that these arguments also work for
the special quotients Brn follows from the proof of [Wenzl 2012, Theorem 5.5]. �

Remark 3.2. Let 1+ be the set of positive roots of a semisimple Lie algebra and
|1+| be its cardinality. As usual, we can express the Weyl denominator in χλ(ρ̌ /`)
in product form as

(3-2) 1(ρ̌ /`)=
∏
α>0

(
e(α,ρ̌ )π i/`

− e−(α,ρ̌ )π i/`)
= (−i)|1+|

∏
α>0

2 sin((α, ρ̌ )π/`).

3C. Usual S-matrices. As usual, we pick as dominant chamber C+ the regions
given by x1 > x2 > · · · > xk > 0 for Lie types Bk and Ck . We also choose the
fundamental domains D with respect to the translation actions of M,M∗, L , L∗

such that it has 0 in its center; here the lattices M and L will be certain multiples
of the lattices P , Q or Zk to be specified later. Let P̄+ be the intersection of M∗

with the fundamental alcove D ∩C+.
Observe that we also obtain a representation of the Weyl group W on the vector

spaces V and V ∗. Then it is easy to check that aW (V ∗) has an orthonormal basis
|W |−1/2aw(eγ ), with γ ∈ P̄+, and we can define a similar basis aW (x) for aW (V ).
Let S be the matrix which describes the action of S̃|aW (V ) with respect to that basis.
Then it is not hard to check (and we will do a slightly more complicated case below)
that its coefficients are given by

(3-3) sγ,x =
1

|L : M |1/2
∑
w

ε(w)e2π i(w.γ,x).

If L is the weight lattice of a simple Lie algebra, the entry sγ,x is the numerator
of Weyl’s character formula for the dominant weight λ= γ − ρ, up to the factor
|L : M |−1/2. As the columns of the unitary matrix S have norm one, it follows that

(3-4)
∑
λ

χ2
λ(x)=

|L : M]
12(x)

,

where 1 is the Weyl denominator, and the summation goes over the dominant
weights λ such that λ+ρ ∈ P̄+. We are now in the position to prove some cases of
the following proposition:
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Proposition 3.3. Let 3(N , `)ev be the subset of 3(N , `) consisting of Young dia-
grams with an even number of boxes. Then we have∑

λ∈3(N ,`)ev

d2
λ =

`k

b(N )

∏
α>0

1

4 sin2(α, ρ̌ )π/`
,

where ρ̌ = ((|N | + 1)/2− i) and α > 0 runs through the positive roots of soN for
N > 0 and of sp|N | for N < 0 even, and b(N )= 2 for N = 2k > 0, and b(N )= 1
otherwise.

Proof. Let us consider the case N = 2k + 1 > 0, with P and Q as in (3-1). Let
L = `−1Zk and let M1 = Q and M2 = Zk . Then we have M∗1 = P , and M∗2 = Zk .
Now observe that M∗1 is the weight lattice of soN , and the elements γ ∈ P̄+ are in
1-1 correspondence with the dominant weights λ of soN satisfying λ1 ≤ (`− N )/2,
via the correspondence γ = λ+ ρ. Moreover, |L : M1| = 2`k . Hence it follows
from (3-4) that

∑
χ2
λ(ρ̌ )= 2`k/12(ρ̌ ). Playing the same game for the lattice M2,

we now only get the sum over the characters χ2
λ for which λ+ ρ is in Zk , which is

only half as large as before. Hence also the sum over the characters χ2
λ for which

λ ∈ Zk has to have the same value. This sum coincides with the right hand side
of the statement for N > 0 odd, by the restriction rules for O(N ) to SO(N ) (see
Lemma 3.1 and its preceding discussion).

The symplectic case N =−2k<0 goes similarly. Here we define M⊂ L= `−1 P ,
and with L∗ = `Q ⊂ M∗ = Zk . Then it follows that

∑
d2
λ = 2`k/12(ρ̌ /`), where

the summation goes over all diagrams λ such that λT
∈ 3(N , `). Playing the

same game for M = P and M∗ = Q, we get
∑

d2
λ = `

k/1(ρ̌ /`), where now the
summation goes over all even, or over all odd diagrams in 3(N , `), depending on
whether the sum of coordinates of ρ = (k+ 1− i) is odd or even. In each case, we
obtain that

∑
ev d2

λ = `
k/1(ρ̌ /`). We have proved the proposition except for the

case N = 2k > 0, for which we need a little more preparation. �

3D. Another S-matrix. We now consider a slight generalization of the above.
Observe that we can define a second sign function ε̃ for W = W (Bk) which
coincides with the usual sign function on its normal subgroup W (Dk), while we
have ε̃(w)=−ε(w) for w 6∈W (Dk). It is easy to see that also in this case we have
ε̃(vw)= ε̃(v)ε̃(w) for all v,w ∈W . We define ãW =

∑
ε̃(w)w, and also denote the

corresponding operators on the various (quotient) lattices and on the vector spaces
V and V ∗ by the same symbol. One observes that now we get an orthonormal
basis for ãW (V ∗) of the form bγ = |Stab(γ )|−1/2

|W |−1/2ãW (eγ ), labeled by the
elements of P̄+ which now consist of the γ ∈ D such that γ1 > γ2 > · · ·> γk ≥ 0.
Observe that |Stab(γ )| is equal to 1 or 2, depending on whether γk > 0 or γk = 0.
One similarly defines a basis for ãW (V ). Let x be such that Stab(x) = 1, that is,
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xk > 0, and let bx = |W |−1/2ãW (x). Then, writing M∗/`L∗ as a collection of W
orbits, we obtain

S̃bx = |W |−1/2
∑
λ∈P̄+

∑
v,w∈W

1
|StabW (γ )|

ε̃(w) s̃v.γ,w.x v.γ

=

∑
λ∈P̄+

∑
v

(∑
w

ε̃(w) s̃w.γ,x
1

|StabW (λ)|

)
ε̃(v) v.γ,

where we replaced ε̃(w) by ε̃(v)ε̃(w−1v), s̃v.λ,w.x by s̃w−1v.γ,x and finally also
substituted w−1v by w. We see from this that the coefficient of v.γ is equal to 0 if
γ has a nontrivial stabilizer except in the case when γk = 0. Hence it follows that
S̃ maps aW (V ) into aW (V ∗). Taking bases (ãW (γ ))γ∈P+ and (ãW (x)), we see that
S̃|aW (V ) can be described by the matrix S = (sγ,x) whose coefficients are given for
x with trivial stabilizer by

(3-5) sγ,x = |Stab(γ )|−1/2
|L : M |−1/2

∑
w

ε(w)e2π i(w.γ,x).

3E. Squares of characters. Using the discussion from before and the formulas of
Lemma 3.1 it is not hard to see that for N even and λ′1 ≤ N/2 we can write

χ
O(N )
λ = m(λ)ãW (eλ+ρ)/ãW (eρ),

where m(λ)= 2 or 1 depending on whether λ has exactly k rows or not. In particular,
applying this to the trivial representation, we obtain 21(ρ)= ãW (eρ).

Let P and Q be as in (3-1), and set L = `−1 P and M = Zk . Then

L∗ = `Q ⊂ M∗ = Zk,

and it is easy to see that all of these lattices are W =W (Bk)-invariant. Moreover,
let ρ̌ /`= (k+1/2−i)/`∈ `−1 P =M∗. Then it follows for N = 2k and ` even that∑
λ∈3(N ,`)

χ2
λ(ρ̌ `)=

1
12(ρ̌ `)

∑
λk+1=0

λ1≤(`−N )/2

(ãW (eλ+ρ)(ρ̌ )`)2 =
|L : M]
212(ρ̌ )

∑
λ

s2
λ,ρ̌ /` .

Now observe that the matrix S is unitary and that [L : M] = 2`k . Moreover, by
Proposition 1.1 and Theorem 2.11, the square sum over odd diagrams must be equal
to the square sum over even diagrams. Hence we obtain for N > 0 even, and ` even
that

(3-6)
∑

λ∈3(N ,`)ev

d2
λ =

`k

212(ρ̌ )
,
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where 3(N , `)ev denotes the set of diagrams in 3(N , `) with an even number of
boxes. This finishes the last case of the proof of Proposition 3.3

3F. Calculation of index. As usual, identify the Cartan algebra of slN with the
diagonal N × N matrices with zero trace. The embedding of the Cartan algebras of
an orthogonal or symplectic subalgebra is given via diagonal matrices for which
the (N + 1− i)-th entry is the negative of the i-th entry, for 1≤ i ≤ N/2. Hence,
if εi is the slN weight given by the projection onto the i-th diagonal entry, we
have (εN+1−i )|soN = (−εi )|soN , with a similar identity also holding for symplectic
subalgebras. Using our description of coroot and weight lattices of orthogonal and
symplectic Lie algebras as sublattices of Rk , and defining φi to be the projection
onto the i-coordinate, we see that (εN+1−i )|soN =−φi = (−εi )|soN . This allows us
to describe the decomposition of slN as both an soN - and spN -module:

(3-7) slN = soN ⊕ p and slN = spN ⊕ p,

where p denotes, respectively, the nontrivial irreducible submodule in the sym-
metrization of the vector representation of soN , and the nontrivial irreducible
submodule in the antisymmetrization of the vector representation of spN . The
nonzero weights ω > 0 of p coming from positive roots of slN and the multiplicity
n(p) of the weight 0 in p are given by

(a) 2φi , φi and φi±φ j for 1≤ i < j ≤ k with n(p)= k for soN with N =2k+1 odd,

(b) 2φi and φi±φ j for 1≤ i < j ≤ k with n(p)= k−1 for soN with N = 2k even,

(c) φi ±φ j for 1≤ i < j ≤ k with n(p)= k−1 for sp|N | with N =−2k < 0 even.

Theorem 3.4. The index of the subfactor N ⊂M obtained from the inclusions of
algebras H̄n(q)⊂ Brn(q N , q) is given by

[M : N] = b(N )`n(p)
∏
ω>0

1
4 sin2(ω, ρ̌ )π/`

,

where the product goes over the weights ω > 0 of p coming from positive roots of
slN , as listed above, n(p) is the multiplicity of the zero weight in p, and b(N ) and
ρ̌ are as in Proposition 3.3.

Corollary 3.5. If q= eπ i/`
→1, the index [M :N] goes to∞ with asymptotics `dim p.

Proof. We use Theorem 2.11, where the denominator has been calculated in
Proposition 3.3. The numerator follows from a standard argument for S-matrices
for Lie type A; see [Kac 1990], versions of which have also been used in this
section. For an elementary calculation, see [Erlijman 1998]. �

Remark 3.6. It is straightforward to adapt our index formula to subfactors related
to other fixed points H = Gα of an order two automorphism α of a compact Lie
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group G, up to some integer (or perhaps rational) constant b(H,G). Again, p would
be the −1 eigenspace of the induced action of α on the Lie algebra g, and the same
S-matrix techniques applied in this section would go through. For example, our
formulas for N = 3 and ` odd coincide with the ones at the end of [Xu 2009] for
even level of SU(3), up to a factor 3 (and missing squares, a misprint according to
the author). This is to be expected as in our case only those diagrams appear in the
principal graph (see next section) which also label representations of the projective
group PSU(3).

3G. Restriction rules and principal graph. It follows from Theorem 1.4 that the
principal graph of N ⊂ M is given by the inclusion matrix for H̄2k ⊂ Br2k for
k sufficiently large. This still leaves the question of how to explicitly calculate
these graphs. Observe that in the classical case q = 1 these would be given by the
restriction rules from the unitary group U(N ) to O(N ), for N > 0. Formulas for
these restriction coefficients are well-known; see for instance [Weyl 1997, Theorems
7.8F and 7.9C] and Littlewood’s formula (see [Koike and Terada 1987, Section
1.5], and the whole paper for additional results). Another approach closely related
to the setting of fusion categories can also be found in [Wenzl 2011].

Let bλµ(N ) be the multiplicity of the simple O(N )-module Vµ in the U(N )module
Fλ, for N > 0, where λ, µ are Young diagrams. It is well-known that for fixed
Young diagrams λ and µ, the number bλµ(N ) will become a constant bλµ for N
large enough. Fix now also ` > |N |. We define similar coefficients in our setting
as follows: Recall that the simple components of H̄n are labeled by the diagrams
in 3̃(N , `)n and the ones of Brn by the diagrams in 3(N , `). We then define for
λ ∈ 3̃(N , `) and µ ∈ 3(N , `) the number bλµ(N , `) to be the multiplicity of a
simple H̄n,λ module in a simple Brn,µ module.

In the following lemma the symbol χµ will also be used for the O(N ) character
corresponding to the simple representation labeled by the Young diagram µ. More-
over, we also denote by Br∞ the inductive limit of the finite dimensional algebras
Brn under their standard inclusions, for fixed N and `.

Lemma 3.7. (a) Each g ∈ O(N ) for which χµ(g)= 0 for all boundary diagrams
µ of 3(N , `) defines a trace on Br∞ determined by tr(pµ)= χµ(g)/χ[1](g)n ,
where pµ is a minimal projection of Brn,µ.

(b) For given λ ∈ 3̃(N , `)n the coefficients bλµ(N , `) are uniquely determined by
the equations

χ
U(N )
λ (g)=

∑
µ

bλµ(N , `)χµ(g)

for all g as in (a), where the summation goes over all diagrams µ in 3(N , `)
with n, n− 2, . . . boxes.
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Proof. The formula in statement (a) determines a trace on Brn for each n. To show
that these formulas are compatible with the standard embeddings we observe that a
minimal idempotent pµ ∈ Brn,µ is the sum of minimal idempotents eλ ∈ Brn+1,λ

where λ runs through all diagrams in 3(N , `) obtained by adding or removing a
box to/from λ; see (2-2) and the remarks below that theorem. Evaluating the traces
of these idempotents and multiplying everything by χλ(g)n+1, equality of the traces
is equivalent to

χµ(g)χ[1](g)=
∑
λ

χλ(g).

By the usual tensor product rule for orthogonal groups, the left hand side would be
equal to the sum of characters corresponding to all diagrams λ which differ from
µ by only one box. It is easy to check that this differs from the sum above only by
boundary diagrams, for which the characters at g are equal to 0. This shows (a).

For (b), we first show that

tr(pλ)=
χ

U(N )
λ (g)

χ
U(N )
[1] (g)n

for pλ ∈ H̄n,λ a minimal idempotent and tr a trace as in (a). As the weight vector
for Brn+2N is a multiple of that of Brn , for n large enough, the same must also
hold for the weight vectors of H̄n and H̄n+2N , by periodicity of the inclusions.
Hence, these weight vectors must be eigenvectors of the inclusion matrix for
H̄n ⊂ H̄n+2N . As this inclusion matrix is just a block of the 2N -th power of the
fusion matrix of the vector representation for the corresponding type A fusion
category, its entries must be given by U(N ) characters of a suitable group element.
To identify these elements, it suffices to observe that the antisymmetrizations of
the vector representation, labeled by the Young diagrams λ = [1 j

], 1 ≤ j ≤ N ,
remain irreducible as O(N ) modules. This means the corresponding Hecke algebra
idempotent remains a minimal idempotent also in Br j . Hence tr(pλ)=χ

U(N )
λ (g) for

λ= [1 j
] and 1≤ j ≤ N . But as the antisymmetrizations generate the representation

ring of U(N ), and also of the corresponding fusion ring, the claim follows for
general λ. For more details, see [Goodman and Wenzl 1990].

Recall that the coefficient bλµ(N , `) can be defined as the rank of pλ in an
irreducible Brn,µ representation. So obviously the formula in the statement holds
for any g as in (a). Examples for such g come from exp(x) with x ∈ M∗ = `−1 Q
for which the character is given by the expression χλ(x) as in Section 2E. As the
columns of the orthogonal S-matrix are linearly independent, this would identify
SO(N ) representations. If N is odd, the two O(N ) representations which reduce
to the same SO(N ) representation are labeled by Young diagrams with opposite
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parities. Hence only one of them can occur in the decomposition of a given U(N )
representation. A similar argument also works in the symplectic case.

For N even, we can have two diagrams λ and λ† with the same SO(N ) character,
where one of them, say λ, has less than k rows. They can be distinguished by
elements g ∈ O(N )\SO(N ) for which χλ†(g) = −χλ(g). It is well-known that
such elements g must have eigenvalues ±1, and χλ(g) is given by the character
formula for Sp(2k− 2) in the remaining 2k− 2 eigenvalues; see [Weyl 1997]. It
follows from the invertibility of the S-matrix for Sp(2k− 2) at level `/2− k (see
[Kac 1990]) that we can identify those diagrams λ by evaluating χSp(2k−2)

λ (x/`)
for x ∈ Zk−1 with `/2> x1 > x2 > · · ·> xk−1 > 0, and that those elements satisfy
the boundary condition χSp(2k−2)

λ (x)= 0 for any boundary diagram λ. �

The lemma above is illustrated in the following section for a number of explicit
examples. We can also give a closed formula for the restriction coefficients, using
a well-known quotient map for fusion rings (even though in our case, the quotient
ring does not correspond to a tensor category as far as we know). In the context
of fusion rings, this is known as the Kac–Walton formula; for type A see also
[Goodman and Wenzl 1990]. In our case, we need to use a slightly different affine
reflection group W. In the orthogonal case N = 2k and N = 2k+1 it is given by the
semidirect product of `Zk with the Weyl group of type Bk . In the symplectic case, it
is given by the semidirect product of `Q with the Weyl group of type Bk . As usual,
we define the dot action of W on Rk by w.x = w(x+ ρ)− ρ, where ρ is half the
sum of the positive roots of the corresponding Lie algebra, with the roots embedded
into Rk as described above, and ε is the usual sign function for reflection groups.
This can be extended to an action on the labeling set of O(N ) representations by
identifying a Young diagrams with at most k rows with the corresponding vector in
Zk , and by using the restriction rule from O(N ) to SO(N ) in the other cases. See
also [Wenzl 2011, Lemma 1.7] for more details.

Theorem 3.8. With notations as above, the restriction multiplicity bλµ(N , `) for
N = 2k+ 1> 0 and N =−2k is given by

bλµ(N , `)=
∑
w∈W

ε(w)bλw.µ(N ).

If N = 2k > 0, we have to replace ε by ε̃ (see Section 3D) in the formula above.

Proof. Looking at the character formulas, we see that an action of an element w of
the finite reflection group on λ just changes the character by the sign ofw. Moreover,
by definition of the elements x we have that χλ(x)= χλ+µ(x) for any µ ∈ M . It
follows that χw.λ(x) = ε(w)χλ(x) for all x ∈ M∗ and w ∈W. Hence summing
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over the W-orbits, we obtain for any x ∈ M∗, λ ∈ 3̃(N , `) and µ ∈3(N , `) that

χ
U(N )
λ (x)=

∑
γ

bλγ (N )χγ =
∑
µ

(∑
w

bλw.µ(N )
)
χµ.

The claim now follows from this and Lemma 3.7. �

4. Examples and other approaches

4A. The case N = 2. This corresponds to the Goodman–de la Harpe–Jones sub-
factors for type D`/2+1, where ` > 2 has to be even. It follows from our theorem
that the even vertices of the principal graph are labeled by the Young diagrams λ
with an even number n of boxes, at most two rows and with λ1 − λ2 ≤ `− 2;
there are (`− 2)/2 such diagrams. Their dimensions are given by d̃k = [2k + 1],
for 0≤ k < (`− 2)/2.

Moreover, one checks that 3(2, `) consists of Young diagrams [ j] such that
0 ≤ j ≤ (`/2) − 1 and of [12

], one column with 2 boxes, with dimensions
d[ j] = 2 cos jπ/` for j > 0 and dimension equal to 1 for the remaining cases
(that is, for ∅ and for [12

]). The restriction rule (that is, principal graph) follows
from writing the dimensions as

d̃k = 2 cos k̃π/`+ 2 cos(k̃− 2)π/`+ · · ·+ 1,

where k̃ =min{k, (`/2)− k}. Indeed, this determines the graph completely except
for whether to pick the diagram ∅ or [12

] for the object with dimension 1. It follows
from the restriction rule O(2)⊂U (2) that we take ∅ for j even, and [12

] for j odd.
To calculate the index one can check by elementary means that

∑
λ even d2

λ = `/2.
Moreover, it is well-known that the sum

∑
λ even d̃2

λ over even partitions for sl2 is
equal to `/(4 sin2 π/`). Hence we obtain as index [M : N] = 1/(2 sin2 π/`).

4B. The case N = 3. It is also fairly elementary to work out this case in detail.
A detailed discussion of SU(3) fusion modular categories has already been given
in [Ocneanu 2002] (without proofs) and in [Evans and Pugh 2011] and references
therein. These include our examples here. Recall that by Weyl’s dimension formula
we have

d̃λ =
[λ1− λ2+ 1][λ2− λ3+ 1][λ1− λ3+ 2]

[1]2[2]
.

Now observe that the product of two q-numbers is given by the tensor product rules
for sl2, that is, we have for n ≥ m that

[n][m] = [n+m− 1] + [n+m− 3] + · · · + [n−m+ 1].
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Figure 1. The principal graph of SO(3) for `= 9.

As an example, we have

d̃[4] =
[6][5]
[2]
=
[10]+[8]+[6]+[4]+[2]

[2]
= [9] + [5] + [1],

that is, the fourth antisymmetrization of the vector representation of U(3) decom-
poses as a direct sum of the one-, five- and nine-dimensional representation of SO(3).
One similarly can show the well-known result that the adjoint representation of
SU(3), labeled by the Young diagram [2, 1] decomposes into the direct sum of
the three- and the five-dimensional representation of SO(3), that is, p is the five
dimensional representation of SO(3). Hence we get from Theorem 3.4 that the
index is equal to

[M : N] =
`

42 sin2(2π/`) sin2(π/`)
.

We note that here as well as in the other examples, the dimensions (that is, en-
tries of the Perron–Frobenius vectors) are given by |d̃λ| for even vertices, and by
√
[M : N] |dµ| for odd vertices, with d̃λ and dµ as in Lemma 3.1. To consider

explicit examples, the first nontrivial case for N = 3 occurs for ` = 7. We leave
it to the reader to check that in this case the first principal graph is given by the
Dynkin graph D8. A more interesting graph is obtained for ` = 9; see Figure 1.
Here we have the three invertible objects of the SU(3)6 fusion category, including
the trivial object (often denoted as ∗) on the left; they generate a group isomorphic
to Z/3. The vertices with the double edge are labeled by the object corresponding
to the 5-dimensional representation of SO(3) and the diagram [4, 2] for SU(3)6.
This is the only fixed point under the Z/3 action given by the invertible objects (or,
in physics language, the currents). It would be interesting to see whether one can
carry out an orbifold construction in this context related to the one in [Evans and
Kawahigashi 1994].
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4C. The case N = 4. The combinatorics of these subfactors has already appeared
in [Ocneanu 2002; Evans and Gannon 2010] and also in the mathematical physics
literature (see below), but the author is not aware of a rigorous general construction
of the subfactors in the literature (but see the remarks below about the work in
[Wassermann 2010; Xu 2009]). As we shall see, somewhat surprisingly, the
corresponding construction for SO(4) does not seem to work. We do the case with
` = 8 in explicit detail. It is not hard to check that we already get the periodic
inclusion matrix for n = 12. As we consider an analog of the restriction to O(4) for
which the determinant can be ±1, we should, strictly speaking, consider a fusion
category for SU(4)×{±1}. We shall actually use the Young diagram notation for
representations of U(4). For n = 12 we have the invertible objects labeled by [34

],
[43
], [5212

] and [623
] (that is, the last diagram, for instance, has six boxes in the

first and two boxes each in the second, third and fourth rows). They generate a
subgroup isomorphic to Z/4. It follows from the O(4) restriction rules that [34

]

and [5212
] contain the determinant representation, and [43

] and [623
] contain the

trivial representation as one-dimensional O(4) subrepresentations. This allows us
to calculate the restrictions for representations of each Z/4 orbit simultaneously.
As usually for at least one element of each orbit the ordinary restriction rules still
hold, it makes the general calculations easier. The principal graph can be seen
in Figure 2. As in the N = 3 example, the one-dimensional currents, including
the trivial object ∗ appear as the left- and right-most vertices in the graph. The
lowest vertex corresponds to the O(4)-object [2] which is connected to the objects
in the Z/4-orbit {[2, 12

], [3, 1], [4, 3, 1], [3, 3, 2]}. We also note that we get the
same graph for the Sp(4) case N =−4 for `= 8. However, for other roots of unity,
already the indices of the subfactors differ, being given by

O(4) : 2`
4 sin2(3π/`)4 sin2(2π/`)16 sin4(π/`)

Sp(4) : `

4 sin2(2π/`)4 sin2(π/`)
.

It was originally thought that we should also be able to get fusion category
analogs for the restriction from SU(N ) to SO(N ) for N even. It is easy to check
that this is not possible for O(2). Some initial checks also seem to suggest a similar
phenomenon for higher ranks. For example, using the same element ρ̌ in the
SO(N ) character formula would give dimension functions which are not invariant
under the DN diagram automorphism.

4D. Related results. We discuss several results related to our findings. Our original
motivation was to construct subfactors related to twisted loop groups. It was shown
in R. Verrill’s PhD thesis [2001] that it is not possible to construct a fusion tensor
product for representations of twisted loop groups. However, it seemed reasonable
to expect that representations of twisted loop groups could become a module
category over representations of their untwisted counterparts. Many results, in
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Figure 2. The principal graph of O(4) and Sp(4) for `= 8.

particular about the combinatorics of such categories, can be found in the context
of boundary conformal field theory in papers by Evans, Gaberdiel, Gannon, Fuchs,
Pugh, Schweigert, Di Francesco, Petkova, Zuber and others; see for instance [Evans
and Gannon 2010; Gaberdiel and Gannon 2002; Fuchs and Schweigert 2000;
Petkova and Zuber 2002] and the papers cited therein. Understanding results in
these papers in mathematical terms was one of the motivations for this author.
Similarly, mathematical results in [Ocneanu 2002; Evans and Pugh 2011] for the
cases N = 3 and N = 4 (see the introduction) were influenced by these papers, in
particular by work of Zuber and his coauthors.

In the mathematics literature, one can find closely related results in [Xu 2009;
Wassermann 2010]. Here the authors construct module categories via a completely
different approach in the context of type III1 factors, using loop groups. For instance,
the formulas at the end of [Xu 2009] for the special case N = 3 differ only by a
factor 3 (which can be explained; see Remark 3.6), by our formulas for N = 3
for even level (together with Corollary 1.5), modulo misprints. Similar formulas
for the symplectic case as well as restriction coefficients also appear at the end of
[Wassermann 2010]. We cannot get results corresponding to the odd level cases in
[Xu 2009]. The combinatorics there suggests that this would require considering an
embedding of Sp(N − 1) into SU(N ) under which the vector representation would
not remain irreducible. In contrast, we can also construct module categories for
`− N odd, which would correspond to odd level; however, these categories are not
unitarizable (which follows from Lemma 2.9) and they have different fusion rules.
However, we do get fairly general formulas for the index and principal graphs of
this type of subfactors in the unitary case, which was one of the problems posed
in [Xu 2009]. These formulas were known to this author as well as to Antony
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Wassermann at least back in 2008 when they had discussions about their respective
works in Oberwolfach and at the Schrödinger Institute.

We close this section by mentioning that while our results for N > 0 odd and
N < 0 even are in many ways parallel to results obtained via other approaches in
connection with twisted loop groups, there does not seem to be an obvious analog
for our results for N > 0 even. For instance, the combinatorial results in [Gaberdiel
and Gannon 2002] for that case seem to be different to ours.

4E. Conclusions and further explorations. We have constructed module cate-
gories of fusion categories of type A via deformations of centralizer algebras
of certain subgroups of unitary groups. We have also classified when they are
unitarizable, we have constructed the corresponding subfactors, and we have ex-
plicitly calculated their indices and first principal graphs. These deformations
are compatible with the Drinfeld–Jimbo deformation of the unitary group but not
with the Drinfeld–Jimbo deformation of the subgroup. Most of the deformation
was already done in [Wenzl 2012] via elementary methods. In principle, at least,
it should be possible to use this elementary approach also for other inclusions.
However, this might become increasingly tedious.

As we have seen already in Section 2B, it should be possible to get a somewhat
more conceptual approach using different deformations of the subgroup; see [Noumi
1996; Molev 2003; Letzter 1997; Letzter 2002; Iorgov and Klimyk 2005] and
references therein. In particular in the work of Letzter, such deformations via
coideal algebras have been defined for a large class of embeddings of a semisimple
Lie algebra into another one. At this point, it does not seem obvious how to define
C∗-structures in this setting, and additional complications arise as these coideal
algebras are not expected to be semisimple at roots of unity. Nevertheless, the
results in this and other papers such as [Xu 2009; Wassermann 2010] would seem to
suggest that similar constructions might be possible also in a more general setting.
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