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RAYS AND SOULS IN VON MANGOLDT PLANES

IGOR BELEGRADEK, ERIC CHOI AND NOBUHIRO INNAMI

We study rays in von Mangoldt planes, which has applications to the struc-
ture of open complete manifolds with lower radial curvature bounds. We
prove that the set of souls of any rotationally symmetric plane of nonnega-
tive curvature is a closed ball, and if the plane is von Mangoldt we compute
the radius of the ball. We show that each cone in R3 can be smoothed to a
von Mangoldt plane.

1. Introduction

Let Mm denote R2 equipped with a smooth, complete, rotationally symmetric
Riemannian metric given in polar coordinates as gm := dr2

+ m2(r) dθ2; let o
denote the origin in R2. We say that Mm is a von Mangoldt plane if its sectional
curvature Gm := −m′′/m is a nonincreasing function of r .

The Toponogov comparison theorem was extended in [Itokawa et al. 2003] to
open complete manifolds with radial sectional curvature bounded below by the
curvature of a von Mangoldt plane, leading to various applications in [Shiohama and
Tanaka 2002; Kondo and Ohta 2007; Kondo and Tanaka 2011] and generalizations
in [Mashiko and Shiohama 2006; Kondo and Tanaka 2010; Machigashira 2010].

A point q in a Riemannian manifold is called a critical point of infinity if each
unit tangent vector at q makes angle ≤ π/2 with a ray that starts at q. Let Cm

denote the set of critical points of infinity of Mm ; clearly Cm is a closed, rotationally
symmetric subset that contains every pole of Mm , so that o ∈ Cm . One reason for
studying Cm is the following consequence of the generalized Toponogov theorem
of [Itokawa et al. 2003].

Lemma 1.1. Let M̂ be a complete noncompact Riemannian manifold with radial
curvature bounded below by the curvature of a von Mangoldt plane Mm , and let
r̂ and r denote the distance functions to the basepoints ô and o of M̂ and Mm ,
respectively. If q̂ is a critical point of r̂ , then r̂(q̂) is contained in r(Cm).
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Combined with the critical point theory of distance functions [Grove 1993;
Greene 1997, Lemma 3.1; Petersen 2006, §11.1], Lemma 1.1 implies the following.

Corollary 1.2. In the setting of Lemma 1.1, for any c in [a, b] ⊂ r(Mm–Cm),

• the r̂−1-preimage of [a, b] is homeomorphic to r̂−1(a) × [a, b], and the
r̂−1-preimages of points in [a, b] are all homeomorphic,

• the r̂−1-preimage of [0, c] is homeomorphic to a compact smooth manifold
with boundary, and the homeomorphism maps r̂−1(c) onto the boundary,

• if K ⊂ M̂ is a compact smooth submanifold, possibly with boundary, such that
r̂(K )⊃ r(Cm), then M̂ is diffeomorphic to the normal bundle of K .

If Mm is von Mangoldt and Gm(0)≤ 0, then Gm ≤ 0 everywhere, so every point
is a pole, and hence Cm = Mm so that Lemma 1.1 yields no information about
the critical points of r̂ . Of course, there are other ways to get this information, as
illustrated by classical Gromov’s estimate: if Mm is the standard R2, then the set of
critical points of r̂ is compact; see, for example, [Greene 1997, p. 109].

The following theorem determines Cm when Gm ≥ 0 everywhere; note that the
plane Mm in (i)–(iii) need not be von Mangoldt.

Theorem 1.3. If Gm ≥ 0, then:

(i) Cm is the closed Rm-ball centered at o for some Rm ∈ [0,∞].

(ii) Rm is positive if and only if
∫
∞

1 m−2 is finite.

(iii) Rm is finite if and only if m′(∞) < 1
2 .

(iv) If Mm is von Mangoldt and Rm is finite, then the equation m′(r) = 1
2 has a

unique solution ρm , and the solution satisfies ρm > Rm and Gm(rm) > 0.

(v) If Mm is von Mangoldt and Rm is finite and positive, then Rm is the unique
solution of the integral equation∫

∞

x

m(x)dr

m(r)
√

m2(r)−m2(x)
= π.

Here is a sample application of Theorem 1.3 (iv) and Corollary 1.2:

Corollary 1.4. Let M̂ be a complete noncompact Riemannian manifold with radial
curvature from the basepoint ô bounded below by the curvature of a von Mangoldt
plane Mm . If Gm ≥ 0 and m′(∞) < 1

2 , then M̂ is homeomorphic to the metric
ρm-ball centered at ô, where ρm is the unique solution of m′(r)= 1

2 .

Theorem 1.3 should be compared with the following results of Tanaka:

• The set of poles in any Mm is a closed metric ball centered at o of some radius
Rp in [0,∞] [Tanaka 1992b, Lemma 1.1].
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• Rp > 0 if and only if
∫
∞

1 m−2 is finite and lim infr→∞ m(r) > 0 [Tanaka
1992a].

• If Mm is von Mangoldt, then Rp is a unique solution of an explicit integral
equation [Tanaka 1992a, Theorem 2.1].

It is natural to wonder when the set of poles equals Cm , and we answer the
question when Mm is von Mangoldt.

Theorem 1.5. If Mm is a von Mangoldt plane, then:

(a) If Rp is finite and positive, then the set of poles is a proper subset of the
component of Cm that contains o.

(b) Rp = 0 if and only if Cm = {o}.

Of course Rp =∞ implies Cm = Mm , but the converse is not true: Theorem 1.11
ensures the existence of a von Mangoldt plane with m′(∞)= 1

2 and Gm ≥ 0, and
for this plane Cm = Mm by Theorem 1.3, while Rp is finite by Remark 4.7.

We say that a ray γ in Mm points away from infinity if γ and the segment
[γ (0), o] make an angle < π

2 at γ (0). Define Am ⊂ Mm –{o} as follows: q ∈ Am if
and only if there is a ray that starts at q and points away from infinity; by symmetry,
Am ⊂ Cm .

Theorem 1.6. If Mm is a von Mangoldt plane, then Am is open in Mm .

Any plane Mm with Gm ≥ 0 has another distinguished subset, namely the set of
souls, that is, points produced via the soul construction of Cheeger–Gromoll.

Theorem 1.7. If Gm ≥ 0, then Cm is equal to the set of souls of Mm .

Recall that the soul construction takes as input a basepoint in an open complete
manifold N of nonnegative sectional curvature and produces a compact totally
convex submanifold S without boundary, called a soul, such that N is diffeomorphic
to the normal bundle to S. Thus if N is contractible, as happens for Mm , then S is
a point. The soul construction also gives a continuous family of compact totally
convex subsets that starts with S and ends with N , and according to [Mendonça
1997, Proposition 3.7] q ∈ N is a critical point of infinity if and only if there is a
soul construction such that the associated continuous family of totally convex sets
drops in dimension at q. In particular, any point of S is a critical point of infinity,
which can also be seen directly; see the proof of [Maeda 1974/1975, Lemma 1].
In Theorem 1.7 we prove conversely that every point of Cm is a soul; for this Mm

need not be von Mangoldt.
In regard to Theorem 1.3 (iii), it is worth mentioning Gm ≥ 0 implies that m′ is

nonincreasing, so m′(∞) exists, and moreover, m′(∞) ∈ [0, 1] because m ≥ 0. As
we note in Remark A.5 for any von Mangoldt plane Mm , the limit m′(∞) exists
as a number in [0,∞]. It follows that if Gm ≥ 0 or if Mm is von Mangoldt, then
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Mm admits total curvature, which equals 2π(1−m′(∞)) and hence takes values
in [−∞, 2π ]; thus m′(∞)= 1

2 if and only if Mm has total curvature π . Standard
examples of von Mangoldt planes of positive curvature are the one-parametric
family of paraboloids, all satisfying m′(∞)= 0 [Shiohama et al. 2003, Example
2.1.4], and the one-parametric family of two-sheeted hyperboloids parametrized by
m′(∞), which takes every value in (0, 1) [Shiohama et al. 2003, Example 2.1.4].

A property of von Mangoldt planes, discovered in [Elerath 1980; Tanaka 1992b]
and crucial to this paper, is that the cut locus of any q ∈ Mm–{o} is a ray that lies
on the meridian opposite q. (If Mm is not von Mangoldt, its cut locus is not fully
understood, but it definitely can be disconnected [Tanaka 1992a, p. 266], and known
examples of cut loci of compact surfaces of revolution [Gluck and Singer 1979;
Sinclair and Tanaka 2006] suggest that it could be complicated.)

As we note in Lemma 3.14, if Mm is a von Mangoldt plane, and if q 6= o,
then q ∈ Cm if and only if the geodesic tangent to the parallel through q is a ray.
Combined with Clairaut’s relation this gives the following “choking” obstruction
for a point q to belong to Cm (see Lemma 3.3):

Proposition 1.8. If Mm is von Mangoldt and q ∈ Cm , then m′(rq) > 0 and m(r) >
m(rq) for r > rq , where rq is the r-coordinate of q.

The above proposition is immediate from Lemmas 3.3 and 3.14. We also show
in Lemma 3.10 that if Mm is von Mangoldt and Cm 6= o, then there is ρ such that
m(r) is increasing and unbounded on [ρ,∞).

The following theorem collects most of what we know about Cm for a von Man-
goldt plane Mm with some negative curvature, where the case lim infr→∞ m(r)= 0
is excluded because then Cm = {o} by Proposition 1.8.

Theorem 1.9. If Mm is a von Mangoldt plane with a point where Gm < 0 and such
that lim infr→∞ m(r) > 0, then

(1) Mm contains a line and has total curvature −∞,

(2) if m′ has a zero, then neither Am nor Cm is connected,

(3) Mm–Am is a bounded subset of Mm ,

(4) the ball of poles of Mm has positive radius.

In Example 6.1 we construct a von Mangoldt plane Mm to which Theorem 1.9 (2)
applies. In Example 6.2 we produce a von Mangoldt plane Mm such that neither
Am nor Cm is connected while m′ > 0 everywhere. We do not know whether there
is a von Mangoldt plane such that Cm has more than two connected components.

Because of Lemma 1.1 and Corollary 1.2, one is interested in subintervals of
(0,∞) that are disjoint from r(Cm), as, for example, happens for any interval on
which m′ ≤ 0, or for the interval (Rm,∞) in Theorem 1.3. To this end we prove
the following result, which is a consequence of Theorem 6.3.
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Theorem 1.10. Let Mn be a von Mangoldt plane with Gn ≥ 0, n(∞) =∞, and
such that n′(x) < 1

2 for some x. Then for any z > x there exists y > z such that
if Mm is a von Mangoldt plane with n = m on [0, y], then r(Cm) and [x, z] are
disjoint.

In general, if Mm and Mn are von Mangoldt planes with n = m on [0, y], then
the sets Cm and Cn could be quite different. For instance, if Mn is a paraboloid,
then Cn = {o}, but by Example 6.2 for any y > 0 there is a von Mangoldt Mm with
some negative curvature such that m = n on [0, y], and by Theorem 1.9 the set
Mm–Cm is bounded and Cm contains the ball of poles of positive radius.

Basic properties of von Mangoldt planes are described in Appendix A. In par-
ticular, in order to construct a von Mangoldt plane with prescribed Gm it suffices
to check that 0 is the only zero of the solution of the Jacobi initial value problem
(A.7) with K = Gm , where Gm is smooth on [0,∞). Prescribing values of m′ is
harder. It is straightforward to see that if Mm is a von Mangoldt plane such that m′

is constant near infinity, then Gm ≥ 0 everywhere and m′(∞) ∈ [0, 1]. We do not
know whether there is a von Mangoldt plane with m′ = 0 near infinity, but all the
other values in (0, 1] can be prescribed:

Theorem 1.11. For every s ∈ (0, 1] there is ρ > 0 and a von Mangoldt plane Mm

such that m′ = s on [ρ,∞).

Thus each cone in R3 can be smoothed to a von Mangoldt plane, but we do not
know how to construct a (smooth) capped cylinder that is von Mangoldt.

Structure of the paper. We collect notations and conventions in Section 2. Properties
of von Mangoldt planes are reviewed in Appendix A, while Appendix B contains a
calculus lemma relevant to continuity and smoothness of the turn angle. Section 3
contains various results on rays in von Mangoldt planes, including the proofs of
Theorem 1.6 and Proposition 1.8. Planes of nonnegative curvature are discussed in
Section 4, where Theorems 1.3 and 1.7 are proved. A proof of Theorem 1.11 is in
Section 5, and the other results stated in the introduction are proved in Section 6.

2. Notations and conventions

All geodesics are parametrized by arclength. Minimizing geodesics are called
segments. Let ∂r and ∂θ denote the vector fields dual to dr and dθ on R2. Given
q 6= o, denote its polar coordinates by θq and rq . Let γq , µq , and τq denote the
geodesics defined on [0,∞) that start at q in the directions of ∂θ , ∂r , and −∂r ,
respectively. We refer to τq |(rq ,∞) as the meridian opposite q; note that τq(rq)= o.
Also set κγ (s) := 6 (γ̇ (s), ∂r ).

We write ṙ , θ̇ , γ̇ , and κ̇ for the derivatives of rγ (s), θγ (s), γ (s), and κγ (s) by s,
and write m′ for dm/dr ; similar notations are used for higher derivatives.
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Let κ̂(rq) denote the maximum of the angles formed by µq and rays emanating
from q 6= o; let ξq denote the ray with ξq(0)= q for which the maximum is attained,
that is, such that κξq (0) = κ̂(rq).

A geodesic γ in Mm–{o} is called counterclockwise if θ̇ > 0 and clockwise if
θ̇ < 0. A geodesic in Mm is clockwise, counterclockwise, or can be extended to a
geodesic through o. If γ is clockwise, then it can be mapped to a counterclockwise
geodesic by an isometric involution of Mm .

Convention. Unless stated otherwise, any geodesic in Mm that we consider is either
tangent to a meridian or counterclockwise.

Due to this convention the Clairaut constant and the turn angle defined below
are nonnegative, which will simplify notations.

3. Turn angle and rays in Mm

This section collects what we know about rays in Mm with emphasis on the cases
when Gm ≥ 0 or G ′m ≤ 0. Let γ be a geodesic in Mm that does not pass through o,
so that γ is a solution of the geodesic equations

(3.1) r̈ = mm′θ̇2, θ̇m2
= c,

where c is called the Clairaut constant of γ . The equation θ̇m2
= c is the so-called

Clairaut’s relation, which, since γ is assumed counterclockwise, can be written as
c = m(rγ (s)) sin κγ (s). Thus 0 ≤ c ≤ m(rγ (s)) where c = m(rγ (s)) only at points
where γ is tangent to a parallel, and c = 0 when γ is tangent to a meridian.

A geodesic is called escaping if its image is unbounded; for example, any ray is
escaping.

Fact 3.2. (1) A parallel through q is a geodesic in Mm if and only if m′(rq)= 0
[Shiohama et al. 2003, Lemma 7.1.4].

(2) A geodesic γ in Mm is tangent to a parallel at γ (s0) if and only if ṙγ (s0) = 0.

(3) If γ is a geodesic in Mm and ṙγ (s) vanishes more than once, then γ is invariant
under a rotation of Mm about o [Shiohama et al. 2003, Lemma 7.1.6] and
hence not escaping.

Lemma 3.3. If γq is escaping, then m(r) > m(rq) for r > rq , and m′(rq) > 0.

Proof. Since γq is escaping, the image of s→ rγq (s) contains [rq ,∞), and q is
the only point where γq is tangent to a parallel. The Clairaut constant of γq is
c = m(rq), hence m(r) > m(rq) for all r > rq . It follows that m′(rq)≥ 0. Finally,
m′(rq) 6= 0 else γq would equal the parallel through q . �

Lemma 3.4. If γ is an escaping geodesic that is tangent to the parallel Pq through
q , then γ \ {q} lies in the unbounded component of Mm \ Pq .
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Proof. By reflectional symmetry and uniqueness of geodesics, γ locally stays on
the same side of the parallel Pq through q , that is, γ is the union of γq and its image
under the reflecting fixing µq ∪ τq . If γ could cross to the other side of Pq at some
point γ (s), then |rγ (s)− rq | would attain a maximum between γ (s) and q, and at
the maximum point γ would be tangent to a parallel. Since γ is escaping, it cannot
be tangent to parallels more than once, hence γ stays on the same side of Pq at all
times, and since γ is escaping, it stays in the unbounded component of Mm \ Pq . �

For a geodesic γ : (s1, s2)→ Mm that does not pass through o, we define the
turn angle Tγ of γ as

Tγ :=
∫
γ

dθ =
∫ s2

s1

θ̇γ (s) ds = θγ (s2)− θγ (s1).

Clairaut’s relation reads θ̇ = c/m2
≥ 0 so the above integral Tγ converges to a

number in [0,∞]. Since γ is unit speed, we have (ṙ)2+m2θ̇2
= 1. Combining this

with θ̇ = c/m2 gives

ṙ = sign(ṙ)

√
1− c2

m2 ,

which yields a useful formula for the turn angle: if γ is not tangent to a meridian
or a parallel on (s1, s2), so that sign(ṙγ (s)) is a nonzero constant, then

(3.5) dθ
dr
=
θ̇

ṙ
= sign(ṙγ (s))Fc(r) where Fc :=

c

m
√

m2− c2
,

and thus if ri := rγ (si ), then

(3.6) Tγ = sign(ṙ)
∫ r2

r1

Fc(r)dr.

Since c2
≤ m2, this integral is finite except possibly when some ri is in the set

{m−1(c),∞}. The integral (3.6) converges at ri =m−1(c) if and only if m′(ri ) 6= 0.
Convergence of (3.6) at ri =∞ implies convergence of

∫
∞

1 m−2 dr , and the converse
holds under the assumption lim infr→∞ m(r) > c; this assumption is true when
Gm ≥ 0 or G ′m ≤ 0, as follows from Lemma 3.10.

Example 3.7. If γ is a ray in Mm that does not pass through o, then Tγ ≤ π else
there is s with |θγ (s)− θγ (0)| = π , and by symmetry the points γ (s) and γ (0) are
joined by two segments, so γ would not be a ray.

Example 3.8. If Tγq is finite, then m′(rq) 6= 0 and m−2 is integrable on [1,∞), as
follows immediately from the discussion preceding Example 3.7.
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Lemma 3.9. If γ : [0,∞)→ Mm is a geodesic with finite turn angle, then γ is
escaping.

Proof. Note that γ is tangent to parallels in at most two points, for otherwise γ is
invariant under a rotation about o, and hence its turn angle is infinite. Thus after
cutting off a portion of γ we may assume it is never tangent to a parallel, so that rγ (s)
is monotone. By assumption θγ (s) is bounded and increasing. By Clairaut’s relation
m(rγ (s)) is bounded below, so that m(0) = 0 implies that rγ (s) is bounded below.
If γ were not escaping, then rγ (s) would also be bounded above, so there would
exist a limit of (rγ (s), θγ (s)) and hence the limit of γ (s) as s→∞, contradicting
the fact that γ has infinite length. �

Lemma 3.10. If m−2 is integrable on [1,∞), then

(1) the function (r log r)−
1
2 m(r) is unbounded,

(2) if Gm ≥ 0, then m′ > 0 for all r ,

(3) if Mm is von Mangoldt, then m′ > 0 for all large r ,

(4) if either Gm ≥ 0 or G ′m ≤ 0, then m(∞)=∞.

Proof. Since m−2 is integrable, the function (r log r)−
1
2 m(r) is unbounded, and in

particular, m is unbounded. If Gm ≥ 0 everywhere, then m′ is nonincreasing with
m′(0)= 1, and the fact that m is unbounded implies that m′ > 0 for all r . If Mm is
von Mangoldt, and Gm(ρ0)< 0, then Gm < 0 for r ≥ρ0, that is, m′ is nondecreasing
on [ρ0,∞). Since m is unbounded, there is ρ > ρ0 with m(ρ) > m(ρ0) so that∫ ρ
ρ0

m′ = m(ρ) − m(ρ0) > 0. Hence m′ is positive somewhere on (ρ0, ρ), and
therefore on [ρ,∞). Finally, since m is an unbounded increasing function for large
r , the limit limr→∞ m(r)= m(∞) exists and equals∞. �

Lemma 3.11. If γq is escaping, then lim infr→∞ m(r) > m(rq) if and only if there
is a neighborhood U of q such that γu is escaping for each u ∈U.

Proof. First, recall that m(r) >m(rq) for r > rq and m′(rq) > 0 by Lemma 3.3. We
shall prove the contrapositive: lim infr→∞ m(r) = m(rq) if and only if there is a
sequence ui → q such that γui is not escaping.

If there is a sequence zi ∈ Mm with rzi →∞ and m(rzi )→ m(rq), then there
are points ui → q on µq with m(rui )= m(rzi ). If γui is escaping, then it meets the
parallel through zi , so Clairaut’s relation implies that γui is tangent to the parallels
through ui and zi , which cannot happen for an escaping geodesic.

Conversely, suppose there are ui → q such that γi := γui is not escaping. Let
Ri be the radius of the smallest ball about o that contains γi , and let Pi be its
boundary parallel. Note that Ri→∞ as γi converges to γq on compact sets and
γq is escaping, and hence lim infr→∞ m(r)= limr→∞ m(Ri ). For each i there is a
sequence si, j such that the r -coordinates of γi (si, j ) converge to Ri , which implies
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κγi (si, j )→ π/2 as j→∞ and i is fixed. (Note that if γi is tangent to Pi , then si, j is
independent of j , namely, γ (si, j ) is the point of tangency.) By Clairaut’s relation,
m(Ri )= m(rui ), hence lim infr→∞ m(r)= m(rq). �

Lemma 3.12. If Mm is von Mangoldt, then a geodesic γ : [0,∞)→ Mm \ {o} is a
ray if and only if Tγ ≤ π .

Proof. The “only if” direction holds even when Mm is not von Mangoldt by
Example 3.7. Conversely, if γ is not a ray, then γ meets the cut locus of q , which by
[Tanaka 1992b] is a subset of the opposite meridian τγ (0)|(rγ (0),∞). Thus Tγ >π . �

Lemma 3.13. If γ is a ray in a von Mangoldt plane, and if σ is a geodesic with
σ(0)= γ (0) and κγ (0) > κσ(0), then σ is a ray and Tσ ≤ Tγ .

Proof. Set q = γ (0). If κγ (0) = π , then γ = τq , so τq is a ray, which in a von
Mangoldt plane implies that q is a pole [Shiohama et al. 2003, Lemma 7.3.1], so
that σ is also a ray. If κγ (0) < π and σ is not a ray, then σ is minimizing until
it crosses the opposite meridian τq |(rq ,∞) [Tanaka 1992b]. Near q the geodesic σ
lies in the region of Mm bounded by γ and µq hence before crossing the opposite
meridian σ must intersect γ or µq , so they would not be rays. Finally, Tσ ≤ Tγ
holds as σ lies in the sector between γ and µq . �

Lemma 3.14. If Mm is von Mangoldt and q 6= o, then γq is a ray if and only if
q ∈ Cm .

Proof. If γq is a ray, then q ∈ Cm by symmetry. If q ∈ Cm , then either q is a pole
and there is a ray in any direction, or q is not a pole. In the latter case τq is not a
ray [Shiohama et al. 2003, Lemma 7.3.1], hence by the definition of Cm there is a
ray γ with κγ (0) ≥ π/2, so γq is a ray by Lemma 3.13. �

Recall that κ̂(rq) is the maximum of the angles formed by µq and rays emanating
from q 6= o, and ξq is the ray for which the maximum is attained. It is immediate
from definitions that q ∈ Cm if and only if κ̂(rq)≥ π/2. Lemmas 3.15, 3.16, and
3.17 were suggested by the referee.

Lemma 3.15. Cm 6= {o} if and only if lim infr→∞ m > 0 and
∫
∞

1 m−2 is finite.

Proof. The “if” direction holds because by the main result of [Tanaka 1992a]
the assumptions imply that the ball of poles has a positive radius. Conversely, if
q ∈ Cm–{o}, then ξq is a ray different from µq . By [Tanaka 1992a, Lemma 1.3 and
Proposition 1.7] if either lim infr→∞ m = 0 or

∫
∞

1 m−2
=∞, then µq is the only

ray emanating from q . �

Lemma 3.16. The limit of the segments [q, τq(s)] as s→∞ is ξq .
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Proof. The segments [q, τq(s)] subconverge to a ray σ that starts at q. Since
ξq is a ray, it cannot cross the opposite meridian τq |(rq ,∞). As [q, τq(s)] and ξq

are minimizing, they only intersect at q, and hence the angle formed by µq and
[q, τq(s)] is ≥ κ̂(rq). It follows that κσ(0) ≥ κ̂(rq), which must be an equality as
κ̂(rq) is a maximum, so σ = ξq . �

Lemma 3.17. The function r→ κ̂(r) is left continuous and upper semicontinuous.
In particular, the set {q : κ̂(rq) < α} is open for every α.

Proof. If κ̂ is not left continuous at rq , then there exists ε>0 and a sequence of points
qi on µq such that rqi → rq− and either κ̂(rqi )− κ̂(rq) > ε or κ̂(rq)− κ̂(rqi ) > ε. In
the former case ξqi subconverge to a ray that makes a larger angle with µq than ξq ,
contradicting the maximality of κ̂(rq). In the latter case, ξqi intersects ξq for some
i . Therefore, by Lemma 3.16 the segment [qi , τq(s)] intersects [q, τq(s)] for large
enough s at a point z 6= τq(s), so τq(s) is a cut point of z which cannot happen for
a segment. This proves that κ̂ is left continuous. A similar argument shows that

lim sup
rqi→r+q

κ̂(rqi )≤ κ̂(rq),

so that κ̂ is upper semicontinuous, which implies that {q : κ̂(rq) < α} is open for
every α. �

Lemmas 3.12 and 3.14 imply that on a von Mangoldt plane κ̂(rq) ≥ π/2 if
and only if Tγq ≤ π ; the equivalence is sharpened in Theorem 3.24, whose proof
occupies the rest of this section.

Lemma 3.18. If σ is escaping and 0 < κσ(0) ≤ π/2, then Tσ =
∫
∞

rq
Fc(r) dr ;

moreover, if κσ(0) = π/2, then c = m(rq).

Proof. This formula for Tσ is immediate from (3.6) once it is shown that σ |(0,∞) is
not tangent to a meridian or a parallel. If σ |(0,∞) were tangent to a meridian, κσ(0)
would be 0 or π , which is not the case. Since σ is escaping, Fact 3.2 implies that σ
is tangent to a parallel at most once; that is, ṙσ has at most one zero. If κσ(0) = π/2,
then σ is tangent to the parallel through σ(0), and so σ |(0,∞) is not tangent to a
parallel. Finally, if κσ(0) < π/2, then σ is not tangent to a parallel, else it would be
tangent to a parallel through u with ru > rq , which would imply rσ(s) ≤ ru for all s
by Lemma 3.4, which cannot happen for an escaping geodesic. �

To better understand the relationship between κ̂(rq) and Tγq , we study how Tσ
depends on σ , or equivalently on σ(0) and κσ(0), when σ varies in a neighborhood
of a ray γq .

Lemma 3.19. If Gm ≥ 0 or G ′m ≤ 0, then the function u→ Tγu is continuous at
each point u where Tγu is finite.
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Proof. If Tγu is finite, then γu is escaping by Lemma 3.9, and hence Tγu =
∫
∞

ru
Fm(ru)

by Lemma 3.18. We need to show that this integral depends continuously on ru .
By Lemmas 3.3 and 3.10 and the discussion preceding Example 3.7, the assump-

tions on Gm and the finiteness of Tγu imply that m(r) > m(ru) for r > ru , m−2 is
integrable, m′(ru) > 0, and m(∞)=∞. Hence there exists δ > ru with m′|[ru ,δ]> 0,
and m(r) > m(δ) for r > δ; it is clear that small changes in u do not affect δ.

Write
∫
∞

ru
Fm(ru) =

∫ δ
ru

Fm(ru) +
∫
∞

δ
Fm(ru). On [ru, δ] we can write Fm(ru) =

h(r, ru)(r−ru)
−1/2 for some smooth function h. Since (r−ru)

−1/2 is the derivative
of 2(r − ru)

1/2, one can integrate Fm(ru) by parts which easily implies continuous
dependence of

∫ δ
ru

Fm(ru) on ru .
Continuous dependence of

∫
∞

δ
Fm(ru) on ru follows because Fm(ru) is continuous

in ru , and is dominated by K m−2 where K is a positive constant independent of
small changes of ru . �

Next we focus on the case when σ(0) is fixed, while κσ(0) varies near π/2. To
get an explicit formula for Tσ we need the following.

Lemma 3.20. If Mm is von Mangoldt, and γq is a ray, then there is ε > 0 such
that every geodesic σ : [0,∞)→ Mm with σ(0) = q and κσ(0) ∈ [π/2, π/2+ ε]
is tangent to a parallel exactly once, and if u is the point where σ is tangent to a
parallel, then m′ > 0 on [ru, rq ].

Proof. If κσ(0)= π/2, then σ = γq , so it is tangent to a parallel only at q , as rays are
escaping. If κσ(0) > π/2, then σ converges to γq on compact subsets as ε→ 0, so
for a sufficiently small ε the geodesic σ crosses the parallel through q at some point
σ(s) such that κσ(s) <π/2. Since γq is a ray, rotational symmetry and Lemma 3.13
imply that σ |[s,∞) is a ray, so σ is escaping. Thus σ is tangent to a parallel at a
point u where rσ(s) attains a minimum, and is not tangent to a parallel at any other
point by Fact 3.2. Finally, ru = limε→0 rq , and since m′(rq) > 0 by Proposition 1.8,
we get m′ > 0 on [ru, rq ] for small ε. �

Under the assumptions of Lemma 3.20 the Clairaut constant c of σ equals
m(ru)= m(rq) sin κσ(0), and the turn angle of σ is given by

Tσ =
∫
∞

rq

Fm(rq )(r) dr if κσ(0) =
π

2
and(3.21)

Tσ =
∫
∞

ru

Fc(r) dr −
∫ ru

rq

Fc(r) dr =
∫
∞

rq

Fc(r) dr + 2
∫ rq

ru

Fc(r) dr(3.22)

if π/2< κσ(0) < π/2+ ε. These integrals converge, that is, Tσ is finite, as follows
from Example 3.8 and Lemmas 3.10 and 3.20.

Since any geodesic σ with σ(0) = q and κσ(0) ∈ [0, π/2+ ε] has finite turn
angle, one can think of Tσ as a function of κσ(0) where σ varies over geodesics
with σ(0)= q and κσ(0) ∈ [0, π/2+ ε].
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Lemma 3.23. If Mm is von Mangoldt, and γq is a ray, then there is δ > π/2 such
that the function κσ(0)→ Tσ is continuous and strictly increasing on [π/2, δ], and
continuously differentiable on (π/2, δ]; moreover, the derivative of Tσ is infinite
at π/2.

Proof. The Clairaut constant c of σ equals m(ru)=m(rq) sin κσ(0), so the assertion
is immediate from (elementary but nontrivial) Lemma B.2 about continuity and
differentiability of the integrals (3.21) and (3.22). �

Theorem 3.24. If Mm is von Mangoldt and q 6= o, then

(1) κ̂(rq) > π/2 if and only if Tγq < π ,

(2) κ̂(rq)= π/2 if and only if Tγq = π .

Proof. (1) If κ̂(rq) > π/2, then any geodesic σ with σ(0) = q and κσ(0) ∈
[π/2, κ̂(rq)] is a ray, and so has turn angle ≤ π . By Lemma 3.23 the turn angle
is increasing at π/2, so Tγq < π . Conversely, if Tγq < π , then by Lemma 3.23 the
turn angle is continuous at π/2, so any geodesic σ with σ(0)= q and κσ(0) near
π/2 has turn angle < π , and is therefore a ray, so κ̂(rq) > π/2.

(2) This follows from (1) and the fact that κ̂(rq)≥ π/2 if and only if Tγq ≤ π . �

Proof of Theorem 1.6. By Theorem 3.24 we know that q ∈ Am if and only if
Tγq < π , and by Lemma 3.19 the map u → Tγu is continuous at q, so the set
{u ∈ Mm | Tγu < π} is open, and hence so is Am . �

Another proof of Theorem 1.6. Fix q ∈ Am so that Tγq < π by Theorem 3.24. Fix
ε > 0 such that ε+ Tγq < π . Let Pq be the parallel through q. Then there is a ray
γ with γ (0) = q and κγ (0) > π/2 such that γ intersects Pq at points q and γ (t),
and the turn angle of γ |(0,t) is < ε.

For an arbitrary sequence qi → q we need to show that qi ∈ Am for all large i .
Let γi : [0,∞)→ Mm be the geodesic with γi (0)= qi and κγi (0) = κγ (0). Since γi

converge to γ on compact sets, for large i there are ti > 0 such that γi (ti ) ∈ Pq

and ti → t . The angle formed by γ and µγ (t) is < π/2. Rotational symmetry and
Lemma 3.13 imply that if i is large, then γi |[ti ,∞) is a ray whose turn angle is ≤ Tγq .
The turn angles of γi |(0,ti ) converge to the turn angle of γ |(0,t), which is < ε. Thus
Tγi < Tγq +ε < π for large i , so that γi is a ray by Lemma 3.12, and hence qi ∈ Am .

�

4. Planes of nonnegative curvature

A key consequence of Gm ≥ 0 is monotonicity of the turn angle and of κ̂ .

Proposition 4.1. Suppose that Mm has Gm ≥ 0. If 0 < ru < rv and γu has finite
turn angle, then Tγu ≤ Tγv with equality if and only if Gm vanishes on [ru,∞].
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Proof. The result is trivial when G is everywhere zero. Since γu has finite turn angle,
m−2 is integrable, and hence m is a concave function with m′ > 0 and m(∞)=∞
by Lemma 3.10.

Set x := rq , so that the turn angle of γq is
∫
∞

x Fm(x). As m′ > 0, we can change
variables by t := m(r)/m(x) or r = m−1(tm(x)) so that∫

∞

x
Fm(x)(r) dr =

∫ m(∞)/m(x)

1

dt

l(t, x)t
√

t2− 1
=

∫
∞

1

dt

l(t, x) t
√

t2− 1
,

where l(t, x) := m′(r). Computing

∂l(t, x)
∂x

= m′′(r) ∂r
∂x
=

m′′(r) tm′(x)
m′(r)

=−G(r)
tm′(x)
m′(r)

≤ 0

we see that l(t, x) is nonincreasing in x . Thus if ru < rv , then l(t, ru)≥ l(t, rv) for
all t implying Tγu ≤ Tγv . The equality occurs precisely when l(t, x) is constant
on [1,∞)×[ru, rv], or equivalently, when G(m−1(tm(x))) vanishes on [1,∞)×
[ru, rv], which in turn is equivalent to G = 0 on [ru,∞), because tm(x) takes all
values in (m(ru),∞) so m−1(tm(x)) takes all values in (ru,∞). �

Lemma 4.2. If Gm ≥ 0, then κ̂ is nonincreasing in r .

Proof. Let u1, u2, and v be points on µv with 0< ru1 < ru2 < rv . By Lemma 3.16
the ray ξui is the limit of geodesic segments that join ui with points τv(s) as s→∞.
The segments [u1, τv(s)] and [u2, τv(s)] only intersect at the endpoint τv(s) for if
they intersect at a point z, then z is a cut point for τv(s), so [τv(s), ui ] cannot be
minimizing. Hence the geodesic triangle with vertices u1, v, and τv(s) contains the
geodesic triangle with vertices u2, v, and τv(s). Since Gm ≥ 0, the former triangle
has larger total curvature, which is finite as Mm has finite total curvature. As m
only vanishes at 0, concavity of m implies that m is nondecreasing.

If m is unbounded, Clairaut’s relation implies that the angles at τv(s) tend to zero
as s→∞. By the Gauss–Bonnet theorem κξ1(0)− κξ2(0) equals the total curvature
of the “ideal” triangle with sides ξ1, ξ2, and [u1, u2]. Thus κ̂(ru1) ≥ κ̂(ru2) with
equality if and only if Gm vanishes on [ru1,∞).

If m is bounded, then
∫
∞

1 m−2
=∞, so by [Tanaka 1992a, Proposition 1.7] the

only ray emanating from q is µq so that κ̂ = 0 on Mm \{o}. For future use note that
in this case the angle formed by µq = ξq and [q, τq(s)] tends to zero as s→∞, so
Clairaut’s relation together with the boundedness of m imply that the angle at τq(s)
in the bigon with sides [q, τq(s)] and τq also tends to zero as s→∞. �

Remark 4.3. By the above proof if Gm ≥ 0 and m−2 is integrable on [1,∞), then
κ̂(r1)= κ̂(r2) for some r2 > r1 if and only if Gm vanishes on [r1,∞).

Proof of Theorem 1.3. (i) Since rays converge to rays, Cm is closed. As o ∈ Cm ,
rotational symmetry and Lemma 4.2 imply that Cm is a closed ball.
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(ii) Since m is concave and positive, it is nondecreasing, so lim infr→∞ m > 0, and
the claim follows from Lemma 3.15.

(iii) We prove the contrapositive that Mm = Cm if and only if m′(∞)≥ 1
2 . Note that

the latter is equivalent to c(Mm)≤ π , where c(Z) denotes the total curvature of a
subset Z ⊆ Mm which varies in [0, 2π ].

Suppose c(Mm) ≤ π . Fix q 6= o, and consider the segments [q, τq(s)] that by
Lemma 3.16 converge to ξq as s→∞. Consider the bigon bounded by [q, τq(s)]
and its symmetric image under the reflection that fixes τq ∪µq . As in the proof of
Lemma 4.2 we see that the angle at τq(s) goes to zero as s→∞, so the sum of
angles in the bigon tends to 2(π − κ̂(rq)), which by the Gauss–Bonnet theorem
cannot exceed c(Mm)≤ π . We conclude that κ̂(rq)≥ π/2, so q ∈ Cm .

Conversely, suppose that Cm = Mm . Given ε > 0 find a compact rotationally
symmetric subset K ⊂ Mm with c(K ) > c(Mm)− ε. Fix q 6= o and consider the
rays ξµq (s) as s →∞. If all these rays intersect K , then they subconverge to a
line [Shiohama et al. 2003, Lemma 6.1.1], so by the splitting theorem Mm is the
standard R2, and c(Mm)= 0< π . Thus we can assume that there is v on the ray
µq such that ξv is disjoint from K . Therefore, if s is large enough, then K lies
inside the bigon bounded by [v, τv(s)] and its symmetric image under the reflection
that fixes τq ∪µq . The sum of angles in the bigon tends to 2(π − κ̂(rv)), and by
the Gauss–Bonnet theorem it is bounded below by c(K ). Since v ∈ Cm , we have
κ̂(rv)≥ π/2, and hence c(K )≤ π . Thus c(Mm) < π + ε, and since ε is arbitrary,
we get c(Mm)≤ π , which completes the proof of (iii).

(iv) Since Rm is finite, m′(∞) < 1
2 by (iii). As m′(0)= 1, the equation m′(x)= 1

2
has a solution ρm . As Gm ≥ 0, the function m′ is nonincreasing, so uniqueness
of the solution is equivalent to positivity of Gm(ρm). Since Mm is von Mangoldt,
Gm(ρm) > 0 for otherwise Gm would have to vanish for r ≥ ρm , implying m′(∞)=
m′(ρm)=

1
2 , so Rm would be infinite.

Now we show that ρm > Rm . This is clear if Rm = 0 because ρm ≥ 0 and
m′(0)= 1 6= 1

2 =m′(ρm). Suppose Rm > 0. Then m−2 is integrable by Lemma 3.15,
so m′ > 0 everywhere by the proof of Lemma 3.10. Hence for any rv ≥ ρm

we have m(rv) ≥ m(ρm), which implies tm(rv) > m(ρm) for all t > 1. Thus
m−1(tm(rv)) > m−1(m(ρm)) = ρm . Applying m′ to the inequality, we get in
notations of Proposition 4.1 that l(t, rv) <m′(ρm)=

1
2 , where the inequality is strict

because Gm(rm) > 0 by (iv). Now (4.5) below implies

Tγv =
∫
∞

1

dt

l(t, rv)t
√

t2− 1
>

∫
∞

1

2 dt

t
√

t2− 1
= π.

Since Mm is von Mangoldt, v /∈ Cm by Lemma 3.14. In summary, if rv ≥ ρm , then
v /∈ Cm , so ρm > Rm .
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(v) Since Rm is positive and finite, and Mm is von Mangoldt, there are geodesics
tangent to parallels whose turn angles are ≤ π and > π . By Proposition 4.1, the
turn angle is monotone with respect to r , so let rq be the (finite) supremum of
all x such that

∫
∞

x Fm(x) < π . Since Cm is closed, q ∈ Cm so that Tγq ≤ π . In
fact, Tγq = π for if Tγq < π , then rq is not maximal because by Theorems 1.6
and 3.24 the set of points q with Tγq < π is open in Mm . If Gm(rq) > 0, then by
monotonicity rq is a unique solution of Tγq = π . If Gm(rq)= 0, then Gm |[rq ,∞) = 0
as Mm is von Mangoldt, so (4.5) implies that the turn angle of each γv with rv ≥ rq

equals π/(2m′(rq)). So m′(rq)=
1
2 but this case cannot happen as Rm is infinite by

(iii). �

In preparation for a proof of Theorem 1.7 we recall that the Cheeger–Gromoll
soul construction with basepoint q , described, for example, in [Sakai 1996, Theorem
V.3.4], starts by deleting the horoballs associated with all rays emanating from q,
which results in a compact totally convex subset. The next step is to consider the
points of this subset which are at maximal distance from its boundary, and these
points in turn form a compact totally convex subset, and after finitely many iterations
the process terminates in a subset with empty boundary, called a soul. As we shall
see below, if Gm ≥ 0, then the soul construction with basepoint q ∈ Cm \ {o} takes
no more than two steps; more precisely, deleting the horoballs for rays emanating
from q results either in {q} or in a segment with q as an endpoint. In the latter case
the soul is the midpoint of the segment.

In what follows we let Bσ denote the (open) horoball for a ray σ with σ(0)= q ,
that is, the union over t ∈ [0,∞) of the metric balls of radius t centered at σ(t). Let
Hσ denote the complement of Bσ in the ambient complete Riemannian manifold.

Lemma 4.4. Let σ be a ray in a complete Riemannian manifold M , and let q=σ(0).
Then for any nonzero v ∈ Tq M that makes an acute angle with σ , the point expq(tv)
lies in the horoball Bσ for all small t > 0.

Proof. This follows from the definition of a horoball for if ϒ denotes the image of
t→ expq(tv), then

lim
s→+0

d(σ (s), ϒ)
d(σ (s), q)

= sin 6 (υ ′(0), σ ′(0)) < 1,

so Bσ contains a subsegment of ϒ–{q} that approaches q . �

Proof of Theorem 1.7. For q ∈ Cm , let Cq denote the complement in Mm of the
union of the horoballs for rays that start at q; note that Cq is compact and totally
convex. If Cq equals {q}, then q is a soul. Otherwise, Cq has positive dimension
and q ∈ ∂Cq . Set γ := ξq ; thus γ is a ray.

Case 1. Suppose π/2 < κ̂(rq) < π . Let γ̄ be the clockwise ray that is mapped
to γ by the isometry fixing the meridian through q. We next show that q is the
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intersection of the complements of the horoballs for rays µq , γ , and γ̄ , implying
that q is a soul for the soul construction that starts at q . As κγ (0)>π/2, any nonzero
v ∈ Tq Mm forms angle<π/2 with one of µ′(0), γ ′(0), or γ̄ ′(0), so expq(tv) cannot
lie in the intersection of Hµq , Hγ , and Hγ̄ for small t , and since the intersection is
totally convex, it is {q}.

Case 2. Suppose κ̂(rq)= π/2, so that γ = γq , and suppose that Gm does not vanish
along γ . By symmetry and Lemma 4.4, it suffices to show that every point of the
segment [o, q) near q lies in Bγ . Let α be the ray from o passing through q. The
geodesic γ is orthogonal to α, and it suffices to show that there is a focal point
w of α along γ (for this would imply that there is a family of geodesics of the
same length that minimize the distance from w to α, and since the geodesics cannot
minimize beyond the focal point, all points near q on α, except q , are in Bγ [Sakai
1996, Lemma III.2.11]).

Any α-Jacobi field along γ is of the form jn where n is a parallel nonzero normal
vector field along γ and j solves j ′′(t)+Gm(rγ (t)) j (t)= 0, j (0)= 1, j ′(0)= 0.
Since Gm ≥ 0, the function j is concave, so due to its initial values, j must vanish
unless it is constant. The point where j vanishes is focal. If j is constant, then
Gm = 0 along γ , which is ruled out by assumption.

Case 3. Suppose κ̂(rq) = π , that is, γ = τq . For any vector v ∈ Tq Mm pointing
inside Cq , for small t the point expq(tv) is not in the horoballs for µq and τq , and
hence v is tangent to a parallel, that is, Cq is a subsegment of the geodesic α tangent
to the parallel through q . As Cq lies outside the horoballs for µq and τq , these rays
there cannot contain focal points of α, implying that Gm vanishes along µq and τq ,
and hence everywhere, by rotational symmetry, so that Mm is the standard R2, and
q is a soul.

Case 4. Suppose κ̂(rq) = π/2, so that γ = γq , and suppose that Gm vanishes
along γ . By rotational symmetry Gm(r)= 0 for r ≥ rq , so m(r)= ar +m(0) for
r ≥ rq where a > 0, as m only vanishes at 0. The turn angle of γ can be computed
explicitly as

(4.5)
∫
∞

x

dr

m(r)
√

m(r)2

m(x)2
− 1
=

∫
∞

1

dt

at
√

t2− 1
=−

1
a

arccot
(√

t2− 1
)∣∣∣∣∞

1
=
π

2a
,

where x := rq . Since γ is a ray, we deduce that a ≥ 1
2 .

Let z ≤ x be the smallest number such that m′|[z,∞) = a; thus there is no
neighborhood of z in (0,∞) on which Gm is identically zero.

Note that m(r) = a(r − z) + m(z) for r ≥ z, so the surface Mm–B(o, z) is
isometric to C–B(ō,m(rq)/a) where C is the cone with apex ō such that cutting C
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along the meridian from ō gives a sector in R2 of angle 2πa with the portion inside
the radius m(rq)/a removed.

Since γq is a ray, Lemma 4.4 implies the existence of a neighborhood Uq of q
such that each point in Up–[o, q] lies in a horoball for a ray from q.

We now check that o lies in the horoball of γq . Concavity of m implies that the
graph of m lies below its tangent line at z, so evaluating the tangent line at r = 0
and using m(0)= 0 gives m(z)/a > z. The Pythagorean theorem in the sector in
R2 of angle 2πa implies that

dMm (γq(s), o)=

√
s2+

(
x − z+

m(z)
a

)2

+ z−
m(z)

a
,

which is < s for large s, implying that o is in the horoball of γq .
To realize q as a soul, we need to look at the soul construction with arbitrary

basepoint v, which starts by considering the complement in Mm of the union of the
horoballs for all rays from v, which by the above is either v or a segment [u, v]
contained in (o, v], where u is uniquely determined by v. It will be convenient to
allow for degenerate segments for which u = v; with this convention the soul is
the midpoint of [u, v]. Since z is the smallest such that Gm |[z,∞) = 0, the focal
point argument of Case 2 shows that u = v when 0< rv < z. Set y := rv, and let
e(y) := ru; note that 0 < e(y) ≤ y, and the midpoint of [u, v] has r-coordinate
h(y) := (y+ e(y))/2.

To realize each point of Mm as a soul, it suffices to show that each positive
number is in the image of h. Since h approaches zero as y→ 0 and approaches
infinity as y→∞, it is enough to show that h is continuous and then apply the
intermediate value theorem.

Since e(y) = y when 0 < y < z, we only need to verify continuity of e when
y ≥ z. Let vi be an arbitrary sequence of points on α converging to v, where as
before α is the ray from o passing through q . Set vi := rvi . Arguing by contradiction
suppose that e(yi ) does not converge to e(y). Since 0< e(yi )≤ yi and yi → y, we
may pass to a subsequence such that e(yi )→ e∞ ∈ [0, y]. Pick any w such that
rw lies between e∞ and e(y). Thus there is i0 such that either e(yi ) < rw < e(y)
for all i > i0, or e(y) < rw < e(yi ) for all i > i0. As y ≥ z, we know that Gm

vanishes along γv , so every α-Jacobi field along γv is constant. Therefore, the rays
γvi converge uniformly (!) to γv, as vi → v, and hence their Busemann functions
bi and b converge pointwise. Thus bi (w)→ b(w), but we have chosen w so that
b(w) and bi (w) are all nonzero, and sign(b(w)) = − sign(bi (w)), which gives a
contradiction proving the theorem. �

Remark 4.6. In Cases 1, 2, and 3 the soul construction terminates in one step,
namely, if q ∈ Cm , then {q} is the result of removing the horoballs for all rays
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that start at q. We do not know whether the same is true in Case 4 because the
basepoint v needed to produce the soul q is found implicitly, via the intermediate
value theorem, and it is unclear how v depends on q, and whether v = q.

Remark 4.7. Let Mm be as in Case 4 with m′|[z,∞) = 1
2 . If Mm is von Mangoldt,

then no point q with rq ≥ z is a pole because by (4.5) the turn angle of γq is π ,
which by Theorem 3.24 cannot happen for a pole.

5. Smoothed cones made von Mangoldt

Proof of Theorem 1.11. It is of course easy to find a von Mangoldt plane gmx that
has zero curvature near infinity, but prescribing the slope of m′ there takes more
effort. We exclude the trivial case x = 1 in which m(r)= r works.

For u ∈ [0, 1
4 ] set Ku(r)= 1/(4(r + 1)2)− u, and let mu be the unique solution

of (A.7) with K = Ku . Then gmu is von Mangoldt. For u > 0 let zu ∈ [0,∞) be
the unique zero of Ku ; note that zu is the global minimum of m′u , and zu→∞ as
u→ 0.

Lemma 5.1. The function u→ m′u(zu) takes every value in (0, 1) as u varies in
(0, 1

4).

Proof. One verifies that m0(r)= ln(r+1)
√

r + 1, that is, the right hand side solves
(A.7) with K = K0. Then m′0 = (2+ ln(r + 1))/(2

√
r + 1) is a positive function

converging to zero as r→∞. By Sturm comparison mu ≥m0> 0 and m′u ≥m′0> 0.
We now show that m′u(zu)→ 0 as u→+0. To this end fix an arbitrary ε > 0.

Fix tε such that m′0(tε) < ε. By continuous dependence on parameters (mu,m′u)
converges to (m0,m′0) uniformly on compact sets as u→ 0. So for all small u we
have m′u(tε) < ε and also tε < zu . Since m′u decreases on (0, zu), we conclude that
0< m′u(zu) < m′u(tε) < ε, proving that m′u(zu)→ 0 as u→+0.

On the other hand, m′1/4(z1/4)= 1 because z1/4 = 0 and by the initial condition
m′1/4(0) = 1. Finally, the assertion of the lemma follows from continuity of the
map u → m′u(zu), because then it takes every value within (0, 1) as u varies in
(0, 1

4). (To check continuity of the map fix u∗, take an arbitrary u→ u∗ and note
that zu→ zu∗ , so since m′u converges to m′u∗ on compact subsets, it does so on a
neighborhood of zu∗ , so m′u(zu) converges to m′u∗(zu∗).) �

Continuing the proof of the theorem, fix an arbitrary u > 0. The continuous
function max(Ku, 0) is decreasing and smooth on [0, zu] and equal to zero on
[zu,∞). So there is a family of nonincreasing smooth functions Gu,ε depending on
the small parameter ε such that Gu,ε=max(Ku, 0) outside the ε-neighborhood of zu .
Let mu,ε be the unique solution of (A.7) with K =Gu,ε; thus m′u,ε(r)=m′u,ε(zu+ε)

for all r ≥ zu + ε. If ε is small enough, then Gu,ε ≤ K0, so mu,ε ≥ m0 > 0 and
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m′u,ε≥m′0>0. By continuous dependence on parameters, the function (u, ε)→m′u,ε
is continuous, and moreover m′u,ε(zu + ε)→ m′u(zu) as ε→ 0, and u is fixed.

Fix x ∈ (0, 1). By Lemma 5.1 there are positive v1 and v2 such that m′v1
(zv1) <

x < m′v2
(zv2). Letting u of the previous paragraph to be v1, v2, we find ε such that

m′v1,ε
(zv1 + ε) < x < m′v2,ε

(zv2 + ε), so by the intermediate value theorem there
is u with m′u,ε(zu + ε) = x . Then the metric gmu,ε has the asserted properties for
ρ = zu + ε. �

6. Other applications

Proof of Lemma 1.1. Assuming r̂(q̂) /∈ r(Cm) we will show that q̂ is not a critical
point of r̂ . Since M̂ is complete and noncompact, there is a ray γ̂ emanating from
q̂. Consider the comparison triangle 1(o, q, qi ) in Mm for any geodesic triangle
with vertices ô, q̂ , and γ̂ (i). Passing to a subsequence, arrange so that the segments
[q, qi ] subconverge to a ray, which we denote by γ . Since q /∈ Cm , the angle
formed by γ and [q, o] is > π/2, and hence for large i the same is true for the
angles formed by [q, qi ] and [q, o]. By comparison, γ̂ forms angle >π/2 with any
segment joining q̂ to ô, that is, q̂ is not a critical point of r̂ . �

Proof of Theorem 1.5. (a) Let Pm denote the set of poles; it is a closed metric ball
[Tanaka 1992b, Lemma 1.1]. Moreover, Pm clearly lies in the connected component
Ao

m of Am ∪ {o} that contains o, and hence in the component of Cm that contains
o. By Theorem 1.6 Am is open in Mm , so Am ∪ {o} is locally path-connected, and
hence Ao

m is open in Mm . If Pm were equal to Ao
m , the latter would be closed,

implying Ao
m = Mm , which is impossible as the ball has finite radius.

(b) The “if” direction is trivial as Pm ⊂ Cm . Conversely, if Cm 6= {o}, then by
Lemma 3.15 m−2 is integrable and lim infr→∞ m(r)>0, so Rp>0 [Tanaka 1992a].

�

Proof of Theorem 1.9. By assumption there is a point of negative curvature, and
since the curvature is nonincreasing, outside a compact subset the curvature is
bounded above by a negative constant. As lim infr→∞ m(r) > 0, m is bounded
below by a positive constant outside any neighborhood of 0, so

∫
∞

0 m =∞. Hence
the total curvature 2π

∫
∞

0 Gm(r)m(r) dr is −∞.
Hence there is a metric ball B of finite positive radius centered at o such that the

total curvature of B is negative, and such that no point of Gm ≥ 0 lies outside B. By
[Shiohama et al. 2003, Theorem 6.1.1, p. 190], for any q ∈ Mm the total curvature
of the set obtained from Mm by removing all rays that start at q is in [0, 2π ]. So
for any q there is a ray that starts at q and intersects B.

If q is not in B, then the ray points away from infinity, so q ∈ Am and any point
on this ray is in Cm . Thus Mm–Am lies in B. Since Cm 6= {o}, Theorem 1.5 implies
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that Rp > 0. Letting q run to infinity the rays subconverge to a line that intersects
B; see, for example, [Shiohama et al. 2003, Lemma 6.1.1, p. 187].

If m′(rp)= 0, the parallel through p is a geodesic but not a ray, so Lemma 3.14
implies that no point on the parallel through p is in Cm . Since Cm contains o and
all points outside a compact set, Cm is not connected; the same argument proves
that Am is not connected. �

Example 6.1. Here we modify [Tanaka 1992b, Example 4] to construct a von
Mangoldt plane Mm such that m′ has a zero, and neither Am nor Cm is connected.
Given a ∈ (π/2, π) let m0(r)= sin r for r ∈ [0, a], and define m0 for r ≥ a so that
m0 is smooth, positive, and lim infr→∞ m0 > 0. Thus K0 := −m′′0/m0 equals 1 on
[0, a]. Let K be any smooth nonincreasing function with K ≤ K0 and K |[0,a] = 1.
Let m be the solution of (A.7); note that m(r) = sin(r) for r ∈ [0, a] so that m′

vanishes at π/2. By Sturm comparison m ≥ m0 > 0, and hence Mm is a von
Mangoldt plane. Since m′(a) < 0 and m > 0 for all r > 0, the function m cannot be
concave, so K = Gm eventually becomes negative, and Theorem 1.9 implies that
Am and Cm are not connected.

Example 6.2. Here we construct a von Mangoldt plane such that m′>0 everywhere
but Am and Cm are not connected. Let Mn be a von Mangoldt plane such that Gn ≥ 0
and n′ > 0 everywhere, and Rn is finite (where Rn is the radius of the ball Cn).
This happens, for example, for any paraboloid, any two-sheeted hyperboloid with
n′(∞) < 1

2 , or any plane constructed in Theorem 1.11 with n′(∞) < 1
2 . Fix q /∈ Cn .

Then γq has turn angle > π , so there is R > rq such that
∫ R

rq
Fn(rq ) > π . Let G be

any smooth nonincreasing function such that G = Gn on [0, R] and G(z) < 0 for
some z > R. Let m be the solution of (A.7) with K = G. By Sturm comparison
m ≥ n > 0 and m′ ≥ n′ > 0 everywhere; see Remark A.10. Since m = n on [0, R],
on this interval we have Fm(rq ) = Fn(rq ), so in the von Mangoldt plane Mm the
geodesic γq has turn angle >π , which implies that no point on the parallel through
q is in Cm . Now Theorem 1.9 (3) and (4) imply that Am and Cm are not connected.

Theorem 6.3. Let Mm be a von Mangoldt plane such that m′|[0,y] > 0 and m′|[x,y]
< 1

2 . Set fm,x(y) := m−1(cos(πb)m(y)), where b is the maximum of m′ on [x, y].
If x ≤ fm,x(y), then r(Cm) and [x, fm,x(y)] are disjoint.

Proof. Set f := fm,x . Arguing by contradiction assume there is q ∈ Cm with
rq ∈ [x, f (y)]. Then γq has turn angle ≤ π , so if c := m(rq), then

π ≥

∫
∞

rq

c dr

m
√

m2− c2
>

∫ y

rq

c dr

m
√

m2− c2

=

∫ m(y)

c

c dm

m′(r)m
√

m2− c2
≥

∫ m(y)

c

c dm

bm
√

m2− c2
=

1
b

arccos
(

c
m(y)

)
,
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so that πb > arccos(c/(m(y))), which is equivalent to cos(πb)m(y) < m(rq).
On the other hand, m( f (y)) is in the interval [0,m(y)] on which m−1 is increas-

ing, so f (y) < y, and therefore m is increasing on [x, f (y)]. Hence rq < f (y)
implies m(rq) < m( f (y))= cos(πb)m(y), which is a contradiction. �

Proof of Theorem 1.10. We use the notation of Theorem 6.3. The assumptions
on n imply n′ > 0, n′|[x,∞) < 1

2 , and b = n′(x). Hence fn,x is an increasing
smooth function of y with fn,x(∞)=∞. In particular, if y is large enough, then
fn,x(y) > z > x ; fix y that satisfies the inequality. Now if Mm is any von Mangoldt
plane with m= n on [0, y], then fm,x(y)= fn,x(y), so Mm satisfies the assumptions
of Theorem 6.3, so [x, z] and r(Cm) are disjoint. �

Appendix A: Von Mangoldt planes

The purpose of this appendix is to discuss what makes von Mangoldt planes special
among arbitrary rotationally symmetric planes.

For a smooth function m : [0,∞)→ [0,∞) whose only zero is 0, let gm denote
the rotationally symmetric inner product on the tangent bundle to R2 that equals
the standard Euclidean inner product at the origin and elsewhere is given in polar
coordinates by dr2

+m(r)2 dθ2. It is well known (see, for example, [Shiohama
et al. 2003, §7.1]) that:

• Any rotationally symmetric complete smooth Riemannian metric on R2 is
isometric to some gm . (As before, Mm denotes (R2, gm).)

• If m̄ : R→ R denotes the unique odd function such that m̄|[0,∞) = m, then
gm is a smooth Riemannian metric on R2 if and only if m′(0) = 1 and m̄ is
smooth.

• If gm is a smooth metric on R2, then gm is complete, and the sectional curvature
of gm is a smooth function on [0,∞) that equals −m′′/m.

It is easier to visualize Mm as a surface of revolution in R3, so we recall:

Lemma A.1. (1) Mm is isometric to a surface of revolution in R3 if and only if
|m′| ≤ 1.

(2) Mm is isometric to a surface of revolution (r cosφ, r sinφ, g(r)) in R3 if and
only if 0< m′ ≤ 1.

Proof. (1) Consider a unit speed curve s→ (x(s), 0, z(s)) in R3 where x(s) ≥ 0
and s ≥ 0. Rotating the curve about the z-axis gives the surface of revolution

(x(s) cosφ, x(s) sinφ, z(s))

with metric ds2
+ x(s)2 dφ2. The meridians starting at the origin are rays, so for

this metric to be equal to ds2
+m(s)2 dφ2 we must have m(s) = x(s). Since the
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curve has unit speed, |x ′(s)| ≤ 1, so a necessary condition for writing the metric as
a surface of revolution is |m′(s)| ≤ 1. It is also sufficient for if |m′(s)| ≤ 1, then we
could let z(s) :=

∫ s
0

√
1− (m′(s))2 ds, so that now (m(s), z(s)) has unit speed.

(2) If, furthermore, m′ > 0 for all s, then the inverse function of m(s) makes
sense, and we can write the surface of revolution (m(s) cosφ,m(s) sinφ, z(s)) as
(x cosφ, x sinφ, g(x)) where x :=m(s) and g(x) := z(m−1(x)). Conversely, given
the surface (x cosφ, x sinφ, g(x)), the orientation-preserving arclength parametri-
zation x = x(s) of the curve (x, 0, g(x)) satisfies x ′ > 0. �

Example A.2. The standard R2 is the only von Mangoldt plane with Gm ≤ 0 that
can be embedded into R3 as a surface of revolution because m′(0)= 1 and m′ is
nondecreasing afterwards.

Example A.3. If Gm ≥ 0, then m′ ∈ [0, 1] because m > 0, m′ is nonincreasing,
and m′(0)= 1, so that Mm is isometric to a surface of revolution in R3. In fact, if
m′(s0)= 0, then m|[s0,∞) = m(s0), that is, outside the s0-ball about the origin Mm

is a cylinder. Thus except for such surfaces Mm can be written as

(x cosφ, x sinφ, g(x)) for g(x)=
∫ m−1(x)

0

√
1− (m′(s))2 ds.

Paraboloids and two-sheeted hyperboloids are von Mangoldt planes of positive cur-
vature [Shiohama et al. 2003, p. 234–235] and are of the form (x cosφ, x sinφ,g(x)).

The defining property G ′m ≤ 0 of von Mangoldt planes clearly restricts the
behavior of m′. Let Z(Gm) denote the set where Gm vanishes; as Mm is von
Mangoldt, Z(Gm) is closed and connected, and hence it could be equal to the empty
set, a point, or an interval, while m′ behaves as follows.

(i) If Gm > 0, then m′ is decreasing and takes values in (0, 1].

(ii) If Gm ≤ 0, then m′ is nondecreasing and takes values in [1,∞).

(iii) If Z(Gm) is a positive number z, then m′ decreases on [0, z) and increases on
(z,∞), and m′ may have two, one, or no zeros.

(iv) If Z(Gm)= [a, b] ⊂ (0,∞], then m′ decreases on [0, a), is constant on [a, b],
and increases on (b,∞) if b <∞. Also either m′|[a,b] = 0 or else m′ has two,
or no zeros.

Remark A.4. All the above possibilities occur with one possible exception: in
Cases (iii) and (iv) we are not aware of examples where m′ vanishes on Z(Gm).

Remark A.5. Thus if Mm is von Mangoldt, then m′ is monotone near infinity, so
m′(∞) exists; moreover, m′(∞)∈ [0,∞], for otherwise m would vanish on (0,∞).
It follows that Mm admits total curvature, which equals∫ 2π

0

∫
∞

0
Gmm drdθ =−2π

∫
∞

0
m′′ = 2π(1−m′(∞)) ∈ [−∞, 2π ].
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Here the total curvature of a subset A ⊂ Mm is the integral of Gm over A with
respect to the Riemannian area form m drdθ , provided the integral converges to a
number in [−∞,∞], in which case we say that A admits total curvature.

Remark A.6. The zeros of m′ correspond to parallels that are geodesics and are
of interest. In contrast with restrictions on the zero set of m′ for von Mangoldt
planes, if Mm is not necessarily von Mangoldt, then any closed subset of [0,∞)
that does not contain 0 can be realized as the set of zeros of m′. (Indeed, for any
closed subset of a manifold there is a smooth nonnegative function that vanishes
precisely on the subset [Bröcker and Jänich 1982, Whitney’s Theorem 14.1]. It
follows that if C is a closed subset of [0,∞) that does not contain 0, then there is a
smooth function g : [0,∞)→ [0,∞) that is even at 0, satisfies g(0) = 1, and is
such that g(s)= 0 if and only if s ∈C . If m is the solution of m′ = g and m(0)= 0,
then Mm has the promised property.)

A common way of constructing von Mangoldt planes involves the Jacobi initial
value problem

(A.7) m′′+ K m = 0, m(0)= 0, m′(0)= 1,

where K is smooth on [0,∞). It follows from the proof of [Kazdan and Warner
1974, Lemma 4.4] that gm is a complete smooth Riemannian metric on R2 if and
only if the following condition holds:

(?) the (unique) solution m of (A.7) is positive on (0,∞).

Remark A.8. A basic tool that produces solutions of (A.7) satisfying condition (?)
is the Sturm comparison theorem that implies that if m1 is a positive function that
solves (A.7) with K = K1, and if K2 is any nonincreasing smooth function with
K2 ≤ K1, then the solution m2 of (A.7) with K = K2 satisfies m2 ≥m1, so that gm2

is a von Mangoldt plane.

Example A.9. If K is a smooth function on [0,∞) such that max(K , 0) has com-
pact support, then a positive multiple of K can be realized as the curvature Gm of
some Mm ; of course, if K is nonincreasing, then Mm is von Mangoldt. (Indeed, in
[Kazdan and Warner 1974, Lemma 4.3] Sturm comparison was used to show that if∫
∞

t max(K , 0)≤ 1/(4t + 4) for all t ≥ 0, then K satisfies (?), and in particular, if
max(K , 0) has compact support, then there is a constant ε > 0 such that the above
inequality holds for εK .)

Remark A.10. A useful addendum to Remark A.8 is that the additional assumption
m′1≥ 0 implies m′2≥m′1> 0. (Indeed, the function m′1m2−m1m′2 vanishes at 0 and
has nonpositive derivative (−K1+ K2)m1m2, so m′1m2 ≤ m1m′2. As m1, m2, and
m′1 are nonnegative, so is m′2. Hence, m1m′2 ≤ m2m′2, which gives m′1m2 ≤ m2m′2,
and the claim follows by canceling m2.)
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Question A.11. Let m0 : [r0,∞)→ (0,∞) be a smooth function such that r0 > 0
and −m′′0/m0 is nonincreasing. What are sufficient conditions for (or obstructions
to) extending m0 to a function m on [0,∞) such that gm is a von Mangoldt plane?

Appendix B: A calculus lemma

This appendix contains an elementary lemma on continuity and differentiability of
the turn angle, which is needed for Theorem 3.24.

Given numbers rq > r0 > 0, let m be a smooth self-map of (0,∞) such that

• m′ > 0 on [r0, rq ],

• m(r) > m(rq) for r > rq ,

• m−2 is integrable on (1,∞),

• lim infr→∞ m(r) > m(rq).

Example B.1. Suppose Gm ≥ 0 or G ′m ≤ 0. If γq is a ray on Mm , and r0 is
sufficiently close to rq , then m satisfies the above properties by Lemmas 3.3, 3.8,
and 3.10.

Set c0 := m(r0) and cq := m(rq). Let T = T (c) be the function given by the
integral (3.21) for c= cq , and by the sum of integrals (3.22) for c0 ≤ c ≤ cq , where
Fc is given by (3.5) and ru := m−1(c), where m−1 is the inverse of m|[r0,rq ].

Lemma B.2. Under the assumptions of the previous paragraph, T is continuous
on (c0, cq ], continuously differentiable on (c0, cq), and T ′(c)

√

c2
q − c2 converges to

−1/(m′(rq)) < 0 as c→ cq−.

Proof. By definition T equals
∫
∞

rq
Fc +

∫ rq
ru

Fc if c ∈ [c0, cq) and T =
∫
∞

rq
Fc if

c = cq . Step 1 shows that
∫
∞

rq
Fc depends continuously on c ∈ [c0, cq ], while

Step 2 establishes continuity of T at cq . In Steps 3 and 4 we prove continuous
differentiability and compute the derivatives of integrals

∫
∞

rq
Fc and

∫ rq
ru

Fc with
respect to c ∈ (c0, cq). Step 5 investigates the behavior of T ′(c) as c→ cq .

Recall that the integral
∫ b

a Hc(r) dr depends continuously on c if for each r ∈
(a, b) the map c→ Hc(r) is continuous, and every c has a neighborhood U0 in
which |Hc| ≤ h0 for some integrable function h0. If in addition each map c→ Hc(r)
is C1, and every c has a neighborhood U1 where |∂Hc/∂c| ≤ h1 for an integrable
function h1, then

∫ b
a Hc(r) dr is C1 and differentiation under the integral sign is

valid; the same conclusion holds when Hc and ∂Hc/∂c are continuous in the closure
of U1× (a, b).

Step 1. The integrand Fc is smooth over (ru,∞), because the assumptions on m
imply that m(r) > c for r > ru .

Since 0< c ≤ cq we have Fc ≤ Fcq = cq/(m
√

m2
− c2

q) which is integrable on
(rq ,∞). Indeed, fix δ > rq and note that since m−2 is integrable on (δ,∞), so is
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Fcq . To prove integrability of Fcq on (rq , δ), note that

h(r) :=
m(r)−m(rq)

r − rq

is positive on [rq ,∞), as h(rq)= m′(rq) > 0 and m(r) > m(rq) for r > rq . Then
Fcq is the product of (r−rq)

−1/2 and a function that is smooth on [rq , δ], and hence
Fcq is integrable on (rq , δ).

Thus the integrals
∫ δ

rq
Fc(r) dr and

∫
∞

δ
Fc(r) dr depend continuously on c ∈

(0, cq ], and hence so does their sum
∫
∞

rq
Fc(r) dr .

Step 2. As c→ cq , the integral
∫ rq

ru
Fc converges to zero, for if K is the maximum

of (mm′
√

m+ c)−1 over the points with r ∈ [r0, rq ] and c ∈ [c0, cq ], then∫ rq

ru

Fc ≤ K
∫ rq

ru

m′ dr
√

m− c
= K

∫ cq−c

0

dt
√

t
,

which goes to zero as c→ cq . Thus T is continuous at c = cq .

Step 3. To find an integrable function dominating ∂Fc/∂c on (rq ,∞) locally in c,
note that every c ∈ (c0, cq) has a neighborhood of the form (c0, cq − δ) with δ > 0,
and over this neighborhood

∂Fc

∂c
=

m
(m2− c2)3/2

≤
m

(m2− (cq − δ)2)3/2
,

where the right hand side is integrable over [rq ,∞), as m−2 is integrable at∞; thus

d
dc

∫
∞

rq

Fc =

∫
∞

rq

m
(m2− c2)3/2

dr

is continuous with respect to c ∈ (c0, cq). This integral diverges if c = m(rq).

Step 4. To check continuity of
∫ rq

ru
Fc change variables via t := m/c so that r =

m−1(tc). Thus dt = m′(r) dr/c = n(tc) dr/c where n(r) := m′(m−1(r)), and∫ rq

ru

Fc(r) dr =
∫ cq/c

1
Fc(t) dt where Fc(t)=

1

n(tc)t
√

t2− 1
.

Since m′> 0 on [r0, rq ] and n(tc)=m′(r), the function Fc is smooth over (1, cq/c).
To prove the continuity of

∫ cq/c
1 Fc, fix an arbitrary (u, v)⊂ (c0, cq). If c ∈ (u, v)

and t ∈ (1, cq/c), then m−1(tc) lies in the m−1-image of (u, (v/u)cq), which by
taking the interval (u, v) sufficiently small can be made to lie in an arbitrarily small
neighborhood of [r0, rq ], so we may assume that m′ > 0 on that neighborhood. It
follows that the maximum K of 1/(n(tc)) over c ∈ [u, v] and t ∈ [1, cq/c] is finite,
and |Fc| ≤ K/(t

√
t2− 1) for c ∈ (u, v), that is, |Fc| is locally dominated by an

integrable function that is independent of c; for the same reason the conclusion also
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holds for
∂Fc

∂c
=−

n′(tc)

n(tc)2
√

t2− 1
.

Finally, given c∗ ∈ (c0, cq), fix δ ∈ (1, cq/c∗) and write
∫ cq/c

1 Fc=
∫ δ

1 Fc+
∫ cq/c
δ Fc

for c varying near c∗. The first summand is C1 at c∗, as the integrand and its
derivative are dominated by the integrable function near c∗. The second summand
is also C1 at c∗ as the integrand is C1 on a neighborhood of {c∗} × [δ, cq/c]. By
the integral Leibniz rule

d
dc

∫ cq/c

1
Fc =−

cq

c2 Fc

(
cq

c

)
−

∫ cq/c

1

n′(tc)dt

n(tc)2
√

t2− 1
.

The first summand equals −
(
m′(rq)

√

c2
q − c2

)−1, and the second summand is
bounded.

Step 5. Let us investigate the behavior of
∫
∞

rq
(m/(m2

− c2)3/2)dr from Step 3 as
c→ cq−. Fix δ > rq such that m′ > 0 on [r0, δ] and write the above integral as the
sum of the integrals over (rq , δ) and (δ,∞). The latter one is bounded. Integrate
the former integral by parts as∫ δ

rq

mm′

m′(m2− c2)3/2
dr =−

∫ δ

rq

1
m′

d
(

1
√

m2−c2

)
=

1

m′(rq)
√

c2
q − c2

−
1

m′(δ)
√
δ2−c2

−

∫ δ

rq

m′′dr

(m′)2
√

m2−c2
.

Only the first summand is unbounded as c→ cq−. The terms from Steps 4 and 5
enter into T ′ with coefficients 2 and 1, respectively, so as c→ cq−

T ′(c)
√

c2
q − c2

→−
1

m′(rq)
< 0

as the bounded terms multiplied by
√

c2
q − c2 disappear in the limit. �
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