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ISOPERIMETRIC SURFACES WITH BOUNDARY, II

ABRAHAM FRANDSEN, DONALD SAMPSON AND NEIL STEINBURG

Following our previous work with Dorff and Lawlor, we extend results for
the so-called equitent problem of fixed boundary and fixed volume. We
define sufficient conditions, which in R2 and R3 are also necessary, for lo-
cal minima to be piecewise spherical, and we show that these are area-
minimizing in their homotopy class. We also give new examples of these
surfaces in R2 and R3.

1. Introduction

Equitent problems, first introduced in the paper “Isoperimetric surfaces with bound-
ary” [Dorff et al. 2011], ask what is the area-minimizing surface enclosing a given
volume and spanning a given boundary. In this way, equitent problems represent a
combination of isoperimetry and boundary conditions, such as in Steiner problems
and minimal surfaces. Our previous approach, which we extend here, uses the
technique of metacalibration. Metacalibration is a version of the calibration meth-
ods popularized by Harvey and Lawson [1982], adapted to use on isoperimetric
problems. In particular, we use a combination of the mapping of [Gromov 1986],
after [Knothe 1957], and the paired calibrations of [Lawlor and Morgan 1994].

In our original results, we construct various classes of surfaces bounded by the
dual figures of uniform polytopes and enclosing a prescribed volume and prove
that these surfaces are minimizing in their homotopy class. The results, however,
turn out to be limited in scope, as shown in [Ross et al. 2011]. Consequently, there
remains much ground to be covered.

In this paper, we will extend previous results by considering equitent systems
generated by polytopes whose edges are all of a given length. This results in a
much wider range of equitent surfaces than those bounded by uniform polytopes.
We construct the conjectured minimizing surface using a refinement of previous
methods and prove that this surface is indeed area-minimizing in its homotopy
class.

Further, we show that any homotopically area-minimizing equitent surface with
piecewise spherical faces and simplex vertex figures is equivalent to one generated
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by our construction. We conclude with a discussion of new equitent surfaces and
a survey of open problems.

2. The surfaces

Let 0 be a convex polytope of dimension m ≤ n with equal edge lengths, r , em-
bedded in Rn . Let p1, . . . , pk be the vertices of 0. For each pi let Ri be the region
farthest from pi :

Ri = {x ∈ Rn
: r < ‖x − pi‖ and ‖x − p j‖< ‖x − pi‖ for all j 6= i}.

Note that if pi and p j share an edge in 0, ∂Ri∩∂R j is a subset of the perpendicular
bisecting hyperplane of that edge. Now, define

R0 = {x ∈ Rn
: ‖x − pi‖< r for 1≤ i ≤ k}.

See figure.

R3
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This region represents the enclosed volume. We suppose that R0 6= ∅ and
Hn−1(∂R0 ∩ ∂Ri ) 6= 0 for all i > 0. Let V0 =Hn(R0). Then let

M =
k⋃

i=0

∂Ri .

Notice that ∂R0 is the portion of the surface that encloses the volume R0. In
order to have a nontrivial result, we require R0 6=∅. The condition

Hn−1(∂R0 ∩ ∂Ri ) 6= 0

for all i > 0 ensures that all smooth subsurfaces of M meet at 120 degree angles.
For m = 2, the only viable generating figures, 0, are equilateral triangles, rhombi
with interior angles strictly greater than 60◦, and small perturbations of regular
pentagons. For m = 3, the valid generating figures include all but two of the eight
convex deltahedra (polyhedra where all faces are equilateral triangles), as well as
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other polytopes with faces of higher degree. It is worth noting, however, that those
generating figures, 0, whose faces are not equilateral triangles produce surfaces
which are locally minimal within their homotopy class, but not globally mini-
mal. As will be seen in the proof, this construction gives sufficient conditions for
minimizing surfaces to be piecewise spherical. Furthermore, due to the regularity
properties of soap films proved by Taylor and Almgren [Taylor 1976], these are
also necessary conditions in R2 and R3. In higher dimensions nonsimplicial vertex
figures may be minimizing, but are not considered in this paper. See for example
[Brakke 1991].

3. The minimization theorem

In this section we prove that the surfaces constructed are homotopically minimizing
in the following sense: Let U be a bounded open set that contains R0, and let
M0 = M ∩U .

Theorem 1. The surface M0 is area-minimizing among all compact surfaces (rec-
tifiable sets) in U with boundary ∂U∩M that enclose the fixed volume Hn(R0) and
are homotopically equivalent to M0. This also holds with the weaker assumption
that competitor surfaces are not necessarily homotopic to M0 but separate space
into the same regions as M0 and these regions share boundary nontrivially (on a
set of positive Hn−1 measure) only if the corresponding regions do in M0.

Our proof uses a metacalibration argument that compares figures according
to their flux on specially crafted vector fields. In particular, we use a paired-
calibration approach with one vector field defined for each separated region.

Let N be any competitor surface and let Si be the separated regions that corre-
spond to each Ri respectively. (Then Hn(S0)=Hn(R0) by the volume condition.)
Define vi : Si → Rn for 1 ≤ i ≤ m to be the constant vector field −pi/r . Let
φ : S0 → R0 be the Knothe–Rosenblatt rearrangement and let v0 : S0 → Rn be
given by v0 = φ/r .

At this point a few simple results would be useful:

Proposition 2. If Si and S j share boundary nontrivially, then vi − v j is a unit
vector. If N = M0 then vi − v j is the unit normal to ∂Ri ∩ ∂R j .

Proof. Note that Si and S j share boundary nontrivially if and only if pi and p j are
adjacent in 0. Thus ‖vi − v j‖ = (1/r)‖pi − p j‖ = 1. Also if N = M0, vi − v j is
the unit normal to ∂Ri ∩ ∂R j since ∂Ri ∩ ∂R j lies on the hyperplane equidistant
to pi and p j . �

Proposition 3. The matrix Dv0 is triangular. If N = M then v0 is the identity
scaled by 1/r .
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Proof. Follows from the definition of v0. See [Dorff et al. 2011] for details. �

Proposition 4. For i 6= 0,
∫

N∩∂Si
vi · n dHn−1

=
∫

M∩∂Ri
vi · n dHn−1, where n is

the unit normal to the surface of integration, outward pointing with respect to Si

or Ri .

Proof. Follows from the divergence theorem since vi is divergence free and ∂(M∩
∂Ri )= ∂(N ∩ ∂Si ). �

Proof of Theorem 1. For any competitor surface N , let G(N ) =
∑

i

∫
N∩∂Si

vi ·

n dHn−1. Letting P(N ) =
∑

i

∫
N∩∂Si

dHn−1 be our objective function, we find
that

G(N )=
∑

i

∫
N∩∂Si

vi · n dHn−1

=

∑
i 6= j

∫
N∩(∂Si∩∂S j )

(vi − v j ) · n dHn−1

≤

∑
i 6= j

∫
N∩(∂Si∩∂S j )

‖vi − v j‖ ‖n‖ dHn−1

≤

∑
i 6= j

∫
N∩(∂Si∩∂S j )

dHn−1

=

∑
i

∫
N∩∂Si

dHn−1
= P(N ),

with equality if N = M0.
Now also note that∫

N∩∂S0

v0 · n dHn−1
=

∫
S0

divv0 dHn−1

=

∫
S0

1
r

(
∂φ1

∂x1
+
∂φ2

∂x2
+ · · ·+

∂φn

∂xn

)
dHn−1

≥

∫
S0

n
r

n

√
∂φ1

∂x1

∂φ2

∂x2
· · ·

∂φn

∂xn
dHn−1

=

∫
S0

n
r

n
√

1 dHn−1

=
n
r

Hn−1(S0)=
n
r

Hn−1(R0),

with equality if N =M0. This follows from the AM-GM inequality and the equality

∂φ1

∂x1

∂φ2

∂x2
· · ·

∂φn

∂xn
= det(Dφ)= 1,
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which is valid since φ is volume-preserving.
Combining these results we find

P(M0)= G(M0)=
∑
i 6=0

∫
M0∩∂Ri

vi · n dHn−1
+

∫
M0∩∂R0

v0 · n dHn−1

=

∑
i 6=0

∫
N∩∂Si

vi · n dHn−1
+

n
r

Hn−1(R0)

≤

∑
i 6=0

∫
N∩∂Si

vi · n dHn−1
+

∫
N∩∂S0

v0 · n dHn−1

= G(N )≤ P(N ). �

4. Soap films in R3

In [Dorff et al. 2011] and [Ross et al. 2011] we identified the regular tetrahedron,
the regular octahedron, and the regular icosahedron as polytopes that generate
realizable soap films. The only other three-dimensional polytopes, 0, that gen-
erate surfaces realizable as soap films are the triangular dipyramid, the pentagonal
dipyramid, and the snub disphenoid. The generated soap films are shown below.
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This is due to the conditions proven by Jean Taylor [1976], namely that each
face not intersecting with the boundary must meet with exactly two other faces in
120-degree angles. Thus, any generating figure, 0, with nontriangular faces will
not yield a surface realizable as a soap film. The remaining two deltahedra fail to
meet the conditions of our construction because of their large circumradius.

Every surface generated by our construction will have piecewise spherical faces
and simplicial vertex figures. The converse is also true. Given any area-minimizing
equitent surface with piecewise spherical faces and simplicial vertex figures, we
can recover the generating polytope, 0, as the set of centers of each spherical
face. In higher dimensions there may exist area-minimizing equitent surfaces with
nonsimplicial vertex figures.

5. Conclusion

We have characterized all piecewise spherical equitent surfaces in two and three
dimensions, and proven them to be area minimizing. Several interesting and open
problems arise. An especially intriguing question deals with equitent surfaces that
have negatively curved bubbles, meaning each face of the bubble region bends
inward. Such a surface can be created using soap films, but our methods are not
yet able to address this case. Similarly, equitent surfaces with nonspherical faces
fall outside the scope of our approach. Finally, our construction generates surfaces
whose vertices are cones over simplices. In spaces of dimension greater than three,
however, minimal surfaces need not have simplicial vertex figures, and we may yet
find interesting new equitent surfaces. Extensions of the metacalibration methods
outlined in this paper show great promise in solving these open problems.
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