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ON A CLASS OF SEMIHEREDITARY
CROSSED-PRODUCT ORDERS

JOHN S. KAUTA

Let F be a field, let V be a valuation ring of F of arbitrary Krull dimension
(rank), let K be a finite Galois extension of F with group G, and let S be the
integral closure of V in K . Let f : G × G 7→ K \ {0} be a normalized two-
cocycle such that f (G × G) ⊆ S \ {0}, but we do not require that f should
take values in the group of multiplicative units of S. One can construct a
crossed-product V-algebra A f =

∑
σ∈G Sxσ in a natural way, which is a V-

order in the crossed-product F-algebra (K/F,G, f ). If V is unramified
and defectless in K , we show that A f is semihereditary if and only if for all
σ, τ ∈G and every maximal ideal M of S, f (σ, τ) 6∈M2. If in addition J(V )
is not a principal ideal of V , then A f is semihereditary if and only if it is an
Azumaya algebra over V .

1. Introduction

In this paper we study certain orders over valuation rings in central simple algebras.
If R is a ring, then J (R) will denote its Jacobson radical, U (R) its group of
multiplicative units, and R# the subset of all the nonzero elements. The residue
ring R/J (R) will be denoted by R. Given the ring R, it is called primary if J (R)
is a maximal ideal of R. It is called hereditary if one-sided ideals are projective
R-modules. It is called semihereditary (respectively Bézout) if finitely generated
one-sided ideals are projective R-modules (respectively are principal). Let V be a
valuation ring of a field F . If Q is a finite-dimensional central simple F-algebra,
then a subring R of Q is called an order in Q if RF = Q. If in addition V ⊆ R and
R is integral over V , then R is called a V-order. If a V-order R is maximal among
the V-orders of Q with respect to inclusion, then R is called a maximal V-order (or
just a maximal order if the context is clear). A V-order R of Q is called an extremal
V-order (or simply extremal when the context is clear) if for every V-order B in Q
with B ⊇ R and J (B) ⊇ J (R), we have B = R. If R is an order in Q, then it is
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called a Dubrovin valuation ring of Q (or a valuation ring of Q in short) if it is
semihereditary and primary (see [Dubrovin 1982; 1984]).

In this paper, V will denote a commutative valuation ring of arbitrary Krull
dimension (rank). Let F be its field of quotients, let K/F be a finite Galois extension
with group G, and let S be the integral closure of V in K . If f ∈ Z2(G,U (K ))
is a normalized two-cocycle such that f (G ×G) ⊆ S#, then one can construct a
“crossed-product” V-algebra

A f =
∑
σ∈G

Sxσ ,

with the usual rules of multiplication (xσ s= σ(s)xσ for all s ∈ S, σ ∈G and xσ xτ =
f (σ, τ )xστ ). Then A f is associative, with identity 1 = x1, and center V = V x1.
Further, A f is a V-order in the crossed-product F-algebra 6 f =

∑
σ∈G K xσ =

(K/F,G, f ). Following [Haile 1987], we let H = {σ ∈ G | f (σ, σ−1) ∈ U (S)}.
Then H is a subgroup of G.

In this paper, we will always assume that V is unramified and defectless in K (for
the definitions of these terms, see [Endler 1972]). By [Endler 1972, Theorem 18.6],
S is a finitely generated V-module, hence A f is always finitely generated over V . If
V1 is a valuation ring of K lying over V then {σ ∈ G | σ(x)− x ∈ J (V1) ∀x ∈ V1}

is called the inertial group of V1 over F . By [Kauta 2001, Lemma 1], the condition
that V is unramified and defectless in K is equivalent to saying that the inertial
group of V1 over F is trivial, since K/F is a finite Galois extension.

These orders were first studied in [Haile 1987], and later in [Haile and Morandi
1993; Kauta 2012]. In [Haile 1987; Kauta 2012], only the case when V is a discrete
valuation ring (DVR) was considered. In [Kauta 2012], hereditary properties of
crossed-product orders were examined. In [Haile 1987; Haile and Morandi 1993],
valuation ring properties of the crossed-product orders were explored, and the
latter considered the cases when either V has arbitrary Krull dimension but is
indecomposed in K , or V is a discrete finite-rank valuation ring, that is, its value
group is Z⊕ · · ·⊕Z. When V is a DVR, then any V-order in 6 f containing S is
a crossed-product order of the form Ag for some two-cocycle g : G × G 7→ S#,
with g cohomologous to f over K , by [Haile 1987, Proposition 1.3], but this
need not be the case in general. While [Haile and Morandi 1993] considered any
V-order in 6 f containing S, some of which were not of the type described above
and so in that sense its scope was wider than ours, in this paper we shall only be
concerned with crossed-product orders Ag where g is either f (almost always), or
is cohomologous to f over K , that is, if there are elements {cσ | σ ∈ G} ⊆ K # such
that g(σ, τ )= cσσ(cτ )c−1

στ f (σ, τ ) for all σ, τ ∈ G, a fact denoted by g∼K f .
The purpose of this paper is to generalize the results of [Kauta 2012] to the case

when V is not necessarily a DVR. The main results of this paper are as follows:
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A f is semihereditary if and only if for all σ, τ ∈ G and every maximal ideal M of
S, f (σ, τ ) 6∈ M2; if J (V ) is not a principal ideal of V , then A f is semihereditary
if and only if it is an Azumaya algebra over V . As in [Kauta 2012], the utility of
these criteria lie in their simplicity.

Although in our case the valuation ring V need not be a DVR, some of the steps
in the proofs in [Haile 1987; Kauta 2012] remain valid, mutatis mutandis, owing to
the theory developed in [Kauta 1997a; 1997b]. We shall take full advantage of this
whenever the opportunity arises. Aside from the difficulties inherent when dealing
with V-orders that are not necessarily noetherian, the hurdles encountered in this
theory arise mainly due to the fact that the two-cocycle f is not assumed to take on
values in U (S).

2. Preliminaries

In this section, we gather together various results that will help us prove the main
results of this paper, which are in the next section. For the convenience of the reader,
we have included complete proofs whenever it warrants, although the arguments
are sometimes routine.

The following lemma is essentially embedded in the proof of [Kauta 1997a,
Proposition 1.8], and the remark that follows it.

Lemma 2.1. Let A be a finitely generated extremal V-order in a finite-dimensional
central simple F-algebra Q.

(1) If B is a V-order of Q containing A, then B is also a finitely generated extremal
order. If in addition B is a maximal V-order, then it is a valuation ring of Q.

(2) If W is an overring of V in F with V $ W , then W A is a valuation ring of Q
with center W .

Proof. Let B be a V-order containing A. By [Kauta 1997a, Proposition 1.8], A
is semihereditary, hence B is semihereditary by [Morandi 1992, Lemma 4.10],
and therefore B is extremal by [Kauta 1997a, Theorem 1.5]. Since [B/J (B) :
V/J (V )] ≤ [6 f : F] <∞, there exists a1, a2, . . . , am ∈ B such that B = a1V +
a2V + · · · + am V + J (B). But by [Kauta 1997a, Proposition 1.4], J (B)⊆ J (A),
since A is extremal. Therefore B= a1V+a2V+· · ·+am V+A, a finitely generated
V-order. If, in addition, B is a maximal V-order, then by the remark after [Kauta
1997a, Proposition 1.8], B is a valuation ring of Q.

Now let W be a proper overring of V in F . Let C be a maximal V-order
containing A. Then C is a valuation ring of Q, as seen above, hence WC is a
valuation ring of Q with center W . Since A is an extremal V-order, we have
J (C)⊆ J (A), thus WC =W J (V )C ⊆W J (C)⊆W A⊆WC , so that W A=WC .
Thus W A is always a valuation ring of Q. �
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Since A f is finitely generated over V , we immediately have the following lemma,
because of [Kauta 1997a, Proposition 1.8], the remark that follows it, and the fact
that Bézout V-orders are maximal orders by [Morandi 1992, Theorem 3.4].

Lemma 2.2. Given the crossed-product order A f ,

(1) it is an extremal order if and only if it is semihereditary and

(2) it is a maximal order if and only if it is a valuation ring, if and only if it is
Bézout.

Lemma 2.3. Let W be a valuation ring of F such that V $ W , and let R =W S.

(1) Then R is the integral closure of W in K , and W is also unramified and
defectless in K .

(2) Let t ∈ S satisfy t 6∈ M2 for every maximal ideal M of S. Then t ∈U (R). If in
addition J (V ) is a nonprincipal ideal of V , then t ∈U (S).

Proof. The ring R is obviously integral over W . Since it contains S, it is also
integrally closed in K , hence it is the integral closure of W in K .

Now let V1⊆W1 be valuation rings of K lying over V and W respectively. Then
J (W1)⊆ J (V1); hence the inertial group of W1 over F , namely

{σ ∈ G | σ(x)− x ∈ J (W1) ∀x ∈W1},

is contained in the inertial group of V1 over F , {σ ∈G | σ(x)− x ∈ J (V1) ∀x ∈ V1}.
Since V is unramified and defectless in K , the latter group is trivial, forcing W to
be unramified and defectless in K .

Let W1 be a valuation ring of K lying over W , and let V1 be a valuation ring of K
lying over V such that V1 ⊆W1, as in the preceding paragraph. Let M = J (V1)∩ S,
a generic maximal ideal of S. We claim that M2

= J (V1)
2
∩ S. To see this, note

that
M2
= (J (V1)∩ S)(J (V1)∩ S)⊆ J (V1)

2
∩ S

and

M2V1 = (J (V1)∩ S)(J (V1)∩ S)V1 = J (V1)
2
= (J (V1)

2
∩ S)V1.

If V ′ is an extension of V to K different from V1, then M2V ′=V ′= (J (V1)
2
∩S)V ′.

Thus M2
= J (V1)

2
∩ S as desired. If t ∈ S satisfies t 6∈ M2, then t 6∈ J (V1)

2. Since
J (W1) $ J (V1)

2, we have t ∈ U (W1). Since W1 was an arbitrary extension of
W in K , we conclude that t ∈ U (R). If J (V ) is a nonprincipal ideal of V , then
J (V1)

2
= J (V1), hence t ∈U (V1) for every such extension V1 of V to K , and we

conclude that t ∈U (S). �

Part (4) of the following lemma was originally proved in [Haile 1987] when V
is a DVR. The same arguments work when V is an arbitrary valuation ring.
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Lemma 2.4. Given a σ ∈ G, let Iσ =
⋂

M , where the intersection is taken over
those maximal ideals M of S for which f (σ, σ−1) 6∈ M. Then:

(1) Iσ = {x ∈ S | x f (σ, σ−1) ∈ J (V )S}.

(2) I σ
−1

σ = Iσ−1 .

(3) If f (σ, σ−1) 6∈ M2 for every maximal ideal M of S, then Iσ f (σ, σ−1) =

J (V )S.

(4) J (A f )=
∑

σ∈G Iσ xσ .

Proof. Let x ∈ S. Clearly, if x ∈ Iσ then x f (σ, σ−1) ∈ J (V )S. On the other hand,
if x 6∈ Iσ then there exists a maximal ideal M of S such that x, f (σ, σ−1) 6∈ M ,
hence x f (σ, σ−1) 6∈ M , and thus x f (σ, σ−1) 6∈ J (V )S.

The second statement is proved in the same manner as [Kauta 2012, Sublemma].
To see that the third statement holds, we note that Iσ f (σ, σ−1) ⊆ J (V )S. We
claim that Iσ f (σ, σ−1) = J (V )S. To see this, let M be a maximal ideal of
S. If f (σ, σ−1) 6∈ M , then (Iσ f (σ, σ−1))SM = J (SM) = (J (V )S)SM . On the
other hand, if f (σ, σ−1) ∈ M then, since f (σ, σ−1) 6∈ M2, we have J (SM)

2 $
Iσ f (σ, σ−1)SM ⊆ J (SM), hence Iσ f (σ, σ−1)SM = J (SM) = (J (V )S)SM , and
thus Iσ f (σ, σ−1)= J (V )S. By [Haile and Morandi 1993, Lemma 1.3], J (A f )=∑

σ∈G(J (A f )∩ Sxσ ). Therefore the fourth statement can be verified in exactly the
same manner as [Haile 1987, Proposition 3.1(b)], because of the observations made
above. �

The following lemma is a generalization of [Haile 1987, Proposition 1.3].

Lemma 2.5. Let B ⊆ 6 f be a V-order. There is a normalized cocycle g : G ×
G 7→ S#, g∼K f , such that B = Ag (viewed as a subalgebra of 6 f in a natural
way) if and only if B ⊇ S and B is finitely generated over V . When this occurs,
B =

∑
σ∈G Skσ xσ for some kσ ∈ K #.

Proof. Suppose B⊇ S. By [Haile and Morandi 1993, Lemma 1.3], B=
∑

σ∈G Bσ xσ ,
where each Bσ is a nonzero S-submodule of K . If in addition B is finitely generated
over V , then each Bσ is finitely generated over V : if B =

∑n
i=1 V yi then, if we

write yi =
∑

τ∈G k(i)τ xτ with k(i)τ ∈ K , we see that Bσ is generated by {k(i)σ }ni=1
over V . Since S is a commutative Bézout domain with K as its field of quotients,
Bσ = Skσ for some kσ ∈ K #. Thus we get B =

∑
σ∈G Skσ xσ . Since B is integral

over V , B1 = S and so we can choose k1 = 1. Define g : G × G 7→ S# by
g(σ, τ )kστ xστ = (kσ xσ )(kτ xτ ), as in [Haile 1987, Proposition 1.3]. Since k1 = 1,
g is also a normalized two-cocycle. The converse is obvious. �

Lemma 2.6. Suppose S is a valuation ring of K . Then

J (V )A f is a maximal ideal of A f ⇐⇒ H =G ⇐⇒ A f is Azumaya over V .
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Proof. Suppose J (V )A f is a maximal ideal of A f . Note that A f /J (V )A f =∑
σ∈G Sx̃σ . By [Haile et al. 1983, Theorem 10.1(c)], J =

∑
σ 6∈H Sx̃σ is an ideal of

A f /J (V )A f . Since A f /J (V )A f is simple, J = 0, hence H = G. �

We set up additional notation, following [Haile 1987; Kauta 2012]. Let L be an
intermediate field of F and K , let GL be the Galois group of K over L , let U be a
valuation ring of L lying over V , and let T be the integral closure of U in K . Then
one can obtain a two-cocycle fL ,U : GL ×GL 7→ T # from f by restricting f to
GL ×GL , and embedding S# in T #. As before, A fL ,U =

∑
σ∈GL

T xσ is a U -order
in 6 fL ,U =

∑
σ∈GL

K xσ = (K/L ,GL , fL ,U ), and U is unramified and defectless
in K . If M is a maximal ideal of S, and L is the decomposition field of M and
U = L ∩ SM , then we will denote fL ,U by fM , A fL ,U by A fM , 6 fL ,U by 6 fM , L by
KM , and the decomposition group GL by DM , as in [Haile 1987]. Further, we let
HM = {σ ∈ DM | fM(σ, σ

−1) ∈U (SM)}, a subgroup of DM .
Given a maximal ideal M of S, let M = M1,M2, . . . ,Mr be the complete list

of maximal ideals of S, let Ui = SMi ∩ KMi with U = U1, and let (Ki , Si ) be a
Henselization of (K , SMi ). Let (Fh, Vh) be the unique Henselization of (F, V )
contained in (K1, S1). We note that (Fh, Vh) is also a Henselization of (KM ,U ).
By [Haile et al. 1995, Proposition 11], we have S⊗V Vh ∼= S1⊕ S2⊕ · · ·⊕ Sr .

Part (1) of the following lemma was originally proved in [Haile 1987] in the
case when V is a DVR. Virtually the same proof holds in the general case. Part (2c)
is a generalization of [Haile 1987, Corollary 3.11].

Lemma 2.7. Let the notation be as above.

(1) The crossed-product order A f is primary if and only if for every maximal ideal
M of S there is a set of right coset representatives g1, g2, . . . , gr of DM in G
(that is, G is the disjoint union

⋃
i DM gi ) such that for all i , f (gi , g−1

i ) 6∈ M.

(2) Assume the crossed-product order A f is primary. Then:

(a) A f ⊗V Vh ∼= Mr (A fM ⊗U Vh).
(b) As a result of (a), A f /J (A f )∼= Mr (A fM/J (A fM )).
(c) Also as a result of (a), A f is a valuation ring of 6 f if and only if A fM is a

valuation ring of 6 fM for some maximal ideal M of S. When this occurs,
A fM is a valuation ring of 6 fM for every maximal ideal M of S.

(d) A f is Azumaya over V if and only if HM = DM for some maximal ideal
M of S. When this occurs, HM = DM for every maximal ideal M of S.

Proof. The proof of [Haile 1987, Theorem 3.2], appropriately adapted, works
here as well to establish part (1). We outline the argument, for the convenience
of the reader: For a σ ∈ G, let Iσ be as in Lemma 2.4, and, for a maximal ideal
M of S, set M̂ :=

⋂
N max, N 6=M N . If I is an ideal of A f then, by [Haile and

Morandi 1993, Lemma 1.3], I =
∑

σ∈G(I ∩ Sxσ ), so A f is primary if and only if
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the following condition holds: if σ ∈ G and T is an ideal of S such that T 6⊆ Iσ ,
then A f T xσ A f = A f .

If A f is primary and M is a maximal ideal of S, then A f = A f M̂x1 A f . Therefore
if G =

⋃r
j=1 h j DM is a left coset decomposition, then

S =
∑

j

M̂h j
( ∑

d∈DM

f (h j d, d−1h−1
j )
)
,

as in the proof of [Haile 1987, Theorem 3.2], so that, if we fix i , 1 ≤ i ≤ r , and
localize at Mhi , we get

SMhi =

∑
j 6=i

J (SMhi )
( ∑

d∈DM

f (h j d, d−1h−1
j )
)
+ SMhi

( ∑
d∈DM

f (hi d, d−1h−1
i )
)
,

and hence
∑

d∈DM
f (hi d, d−1h−1

i ) 6∈Mhi . So there is an element di ∈ DM such that
f (hi di , d−1

i h−1
i ) 6∈ Mhi . Let gi = d−1

i h−1
i . Then g1, g2, . . . , gr have the desired

properties.
For the converse, suppose σ ∈ G and T is an ideal of S such that T 6⊆ Iσ . We

need to show that A f T xσ A f = A f . Since T 6⊆ Iσ , there is a maximal ideal M of S
such that f (σ, σ−1) 6∈ M and T 6⊆ M . The argument in [Haile 1987, Theorem 3.2]
shows that A f T xσ A f ⊇

∑r
i=1 Ti , where Ti = T g−1

i f g−1
i (σ, σ−1gi ) f (g−1

i , gi ) are
ideals of S satisfying the condition Ti 6⊆ Mg−1

i . Inasmuch as g−1
1 , g−1

2 , . . . , g−1
r

form a complete set of left coset representatives of DM in G, the ideal
∑r

i=1 Ti

is not contained in any maximal ideal of S. Therefore
∑r

i=1 Ti = S, and so
A f T xσ A f = A f .

Using part (1) and the fact that S⊗V Vh ∼= S1⊕ S2⊕ · · ·⊕ Sr , we can construct
a full set of matrix units in A f ⊗V Vh and hence verify part (2a), as in the proof of
[Haile 1987, Theorem 3.12] (see also the remark following that theorem). Part (2b)
follows from (2a) and [Kauta 1997a, Lemma 3.1]; part (2c) follows from (2a); and
(2d) follows from (2a) and Lemma 2.6. �

3. The main results

We now give the main results of this paper. There are essentially two parallel
theories: one takes effect when J (V ) is a principal ideal of V , and the other when it
is not. In the former case, the order A f displays characteristics akin to the situation
when V is a DVR. Our theory, however, yields surprising results in the latter case.
It turns out in this case that the property that A f is Azumaya over V is equivalent
to a much weaker property: that it is an extremal V-order in 6 f .

Proposition 3.1. The order A f is Azumaya over V if and only if H = G.

Proof. Suppose A f is Azumaya over V . Let M be a maximal ideal of S. By
Lemma 2.7(1), there is a set of right coset representatives g1, g2, . . . , gr of DM
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in G such that f (gi , g−1
i ) 6∈ M . If σ ∈ G, then σ = hgi for some h ∈ DM and

some i . Since A f is Azumaya, HM = DM by Lemma 2.7(2d), hence we have
f (h−1, h) 6∈ M . Because

f h−1
(hgi , g−1

i h−1) f h−1
(h, gi ) f gi (g−1

i , h−1)= f (h−1, h) f (gi , g−1
i ),

we conclude that f (σ, σ−1) 6∈M . Since M is arbitrary, f (σ, σ−1)∈U (S) for every
σ ∈ G, so that H = G.

The converse is well-known and straightforward to demonstrate. �

It is perhaps instructive to compare the above proposition to [Kauta 2001, Theo-
rem 3].

Recall that J (V ) is a nonprincipal ideal of V if and only if J (V )2 = J (V ).

Proposition 3.2. Suppose J (V ) is a nonprincipal ideal of V . Then the following
statements about the crossed-product order A f are equivalent:

(1) A f is an extremal V-order in 6 f .

(2) A f is a semihereditary V-order.

(3) A f is a maximal V-order in 6 f .

(4) A f is a Bézout V-order.

(5) A f is a valuation ring of 6 f .

(6) A f is Azumaya over V .

Proof. By Lemma 2.2, it suffices to demonstrate that (1)⇒ (5)⇒ (6). So suppose A f

is an extremal V-order. Let B be a maximal V-order containing A f . By Lemma 2.1,
B is a valuation ring finitely generated over V . By Lemma 2.5, we get that
B=

∑
σ∈G Skσ xσ for some kσ ∈ K #. Since A f is extremal, we have J (B)⊆ J (A f )

by [Kauta 1997a, Proposition 1.4], so J (V )B ⊆ A f . Therefore
∑

σ∈G J (S)kσ xσ =
J (V )B = J (V )2 B ⊆ J (V )A f =

∑
σ∈G J (S)xσ , so that J (S)kσ ⊆ J (S). Hence for

each maximal ideal M of S, we have SM J (S)kσ ⊆ SM J (S), that is, J (SM)kσ ⊆
J (SM). This shows that kσ ∈ SM for all M and so kσ ∈ S for every σ ∈ G, and thus
A f = B, a valuation ring.

Now suppose A f is a valuation ring of 6 f . By Lemma 2.7(2), to show that
A f is Azumaya over V , we may as well assume S is a valuation ring of K . By
[Dubrovin 1984, §2, Theorem 1], J (A f )= J (V )A f , and so A f is Azumaya over
V by Lemma 2.6. �

Remark. It follows from Lemma 2.3(2) and Proposition 3.1 that, if J (V ) is a
nonprincipal ideal of V , then the crossed-product order A f is extremal if and only
if for all τ, γ ∈ G and every maximal ideal M of S, f (τ, γ ) 6∈ M2.
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If W is a valuation ring of F such that V $ W , then we will denote by B f the
W-order W A f =

∑
σ∈G Rxσ , where R =W S is the integral closure of W in K by

Lemma 2.3. Recall that W is also unramified and defectless in K .

Proposition 3.3. Suppose J (V ) is a principal ideal of V . Then A f is semiheredi-
tary if and only if for all τ, γ ∈ G and every maximal ideal M of S, f (τ, γ ) 6∈ M2.

Proof. The result holds when the Krull dimension of V is one, by [Kauta 2012,
Corollary], since V is a DVR in this case. So let us assume from now on that the
Krull dimension of V is greater than one.

Let p =
⋂

n≥1 J (V )n . Then p is a prime ideal of V , W = Vp is a minimal
overring of V in F , and Ṽ = V/J (W ) is a DVR of W . Set B f =W A f , as above.

Suppose A f is semihereditary. We will show that for each τ ∈ G and each
maximal ideal M of S, f (τ, τ−1) 6∈ M2.

First, assume that V is indecomposed in K . By [Haile and Morandi 1993,
Proposition 2.6], A f is primary, hence it is a valuation ring of 6 f . Therefore
B f is Azumaya over W , by [Haile and Morandi 1993, Proposition 2.10], and
f (G ×G) ⊆ U (R), by Proposition 3.1. Observe that R is a valuation ring of K
lying over W and R is Galois over W , with group G, and B f /J (B f )=

∑
σ∈G Rx̃σ

is a crossed-product W-algebra. Further, A f /J (B f ) has center Ṽ , a DVR of W , and
is a crossed-product Ṽ-order in B f /J (B f ) of the type under consideration in this
paper, since Ṽ is unramified in R and f (G×G)⊆ S ∩U (R). Since the crossed-
product Ṽ-order A f /J (B f ) is a valuation ring of B f /J (B f ) and hence hereditary,
it follows from [Kauta 2012, Theorem] that for each τ ∈ G, f (τ, τ−1) 6∈ J (S)2.

Suppose V is not necessarily indecomposed in K , but assume A f is a valuation
ring. Fix a maximal ideal M of S. By Lemma 2.7(1), there is a set of right coset
representatives g1, g2, . . . , gr of DM in G such that f (gi , g−1

i ) 6∈ M . If τ ∈ G,
then τ = hgi for some h ∈ DM and some i . By Lemma 2.7(2), A fM is a valuation
ring of 6 fM . Hence, by the preceding paragraph, fM(h−1, h) 6∈ M2, and thus
f (h−1, h) 6∈ M2. But the following holds:

f h−1
(hgi , g−1

i h−1) f h−1
(h, gi ) f gi (g−1

i , h−1)= f (h−1, h) f (gi , g−1
i ).

Therefore we must have f (τ, τ−1) 6∈ M2.
Now suppose that A f is not necessarily a valuation ring. To show that for each

τ ∈ G and each maximal ideal M of S we have f (τ, τ−1) 6∈ M2, one only needs to
emulate the corresponding steps in the proof of [Kauta 2012, Theorem], equipped
with the following four observations:

1. Any maximal V-order containing A f is a valuation ring, by Lemma 2.1, hence
A f is the intersection of finitely many valuation rings all with center V , since J (V )
is a principal ideal of V , by [Kauta 1997b, Theorem 2.5].
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2. If B is one such valuation ring containing A f , then B = Ag =
∑

τ∈G Skτ xτ
for some kτ ∈ K #, where g : G × G 7→ S# is some normalized two-cocycle, by
Lemma 2.1(1) and Lemma 2.5. Fix σ ∈ G and a maximal ideal N of S. We may
choose B such that kσ ∈U (SN ), as in the proof of [Kauta 2012, Theorem].

3. Both J (A f ) and J (Ag) are as in Lemma 2.4, that is, J (A f ) =
∑

σ∈G Iσ xσ
(respectively J (B f )=

∑
σ∈G Jσ kσ xσ ) where Iσ =

⋂
M (respectively Jσ =

⋂
M),

as M runs through all maximal ideals of S for which f (σ, σ−1) 6∈ M (respectively
g(σ, σ−1) 6∈ M). We have J (Ag)⊆ J (A f ) by [Kauta 1997a, Theorem 1.5].

4. By Lemma 2.4, I σ
−1

σ = Iσ−1 , J σ
−1

σ = Jσ−1 , and Jσ−1 g(σ−1, σ )= J (V )S.

We conclude, as in the proof of [Kauta 2012, Theorem], that

(1) J (V )S ⊆ kσ Iσ f (σ, σ−1).

Since kσ ∈U (SN ), if f (σ, σ−1) ∈ N 2 then, localizing both sides of (1) at N we get
J (SN )⊆ J (SN )

2, a contradiction, since J (V ) is a principal ideal of V . Therefore
for each τ ∈G and each maximal ideal M of S, f (τ, τ−1) 6∈ M2. Since the cocycle
identity f τ (τ−1, τγ ) f (τ, γ )= f (τ, τ−1) holds, we conclude that for all τ, γ ∈ G
and every maximal ideal M of S, f (τ, γ ) 6∈ M2.

Conversely, suppose f (τ, γ ) 6∈ M2 for all τ, γ ∈ G, and every maximal ideal M
of S. Let Ol(J (A f )) = {x ∈ 6 f | x J (A f ) ⊆ J (A f )}. We will first establish that
Ol(J (A f ))= A f , again emulating the relevant steps in the proof of [Kauta 2012,
Theorem]. To achieve this, it suffices to show that Ol(J (A f ))=

∑
τ∈G Skτ xτ for

some kτ ∈ K #, and that Iτ f (τ, τ−1) = J (V )S for each τ ∈ G, where Iτ is as in
Lemma 2.4. The second assertion follows from Lemma 2.4(3). As for the first one,
we first note that Ol(J (A f )) is a V-order in 6 f , by [Kauta 1997a, Corollary 1.3].
By Lemma 2.5, Ol(J (A f )) =

∑
τ∈G Skτ xτ for some kτ ∈ K # if and only if it is

finitely generated over V .
Since for all τ, γ ∈ G and every maximal ideal M of S we have f (τ, γ ) 6∈ M2,

we conclude from Lemma 2.3 that f (G × G) ⊆ U (R), hence B f is Azumaya
over W . Therefore J (B f ) = J (W )B f = J (W )(W A f ) = J (W )A f ⊆ J (A f ),
and A f /J (B f ) is a Ṽ-order in B f /J (B f ). Since Ol(J (A f )) is a V-order con-
taining A f , Ol(J (A f ))W is a W-order containing B f , so Ol(J (A f ))W = B f ,
since B f is a maximal W-order in 6 f , and hence Ol(J (A f )) ⊆ B f . Therefore
Ol(J (A f ))/J (B f ) is a Ṽ-order in B f /J (B f ), a central simple W-algebra. Since Ṽ
is a DVR of W , Ol(J (A f ))/J (B f ) must be finitely generated over Ṽ , by [Reiner
2003, Theorem 10.3], hence there exists a1, a2, . . . , an ∈ Ol(J (A f )) such that
Ol(J (A f ))= a1V +a2V +· · ·+anV + J (B f )= a1V +a2V +· · ·+anV + A f , a
finitely generated V-module. Thus Ol(J (A f ))= A f .

As in the proof of [Morandi 1992, Lemma 4.11], we have Ol(J (A f /J (B f )))=

Ol(J (A f )/J (B f )) = Ol(J (A f ))/J (B f ) = A f /J (B f ), where Ol(J (A f /J (B f )))
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and Ol(J (A f )/J (B f )) are defined accordingly. Since Ṽ is a DVR of W , A f /J (B f )

is a hereditary Ṽ-order in the central simple W-algebra B f /J (B f ), hence A f is
semihereditary by [Morandi 1992, Lemma 4.11]. �

We summarize these results as follows.

Theorem 3.4. Given a crossed-product order A f :

(1) It is semihereditary if and only if for all τ, γ ∈ G and every maximal ideal M
of S, f (τ, γ ) 6∈ M2; if and only if for each γ ∈ G and each maximal ideal M
of S, f (τ, τ−1) 6∈ M2.

(2) If J (V ) is a nonprincipal ideal of V , then A f is semihereditary if and only if it
is Azumaya over V , if and only if H = G.

We now lump together several corollaries of the theorem above, generalizing
results in [Kauta 2012].

Corollary 3.5. (1) Given a crossed-product order A f :

(a) It is a valuation ring if and only if given any maximal ideal M of S,
f (τ, τ−1) 6∈ M2 for each τ ∈ G, and there exists a set of right coset
representatives g1, g2, . . . , gr of DM in G (that is, G is the disjoint union⋃

i DM gi ) such that for all i , f (gi , g−1
i ) 6∈ M.

(b) If V is indecomposed in K , then it is a valuation ring if and only if for
each τ ∈ G, f (τ, τ−1) 6∈ J (S)2.

(2) Suppose the crossed-product order A f is primary. Then it is a valuation ring
if and only if there exists a maximal ideal M of S such that for each τ ∈ DM ,
f (τ, τ−1) 6∈ M2.

(3) Suppose the crossed-product order A f is semihereditary. Then A fL ,U is a
semihereditary order in 6 fL ,U for each intermediate field L of F and K , and
every valuation ring U of L lying over V .

(4) Suppose the crossed-product order A f is semihereditary. Then A fM is a valua-
tion ring of 6 fM for each maximal ideal M of S.

We end by observing yet another peculiarity of these crossed-product orders.
The proposition below not only strengthens Lemma 2.1(2) when the V-order A is
taken to be the crossed-product order A f , but also generalizes [Haile and Morandi
1993, Proposition 2.10] to the case where V is not necessarily indecomposed in K .

Proposition 3.6. Suppose the crossed-product order A f is extremal and W is a
valuation ring of F with V $ W . Then W A f is Azumaya over W .

Proof. This follows from Lemma 2.2(1), Theorem 3.4(1), Lemma 2.3, and Proposi-
tion 3.1. �
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