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AN EXPLICIT FORMULA FOR
SPHERICAL CURVES WITH CONSTANT TORSION

DEMETRE KAZARAS AND IVAN STERLING

We give an explicit formula for all curves of constant torsion in the unit
two-sphere. Our approach uses hypergeometric functions to solve relevant
ordinary differential equations.

1. Introduction

The purpose of this article is to give an explicit formula for all curves of constant
torsion τ in the unit two-sphere S2(1). These curves and their basic properties
have been known since the 1890s, and some of these properties are discussed in
the Appendix. Some example curves, computed with a standard ODE package,
with τ = 0.1, 0.5, 1, 2 are shown in Figure 1. Though their existence and some

Figure 1. The curves of torsion τ = 0.1, 0.5, 1, 2 on the unit sphere.
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of their general properties were known, our explicit formulas for them, in terms of
hypergeometric functions, are new.

Curves of constant torsion are also of interest because all asymptotic curves
on pseudospherical surfaces (that is, surfaces in R3 with constant negative Gauss
curvature) are of constant torsion. Furthermore, any pair of curves with constant
torsion ±τ , intersecting at one point, define an essentially unique pseudospherical
surface. A complete classification of curves of constant torsion in R3, in the context
of integrable geometry, is a work in progress and is related to the corresponding
unfinished classification of pseudospherical surfaces.

The authors would like to thank the referees and the editor for their suggestions
to improve the original version of this paper.

2. General setting

2.1. General curves in R3. Let

γ : (a, b)−→ R3

be a regular (that is, nonzero speed) C∞ curve in R3 with nonzero curvature. The
speed v, curvature κ and torsion τ of γ are given by

v = ‖γ ′‖, κ =
‖γ ′× γ ′′‖

‖γ ′‖3
, τ =

[γ ′γ ′′γ ′′′]

‖γ ′× γ ′′‖2
.

The unit tangent T is given by

(1) T = γ
′

v
.

The unit normal and unit binormal are given by

N = T ′

vκ
and B = T × N .

These are related by the Frenet formulas

(2)
T ′ = vκN
N ′ = −vκT +vτ B
B ′ = −vτN .

Curves γ with prescribed differentiable curvature κ > 0 and torsion τ can be found
by integrating (2) and (1). Up to reparametrization (see below) a curve in R3 is
determined, up to a rigid motion of R3, by its curvature κ and torsion τ .

2.2. Changing parametrizations. Given γ (t), the arc length function s(t) of γ (t)
is given by

s(t)=
∫ t

a
‖γ ′(u)‖ du.
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Note that since s(t) is increasing, it has an inverse t (s). To obtain a unit-speed
reparametrization γ unit of γ we let

γ unit(s) := γ (t (s)).

We denote the parameter of a unit-speed curve by the letter s.
On the other hand, if we are given a unit-speed curve γ unit(s), we may wish

to find a reparametrization γ of γ unit by letting t (s) be some special monotone
function. In that case we have

γ (t) := γ unit(s(t)),

where s(t) is the inverse of t (s).

2.3. Spherical curves. We call γ a spherical curve if γ (t) ∈ S2(r) for all t (for
fixed r > 0). One can show (see [Gray et al. 2006], for example) that the speed,
curvature and torsion of a spherical curve satisfy

(3) κ2τ 2(κ2r2
− 1)= κ ′ 2v2.

2.4. Effect of homothety on curvature and torsion. If two curves γ, γ̃ are related
by γ̃ (t) := λγ (t), then κ̃(t)= κ(t)/λ and τ̃ (t)= τ(t)/λ. Thus, a curve of constant
torsion τ1 on a sphere of radius r1 corresponds by homothety to a curve of constant
torsion τ2 = (r1/r2) τ1 on a sphere of radius r2.

In other words, any spherical curve of constant positive torsion corresponds
to precisely one spherical curve with τ = 1 as well as to precisely one curve of
constant positive torsion on the unit sphere. Without loss of generality, we consider
only spherical curves of constant positive torsion on the unit sphere.

2.5. Constant torsion unit-speed curves on the unit sphere. Let r = 1. If τ is a
positive constant and γ : (a, b)→ S2(1) is of unit speed, then (3) is an ordinary
differential equation in κ:

(4) κ ′2 = κ2τ 2(κ2
− 1).

(Notice that κ ≥ 1 holds for any curve on the unit sphere.) The general solution to
(4) is given by

(5) κ = csc(τ s+C), −C
τ
< s < −C+π

τ
.

Notice we use the parameter s instead of t since γ is a unit-speed curve. Further-
more, κ(s) is decreasing on (

−C
τ
,
−C+π/2

τ

)
.
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2.6. Our goal. As mentioned, a unit-speed curve γ is determined up to rigid mo-
tion by its curvature and torsion. However, in general it is not possible to explicitly
solve for γ given κ > 0 and τ > 0. Spherical curves of constant torsion provide
an interesting and natural example to study. They were considered by classical
geometers and the formula (5) was known. Even though the formula for κ is so
simple, no explicit solutions for γ were found. This is most likely because the
integration methods that we found necessary were not developed until decades later.
By choosing a special reparametrization and using functions defined in the 1940s,
we were successful in obtaining an explicit formula for γ involving hypergeometric
functions.

3. Explicit formulas

3.1. The radius of curvature parametrization. In curve theory parametrization
by the curvature is called the “natural parametrization”. In our case, when the
natural parametrization is used, the domain of definition lies outside the radius
of convergence of the resulting hypergeometric solutions. To avoid having to deal
with the problem of analytically continuing hypergeometric functions beyond their
radii of convergence we instead parametrize by the reciprocal of the curvature,
which is called the radius of curvature.

We seek unit-speed curves γ unit
: (−C/τ, (−C + π

2 )/τ)→ S2(1) of constant
torsion τ > 0 on the unit sphere. In order to simplify the Frenet equations, we
reparametrize γ unit by t (s) = 1/κ(s) = sin(τ s + C). Since 1/κ(s) is increasing
on its domain, the inverse s(t), s : (0, 1)−→ (−C/τ, (−C+ π

2 )/τ), exists and we
have

γ (t)= γ unit(s(t))= γ unit
(sin−1(t)−C

τ

)
, 0< t < 1.

One can recover γ unit from γ by reversing the process. Note that

v = ‖γ ′‖ = ‖γ unit ′
‖|s ′(t)| = |s ′(t)| = 1

τ
√

1−t2
.

With κ = 1/t the Frenet equations (2) become

T ′ = vN/t(6a)

N ′ =−vT/t + vτ B(6b)

B ′ = −vτN .(6c)

Recall γ ′ = vT . Thus as a preliminary step we will compute T . Namely, we
want to solve (6) for T .
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From (6a) and (6b) we have

N = t
√

1− t2τT ′,(7)

B =
√

1− t2 N ′+ 1
tτ

T .(8)

Equations (7) and (6c) yield

(9) B ′ =−τ tT ′.

On the other hand differentiating (7) yields

(10) N ′ = τ
√

1−t2

(
t (1− t2)T ′′+ (1− 2t2)T ′

)
.

Plugging this into (8) yields

(11) B = −1
tτ
(
t2(t2
− 1)τ 2T ′′+ t (2t2

− 1)τ 2T ′− T
)
.

Hence

(12) B ′ = −1
t2τ

(
t3(t2
− 1)τ 2T ′′′+ t2(5t2

− 2)τ 2T ′′+ t (4t2τ 2
− 1)T ′+ T

)
.

Equating (9) and (12) and simplifying we arrive at

(13) t3(t2
− 1)τ 2T ′′′+ t2(5t2

− 2)τ 2T ′′+ t (3t2τ 2
− 1)T ′+ T = 0.

This is a third-order linear homogeneous differential equation with nonconstant
coefficients. In general it is not possible to find a closed form solution for such
an equation. However, this is one of the special cases where one can find hyper-
geometric type solutions. These methods were developed in the 1940s, and hence
were not available to the classical (1890s) geometers.

3.2. Initial conditions. To arrive at initial conditions for our ODE, we find initial
conditions for T , N , and B and use the Frenet equations (6) to arrive at initial
conditions for T , T ′, and T ′′. We let T = (T1, T2, T3), N = (N1, N2, N3), and
B = (B1, B2, B3). For V = T , N , B, T ′, or T ′′ we use the notation Vi0 := Vi (t0).

T and N are unit vectors (‖T ‖ = 1 and ‖N‖ = 1) so we have

|T10 | ≤ 1, |T20 | ≤
√

1− T10, T30 =

√
1− T 2

10
− T 2

20
,

|N10 | ≤ 1, |N20 | ≤
√

1− N10, N30 =

√
1− N 2

10
− N 2

20
.

Also T is orthogonal to N (T · N = 0),

N10 T10 + N20 T20 + N30 T30 = 0.
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Since B = T × N , we have

B10 = T20 N30 − T30 N20, B20 = T30 N10 − T10 N30, B30 = T10 N20 − T20 N10 .

We will, without loss of generality and up to rigid motion, choose N0 = (0, 1, 0),
T0 = (T10, T20, T30)= (1, 0, 0), and t0 = 1

2 . Now that we have initial conditions for
T , N , and B, we will use the Frenet equations to express T ′0 and T ′′0 in terms of
T0, N0, and B0,

T ′0 =
v0 N0

t0
, T ′′0 = (v

′

0t0+ v0)N0− v
2
0 t2

0 T0+ v
2
0τ t0 B0.

The set of initial conditions t0= 1
2 , T0=(T10, T20, T30)=(1, 0, 0), and N0=(0, 1, 0)

yields

T ′0 =
(

0, 4
√

3τ
, 0
)

and T ′′0 =
(
−16
3τ 2 ,

−16
3
√

3τ
,

8
3τ

)
.

3.3. Solving for T via hypergeometric functions. The Barnes generalized hyper-
geometric function [Itō 1987] is defined by

p Fq(a1, a2, . . . , ap; b1, b2, . . . , bq; ta) :=

∞∑
n=1

(a1)n . . . (ap)n
(b1)n . . . (bq)n

tan

n!
.

Note the use of the Pochhammer symbols (x)n := 0(x + n)/0(x). We will also
use

2 F reg
1 (a, b, c, ta) := 2 F1(a, b; c; ta)

0[c]
.

By direct substitution (see for example Section 46 of [Rainville 1971]) it is straight-
forward to check that the following is a solution to (13):

T = (T1, T2, T3), T j =

3∑
l=1

c jl Sl,

where

S1 = i t 3 F2

(1
2
,

1
2
,

3
2
;

3
2
−

i
2τ
,

3
2
+

i
2τ
; t2
)
,

S2 = (−1)−i/(2τ)t−i/(2τ)
3 F2

(
1− i

2τ
,−

i
2τ
,−

i
2τ
;

1
2
−

i
2τ
, 1− i

τ
; t2
)
,

S3 = (−1)i/(2τ)t i/(2τ)
3 F2

(
1+ i

2τ
,

i
2τ
,

i
2τ
;

1
2
+

i
2τ
, 1+ i

τ
; t2
)
,

the c jl are constants, and i =
√
−1. Note that S1 is pure imaginary and that S3 is

the complex conjugate of S2. For proper complex constants c jl , T is a real valued
vector function. By plugging in the initial conditions of the last section we can
solve for the c jl .
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3.4. Solving for γ . Recall that γ (t) =
∫
vT dt . Since we have found T in terms

of hypergeometric functions, we must compute the following type of integrals:∫
h(t) p Fq(a1, a2, . . . , ap; b1, b2, . . . , bq; , t2)

τ
√

1− t2
dt

:=

∫ h(t)
∑
∞

n=1
(a1)n ...(ap)n
(b1)n ...(bq )n

t2n

n!

τ
√

1− t2
dt = α

τ

∞∑
n=1

(a1)n . . . (ap)n
(b1)n . . . (bq)nn!

∫
tβn
√

1−t2
dt.

Where α, β are constants. We repeat this process for each Sl , using the notation
γ = (U1,U2,U3). For S1,

U1 :=

∫
S1

τ
√

1− t2
dt =

∫ i t 3 F2
( 1

2 ,
1
2 ,

3
2 ;

3
2 −

i
2τ ,

3
2 +

i
2τ ; t

2
)

τ
√

1− t2
dt

=

∞∑
n=0

d1n

∫
t2n+1
√

1−t2
dt,

where

d1n =
i
(
1+ τ 2

)
0
( 1

2 + n
)2
0
( 3

2 + n
)

sech
(
π
2τ

)
2
√
πτ 3n!0

( 3
2 + n− i

2τ

)
0
( 3

2 + n+ i
2τ

) .
For S2,

U2 :=

∫
S2

τ
√

1−t2
dt

=

∫
(−1)−i/(2τ)t−i/(2τ)

3 F2
(
1− i

2τ ,−
i

2τ ,−
i

2τ ;
1
2 −

i
2τ , 1− i

τ
; t2
)

τ
√

1− t2
dt

=

∞∑
n=0

d2n

∫
t2n−i/τ
√

1−t2
dt,

where

d2n =
e
π
2τ 2−

i
τ 0
(
n− i

2τ

)2
0
(
1+ n− i

2τ

)
0
(
−i+τ

2τ

)2

√
πτ0

(
1+ n

)
0
(
1+ n− i

τ

)
0
(
−

i
2τ

)2
0
(
n+ −i+τ

2τ

) .
For S3,

U3 :=

∫
S3

τ
√

1−t2
dt

=

∫
(−1)i/(2τ)t i/(2τ)

3 F2
(
1+ i

2τ ,
i

2τ ,
i

2τ ;
1
2 +

i
2τ , 1+ i

τ
; t2
)

τ
√

1− t2
dt

=

∞∑
n=0

d3n

∫
t2n+ i

τ

√
1−t2

dt,
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where

d3n =
e−

π
2τ 2

i
τ 0
(
n+ i

2τ

)2
0
(
1+ n+ i

2τ

)
0
( i+τ

2τ

)2

√
πτ0

(
1+ n

)
0
(
1+ n+ i

τ

)
0
( i

2τ

)2
0
(
n+ i+τ

2τ

) .
Once again we are lucky and for each Ul we can evaluate the integrals. In each
case they are hypergeometric,

U1 =

∞∑
n=0

1
2

n! d1n 2 F reg
1

(1
2
, 1+ n, 2+ n, t2

)
,

U2 =

∞∑
n=0

1
2
0
(

n+
−i + τ

2τ

)
d2n 2 F reg

1

(1
2
, n+ −i+τ

2τ
,

3
2
+ n− i

2τ
, t2
)
,

U3 =

∞∑
n=0

1
2
0
(

n+
i + τ
2τ

)
d3n 2 F reg

1

(1
2
, n+ i+τ

2τ
,

3
2
+ n+ i

2τ
, t2
)
.

Each 2 F reg
1 also has a power series,

2 F reg
1

(1
2
, 1+ n, 2+ n, t2

)
=

∞∑
m=0

e1m t2m,

2 F reg
1

(1
2
, n+ −i+τ

2τ
,

3
2
+ n− i

2τ
, t2
)
=

∞∑
m=0

e2m t2m,

2 F reg
1

(1
2
, n+ i+τ

2τ
,

3
2
+ n+ i

2τ
, t2
)
=

∞∑
m=0

e3m t2m,

where

e1m =
0
( 1

2 +m
)

(n+m+ 1)
√
π0(1+ n)0(1+m)

,

e2m =
2τ0

(1
2 +m

)
√
π0(2nτ + 2mτ + τ − i)0(1+m)0(n+ (−i + τ)/2τ)

,

e3m =
2τ0

( 1
2 +m

)
√
π0(2nτ + 2mτ + τ + i)0(1+m)0(n+ (i + τ)/2τ)

.

Thus

U1 =

∞∑
m=0

∞∑
n=0

1
2

n! d1n e1m t2m+2n+2,

U2 =

∞∑
m=0

∞∑
n=0

1
2
0
(

n+ −i+τ
2τ

)
d2n e2m t2m+2n+2,

U3 =

∞∑
m=0

∞∑
n=0

1
2
0
(

n+ i+τ
2τ

)
d3n e3m t2m+2n+2.
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Figure 2. The curve of torsion τ = 1 on the unit sphere.

These complicated double sums combine nicely and simplify as

U1 =
i

2
√
πτ

∞∑
k=0

0
( 1

2 + k
)

0(2+ k)

× 4 F3

(1
2
,

1
2
,

3
2
,−k; 1

2
− k, 3

2
−

i
2τ
,

3
2
+

i
2τ
; 1
)

t2+2k,

U2 =
eπ/(2τ)
√
π

∞∑
k=0

0
( 1

2 + k
)

(−i + (1+ 2k)τ )0(1+ k)

× 4 F3

(
−k, 1− i

2τ
,−

i
2τ
,−

i
2τ
;

1
2
− k, 1

2
−

i
2τ
, 1− i

τ
; 1
)

t1−i/τ+2k,

U3 =
e−π/(2τ)
√
π

∞∑
k=0

0
( 1

2 + k
)

(i + (1+ 2k)τ )0(1+ k)

× 4 F3

(
−k, 1+ i

2τ
,

i
2τ
,

i
2τ
;

1
2
− k, 1

2
+

i
2τ
, 1+ i

τ
; 1
)

t1+i/τ+2k .

Thus we can write γ = (γ1, γ2, γ3) as a power series in t , where

γ j =

3∑
l=1

c jlUl .

The curve with τ = 1 is given in Figure 2, this time using the explicit formula.

Appendix

The purpose of this appendix is to address questions and issues about the curves
raised by the referees and the editor.

For τ = 0, the curves are also planar and are precisely the set of circles lying
on the sphere. If we consider curves corresponding to solutions (5) with C = 0,
and k(π2 /τ)= csc ((π2 /τ)τ )= 1, then as τ varies from 0 to∞ the curves numeri-
cally appear to vary (in a nonuniform way) from an infinitely covered great circle,
through a family of spiral “clothoid” like curves.
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Figure 3. Curves of constant torsion approaching a circle.

The editor pointed out that if we consider those solutions to (5) with C = 0, and
k(s0) = csc(s0τ) > 1, then the corresponding curves approach a “small circle” on
S2(1) of constant curvature k(s0). This is an interesting example of nonuniform
convergence. The curves as a whole converge pointwise to an infinitely covered
great circle, while it is still possible to find sequences of “tails” that converge to
infinitely covered small circles. This phenomenon is indicated in Figure 3, where
one sees a sequence of curves converging to a small circle. More details of this
simple yet interesting behavior will be written up elsewhere.

We will mention a few of the qualitative properties of these curves. Let us
consider the case of curves in S2(1) with a fixed initial point and varying τ . All
curves of constant torsion differ from one of these by a rigid motion. In [Cesàro
1926, page 185], it is shown that the curves are embedded, spiral infinitely often
about a limiting endpoint, and are reflectionally symmetric through the initial point.
(In Figure 1 we show only the upper half of the curves.) Cesàro [1926, page 185]
also shows that as τ varies from 0 to ∞, the length varies from ∞ to 0; see also
Equation (5).

One referee asked if it would be possible to foliate S2(1) with curves of constant
torsion (other than by the just using circles). It may be possible to foliate S2(1),
in some convoluted way, by packing S2(1) with pieces of curves of constant tor-
sion; however our conjecture would be that it is not possible to foliate it in any
“reasonable” way.

The reasoning is as follows. It seems to be a difficult problem to find an explicit
formula for the upper endpoint in terms of the τ and the initial point. Nevertheless,
numerically as τ varies from 0 to∞ the upper endpoint steadily moves downward
from the north pole to the initial point. In particular this would imply that the
curves corresponding to an infinitesimal change in τ would (repeatedly) intersect.
It would follow that any foliation of the S2(1) by curves of constant torsion would
have to include curves with common endpoints that differ by a rigid motion; a
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rotation about the upper endpoint. This type of foliation could only work in some
radius about the upper endpoint, because the effect of a rotation on the opposite
lower endpoint would result in (repeated) intersections. In summary, the numerics
strongly indicate that there is no foliation (singular or not) of S2(1) by curves of
constant torsion.

Weiner [1977] proved that there exist arbitrarily short closed constant torsion
curves in R3. More recently, Musso [2001] studied those curves of constant tor-
sion in R3 whose normal vectors sweep out elastic curves in S2(1). Ivey [2000]
generalizes Musso’s results and gives examples of closed constant torsion curves
of various knot types. The examples in the current paper complement these known
examples.
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Editor’s note

I was pleased to receive this interesting and unusual new work submitted to the
Pacific Journal of Mathematics. It has also found referee approval for the main
substance of the new material it offers. I am however uneasy with some assertions
in the Appendix; to the best I can interpret them, I find myself in some disagree-
ment. The authors have indicated that they prefer not to alter the statements, and
have correctly pointed out that the impact of the appendix material on the main
thrust of the paper is peripheral. In the view that differences over ancillary matters
should not impede publication of new discoveries, I have recommended publication
coupled with this subordinate comment.

Robert Finn
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