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PROPERNESS, CAUCHY INDIVISIBILITY
AND THE WEIL COMPLETION
OF A GROUP OF ISOMETRIES

ANTONIOS MANOUSSOS AND POLYCHRONIS STRANTZALOS

Investigating the impact of local compactness and connectedness in the the-
ory of proper actions on locally compact and connected spaces, we introduce
a new class of isometric actions on separable metric spaces called Cauchy-
indivisible actions. The new class coincides with that of proper actions on
locally compact metric spaces, without assuming connectivity, and, as ex-
amples show, may be different in general. In order to provide some basic
theory for this new class of actions, we embed a Cauchy-indivisible action
in a proper action of a semigroup in the completion of the underlying space.
We show that, if this semigroup is a group, there are remarkable connec-
tions between Cauchy indivisibility and properness, while the original group
has a Weil completion and vice versa. Further connections in this direction
establish a relation between Borel sections for Cauchy-indivisible actions
and fundamental sets for proper actions. Some open questions are added.

1. Introduction

In the paper at hand, having in mind the fruitful theory of proper transformation
groups on locally compact and connected spaces, we propose an analogous class
of actions, not necessarily proper, without assuming local compactness and con-
nectedness of the underlying spaces. So, we introduce a new, rather natural, class
of metric actions on separable (not necessarily connected) metric spaces called
Cauchy-indivisible. Note that isometric actions constitute nowadays an important
part of the theory of proper actions and that the group of isometries of a locally
compact and connected metric space acts properly on it.

As the following definition shows, Cauchy-indivisible actions are characterized
by an isotropic behavior of divergent nets of the acting group with respect to the
basic metric notion of a Cauchy sequence. Recall that zi →∞ in Z means that
the net {zi } does not have any convergent subnet in the space Z .
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Definition 1.1. Let (G, X) be a continuous action of a topological group G on a
metric space X . The action is said to be Cauchy-indivisible if the following holds:
If {gi } is a net in G such that gi →∞ in G and {gi x} is a Cauchy net in X for
some x ∈ X then {gi x} is a Cauchy net for every x ∈ X .

It turns out that a Cauchy-indivisible action on a locally compact or complete
metric space is proper and vice versa (see Section 3), and that in general the two
notions may differ (see Section 4). In both cases the underlying space is not as-
sumed to be connected. The omission of this assumption in the locally compact
case, as well the omission of local compactness in the main part of the paper at
hand is an advantage coming from the fact that Cauchy indivisibility essentially
reflects the global character of self-maps of X compared with the local properties
or the connectedness of the underlying space. So we can generalize the framework
of proper actions and go beyond, provided that this new framework leads

(a) to interesting results in the non locally compact case, and

(b) enables a better understanding of proper actions on locally compact spaces.

Concerning requirement (b) we note that in Theorem 3.3 we give an answer to
the open question of characterizing proper actions on nonconnected locally com-
pact metric spaces and in Theorem 7.4 we establish an interconnection between
Borel sections (which occur in Cauchy-indivisible actions on separable spaces, see
Proposition 7.1) and fundamental sets that characterize proper isometric actions.
Recall that a section of an action (G, X) is a subset of X which contains only one
point from each orbit. A Borel section is a section that is a Borel subset of X
(useful, for example, in measure theory).

Theorem 7.4. Let G be a group which acts properly on a locally compact space
X , and suppose that the orbit space G\X is paracompact. Let S be a section for
the action (G, X).

(i) For every open neighborhood U of S we can construct a closed fundamental
set Fc and an open fundamental set Fo such that Fc ⊂ Fo ⊂U.

(ii) If , in addition, (X, d) is a separable metric space, in which case the action
(G, X) is Cauchy-indivisible, then there exists a Borel section SB , which is
also a fundamental set, such that SB ⊂ Fc ⊂ Fo ⊂U.

Note that SB in (ii) of the above theorem is a “minimal” fundamental set, because
of its construction, and as such may lead to applications.

The new notion of “like properness” seems to be suitable for structure theorems,
as our first results indicate. Concerning requirement (a) above, in Section 5, which
is the main part of the paper at hand, we consider a separable metric space (X, d)
such that the natural evaluation action of the group of isometries Iso(X) on X is
Cauchy-indivisible. Let X̂ denote the completion of (X, d) and let E be the Ellis
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semigroup of the lifted group Îso(X) in C(X̂ , X̂), that is, the pointwise closure of
Îso(X) in C(X̂ , X̂). Let

H = {h ∈ C(X̂ , X̂) | there exists a sequence {gn} ⊂ Iso(X)
with gn→∞ in Iso(X) and ĝn→ h in C(X̂ , X̂)},

Xl = {hx | h ∈ H, x ∈ X},

X p = {hx | h ∈ H ∩ Iso(X̂), x ∈ X}.

With this notation and the previously mentioned assumptions, among other results
we show the following.

Theorem 5.13. The set X ∪ X p is the maximal subset of X ∪ Xl that contains X
such that the map

ω : E × (X ∪ X p)→ (X ∪ X p)× X̂ ,

with ω( f, y)= (y, f y), f ∈ E , and where y ∈ X ∪ X p is proper.

The interest in this theorem lies in the fact that an action (G, X) is proper if the
map G× X→ X× X defined by (g, x) 7→ (x, gx) is proper, see [Bourbaki 1966a,
Definition 1, p. 250].

We recall that a topological group has a Weil completion with respect to the
uniformity of pointwise convergence if it can be embedded densely in a complete
group with respect to its left uniform structure.

Proposition 5.18. The following are equivalent:

(i) The map ω : E × (X ∪ Xl)→ (X ∪ Xl)× X̂ is proper.

(ii) E is a group (precisely a closed subgroup of Iso(X̂)).

(iii) Iso(X) has a Weil completion.

Corollary 5.20. If E is a group the action (Iso(X), X) is embedded densely in the
proper action (E, X ∪ Xl) such that the following equivariant diagram commutes:

(Iso(X), X)

��

// X

��
(E, X ∪ Xl) // X̂ ,

where X → X ∪ Xl is the inclusion map and the map Iso(X)→ E is defined by
g 7→ ĝ for every g ∈ Iso(X). By “densely” we mean that X is dense in X ∪ Xl and
Îso(X) is dense in E.
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The above result may lead to further structure theorems, see Question 5.21.

Proposition 7.1. If the Ellis semigroup E is a group then the action (E, X ∪ Xl)

has a Borel section.

As Theorem 7.4(ii) mentioned above indicates, the notion of a Borel section,
which according to the above result is a feature of the Cauchy-indivisible actions
on separable metric spaces, is remarkably related to that of a fundamental set in the
locally compact case and may be, similarly, used for structural theorems. So, it is
interesting to ask whether the existing Borel section for the action (E, X ∪ Xl) can
be reduced to a Borel section for the initial action (Iso(X), X), see Question 7.7.

In order to indicate or to exclude possible directions for further investigation con-
cerning Cauchy-indivisible actions, we study various examples, see Examples 5.14,
5.17, 5.23, and 7.3. Among them, an example that may be of independent interest
is the following (see Section 6): Consider the action (Iso(Iso(Z)), Iso(Z)), where
Z is the discrete space of the integers, with suitable metrics on the acting group
Iso(Iso(Z)) and the underlying space Iso(Z). We show that this action is proper
and Cauchy-indivisible while the Ellis semigroup is not a group and Iso(Iso(Z))
has no Weil completion.

2. Basic notions and notation

For what follows, in addition to the notation established in the introduction, (X, d)
will denote a metric space with metric d and Iso(X)will denote its group of (surjec-
tive) isometries of X endowed with the topology of pointwise convergence. With
this topology Iso(X) is a topological group [Bourbaki 1966b, Chapter X, §3.5,
Corollary]. Let (X̂ , d̂) stand for the completion of (X, d). For a Cauchy sequence
{xn} in X let [xn] ∈ X̂ denote the limit point of {xn} in X̂ . We denote by ĝ and
Îso(X) the lift of g ∈ Iso(X) and the lift of the group Iso(X), respectively, in
C(X̂ , X̂), the space of the continuous self-maps of X̂ (which is considered with
the topology of pointwise convergence).

A continuous action of a topological group G on a topological space X is a
continuous map G×X→ X with (g, x) 7→ gx , g ∈G, x ∈ X such that (e, g) 7→ x ,
for every x ∈ X where e denotes the unit element of G, and (h, (g, x)) 7→ (hg)x
for every h, g ∈ G, and x ∈ X . When the action map is known we will denote the
action simply by (G, X). Let U ⊂ X , then GU := {gx | g ∈G, x ∈U }. Especially,
if U = {x} then the set Gx := G{x} is called the orbit of x ∈ X under G. The
subgroup Gx := {g ∈ G | gx = x} of G is called the isotropy group of x ∈ X .
The natural evaluation action of Iso(X) on X (denoted by (Iso(X), X)) is the map
Iso(X)× X→ X with (g, x) 7→ g(x), g ∈ Iso(X), and x ∈ X . If we endow Iso(X)
with the topology of pointwise convergence this action is always continuous. As
usual, S(x, ε) will denote the open ball centered at x with radius ε > 0.
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Definition 2.1. A continuous action (G, X) is (equivalently to the Bourbaki defi-
nition) proper if J (x)=∅, for every x ∈ X , where

J (x)=
{

y ∈ X
∣∣ there exist nets {xi } in X, and {gi } in G

with gi →∞, lim xi = x and lim gi xi = y
}

denotes the extended (prolongational) limit set of x ∈ X .

It is easily seen that in the special case of actions by isometries J (x) = L(x)
holds for every x ∈ X , where

L(x)=
{

y ∈ X
∣∣ there exists a net {gi } in G with gi →∞ and lim gi x = y

}
denotes the limit set of x ∈ X under the action of G on X . Hence an action by
isometries (G, X) is proper if and only if L(x)=∅ for every x ∈ X .

3. Cauchy indivisibility and proper actions
on locally compact metric spaces

In this section we show that for group actions on locally compact metric spaces
the notions of properness and Cauchy indivisibility coincide. We start with the
following easily proved observation.

Lemma 3.1. Let (X, d) be a locally compact metric space and {gi } ⊂ Iso(X) be a
net such that {gi x} is a Cauchy net for some x ∈ X. Then there exists a point y ∈ X
such that gi x→ y.

Proposition 3.2. Let (X, d) be a locally compact metric space. The action (Iso(X),
X) is proper if and only if it is Cauchy-indivisible.

Proof. Assume that (Iso(X), X) is Cauchy-indivisible. We will show that the limit
sets L(x) are empty for every x ∈ X . Assume the contrary, that is, there exist a net
{gi } in Iso(X) and x, y ∈ X such that gi →∞ and gi x → y. We will show that
gi → h for some h ∈ Iso(X), which is a contradiction of the assumption gi →∞.
Since (Iso(X), X) is Cauchy-indivisible then {gi x} is a Cauchy net, for every x ∈ X .
Therefore, by the previous lemma, there is a map h : X→ X defined by h(x) := y
such that gi → h pointwise on X and h preserves the metric d . Observe that
g−1

i y→ x since d(g−1
i y, x) = d(y, gi x). Applying Cauchy indivisibility for the

action (Iso(X), X) and the previous lemma again, we conclude that there exists a
map f : X→ X such that g−1

i → f pointwise on X and f preserves the metric d .
Obviously f is the inverse map of h, hence h ∈ Iso(X).

The converse implication follows easily in a similar way. �

If X is locally compact and G acts properly on X (hence G is a locally com-
pact group), it is well known, see, for example, [Koszul 1965], that there exists a
G-invariant compatible metric on X . Compatible means that this metric induces
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the topology of X . Hence, the previous proposition states the following result that
characterizes the properness of actions on locally compact metric spaces indepen-
dently of the connectedness of the underlying space.

Theorem 3.3. Let (X, d) be a locally compact metric space. An action (G, X) is
proper if and only if it is Cauchy-indivisible.

Remark 3.4. The previous theorem also holds, and can be similarly proved, if we
replace the full group of isometries of X by a closed subgroup of it or if we replace
the local compactness of X by completeness.

4. Cauchy indivisibility vs. properness

In this section we provide examples showing that Cauchy indivisibility and proper-
ness are distinct notions for isometric actions on separable and non locally com-
pact metric spaces. We also provide some criteria for the coexistence of Cauchy-
indivisible and proper actions on the basis of the dynamical behavior of the lifting
of the action (Iso(X), X) in the completion of the underlying space.

Remark 4.1. The example in Section 6 shows that the two notions may coexist
also in the case when X is neither locally compact nor complete.

The following example shows that the action (Iso(X), X) can be proper and not
Cauchy-indivisible.

Example 4.2. Let X be the set Q of the rational numbers endowed with the Eu-
clidean metric. It is easy to see that the action (Iso(X), X) is proper. Take a
sequence of rational numbers {qn} such that qn→ a, where a is an irrational. Let
{gn} ⊂ Iso(X) with gnx := (−1)nx +qn for every x ∈ X , then gn→∞ in Iso(X).
Since gn0 = qn for every n ∈ N, the sequence {gn0} is Cauchy. But for x 6= 0 the
sequence {gnx} has two limit points in R and hence cannot be a Cauchy sequence.

The next example shows that the action (Iso(X), X) can be Cauchy-indivisible
and not proper.

Example 4.3. Let X be the set Q+
√

2N endowed with the Euclidean metric. Its
group of isometries is Q acting by translations (reflections are excluded because
of the addend

√
2N). Therefore, (Iso(X), X) is Cauchy-indivisible. However, the

action (Iso(X), X) is not proper. To see that take a sequence of rational numbers
{qn} such that qn →

√
2. Let {gn} ⊂ Iso(X) with gnx := x + qn . Observe that

g−1
n

√
2→ 0 /∈ X . Therefore gn→∞ in Iso(X). Since gn

√
2→ 2

√
2∈ X the limit

set L(
√

2) is not empty, so the action (Iso(X), X) is not proper.

Motivated by these examples we give necessary and sufficient conditions for a
Cauchy-indivisible action (Iso(X), X) to be proper and vice versa:

Proposition 4.4. Let Iso(X) be Cauchy-indivisible. The following are equivalent:
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(i) The action (Iso(X), X) is proper.

(ii) If h is in the pointwise closure of Îso(X) in C(X̂ , X̂) then either h(X)⊂ X or
h(X)⊂ X̂ \ X.

Proof. Assume that the action (Iso(X), X) is proper and h is in the pointwise
closure of Îso(X) in C(X̂ , X̂). Then there is a net {ĝi } in Îso(X) such that ĝi → h
pointwise in X̂ . If h(X)∩ X 6=∅ then there is some x ∈ X such that ĝi x→ hx ∈
X . Since the action (Iso(X), X) is proper the net {gi } has a convergent subnet in
Iso(X). Then it is easy to see that h ∈ Îso(X), hence h(X)⊂ X .

Assume now that condition (ii) holds. We will show that the limit sets L(x) are
empty for every x ∈ X , hence the action (Iso(X), X) is proper. We will proceed
by contradiction. Assume that there exist x, y ∈ X and a net {gi } in Iso(X) with
gi x → y and gi →∞ in Iso(X). Since {gi x} is a Cauchy net in X and Iso(X)
is Cauchy-indivisible then {gi x} is a Cauchy net for every x ∈ X , hence {gi x}
converges in X̂ for every x ∈ X . So, we can define a map h : X → X̂ by letting
hx := lim ĝi x . It is easy to see that h preserves the metric d̂ on X . Thus, if
w ∈ X̂ and {xn} ⊂ X is a sequence in X such that xn → w in X̂ then {hxn} is a
Cauchy sequence in X , hence it converges to a point in X̂ which is independent
of the choice of the sequence {xn}. Then, by [Bourbaki 1966a, Chapter I, §8.5,
Theorem 1], the map h : X → X̂ has a unique continuous extension on X̂ . It
is easy to see that ĝi → h pointwise on X̂ , thus h is in the pointwise closure of
Îso(X) in C(X̂ , X̂). Since gi x → y then hx = y where x, y ∈ X . So using our
hypothesis h(X)⊂ X . Since gi preserves the metric d then g−1

i y→ x . Using the
same arguments as before we have that h ∈ Îso(X) hence the net {gi } converges in
Iso(X), a contradiction of the assumption gi →∞ in Iso(X). �

Proposition 4.5. Assume that (Iso(X), X) is a proper action. The following are
equivalent:

(i) Iso(X) is Cauchy-indivisible.

(ii) Let {gi } ⊂ Iso(X) a net with gi →∞ and {gi x} be a Cauchy net for some
x ∈ X. If y ∈ X then the net {gi y} cannot have more than one limit point in
the completion X̂ of X.

Proof. The direction from (i) to (ii) is trivial. If the converse implication does not
hold, then there is a Cauchy net {gi x} such that there is y ∈ X , an ε>0, and subnets
{gik y} and {gil y} of {gi y} such that d(gik y, gil y) ≥ ε for every index k, l. Since
{gi x} is a Cauchy net in X then we may assume that d(gik x, gil x)→ 0. Hence,
d(g−1

ik
gil x, x)→0. We can define a new net {hi, j }⊂ Iso(X) by letting hi, j := g−1

j gi

for every pair of indices (i, j), with direction defined by (i1, j1) ≤ (i2, j2) if and
only if i1 ≤ i2 and j1 ≤ j2. Therefore, hik ,il x → x . Since (Iso(X), X) is proper
there is a subnet {hikm ,ilm

} and some g ∈ Iso(X) such that hikm ,ilm
→ g. Hence
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{hikm ,ilm
y} is a Cauchy net in X , therefore for every ε′> 0 there exists an index m0

such that

d(g−1
ikm

gilm
y, g−1

ikn
giln

y) < ε′ for every m, n ≥ m0.

By taking m = n ≥ m0 it is easy to see that {gilm
y} is a Cauchy net and if we

follow the same procedure we can also show that {gikm
y} is a Cauchy net. Since

d(gikm
y, gilm

y) ≥ ε for every index m the net {gi y} has two limit points in the
completion X̂ of X , a contradiction of our hypothesis. �

5. Cauchy-indivisible isometric actions
on separable metric spaces

In this section (X, d) will denote a separable metric space such that the action
(Iso(X), X) is Cauchy-indivisible.

We show the adequacy of sequences in the definition of Cauchy indivisibility:

Proposition 5.1. In the definition of Cauchy indivisibility for isometric actions nets
can be replaced by sequences.

Proof. Assume that if {gn} is a sequence in Iso(X) such that gn →∞ and {gnx}
is a Cauchy sequence in X for some x ∈ X then {gnx} is a Cauchy sequence for
every x ∈ X . Let { fi } be a net in Iso(X) such that fi →∞ and { fi x} is a Cauchy
net in X for some x ∈ X . We will show that { fi x} is a Cauchy net in X for every
x ∈ X . We argue by contradiction. Suppose that there exists y ∈ X such that { fi y}
is not a Cauchy net. Hence, there is an ε > 0 and subnets { fik } and { fil } such that
d( fik y, fil y) ≥ ε for every k, l. Since { fi x} is a Cauchy net in X there is a point
z ∈ X̂ such that f̂i x→ z. Hence, the subnets { f̂ik x} and { f̂il x} also converge to z.
So we may find sequences { f̂ikn

x} and { f̂iln
x} such that f̂ikn

x→ z and f̂iln
x→ z.

Therefore, { fikn
x} and { filn

x} are Cauchy sequences in X and d( fikn
y, filn

y) ≥ ε
for every n ∈ N. Let {hn} ⊂ Iso(X) with

h4n−3 = fik2n−1
, h4n−2 = fil2n−1

, h4n−1 = fil2n
, and h4n = fik2n

,

n = 1, 2, . . . . It is easy to see that ĥnx→ z, hence {hnx} is a Cauchy sequence in
X . Moreover, {hn y} is not a Cauchy sequence in X since d( fikn

y, filn
y) ≥ ε for

every n ∈ N and for the same reason hn→∞ in Iso(X), which is a contradiction
of our hypothesis. �

Definition 5.2. Fix a dense sequence D={xi }⊂ X in X̂ . Since the metric d̂/(1+d̂)
is an equivalent metric to d̂ on X (and also gives the same groups of isometries on
X and X̂ and the same Cauchy sequences) we may assume that d̂ is bounded by 1.
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We define δ : Iso(X̂)× Iso(X̂)→ R+ by

δ( f, g)=
∞∑

i=1

1
2i d̂( f xi , gxi )

for every f, g ∈ Iso(X̂). It is easy to see that δ is a left-invariant metric on Iso(X̂).

Proposition 5.3. The uniformity of pointwise convergence, the left uniformity, and
the uniformity induced by δ on Iso(X̂) and Iso(X) coincide, independently of
Cauchy indivisibility.

Proof. The proof is similar to the proof of [Hjorth 2008, Lemma 2.11]. �

Proposition 5.4. The pointwise closures of Iso(X) in C(X, X) and of Iso(X̂) in
C(X̂ , X̂) endowed with the metric δ are separable metric spaces.

Proof. It follows easily using the same arguments as in the proof of [Hjorth 2008,
Lemma 2.11] and [Bourbaki 1966b, Chapter X, §3, Exercise 6(b), p. 327]. �

The following lemma will be used often in the sequel.

Lemma 5.5. Let {gn} be a sequence in Iso(X) such that {gnx} is a Cauchy se-
quence in X for some x ∈ X and gn→∞. Then

(i) {gnxn} is a Cauchy sequence for every Cauchy sequence {xn} in X and

(ii) if {xk} is Cauchy sequence in X then ĝn[xk] → [gk xk] in X̂ .

Proof. (i) The proof follows by the triangle inequality and the fact that {gnxn0} is
a Cauchy sequence, for suitable n0 ∈ N.

(ii) By (i), {gk xk} is a Cauchy sequence in X , hence [gk xk] ∈ X̂ . The rest of the
proof is similar to that of (i). �

Corollary 5.6. If {gn} is a sequence in Iso(X) such that gn →∞ andi {gnx} is
a Cauchy sequence in X for some x ∈ X , then {ĝn} converges pointwise on X̂ to
some h ∈C(X̂ , X̂) which preserves the metric d̂. In addition, if {g−1

n y} is a Cauchy
sequence for some y ∈ X , then {ĝn} converges pointwise on X̂ to some h ∈ Iso(X̂).

Proof. The proof is an immediate consequence of Lemma 5.5(ii) if we set h : X̂→ X̂
with h[xk] := [gk xk] for every [xk] ∈ X̂ . �

Corollary 5.6 enables the following equivalent expressions of the corresponding
sets defined in the introduction:

Notation 5.7. We have

H=
{
h∈C(X̂ , X̂)

∣∣ there exists a sequence {gn}⊂ Iso(X) with gn→∞ in Iso(X),

{gnx} is a Cauchy sequence for some x ∈ X and ĝn→ h in C(X̂ , X̂)
}
.

Xl denotes the set of the limit points of the action (Iso(X), X) in X̂ ; specifically,
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Xl =
{

y ∈ X̂
∣∣ there exists a sequence {gn} ⊂ Iso(X) with gn→∞ in Iso(X),

such that {gnx} is a Cauchy sequence for some x ∈ X and y = [gk x]
}
.

X p denotes the set of the special limit points of (Iso(X), X) in X̂ ; specifically,

X p =
{

y ∈ X̂
∣∣ there exists a sequence {gn} ⊂ Iso(X) with gn→∞ in Iso(X),

such that {gnx} and {g−1
n x} are Cauchy sequences for some x∈X and y=[gk x]

}
.

Proposition 5.8. If {gn} is a sequence in Iso(X) such that gn→ f on X for some
f in C(X, X), then ĝn→ f̂ on X̂ and f̂ ∈ Iso(X̂).

Proof. If {gn} has a convergent subsequence {gnk } to some point g ∈ Iso(X) then
f = g on X and it is easily seen that ĝn→ ĝ pointwise on X̂ . �

With the notation established in the introduction, we have

Proposition 5.9. The set E is

(i) the union Îso(X)∪ H ,

(ii) complete with respect to the uniformity of pointwise convergence on X̂ , and

(iii) a semigroup, the Ellis semigroup of Îso(X) in C(X̂ , X̂), that is, the pointwise
closure of Îso(X) in C(X̂ , X̂).

Proof. For part (i), take a sequence {ĝn} in Îso(X) such that ĝn → h for some
h ∈ C(X̂ , X̂). If {gn} has a convergent subsequence to some g ∈ Iso(X) then, by
Proposition 5.8, h = ĝ ∈ Îso(X). Let gn →∞ in Iso(X) and take some x ∈ X .
Since ĝnx→ hx , then {gnx} is a Cauchy sequence in X and therefore h ∈ H . Parts
(ii) and (iii) follow from [Hjorth 2008, Lemmata 2.10 and 2.11] by noticing that a
sequence {gn} in Iso(X) is Cauchy with respect to the left uniformity of Iso(X) if
and only if {gnx} is Cauchy in X for every x ∈ X . �

Remark 5.10. As the example in Section 6 shows, the Ellis semigroup E is not,
in general, a group. However:

Proposition 5.11. The Ellis semigroup E is a group if and only if Xl = X p.

Proof. Assume that E is a group and let y ∈ Xl . Hence, there is a sequence
{gn} ⊂ Iso(X) with gn→∞ in Iso(X) and a map h ∈ C(X̂ , X̂) such that ĝn→ h
pointwise on X̂ and y = hx for some x ∈ X . Since E is a group then h has an
inverse h−1. Thus ĝ−1

n → h−1. The last implies that {g−1
n x} is a Cauchy sequence

in X , therefore y ∈ X p.
To show the converse implication, assume that Xl = X p and take some h ∈ E .

By Proposition 5.9(i),
h ∈ Îso(X)∪ H.
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So, if h ∈ Îso(X) obviously it has an inverse. Assume that h ∈ H . Hence, there
is a sequence {gn} ⊂ Iso(X) with gn→∞ in Iso(X) such that ĝn→ h pointwise
on X̂ . So [gnx] ∈ Xl for every x ∈ X . But Xl = X p, hence {g−1

n x} is a Cauchy
sequence. Applying Corollary 5.6, h ∈ Iso(X̂) so it has an inverse in E . �

Lemma 5.12. The set X ∪ Xl is E-invariant.

Proof. It is easy to verify that X and Xl are Îso(X)-invariant. We will show
that they are also H -invariant. Let h ∈ H and x ∈ X . By the definition of H
there is some sequence {gn} in Iso(X) such that gn →∞ in Iso(X) and ĝn → h
pointwise on X̂ . If [ fnx] ∈ Xl , for some sequence { fn}⊂ Iso(X) and x ∈ X then, by
Corollary 5.6, h[ fnx] = [gn fnx]. If the sequence {gn fn} has a convergent subse-
quence in Iso(X) then the Cauchy sequence {gn fnx} has a convergent subsequence
in X , so it converges in X . So h[ fnx] = [gn fnx] ∈ X . Otherwise gn fn→∞ and
h[ fnx] = [gn fnx] ∈ Xl . �

Theorem 5.13. The set X ∪ X p is the maximal subset of X ∪ Xl that contains X
such that the map

ω : E × (X ∪ X p)→ (X ∪ X p)× X̂ ,

with ω( f, y)= (y, f y), f ∈ E , and y ∈ X ∪ X p, is proper.

Proof. We first show that the map ω : E × (X ∪ X p)→ (X ∪ X p)× X̂ is proper.
Since the evaluation map E×(X∪X p)→ X̂ is isometric and action-like, according
to Section 2, it suffices to show that the limit sets L(x) are empty for every x ∈
X ∪ X p. Let { fn} be a sequence in E such that fn y→ z for some y ∈ X ∪ X p and
z := [zk] ∈ X̂ .

Case I. Assume that y ∈ X . If { fn} has a subsequence { fnk } in Îso(X) then either
the restriction of { fnk } on X has a convergent subsequence in Iso(X) hence, by
Proposition 5.8, the sequence { fnk } converges pointwise to some point of Îso(X)⊂
E , or fn→∞ in Iso(X). In this case, since { fn y} is a Cauchy sequence in X , the
sequence { fn} converges pointwise to some point of H ⊂ E by Corollary 5.6.

Assume, now, that { fn} is in H and consider the dense sequence D = {xi } in X
which we used to define the metric δ; see Definition 5.2. So, there is a sequence
{xin } in D such that xin → y. By the definition of H and Proposition 5.3, there is
a sequence {gn} in Iso(X) such that

(5-1) δ(ĝn, fn) <
1

in2in
.

Hence, using the form of the metric δ, we conclude that

d̂(ĝnxin , fnxin ) <
1
in
.



432 ANTONIOS MANOUSSOS AND POLYCHRONIS STRANTZALOS

Moreover,

d̂(ĝn y, z)≤ d̂(ĝnxin , fnxin )+ d̂( fnxin , fn y)+ d̂( fn y, z)

= d̂(ĝnxin , fnxin )+ d̂(xin , y)+ d̂( fn y, z).

Therefore, gn y→ z. Arguing as in the beginning of the proof, {gn} has a convergent
subsequence to a point of E , hence by (5-1), the same holds for the sequence { fn}.

Case II. Assume that y ∈ X p. Hence, there exists a sequence {pk} ⊂ Iso(X) with
pk →∞ in Iso(X), an isometry h1 ∈ Iso(X̂) such that p̂k → h1 pointwise on X̂ ,
and h1x := [pk x] = y for some x ∈ X . If { fn} has a subsequence { fnk } in Îso(X)
then either the restriction of { fnk } on X has a convergent subsequence in Iso(X)
hence, by Proposition 5.8, the sequence { fnk } converges pointwise to some point of
Îso(X)⊂ E , or fn→∞ in Iso(X). If the latter holds, then we will show that there
is a Cauchy sequence of the form { fni pki x} in X for some subsequences { fni } and
{pki } of { fn} and {pk}, respectively (the problem is that we do not know if { fnx}
or { fn pnx} is a Cauchy sequence in X for some x ∈ X ).

Let i be a positive integer. Since fn[pk x] → z and z := [zk] ∈ X̂ , there is a
positive integer n0 that depends only on i such that

d̂( fn[pk x], [zk]) <
1
i

for every n ≥ n0(i). Therefore

lim
k

d( fn pk x, zk) := d̂( fn[pk x], [zk]) <
1
i

for every n ≥ n0(i). Hence, using induction, we may find strictly increasing se-
quences of positive integers {ni } and {ki } such that

(5-2) d( fni pki x, zki ) <
1
i

for every positive integer i . Since {zki } is a Cauchy sequence then by (5-2),
{ fni pki x} is a Cauchy sequence in X .

Now, either { fni pki } has a convergent subsequence in Iso(X) (without loss of
generality and for the economy of the proof we may assume that { fni pki } con-
verges in Iso(X)) or fni pki →∞ in Iso(X). In both cases, by Corollary 5.6 and
Proposition 5.8, there is h2 ∈ C(X̂ , X̂) such that f̂ni p̂ki = f̂ni pki → h2 pointwise
on X̂ . We will show that f̂ni → h2h−1

1 pointwise on X̂ . Take w ∈ X̂ . Since
h1 ∈ Iso(X̂), there is some u ∈ X̂ such that h1(u)= w. Hence

d̂( fniw, h2h−1
1 w)= d̂( fni h1u, h2u)≤ d̂( fni h1u, f̂ni pki u)+ d̂( f̂ni pki u, h2u)

= d̂(h1u, p̂ki u)+ d̂( f̂ni pki u, h2u),
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which converges to 0, since p̂ki → h1 and f̂ni pki → h2 pointwise on X̂ . Hence
{ fnx} is a Cauchy sequence for every x ∈ X . Since we assumed that fn →∞ in
Iso(X) then, by Corollary 5.6, { fn} converges pointwise on X̂ to h2h−1

1 ∈ E .
To finish the proof of the second case assume that { fn} is in H . Then arguing

as in the first case we can show that { fn} has a convergent subsequence to a point
of E .

Next, we show that if Y is a subset of X ∪ Xl that contains X such that the map

ω : E × Y → Y × X̂

is proper then Y ⊂ X ∪ X p. To see that take a point [gk x] ∈ Y \ X . This means
that {gk} is a sequence in Iso(X) such that gk → ∞ in Iso(X) and {gk x} is a
Cauchy sequence in X . By Lemma 5.5(ii), ĝnx → [gk x] and, by Corollary 5.6,
{ĝn} converges pointwise on X̂ to some h ∈ C(X̂ , X̂). Note that x ∈ X ⊂ Y .
Since ĝnx → [gk x] and ĝn preserves the metric d̂ then ĝ−1

n [gk x] → x . Hence,
by the properness of ω, we may assume that {ĝ−1

n } has a subsequence {ĝ−1
nk
} that

converges pointwise to some f ∈ E . This makes h a surjection, hence h ∈ Iso(X̂).
Therefore, [gk x] ∈ X p, so Y \ X ⊂ X p. �

Note that, as the following example shows, it may happen that X p = Xl 6= ∅,
X∪X p 6= X̂ , and the set X∪X p is not the maximal subset of X̂ such that the action
(E, X ∪ X p) is proper.

Example 5.14. Take

X := {(x, y) ∈ R | x ∈Q+
√

2N, y > 0},

endowed with the Euclidean metric. Its group of isometries is the additive group
of the rational numbers acting by horizontal translations. Therefore, (Iso(X), X)
is Cauchy-indivisible. Obviously X̂ is the closed upper half-plane, X p = Xl 6=∅,
X∪X p is the open upper half-plane, and E is the additive group of the real numbers
acting by horizontal translations on X̂ . Hence E acts properly on X̂ .

Remark 5.15. The sets X p and Xl constructed in Theorem 5.13 are optimal in the
sense that if one may think to replace the sets X p and Xl with the following more
general sets

X∗l =
{

y ∈ X̂
∣∣ there exists a sequence {gn} ⊂ Iso(X) and some x ∈ X

such that gn→∞ in Iso(X), {gnx} is a Cauchy sequence,

and y = [gk xk], for some [xk] ∈ X̂
}
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and

X∗p =
{

y ∈ X̂
∣∣ there exists a sequence {gn} ⊂ Iso(X) and some x ∈ X

such that gn→∞ in Iso(X), {gnx} and {g−1
n x} are Cauchy sequences,

and y = [gk xk], for some [xk] ∈ X̂
}
,

and ask if the set X ∪ X∗p is the maximal subset of the completion X̂ such that the
map ω∗ : E × (X ∪ X∗p)→ (X ∪ X∗p)× X̂ with ω∗( f, y) = (y, f y), f ∈ E , and
y ∈ X ∪ X∗p is proper this is not true in general. This follows from the following
assertion and Example 5.17, which shows that there is a metric space X such that
(Iso(X), X) is Cauchy-indivisible, X p 6=∅, and the map ω∗ as above is not proper.

Assertion 5.16. If X∗p 6=∅ (equivalently X p 6=∅) then X∗p = X̂ .

Proof. Let y = [xk] in X̂ . By assumption, there exists a sequence {gn} ⊂ Iso(X)
and a point x ∈ X such that gn→∞ in Iso(X) and the sequences {gnx} and {g−1

n x}
are Cauchy. By Lemma 5.5, {gnxn} is a Cauchy sequence in X and g−1

k [gk xk] →

[g−1
k gk xk] = [xk] = y. Hence, y ∈ X∗p. �

Example 5.17. This is a combination of Example 4.3 and of a 3-dimensional vari-
ation of the “river metric” [Engelking 1989, Example 4.1.6]. Let

X = {(x, y, z) | x ∈Q+
√

2N, y ∈Q+
√

2N, z > 0}.

For every pair of points w1 = (x1, y1, z1), w2 = (x2, y2, z2) ∈ X define

d(w1, w2) :=

{
|y1− y2| + |z1−z2|, if x1 = x2,

|y1| + |y2| + |x1−x2| + |z1−z2|, if x1 6= x2.

We can easily verify that d is a metric on X . The group of isometries Iso(X, d)
consists of all the maps g : X→ X of the form

g(x, y, z)= (x + p, y+ q, z), p, q ∈Q.

The action (Iso(X), X) is Cauchy-indivisible since X does not contain the xy-plane
(the last coordinate of the points of X is positive). Then

X p = {(x, y, z) | x ∈Q+
√

2N, y ∈ R, z > 0}.

To see that take x ∈Q+
√

2N, y∈R, and z>0 and choose k∈N such that y−
√

2k /∈
Q. Let {qn} be a sequence of rational numbers such that qn → y −

√
2k. Hence,

if we let {gn} ⊂ Iso(X) with gn(x, y, z) := (x, y + qn, z) then gn(x,
√

2k, z) =
(x, qn +

√
2k, z)→ (x, y, z). Hence (x, y, z) ∈ X p. Observe that

X̂ = {(x, y, z) | x ∈Q+
√

2N, y ∈ R, z ≥ 0},
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and E consists of all the maps g : X̂→ X̂ with

g(x, y, z)= (x + p, y+ r, z), p ∈Q, r ∈ R.

However, the map ω̂ : E× X̂→ X̂× X̂ with ω̂( f, w)= (w, fw), f ∈ E , andw∈ X̂ is
not proper since if we take a sequence of rational numbers {pn} such that pn→

√
2

and let {gn}⊂ E with gn(x, y, z)= (x+ pn, y, z) then gn(x, 0, 0)→ (x+
√

2, 0, 0)
for each x ∈ Q+

√
2N. The sequence {gn} diverges in E since, for instance, the

distance of the points gn(
√

2,
√

2, 1) = (qn +
√

2,
√

2, 1) from any point of X is
eventually at least

√
2. Hence the limit set L((x, 0, 0)) is not empty.

A question that arises naturally from Theorem 5.13 is if the action of the El-
lis semigroup E on X ∪ Xl is proper. Surprisingly, as the following proposition
shows, this is equivalent to the existence of a Weil completion (with respect to the
uniformity of pointwise convergence) for the group Iso(X). But first let us recall a
few things about the Weil completion of Iso(X), defined in the introduction. The
uniformity of pointwise convergence on X coincides with the left uniformity of
Iso(X) (see [Bourbaki 1966a, Chapter III, §3.1 and Chapter X, §3, Exercise 19(a),
p. 332]) and Iso(X) has Weil completion with respect to this uniformity if the left
and the right uniformities coincide; see [Bourbaki 1966a, Chapter III, §3.4 and §3,
Exercise 3, p. 306]. Note that the left completion of Iso(X) does not depend on
the choice of a left-invariant metric on Iso(X); see [Hjorth 2008, Lemma 2.9].

Proposition 5.18. The following are equivalent:

(i) The map ω : E × (X ∪ Xl)→ (X ∪ Xl)× X̂ is proper.

(ii) E is a group (precisely a closed subgroup of Iso(X̂)).

(iii) Iso(X) has a Weil completion with respect to the uniformity of pointwise con-
vergence (in this case E is the Weil completion of Iso(X)).

Proof. We show that (i) implies (ii) and vice versa. Suppose that ω is proper. Take
some h ∈ E . Since E is a semigroup, see Proposition 5.9(iii), we have only to show
that h has an inverse in E . If h = ĝ ∈ Îso(X) for some g ∈ Iso(X), then ĝ−1 is the
inverse of h in Îso(X)⊂ E . If h ∈ H there is a sequence {gn} in Iso(X) such that
gn→∞ in Iso(X) and ĝn→ h pointwise on X̂ . Hence, if x ∈ X then ĝnx→ hx .
Since ĝn preserves the metric d̂ then ĝ−1

n hx = ĝ−1
n hx → x . By Lemma 5.12,

hx ∈ X ∪ Xl , hence, by the properness of ω, {ĝ−1
n } has a convergent subsequence

{ĝ−1
nk
} to some f ∈ E . This makes h a surjection, hence h ∈ Iso(X̂) and h has

an inverse in E . To show the converse implication note that if E is a group then
Xl = X p; see Proposition 5.11. Hence, by Theorem 5.13, the map ω is proper.

To finish the proof of the proposition let us show that (iii) implies (ii) and vice
versa. Note that Iso(X) has a Weil completion if and only if the map with g 7→ g−1

for every g ∈ Iso(X) maps Cauchy sequences of Iso(X) to Cauchy sequences; see
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[Bourbaki 1966a, Chapter III, §3.4, Theorem 1]. It is easy to check that in the case
when Iso(X) is Cauchy-indivisible this is equivalent to Xl = X p. Equivalently, by
Proposition 5.11, E is a group. �

Remark 5.19. In the case when Iso(X) is a locally compact group, for example,
if X is a locally compact space and Iso(X) acts properly on it (as it is known in the
case X is connected), then by [Bourbaki 1966a, Chapter III, §3, Exercise 8, p. 307],
Iso(X) has a locally compact completion hence E is a locally compact group.

We summarize with the following.

Corollary 5.20. If E is a group the action (Iso(X), X) is embedded densely in the
proper action (E, X ∪ Xl) such that the following equivariant diagram commutes:

(Iso(X), X)

��

// X

��
(E, X ∪ Xl)

// X̂,

where X → X ∪ Xl is the inclusion map and the map Iso(X)→ E is defined by
g 7→ ĝ for every g ∈ Iso(X). By “densely” we mean that X is dense in X ∪ Xl and
Îso(X) is dense in E.

Question 5.21. The above embedding of a Cauchy-indivisible action as a dense
subaction of a proper one establishes a remarkable connection between Cauchy-
indivisible and proper actions, and at the same time proposes an interesting ques-
tion: Is there any analogy with the situation of embedding of a proper action (on
a locally compact and connected space) in an appropriate zero-dimensional com-
pactification, like in [Abels 1972; Manoussos and Strantzalos 2007]? Namely, can
we obtain any structurally informative correspondence between divergent nets in
Iso(X) and suitable subsets of Xl?

Remark 5.22. As we will see in the example described in Section 6 it may happen
that X p 6= Xl and X ∪ Xl = X̂ .

In view of possible questions for refinements of Corollary 5.20 we note that
it may happen that X ∪ X p = X̂ and E is not dense in Iso(X̂), as the following
example shows:

Example 5.23. There is a separable metric space (X, d) such that (Iso(X), X) is
Cauchy-indivisible, proper, X ∪ X p = X̂ , and Iso(X) has a Weil completion which
does not coincide with the group Iso(X̂).

Proof. We let X be the set Q +
√

2N endowed with the Euclidean metric; see
Example 4.3. It is easy to check that X∪X p = X∪Xl =R, see also Example 5.17,
hence by Propositions 5.11 and 5.18, Iso(X) has a Weil completion (or just ob-
serve that Iso(X) is an abelian group and use [Bourbaki 1966a, Chapter III, §3.5,
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Theorem 2]). But all the reflections of the space are excluded, hence the pointwise
closure E of Îso(X) does not coincide with Iso(R). �

6. An example of a proper Cauchy-indivisible action
of a group which has no Weil completion

In this section we show that there is a separable metric space X such that the action
(Iso(X), X) is proper and Cauchy-indivisible, and the Ellis semigroup E is not a
group. Equivalently, in view of Proposition 5.18, Iso(X) has no Weil completion.
Consider the space of the integers Z with the discrete metric d , that is, if m, n ∈ Z

then d(m, n) = 0 if m = n and d(m, n) = 1 otherwise. The group of isometries
Iso(Z) consists of all the self bijections of Z and is an example of a topological
group that has no Weil completion. To see that take fn : Z→ Z with fnz = z for
−n < z < 0, fn(−n)= 0, and fnz = z+1 otherwise. Then it is easy to verify that
fn→ f , where f z= z for z< 0, and f z= z+1 for z≥ 0. Hence { fnz} is a Cauchy
sequence in Z for every z ∈ Z, therefore { fn} is a Cauchy sequence in Iso(Z) with
respect to the uniformity of pointwise convergence on Z. But { f −1

n 0} = {−n} is
not a Cauchy sequence, so neither is { f −1

n }. Thus, by [Bourbaki 1966a, Chapter
III, §3.4, Theorem 1], Iso(Z) has no Weil completion. The problem is that the
action (Iso(Z),Z) is not Cauchy-indivisible. To see that notice that { f −1

n 1} = {0}
but { f −1

n 0} = {−n} is not a Cauchy sequence. Nevertheless, the group Iso(Iso(Z))
is Cauchy-indivisible and has no Weil completion as we show in the following.

Take an enumeration A = {zi } of Z and equip Iso(Z) with the metric

%( f, g)=
∞∑

i=1

1
3i d( f zi , gzi )

for f, g ∈ Iso(Z). In view of Proposition 5.3 the uniformity of pointwise conver-
gence, the left uniformity, and the uniformity induced by % on Iso(Z) coincide
(the choice of 1

3 instead of 1
2 in Definition 5.2 will be clarified in the proof of

Lemma 6.1). Note that (Iso(Z), %) is a separable metric space. We will show that
Iso(Iso(Z)) is Cauchy-indivisible but has no Weil completion.

Lemma 6.1. If T ∈ Iso(Iso(Z)) and f, g ∈ Iso(Z) then

d(T ( f )z, T (g)z)= d( f z, gz)

for every z ∈ Z .

Proof. Since %(T ( f ), T (g))= %( f, g) then

∞∑
i=1

1
3i d(T ( f )zi , T (g)zi )=

∞∑
i=1

1
3i d( f zi , gzi ).
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Since the values of d are 0 or 1 then d(T ( f )zn, T (g)zn)= d( f zn, gzn), for every
zn ∈ A = Z (here is the role of the choice of 1

3 instead of 1
2 ). �

Proposition 6.2. If T ∈ Iso(Iso(Z)) and f ∈ Iso(Z) then T ( f )= T (e) ◦ f , where
e is the unit element of Iso(Z).

Proof. Let zk and zl be two distinct integers and let g∈ Iso(Z) be such that gzk= zl ,
gzl = zk , and gz= z elsewhere. We show that T (g)= T (e)◦g. If z 6= zk, zl then, by
Lemma 6.1, d(T (g)z, T (e)z)= d(gz, z)= 0. Hence T (g)z = T (e)z = T (e)◦ gz.
Moreover

d(T (g)zk, T (e)zk)= d(gzk, zk)= d(zl, zk)= 1

and, similarly, d(T (g)zl, T (e)zl) = 1. Since T (g)zk 6= T (g)z = T (e)z for z 6=
zk, zl and T (e) is surjective then T (g)zk = T (e)zl = T (e) ◦ gzk and, similarly,
T (g)zl = T (e) ◦ gzl . Therefore T (g)= T (e) ◦ g.

Fix f ∈ Iso(Z) and some z ∈ Z. If f z = z then T ( f )z = T (e)z = T (e) ◦ f z
since d(T ( f )z, T (e)z) = d( f z, z) = 0. If f z 6= z, let g ∈ Iso(Z) with gz = f z,
g f z = z, and gw = w elsewhere. Since d(T ( f )z, T (g)z) = d( f z, gz) = 0 then
T ( f )z = T (g)z. Using the result of the previous paragraph, T ( f )z = T (g)z =
T (e) ◦ gz = T (e) ◦ f z. Since z was arbitrary then T ( f )= T (e) ◦ f . �

Corollary 6.3. Let L , T ∈ Iso(Iso(Z)). Then L ◦T (e)= L(e)◦T (e) and T−1(e)=
(T (e))−1.

Proof. Since T ( f )= T (e) ◦ f for every T ∈ Iso(Iso(Z)) and f ∈ Iso(Z), then

L ◦ T ( f )= L(T ( f ))= L(e) ◦ T ( f )= L(e) ◦ T (e) ◦ f.

Hence, L(e) ◦ T (e) = L ◦ T (e). If I denotes the identity on Iso(Iso(Z)), then
f = I ( f )= I (e) ◦ f . Hence I (e)= e and T−1(e)= (T (e))−1. �

Proposition 6.4. The map B : Iso(Iso(Z))→ Iso(Z) with B(T )=T (e) is a uniform
group isomorphism with respect to the uniformities of pointwise convergence on the
underlying spaces Iso(Z) and Z, respectively.

Proof. By Proposition 5.3 we can equip Iso(Iso(Z)) with a left-invariant metric
σ such that the uniformity of pointwise convergence, the left uniformity, and the
uniformity induced by σ on Iso(Iso(Z)) coincide. Let Ln, Tn ∈ Iso(Iso(Z)) such
that σ(Ln, Tn)→ 0, hence σ(T−1

n Ln, I )→ 0. Therefore T−1
n Ln→ I pointwise on

Iso(Z) so T−1
n Ln(e)→ e, thus %(Ln(e), Tn(e))→ 0. For the converse, note that if

%(T−1
n Ln(e), e)→ 0 then %(T−1

n Ln(e) ◦ f, f )→ 0 for every f ∈ Iso(Z) since the
map Iso(Z)→ Iso(Z) with g 7→ g f is continuous. Hence T−1

n Ln → I pointwise
on Iso(Z). Corollary 6.3 implies that B is also group isomorphism. �

Proposition 6.5. The group Iso(Iso(Z)) is Cauchy-indivisible and has no Weil
completion.
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Proof. Let us show firstly that Iso(Iso(Z)) is Cauchy-indivisible. Let {Tn} ⊂

Iso(Iso(Z)) and f ∈ Iso(Z) such that {Tn( f )} is a Cauchy sequence in Iso(Z).
Take some g ∈ Iso(Z). Since {Tn( f )} is a Cauchy sequence in Iso(Z) then it is
easy to see that {Tn( f )z} is a Cauchy sequence for every z ∈ Z. Equivalently,
{Tn( f ) f −1gz} is a Cauchy sequence for every z ∈ Z. By Proposition 6.2,

Tn( f ) f −1gz = Tn(e) ◦ f f −1gz = Tn(e) ◦ gz = Tn(g)z.

Therefore {Tn(g)} is a Cauchy sequence in Iso(Iso(Z)) for every g ∈ Iso(Z), hence
Iso(Iso(Z)) is Cauchy-indivisible.

Since by the previous proposition the groups Iso(Iso(Z)) and Iso(Z) are uni-
formly isomorphic and the group Iso(Z) has no Weil completion then the same
also holds for Iso(Iso(Z)). �

Proposition 6.6. The action (Iso(Iso(Z)), Iso(Z)) is proper.

Proof. Let f, g∈ Iso(Z) and {Tn}⊂ Iso(Iso(Z)) be a sequence such that Tn( f )→ g.
Hence, by Proposition 6.2, Tn(e) ◦ f → g thus Tn(e)→ g f −1. Therefore {Tn(h)}
converges for every h ∈ Iso(Z). Since (Tn(e))−1

→ f g−1 it is easy to verify that
{Tn} converges in Iso(Iso(Z)) hence the action (Iso(Iso(Z)), Iso(Z)) is proper. �

Remark 6.7. Notice that Iso(Iso(Z)) is not locally compact since it has no Weil
completion (Iso(Z) is, of course, not locally compact).

7. Borel sections, fundamental sets, and Cauchy indivisibility

As it is indicated in the introduction a section of an action (G, X) is a subset of
X which contains only one point from each orbit. If a section is a Borel subset of
X it called a Borel section. Concerning the existence of Borel sections, if (Y, d)
is a separable metric space and R is an equivalence relation on Y such that the
R-saturation of each open set is Borel, then there is a Borel set S whose intersection
with each R-equivalence class which is complete with respect to d is nonempty,
and whose intersection with each R-equivalence class is at most one point; see
[Kallman and Mauldin 1978, Lemma 2]. The problem of the existence of a Borel
section for a continuous Polish action is of remarkable significance because the
existence of a Borel section is equivalent to many interesting facts, like that the
underlying space has only trivial ergodic measures and that the orbit space has a
standard Borel structure and has no nontrivial atoms. Recall that an action (G, X)
is called Polish if both G and X are Polish spaces, that is, they are separable
and metrizable by a complete metric. Keeping the previous in mind we have the
following:

Proposition 7.1. If the Ellis semigroup E is a group then the action (E, X ∪ Xl)

has a Borel section.
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Proof. Assume that the Ellis semigroup E is a group. Since by Proposition 5.11 we
have Xl = X p and by Proposition 5.18 the map ω : E× (X ∪ Xl)→ (X ∪ Xl)× X̃
is proper then each orbit Ex , x ∈ X ∪ Xl , is closed in X̃ . Hence, by [Kallman and
Mauldin 1978, Lemma 2] there exists a Borel set S ⊂ X̃ such that S ∩ (X ∪ Xl)

is a Borel section (with respect to the relative topology of X ∪ Xl) for the action
(E, X ∪ Xl). �

A very useful notion in the theory of proper actions on locally compact spaces
with paracompact orbit spaces is the notion of a fundamental set.

Let G be a topological group which acts continuously on a topological space X
and A, B ⊂ X . Let us call the set G AB := {g ∈ G : g A ∩ B 6= ∅} the transporter
from A to B.

Definition 7.2. A subset F of X is called a fundamental set for the action (G, X)
if the following holds.

(i) G F = X .

(ii) For every x ∈ X there exists a neighborhood V ⊂ X of x such that the trans-
porter GV F of V to F has compact closure in G.

For locally compact spaces we can replace condition (ii) with the following
equivalent condition.

(iia) The transporter G K F from K to F has compact closure in G for every non-
empty compact subset K of X .

Note that the existence of a fundamental set implies that the action group G is
locally compact and the action (G, X) is proper.

The notion of a fundamental set is relative to the notion of a section but it is dif-
ferent in general, in the sense that there are cases where a section is a fundamental
set, cases where a fundamental set fails to be a section, and cases where a section
fails to be a fundamental set. A section may not be Borel or even if it is Borel may
not be contained in any fundamental set, as the following example shows.

Example 7.3. The action (Z,R) with (z, r) 7→ r + z, z ∈ Z, r ∈ R, is proper and
it has a Borel section which is not contained in any fundamental set. Indeed, it is
easy to see that the set

S :=
(
[0, 1)

∖⋃
n∈N

{1
n

})
∪

⋃
n∈N

{
n+ 1

n

}
is a section because the interval [0, 1) is a section (and a fundamental set) for the
action (Z,R). Take an open ball B centered at 0 with radius ε > 0. Then there
exists n0 ∈ N such that 1/n < ε for every n ≥ n0. Let A be a subset of R that
contains S. Hence {n | n ≥ n0} is a subset of the transporter ZBS ⊂ ZB A, so A
cannot be a fundamental set.
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It is also possible to construct a section which is not Borel. Take a set D⊂[0, 1)
which is not a Borel set and consider the set S1 := D∪{x+2 | x ∈R\D}. Obviously
S1 is a section which is not a Borel subset of the reals.

Nevertheless sections, Borel sections, and fundamental sets have a very strong
connection as the following theorem shows.

Theorem 7.4. Let G be a group which acts properly on a locally compact space
X , and suppose that the orbit space G\X is paracompact. Let S be a section for
the action (G, X). Then

(i) For every open neighborhood U of S we can construct a closed fundamental
set Fc and an open fundamental set Fo such that Fc ⊂ Fo ⊂U.

(ii) If , in addition, (X, d) is a separable metric space, in which case the action
(G, X) is Cauchy-indivisible, by Theorem 3.3, then there exists a Borel section
SB , which is also a fundamental set, such that SB ⊂ Fc ⊂ Fo ⊂U.

Proof. (i) Since U is open it is a union of open balls, let us say Si , i ∈ I . Let
p : X→G\X be the natural map x 7→Gx . Then p(Si ), i ∈ I , is an open covering
of the locally compact and paracompact space G\X . Hence, there is a locally finite
refinement {W j }, j ∈ J , which consists of open subsets of G\X with compact
closures such that W j ⊂ p(Si j ), for some i j ∈ I . Now we can follow the classical
proof for the existence of fundamental sets; see [Koszul 1965, Lemma 2, p. 8].
Let {V j } be an open covering of G\X such that V j ⊂ W j for every j ∈ J . Fix an
index j ∈ J and consider the restriction of the natural map p : X → G\X on the
open ball Si j . Since Si j is locally compact then there exists an open set Ui j ⊂ Si j

with compact closure and a compact set Ki j ⊂ Ui j ⊂ Si j such that p(Ui j ) = W j

and p(Ki j ) = V j . Let Fc :=
⋃

j Ki j and Fo :=
⋃

j Ui j . The family {Ui j } j∈J is
locally finite in X hence the set Fc is closed; see [Bourbaki 1966a, Chapter I, §1.5,
Proposition 4]. Moreover, G Fc = X . Take a point x ∈ X and neighborhood A
of x with compact closure. Since the covering {W j } j∈J is locally finite, then the
transporters G AUi j

from A to Ui j are nonempty for only finitely many j ∈ J . Since
the sets A and Ui j have compact closure and the action (G, X) is proper, then
the transporter G AFo of A to Fo has compact closure in G. Thus, Fc and Fo are
fundamental sets and by construction Fc ⊂ Fo ⊂U .

(ii) Let Fc be a closed fundamental set for the action (G, X) like in (i). Define
a relation R on Fc with xRy, x, y ∈ Fc if and only if y ∈ Gx . We will find
a Borel section for the closed fundamental set Fc with respect to the previous
natural relation on Fc and then we will show that it is, also, a Borel section for
the action (G, X). Obviously R is an equivalence relation on the separable metric
space (Fc, d). Since the action (G, X) is proper each orbit Gx is closed in X ,
for every x ∈ X . The R-equivalence class of a point x ∈ Fc is Gx ∩ Fc, hence it
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is a closed subset of X , thus it is a complete space with respect to the metric d.
If U is an open subset of Fc with respect to the relative topology of Fc then the
R-saturation of U is the set GU ∩ Fc which is open in Fc hence it is a Borel set.
Therefore we can apply [Kallman and Mauldin 1978, Lemma 2] to find a Borel
section SB ⊂ Fc for the equivalence relation R. Moreover, SB is a Borel section
(and a fundamental set) for the action (G, X), since it is contained in the closed
fundamental set Fc. �

Remark 7.5. Note that the assumption that the orbit space G\X is paracompact is
automatically satisfied for proper isometric actions. So we can apply Theorem 7.4
in both cases.

Remark 7.6. The statement of Theorem 7.4 cannot be improved by asserting that
“There always exists a section S homeomorphic to the orbit space,” even if we
omit the requirement that a neighborhood U of S is given, as the following simple
example shows: Let ϕ be the rotation by π/2 on the unit circle and G be the group
with two elements generated by ϕ. The orbit space is homeomorphic to the half-
open interval (0, 1] endowed with a non-Euclidean topology (that is, a sequence
tending to 0 converges to 1), therefore it cannot be embedded in S1.

An answer to the question of whether S can be chosen to be homeomorphic to
the orbit space may lead to interesting structure-theorems.

Question 7.7. As Theorem 7.4(ii) indicates the notion of a Borel section is re-
markably related to that of a fundamental set in the locally compact case and may
be, similarly, used for structural theorems. Note that the Borel section SB , because
of its construction, is a minimal fundamental set for the action (G, X), that is, for
each point x ∈ X the transporter G{x}SB = gGx for some g ∈G. So, it is interesting
to ask whether the existing Borel section for the action (E, X∪Xl) can be reduced,
or lead, to a Borel section for the initial action (Iso(X), X).
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