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THETA LIFTS OF STRONGLY POSITIVE DISCRETE SERIES:
THE CASE OF (S̃p(n), O(V ))

IVAN MATIĆ

Let F denote a nonarchimedean local field of characteristic zero with odd
residual characteristic. Using the results of Gan and Savin, in this paper
we determine the first occurrence indices and theta lifts of strongly posi-
tive discrete series representations of metaplectic groups over F in terms of
our recent classification of this class of representations. Also, we determine
the first occurrence indices of some strongly positive representations of odd
orthogonal groups.

1. Introduction

One of the main issues in the local theta correspondence is a precise determination
of the theta lifts of irreducible representations. This problem is by now completely
solved for cuspidal representations [Mœglin et al. 1987, Théorème principal] and for
discrete series for the dual pair (Sp(n), O(V )) [Muić 2004, Theorems 4.2 and 4.3].
Muić used an inductive procedure to investigate certain embeddings of theta lifts
of discrete series representations so as to obtain explicit information about the
structure of these lifts and to derive the first occurrence indices.

The description given there is based on the classification of discrete series of
the classical groups given in [Mœglin 2002; Mœglin and Tadić 2002], which relies
on certain conjectures called the basic assumption (we emphasize that Arthur has
recently announced a proof of his conjectures about the stable transfer coming from
the twisted endoscopy, which should imply the basic assumption). On the other
hand, we have recently classified the strongly positive discrete series of metaplectic
groups, and our classification uses no hypothesis and can be applied much more
generally. It is natural to try to relate this classification to the determination of the
lifts of those representations. Thus, it is the purpose of this paper to determine
the first occurrence indices of the strongly positive discrete series for the dual pair
(S̃p(n), O(V )), where S̃p(n) is the universal cover of Sp(n), and to obtain as much
information about the structure of theta lifts of such representations as possible.

Muić [2008] has obtained some fundamental results on the structure of theta
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lifts of discrete series without using the Mœglin–Tadić classification. Although
very powerful, the methods used there could not provide an explicit description of
the first occurrence indices. Nevertheless, his results have recently been rewritten
by Gan and Savin [2012] for the dual pair (S̃p(n), O(V )) over a nonarchimedean
field of characteristic zero with odd residual characteristic. Another crucial result
of their paper is a natural correspondence between irreducible representations on a
certain level of metaplectic and odd orthogonal towers, which partially generalizes
results of Waldspurger [1984; 1991].

These results are of much importance for us, because they allow us to start
our investigation of the first occurrence index with the lift that is a discrete series
representation at a quite low level of the tower. The disadvantage of this approach
is that it prevents us from determining both first occurrence indices when lifting
from the metaplectic tower. So we determine just the lower one.

We do not adopt the methods used in [Muić 2004], choosing rather to describe
theta lifts of strongly positive discrete series directly from their cuspidal supports.
The advantage of using this method lies in the fact that the structure of the obtained
theta lifts can be explicitly described in a purely combinatorial way.

We now describe the contents of this paper. The next section presents some
preliminaries, while in Section 3, we summarize without proofs the relevant material
on the strongly positive discrete series. In that section we also obtain some useful
embeddings of the general discrete series representations. Section 4 provides a
detailed exposition of the results about Howe correspondence, which will be used
through the paper. Section 5 is the technical heart of the paper, containing several
results regarding the theta lifts of irreducible representations.

In Section 6, we state and prove our main results about the lifts of strongly
positive irreducible representations of the metaplectic groups, using case-by-case
consideration. In Section 7, we determine the first occurrence indices of certain
strongly positive representations of the odd orthogonal groups. The observed cases
happen to be quite similar in both directions, so the proofs made in the sixth section
help us shorten those in the seventh one.

However, for the sake of completeness and to avoid possible confusion, we
discuss the details of the lifts of representations of the metaplectic groups and those
of the orthogonal ones in separate sections.

2. Notations and preliminaries

Let F be a nonarchimedean local field of characteristic zero with odd residual
characteristic.

For a reductive group G, let Irr(G) stand for the set of isomorphism classes of
irreducible admissible (genuine) representations of G.
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First we discuss the groups that we consider.
Let V0 be an anisotropic quadratic space over F of odd dimension. Then its

dimension can only be 1 or 3. For more details about the invariants of this space,
such as the quadratic character χV0 related to the quadratic form on V0, we refer
the reader to [Kudla 1986] and [Kudla and Rallis 2005]. In each step we add a
hyperbolic plane and obtain an enlarged quadratic space, a tower of quadratic spaces,
and a tower of corresponding orthogonal groups. In the case when r hyperbolic
planes are added to the anisotropic space, the enlarged quadratic space will be
denoted by Vr , while a corresponding orthogonal group will be denoted by O(Vr ).
Set mr = (1/2) dim Vr .

To a fixed quadratic character χV0 , one can attach two odd orthogonal towers,
one with dim V0 = 1 (+-tower) and the other with dim V0 = 3 (−-tower), as in
Chapter V of [Kudla 1996]. In that case, for corresponding orthogonal groups of
the spaces obtained by adding r hyperbolic planes, we write O(V+r ) and O(V−r ).

Let S1(n) be the Grothendieck group of the category of all admissible represen-
tations of finite length of O(Vn) (that is, a free abelian group over the set of all
irreducible representations of O(Vn)), and define S1 =

⊕
n≥0 S1(n).

Let S̃p(n) be the metaplectic group of rank n, the unique nontrivial two-fold
central extension of symplectic group Sp(n, F). In other words, the following holds:

1→ µ2→ S̃p(n)→ Sp(n, F)→ 1,

where µ2 = {1,−1}. The multiplication in S̃p(n) (which is as a set given by
Sp(n, F)×µ2) is given by Rao’s cocycle [Ranga Rao 1993]. More details on the
structural theory of metaplectic groups can be found in [Hanzer and Muić 2010],
[Kudla 1996], and [Ranga Rao 1993].

In this paper we are interested only in genuine representations of S̃p(n) (that is,
those that do not factor through µ2). So, let S2(n) be the Grothendieck group of
the category of all admissible genuine representations of finite length of S̃p(n) and
define S2 =

⊕
n≥0 S2(n).

Let G̃L(n, F) be a double cover of GL(n, F), where the multiplication is given
by

(g1, ε1)(g2, ε2)= (g1g2, ε1ε2(detg1, detg2)F ).

Here εi ∈ µ2, i = 1, 2, and ( · , · )F denotes the Hilbert symbol of the field F .
The pair (Sp(n), O(Vr )) is a reductive dual pair in Sp(n · dim Vr ). Since the

dimension of the space Vr is odd, the theta correspondence relates the representations
of the metaplectic group S̃p(n) and those of the orthogonal group O(Vr ). We use
the abbreviation n1 = n · dim Vr . Let ωn1,ψ be the Weil representation of S̃p(n1)

depending on the nontrivial additive character ψ , and let ωn,r denote the pull-back
of that representation to the pair (S̃p(n), O(Vr )).
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Here and subsequently, ψ denotes a nontrivial additive character of F . Further,
we fix a character χV,ψ of G̃L(n, F) given by

χV,ψ(g, ε)= χV (det g)εγ (det g, 1
2ψ)

−1.

Here γ denotes the Weil invariant, while χV is a character related to the quadratic
form on O(Vr ). We write α = χ2

V,ψ and observe that α is a quadratic character on
GL(n, F).

Let
Rgen
=

⊕
n≥0

Rgen(n),

where Rgen(n) denotes the Grothendieck group of smooth genuine representations
of finite length of G̃L(n, F). Similarly, define

R=
⊕
n≥0

R(n),

where R(n) denotes the Grothendieck group of smooth genuine representations of
finite length of GL(n, F).

To simplify the notation, in the sequel we write

R′ =

{
R in the orthogonal case,
Rgen in the metaplectic case,

and
S′ =

{
S1 in the orthogonal case,
S2 in the metaplectic case.

By ν we denote the character of GL(n, F) defined by |det|F .
An irreducible representation σ ∈ S′ is called strongly positive if for each

representation νs1ρ1× ν
s2ρ2× · · · × ν

skρk o σcusp, where ρi ∈R′, i = 1, 2, . . . , k
are irreducible cuspidal unitary representations, σcusp ∈ S′ is an irreducible cuspidal
representation, and si ∈ R, i = 1, 2, . . . , k such that

σ ↪→ νs1ρ1× ν
s2ρ2× · · ·× ν

skρk o σcusp,

we have si > 0 for each i .
Irreducible strongly positive representations are called strongly positive discrete

series.
If ρ ∈ R′(m) is an irreducible unitary cuspidal representation, we say that

1 = {νaρ, νa+1ρ, . . . , νa+kρ} is a segment, where a ∈ R and k ∈ Z≥0; and we
abbreviate {νaρ, νa+1ρ, . . . , νa+kρ} as [νaρ, νa+kρ]. We denote by δ(1) the
unique irreducible subrepresentation of νa+kρ× νa+k−1ρ× · · ·× νaρ. This δ(1)
is an essentially square-integrable representation attached to the segment 1.
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For every irreducible cuspidal representation ρ ∈R′(m), there exists a unique
e(ρ) ∈ R such that the representation ν−e(ρ)ρ is a unitary cuspidal representation.
From now on, let e

(
[νaρ, νbρ]

)
= (a+ b)/2.

For an ordered partition s = (n1, n2, . . . , n j ) of some m ≤ n, we denote by Ps

a standard parabolic subgroup of Sp(n, F) (consisting of block upper-triangular
matrices) whose Levi factor equals

GL(n1)×GL(n2)× · · ·×GL(n j )×Sp(n− |s|, F),

where |s| =m =
∑ j

i=1 ni . Then the standard parabolic subgroup P̃s of S̃p(n) is the
preimage of Ps in S̃p(n). We have the analogous notation for the Levi subgroups of
the metaplectic groups, which are described in more detail in Section 2.2 of [Hanzer
and Muić 2010]. The standard parabolic subgroups (containing the upper triangular
Borel subgroup) of O(Vr ) have an analogous description to the standard parabolic
subgroups of Sp(n, F). If P̃s is a standard parabolic subgroup of S̃p(n) described
above, or Ps is a similar standard parabolic subgroup of O(Vr ), the normalized
Jacquet module of a smooth representation σ of S̃p(n) (resp. O(Vr )) with respect
to P̃s (resp. Ps) is denoted by R P̃s (σ ) (resp. RPs (σ )). From now on, RP1(π)(χ)

(or R P̃1(π)(χ)) stands for the isotypic component of RP1(π) along the generalized
character χ .

Also, in dealing with Jacquet modules of ωn,r , we use the shorthand RP1(ωn,r )

(resp. R P̃1(ωn,r )) for RS̃p(n)×P1(ωn,r ) (resp. R P̃1×O(Vm)(ωn,r )), following the nota-
tion of [Hanzer and Muić 2011].

For any irreducible representation π ∈ S′(n), there exist an ordered partition
s = (n1, n2, . . . , n j ) of some m ≤ n, cuspidal representations ρi ∈ Irr(R′(ni )), and
πcusp∈ S′(n−|s|) such that π is an irreducible subquotient of the induced representa-
tion ρ1×ρ2×· · ·×ρ j oπcusp. In this situation, we write [π ]=[ρ1, ρ2, . . . , ρ j ;πcusp],
following the notation used in [Kudla 1996].

Let σ ∈ S′(n) denote an irreducible representation. To simplify notation, set
P ′s = Ps in the orthogonal case and P ′s = P̃s in the metaplectic one. We define
µ∗(σ ) ∈R′⊗ S′ by

µ∗(σ )=

n∑
k=0

s.s.(P ′(k)(σ )),

where s.s. denotes the semisimplification. We extend µ∗ linearly to the whole of S′.
In the following lemma, we recall a useful formula for calculations with Jacquet

modules, which is valid in both the orthogonal and metaplectic cases [Tadić 1995;
Hanzer and Muić 2010]. Set α′ = α in the metaplectic case, while in the orthogonal
case α′ denotes a trivial character.

Lemma 2.1. Let ρ ∈R′ be an irreducible cuspidal representation and let a, b ∈ R

be such that a+b ∈ Z≥0. Let σ ∈ S′ be an admissible representation of finite length.
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Write µ∗(σ )=
∑

π,σ ′ π ⊗ σ
′. Then the following holds:

(1) µ∗
(
δ
(
[ν−aρ, νbρ]

)
o σ

)
=

b∑
i=−a−1

b∑
j=i

∑
π,σ ′

δ
(
[ν−iα′ρ̃, νaα′ρ̃]

)
×δ
(
[ν j+1ρ, νbρ]

)
×π ⊗ δ

(
[νi+1ρ, ν jρ]

)
o σ ′.

We omit δ
(
[νxρ, ν yρ]

)
if x > y.

We take a moment to recall the formulation of the second Frobenius isomorphism.
Generally, for some reductive group G ′, its parabolic subgroup P ′ with the

Levi subgroup M ′, and its opposite parabolic subgroup P ′, the second Frobenius
isomorphism is

HomG ′
(
IndG ′

M ′(π),5
)
∼= HomM ′

(
π, RP ′(5)

)
,

for some smooth representation π (resp. 5) of the group M ′ (resp. G ′). We denote
the space of the representation π by Vπ .

The above isomorphism can be explicitly described in the following way: let 9
denote the embedding

9 : Vπ ↪→ RP ′
(
IndG ′

M ′(Vπ )
)
,

which corresponds to the open cell P ′P ′ in G ′ [Bernstein 1987]. Now, for some
T ∈ HomG ′

(
IndG ′

M ′(π),5
)
, compose 9 with the corresponding mapping

TP ′ : RP ′
(
IndG ′

M ′(π)
)
→ RP ′(5).

3. Embeddings of discrete series

In this section we recall the classification of strongly positive discrete series and
obtain further embeddings of general discrete series that will be used later.

In the following theorem, we gather the results obtained in Section 5 of [Matić
2011]. The arguments used there rely on Jacquet module methods, and build up in
an essentially combinatorial way from the cuspidal reducibility values. Moreover,
the underlying combinatorics are essentially the same for classical groups. Thus,
our classification is valid for both metaplectic and orthogonal groups.

Theorem 3.1. We define a collection of pairs (Jord, σ ′), where σ ′ is an irreducible
cuspidal representation of some S′(nσ ′) and Jord has the following form: Jord =⋃k

i=1
⋃ki

j=1{(ρi , b(i)j )}, where:

• {ρ1, ρ2, . . . , ρk} is a (possibly empty) set of mutually nonisomorphic irredu-
cible self-dual cuspidal representations of some R′(m1),R′(m2), . . . ,R′(mk)

such that νaρi ρi o σ ′ reduces for aρi > 0 (this defines aρi ).

• ki = daρi e, the smallest integer that is not smaller than aρi .
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• For each i = 1, . . . , k, the sequence b(i)1 , . . . , b(i)ki
consists of real numbers such

that aρi−b(i)j is an integer, for j =1, 2, . . . , ki and−1<b(i)1 <b(i)2 < · · ·<b(i)ki
.

There is a bijective correspondence between the set of all irreducible strongly
positive representations in S′ and the set of all pairs (Jord, σ ′).

We describe this correspondence more precisely. The pair corresponding to an
irreducible strongly positive representation σ ∈ S′ is denoted by

(
Jord(σ ), σ ′(σ )

)
.

Suppose that cuspidal support of σ is contained in the set

{νxρ1, . . . , ν
xρk, σcusp : x ∈ R},

with k minimal (here ρi denotes an irreducible cuspidal self-dual representation of
some R′(nρi )).

Let aρi > 0, i = 1, 2, . . . , k denote the unique positive s ∈ R such that the
representation νsρi o σcusp reduces. Set ki = daρi e. For each i = 1, 2, . . . , k,
there exists a unique increasing sequence of real numbers b(i)1 , b(i)2 , . . . , b(i)ki

, where

aρi −b(i)j is an integer, for j = 1, 2, . . . , ki and b(i)1 >−1, such that σ is the unique
irreducible subrepresentation of the induced representation( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o σcusp.

Now, Jord(σ )=
⋃k

i=1
⋃ki

j=1{(ρi , b(i)j )} and σ ′(σ )= σcusp.

We note that results of [Arthur 2011] should imply that every aρi in the previous
theorem is half integral.

This classification implies some interesting properties of strongly positive discrete
series, which are listed in the next two lemmas.

Lemma 3.2 [Matić 2012, Lemma 3.5]. Let σ ∈ S′ be a strongly positive discrete
series. Then σ is uniquely determined by [σ ].

The next result follows rather straightforwardly from the classification above:

Lemma 3.3. Let σ ∈ S′ denote a strongly positive discrete series and suppose
that νxρ appears in [σ ], where ρ ∈ R′ is an irreducible unitarizable cuspidal
representation and |x | ≤ 1. Then the representation νxρ appears in [σ ] with
multiplicity one. Also, if ν yρ appears in [σ ] for some y 6= x , then |y|> 1.

Proof. It is enough to prove the lemma for x ≥ 0, since otherwise the same
conclusion can be drawn for |x |.

We write σ as the unique irreducible subrepresentation of the induced represen-
tation of the form ( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o σcusp.
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Obviously, ρ is isomorphic to ρl for some l ∈ {1, 2, . . . , k}.
By the assumption of the lemma, there is some j ∈ {1, 2, . . . , kl} such that

aρl − kl + j ≤ x ≤ b(l)j . Strong positivity of σ implies x > 0. Since aρl − kl + j > 1
for j ≥ 2, it follows that νxρ appears in the segment[

νaρl−kl+1ρl, ν
b(l)1 ρl

]
and νxρ does not appear in

[
νaρl−kl+ jρl, ν

b(l)j ρl
]
, for j ≥ 2. Further, using x−1≤ 0,

we obtain x = aρl − kl + 1.
Consequently, νxρ appears in [σ ] with multiplicity one.
The inequality |y|> 1 for y 6= x such that ν yρ appears in [σ ] is a consequence

of the fact that |y| − x is a positive integer and x > 0. �

The principal significance of the following lemma is that it allows us to obtain
certain embeddings of general discrete series.

Lemma 3.4. Suppose that π ∈ S′(n) is an irreducible representation that is not in
the discrete series. Then there exists an embedding of the form

π ↪→ δ
(
[νaρ, νbρ]

)
oπ ′,

where a+ b ≤ 0 and ρ ∈R′ and π ′ ∈ S′ are irreducible representations.

Proof. We adopt the approach from Section 3 of [Matić 2011], which was motivated
by [Muić 2006]. Suppose that

π ↪→ ρ1× ρ2× · · ·× ρk oπcusp

is an embedding of the representation π contradicting Casselman’s square-integra-
bility criterion (whose metaplectic version is written in [Ban and Jantzen 2009]),
ρi ∈R′ is an irreducible cuspidal representation for i ∈ {1, 2, . . . , k}, and πcusp ∈

S′(n′) is an irreducible cuspidal representation. Further, we consider all possible
embeddings of the form

π ↪→ δ(11)× δ(12)× · · ·× δ(1m)oπcusp,

contradicting the square-integrability criterion, where 11 + 12 + · · · + 1m =

{ρ1, ρ2, . . . , ρk}, viewed as the equality of multisets. Clearly, e(1i )≤ 0 for some
i ∈ {1, 2, . . . ,m}. The set of all such embeddings is obviously finite and nonempty.

Each δ(1i ) is an irreducible representation of some R′(ni ) (this defines ni ), for
i = 1, 2, . . . ,m. To every such embedding we attach an (n− n′)-tuple(

e(11), . . . , e(11), e(12), . . . , e(12), . . . , e(1m), . . . , e(1m)
)
∈ Rn−n′,

where e(1i ) appears ni times.
Denote by

π ↪→ δ(1′1)× δ(1
′

2)× · · ·× δ(1
′

m′)oπcusp
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the minimal such embedding with respect to the lexicographic ordering on Rn−n′ .
In the same way as in the proof of Theorem 3.3 of [Matić 2011], we conclude
e(1′1)≤ e(1′2)≤ · · · ≤ e(1′m′). This gives e(1′1)≤ 0. Now Lemma 3.2 of [Mœglin
and Tadić 2002] finishes the proof. �

We are ready to describe useful embeddings of general discrete series (this
parallels the result of Lemma 3.1 of [Mœglin 2002]).

Theorem 3.5. Let σ ∈ S′(n) denote a discrete series representation. Then there
exists an embedding of the form

σ ↪→ δ
(
[νa1ρ1, ν

b1ρ1]
)
× δ

(
[νa2ρ2, ν

b2ρ2]
)
× · · ·× δ

(
[νakρk, ν

bkρk]
)
o σsp,

where ai ≤ 0 and ai + bi > 0, and ρi ∈ R′ is an irreducible representation for
i = 1, 2, . . . , k, while σsp ∈ S′ is a strongly positive discrete series (we allow k = 0).

Proof. If σ is a strongly positive discrete series, then k = 0 and σ ' σsp. Thus, we
may suppose that σ is not strongly positive.

Again, we start with an embedding of the representation σ of the form

σ ↪→ ρ1× ρ2× · · ·× ρk o σcusp,

where each ρi ∈R′ is an irreducible cuspidal representation and σcusp ∈ S′(n′) is a
partial cuspidal support of σ , and consider all possible embeddings of the form

σ ↪→ δ(11)× δ(12)× · · ·× δ(1m)o σcusp,

where 11+12+ · · ·+1m = {ρ1, ρ2, . . . , ρl}, viewed as the equality of multisets.
In the same way as in the proof of the previous lemma, to every such embedding
we attach an element of Rn−n′ and denote by

(2) σ ↪→ δ(1′1)× δ(1
′

2)× · · ·× δ(1
′

m′)o σcusp

the minimal such embedding with respect to the lexicographic ordering on Rn−n′ .
Analysis similar to that in the proof of Theorem 3.3 of [Matić 2011] shows e(1′1)≤
e(1′2)≤ · · · ≤ e(1′m′).

Write each element of the multiset {ρ1, ρ2, . . . , ρl} in form ρi = ν
aiρi,u , where

ρi,u is an irreducible unitary cuspidal representation. Define

a =min{ai : 1≤ i ≤ l}.

The assumption that σ is not strongly positive yields a≤0. Suppose that νaρ appears
in the segment 1′i , with i minimal (for appropriate ρ). Then 1′i = [ν

aρ, νbρ], for
some b.

If the segment 1′i is not connected in the sense of Zelevinsky with any of the
segments 1′1, . . . ,1

′

i−1, we obtain the embedding

σ ↪→ δ(1′i )× δ(1
′

1)× · · ·× δ(1
′

m′)o σcusp.
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Suppose that there is some segment 1′j , 1≤ j ≤ i − 1, such that the segments 1′i
and 1′j are connected in the sense of Zelevinsky. We choose the largest such j and
denote it by j again. Also, we write 1′j = [ν

a′ρ, νb′ρ]. The intertwining operator
δ(1′j )× δ(1

′

i )→ δ(1′i )× δ(1
′

j ) gives the maps

σ ↪→ δ(1′1)× · · ·× δ(1
′

j )× δ(1
′

i )× · · ·× δ(1
′

m′)o σcusp

→ δ(1′1)× · · ·× δ(1
′

i )× δ(1
′

j )× · · ·× δ(1
′

m′)o σcusp.

Observe that the kernel of the previous intertwining operator equals

δ(1′1)× · · ·× δ
(
[νaρ, νb′ρ]

)
× δ

(
[νa′ρ, νbρ]

)
× · · ·× δ(1′m′)o σcusp.

Since e(1′j )≤ e(1′i ), the inequality a < a′ implies e
(
[νaρ, νb′ρ]

)
< e(1′j ). Thus,

the minimality of the embedding (2) shows that σ is not contained in the kernel of
the observed intertwining operator, which gives

σ ↪→ δ(1′1)× · · ·× δ(1
′

i )× δ(1
′

j )× · · ·× δ(1
′

m′)o σcusp.

Repeated application of the above procedure enables us to obtain the embedding

σ ↪→ δ(1′i )× δ(1
′

1)× · · ·× δ(1
′

m′)o σcusp.

Lemma 3.2 of [Mœglin and Tadić 2002] implies that there is some irreducible
representation σ1 such that σ ↪→ δ

(
[νaρ, νbρ]

)
o σ1. Square-integrability of σ

shows a+ b > 0. We claim that σ1 is a discrete series representation.
Suppose, on the contrary, that σ1 is not in the discrete series. Then the pre-

vious lemma shows that it can be written as a subrepresentation of the induced
representation of the form δ

(
[νxρ ′, ν yρ ′]

)
o σ ′1, where x + y ≤ 0. Thus, σ ↪→

δ
(
[νaρ, νbρ]

)
× δ

(
[νxρ ′, ν yρ ′]

)
o σ ′1. Square-integrability of the representations

σ shows that the segments [νaρ, νbρ] and [νxρ ′, ν yρ ′] are connected in the sense
of Zelevinsky, and consequently σ ↪→ δ

(
[νaρ, ν yρ]

)
× δ

(
[νxρ ′, νbρ ′]

)
o σ ′1.

The choice of a shows that a ≤ x , which leads to a + y ≤ x + y ≤ 0; that is,
e
(
[νaρ, ν yρ]

)
≤ 0, contradicting the square-integrability of σ . In this way we have

proved that σ1 is also a discrete series representation.
We continue in this fashion to obtain that either σ1 is strongly positive or it

can be written as a subrepresentation of the induced representation of the form
δ
(
[νa′ρ ′, νb′ρ ′]

)
o σ2, where a′ ≤ 0 and σ2 ∈ S′ is a discrete series representation.

Repeating this procedure, after a finite number of steps we obtain the claim of the
theorem. �

4. Howe’s correspondence and results of Gan and Savin and of Kudla

In this section we review some results about Howe correspondence.
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For an irreducible genuine smooth representation σ ∈ S2(n), let 2(σ, r) be a
smooth representation of O(Vr ), given as the full lift of σ to the r-level of the
orthogonal tower, that is, the biggest quotient of ωn,r on which S̃p(n) acts as a
multiple of σ . As a representation of S̃p(n)×O(Vr ) it has a form σ ⊗2(σ, r). We
write 2+(σ, r) (resp. 2−(σ, r)) for the lift on the +-tower (resp. −-tower), when
emphasizing the tower.

Similarly, if τ is an irreducible representation of O(Vr ), then one has its full lift
2(τ, n), which is a smooth representation of S̃p(n).

In the following theorem we summarize some basic results about the theta
correspondence.

Theorem 4.1 [Kudla 1996; Mœglin et al. 1987]. Let σ denote an irreducible
genuine representation of S̃p(n). Then there exists an integer r ≥ 0 such that
2(σ, r) 6= 0. The smallest such r is called the first occurrence index of σ in the
orthogonal tower. Also, 2(σ, r ′) 6= 0 for r ′ ≥ r .

The representation 2(σ, r) is either zero or it has finite length. If the residual
characteristic of field F is other than 2, then 2(σ, r) is either zero or it has a
unique irreducible quotient. Following [Muić 2004], we write σ(r) for this unique
irreducible quotient.

The analogous statements hold for 2(τ, n) if τ is an irreducible representation
of O(Vr ).

Now we state the results of Gan and Savin [2012, Section 6 and Theorem 8.1]
that serve as a cornerstone for our determination of lifts of the strongly positive
discrete series.

Theorem 4.2. Let F be a nonarchimedean local field of characteristic 0 with odd
residual characteristic. For each nontrivial additive character ψ of F , there is an
injection

2ψ : Irr(S̃p(n))→ Irr(O(V+n ))t Irr(O(V−n−1))

given by the theta correspondence (with respect to ψ). Suppose that σ ∈ Irr(S̃p(n))
and τ ∈ Irr(O(V )) correspond under2ψ . Then σ is a discrete series representation
if and only if τ is a discrete series representation.

Let σcusp denote an irreducible cuspidal genuine representation of S̃p(n′). We
write 2(σ, r) for the smooth isotypic component of σ in ωn,r . Since σcusp is
cuspidal, for the smallest r ′ such that 2(σcusp, r ′) 6= 0, we have that 2(σcusp, r ′) is
an irreducible cuspidal representation of O(Vr ′); we denote it by τcusp.

Let ρ ∈R be an irreducible cuspidal self-contragredient representation. Results
of Silberger [1980] (in the orthogonal case) and of Hanzer and Muić [2011] (in
the metaplectic case) show that there exist unique nonnegative real numbers s1 and
s2 such that the induced representations νs1ρo τcusp and νs2χV,ψρo σcusp reduce.
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If ρ is not a trivial character of F×, then s1 = s2. Otherwise, the representation
νs1 o τcusp reduces for s1 = |n′ − mr ′ |, while the representation νs2χV,ψ o σcusp

reduces for s2 = |mr ′ − n′− 1|, where mr ′ = (1/2) dim Vr ′ .
We take a moment to state the results from Section 2 of [Kudla 1986], which

happen to be crucial for our investigation.

Theorem 4.3. Let τ ∈ S1(r) denote an irreducible representation and suppose
[τ ] = [ρ1, ρ2, . . . , ρk; τcusp], with τcusp ∈ S1(r ′) being an irreducible cuspidal
representation. Let σcusp = τ(n′) be the first nonzero lift of the representation
τcusp and observe that σcusp ∈ S2(n′) is an irreducible cuspidal representation. Let
σ denote an irreducible quotient of 2(τ, n). We have the following possibilities:

• If n ≥ n′+ r − r ′, then

[σ ] =
[
χV,ψν

mr−n, χV,ψν
mr−n+1, . . . , χV,ψν

mr ′−n′−1,

χV,ψρ1, χV,ψρ2, . . . , χV,ψρk; σcusp
]
.

• If n < n′ + r − r ′, set t = r − r ′ − n + n′. Then there exist i1, i2, . . . , it ∈

{1, 2, . . . , k} such that ρi j = ν
mr−n− j for j = 1, 2, . . . , t and

[σ ] =
[
χV,ψρ1, . . . , χ̂V,ψρi1, . . . , χ̂V,ψρit , . . . , χV,ψρk; σcusp

]
,

where χ̂V,ψρi means that we omit χV,ψρi .

Similarly, let σ ∈ S2(n) denote an irreducible representation and suppose
[σ ]=[χV,ψρ1, χV,ψρ2, . . . , χV,ψρk; σcusp], with σcusp∈ S2(n′) being an irreducible
cuspidal representation. Let τcusp = σ(r ′) be the first nonzero lift of the representa-
tion σcusp, and observe that τcusp ∈ S1(r ′) is an irreducible cuspidal representation.
Let τ denote an irreducible quotient of 2(σ, r). We have the following possibilities:

• If r ≥ r ′+ n− n′, then

[τ ] = [νmr−n−1, νmr−n−2, . . . , νmr ′−n′, ρ1, ρ2, . . . , ρk; τcusp].

• If r < r ′ + n − n′, set t = r ′ − n′ + n − r . Then there exist i1, i2, . . . , it ∈

{1, 2, . . . , k} such that ρi j = ν
mr−n+ j−1 for j = 1, 2, . . . , t and

[τ ] = [ρ1, . . . , ρ̂i1, . . . , ρ̂it , . . . , ρk; τcusp],

where ρ̂i means that we omit ρi .

The next theorem that we need is Kudla’s filtration of Jacquet modules of the
oscillatory representation:

Theorem 4.4 [Kudla 1986, Theorem 2.8]. Let ωn,r denote the oscillatory repre-
sentation of the group S̃p(n) × O(Vr ) corresponding to the nontrivial additive
character ψ .
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• Let Pj denote the standard maximal parabolic subgroup of O(Vr ). Then
Jacquet module RPj (ωn,r ) has S̃p(n)× M j -invariant filtration given by I jk ,
0≤ k ≤ j , where

I jk ' IndS̃p(n)×M j
Pjk×P̃k×O(Vr− j )

(γ jk ⊗6
′

k ⊗ωn−k,r− j ).

Here, Pjk is a standard parabolic subgroup of GL( j, F) corresponding to the
partition ( j − k, k), γ jk is a character of GL( j − k, F)× G̃L(k, F) given by

γ jk(g1, g2)= ν
−(mr−n−( j−k+1)/2)(g1)χV,ψ(g2),

and 6′k is a twist of the standard representation of GL(k, F)×GL(k, F) on
the space of smooth locally constant compactly supported complex-valued
functions C∞c (GL(k, F)):

6′k(g1, g2) f (g)= ν−(mr− j+(k−1)/2)νmr− j+(k−1)/2 f (g−1
1 gg2).

In particular, a quotient I j0 equals ν−(mr−n−( j+1)/2)
⊗ωn,r− j and a subrepre-

sentation I j j equals

IndS̃p(n)×M j
GL( j,F)×P̃j×O(Vr− j )

(χV,ψ ⊗6
′

j ⊗ωn− j,r− j ).

• Let P̃j denote the standard maximal parabolic subgroup of S̃p(n). Then
Jacquet module R P̃j (ωn,r ) has M̃j × O(Vr )-invariant filtration given by J jk ,
0≤ k ≤ j , where

J jk ' Ind M̃j×O(Vr )

P̃jk×Pk×S̃p(n− j)(β jk ⊗6
′

k ⊗ωn− j,r−k).

Here, P̃jk is a standard parabolic subgroup of G̃L( j, F) corresponding to the
partition ( j − k, k), β jk is a character of G̃L( j − k, F)× G̃L(k, F) given by

β jk(g1, g2)=
(
χV,ψν

mr−n−( j−k−1)/2)(g1)χV,ψ(g2),

and 6′k is a twist of the standard representation of GL(k, F)×GL(k, F) on
the space of smooth locally constant compactly supported complex-valued
functions C∞c (GL(k, F)):

6′k(g1, g2) f (g)= νmr+(k+1)/2ν−(mr+(k+1)/2) f (g−1
1 gg2).

In particular, a quotient J j0 equals χV,ψν
mr−n+( j−1)/2

⊗ωn− j,r and a subrep-
resentation J j j equals Ind M̃j×O(Vr )

G̃L( j,F)×Pj×S̃p(n− j)(χV,ψ ⊗6
′

j ⊗ωn− j,r− j ).

5. Some technical results on lifts

The purpose of this section is to state and prove many technical results that will be
of particular importance in the following sections.
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An elementary but useful criterion for pushing down the lifts of irreducible
representations is established by the following two propositions.

Proposition 5.1. Let τ ∈ S1(r) be an irreducible representation.

(1) Suppose that 2(τ, n) 6= 0. Then R P̃1(2(τ, n+ 1))(χV,ψν
mr−(n+1)) 6= 0.

(2) Suppose that RP1(τ )(ν
mr−(n+1))= 0. Then 2(τ, n) 6= 0 if and only if

R P̃1(2(τ, n+ 1))(χV,ψν
mr−(n+1)) 6= 0.

Proof. The proof follows the same lines as that of Theorem 4.5 of [Hanzer and
Muić 2011].

Assume that2(τ, n) 6= 0. Then there exists an epimorphism ωn,r→ τ⊗2(τ, n).
Kudla’s filtration gives the epimorphisms

R P̃1(ωn+1,r )→ χV,ψν
mr−(n+1)

⊗ωn,r → χV,ψν
mr−(n+1)

⊗ τ ⊗2(τ, n).

Using Frobenius reciprocity, we get a nontrivial intertwining

2(τ, n+ 1)→ χV,ψν
mr−(n+1) o2(τ, n).

This obviously proves the first statement of the proposition.
It remains to prove sufficiency in the second statement. The condition

R P̃1(2(τ, n+ 1))(χV,ψν
mr−(n+1)) 6= 0

gives 2(τ, n + 1) 6= 0, which gives an epimorphism ωn+1,r → τ ⊗2(τ, n + 1).
Applying Jacquet modules, we get an epimorphism

R P̃1(ωn+1,r )→ τ ⊗χV,ψν
mr−(n+1)

⊗ σ ′

for some irreducible representation σ ′ ∈ S1(n). If we suppose that the restriction of
this epimorphism to a subrepresentation J11 is nonzero, second Frobenius reciprocity
gives a nonzero intertwining map

χV,ψ ⊗6
′

1⊗ωn,r−1→ R̃P1 (̃τ )⊗χV,ψν
mr−(n+1)

⊗ σ ′.

From this intertwining, we deduce τ ↪→νmr−(n+1)oτ ′ for some irreducible represen-
tation τ ′ ∈ S2(r−1), contradicting the assumption of the proposition. Consequently,
there exists a nonzero intertwining J10 → τ ⊗ χV,ψν

mr−(n+1)
⊗ σ ′, which gives

2(τ, n) 6= 0. �

We omit the proof of the next proposition, since it is completely analogous to
the proof of the previous one.

Proposition 5.2. Let σ ∈ S2(n) be an irreducible representation.

(1) Suppose that 2(σ, r) 6= 0. Then RP1(2(σ, r + 1))(ν−(mr+1−n−1)) 6= 0.
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(2) Suppose that R P̃1(σ )(χV,ψν
−(mr+1−n−1))= 0. Then 2(σ, r) 6= 0 if and only if

RP1(2(σ, r + 1))(ν−(mr+1−n−1)) 6= 0.

Now we prove an important result regarding the square-integrability of the lifts
of strongly positive discrete series. In particular, this result gives an alternative and
essentially combinatorial proof of a special case of the results of [Muić 2008].

Proposition 5.3. Let σ ∈ S2(n) denote a strongly positive discrete series. Suppose
that 2(σ, r) 6= 0, for some r such that mr ≤ n+ 1

2 , and that

R P̃1(σ )(χV,ψν
−(mk−n−1))= 0

for k ≥ r + 1. Then σ(r) is a discrete series representation.

Proof. We prove this proposition by downwards induction on r , starting with an r
such that mr = n+ 1

2 . If mr = n+ 1
2 , Theorem 4.2 shows our claim. Thus, suppose

that the claim holds for some r + 1 such that mr+1 ≤ n+ 1
2 . We prove it for r .

It may be easily concluded from the proof of Proposition 5.1 (in the same way
as in the proof of Lemma 5.1 of [Muić 2004]) that there is a nonzero intertwining
σ(r) ↪→ ν−(mr−n−1) o σ(r − 1).

Note that in our case, mr <n+ 1
2 , which implies−(mr−n−1)≥ 3

2 . Now, suppose
that σ(r −1) is not a discrete series representation. According to Lemma 3.4, there
is an embedding σ(r − 1) ↪→ δ

(
[νaρ, νbρ]

)
o σ ′, where a + b ≤ 0. Obviously,

a ≤ 0.
Since mr−n−1≤− 3

2 , the strong positivity of the representation σ and Lemma 3.3
together with Theorem 4.3 imply there is at most one x ∈ R, 0< |x | ≤ 1 such that
νxρ appears in [σ(r−1)]. Therefore, b≤ 0 and the representation ν−(mr−n−1)

×νbρ

is irreducible and isomorphic to νbρ× ν−(mr−n−1).
We thus get the embeddings and isomorphisms

σ(r) ↪→ ν−(mr−n−1) o σ(r − 1) ↪→ ν−(mr−n−1)
× δ

(
[νaρ, νbρ]

)
o σ ′

↪→ ν−(mr−n−1)
× νbρ× δ

(
[νaρ, νb−1ρ]

)
o σ ′

' νbρ× ν−(mr−n−1)
× δ

(
[νaρ, νb−1ρ]

)
o σ ′,

contradicting square-integrability of σ(r). This proves the proposition. �

In pretty much the same way one can also prove:

Corollary 5.4. Let τ ∈ S1(r) denote a strongly positive discrete series. Suppose
that 2(τ, n) 6= 0, for some n such that mr ≥ n+ 1

2 . Then τ(n) is a discrete series
representation.

The last two propositions of this section contain rather important results on
the transfer of certain embeddings by the theta lifts. We omit the proofs, since
these results can be obtained in a completely analogous way as in [Muić 2004,
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Remark 5.2], that is, by precise examination of the filtration of Jacquet modules
quoted in Theorem 4.4.

Proposition 5.5. Suppose that the representation σ ∈ Irr(S̃p(n)) may be written
as an irreducible subrepresentation of the induced representation of the form
δ
(
[νaρ, νbρ]

)
o σ ′, where ρ is an irreducible cuspidal genuine representation,

σ ′ ∈ Irr(S̃p(n′)), and b− a ≥ 0. Let 2(σ, r) 6= 0. Then one of the following holds:

• There is an irreducible representation τ of some O(Vr ′) such that σ(r) is a
subrepresentation of δ

(
[νaχ−1

V,ψρ, ν
bχ−1

V,ψρ]
)
o τ .

• There is an irreducible representation τ of some O(Vr ′) such that σ(r) is a
subrepresentation of δ

(
[νa+1χ−1

V,ψρ, ν
bχ−1

V,ψρ]
)
o τ .

The latter situation is impossible unless (a, ρ)= (mr − n, χV,ψ).

Proposition 5.6. Suppose that the representation τ ∈ Irr(O(Vr )) may be written
as an irreducible subrepresentation of the induced representation of the form
δ
(
[νaρ, νbρ]

)
o τ ′, where ρ is an irreducible cuspidal representation and τ ′ ∈

Irr(O(Vr ′)) and b− a ≥ 0. Let 2(τ, n) 6= 0. Then one of the following holds:

• There is an irreducible representation σ of some S̃p(n′) such that τ(n) is a
subrepresentation of δ

(
[νaχV,ψρ, ν

bχV,ψρ]
)
o σ .

• There is an irreducible representation σ of some S̃p(n′) such that τ(n) is a
subrepresentation of δ

(
[νa+1χV,ψρ, ν

bχV,ψρ]
)
o σ.

The latter situation is impossible unless (a, ρ)= (n−mr + 1, 1F×).

6. Lifts of strongly positive discrete series of the metaplectic groups

In this section we determine the structure of certain lifts of the strongly positive
discrete series of the metaplectic groups. We also obtain precise information about
the first occurrence of strongly positive discrete series in the orthogonal tower,
depending on its cuspidal support.

Let σ ∈ Irr(S̃p(n)) denote a strongly positive discrete series. According to
the classification given in Theorem 3.1, we may write σ as a unique irreducible
subrepresentation of the induced representation( k∏

i=1

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp,(3)

with k minimal and ki minimal for i = 1, 2, . . . , k, where

σcusp ∈ Irr(S̃p(n′))
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is an irreducible cuspidal representation and ρi an irreducible cuspidal representation
of GL(nρi , F) (this defines nρi ) for i = 1, 2, . . . , k. We note that the minimality of
k and ki for i = 1, 2, . . . , k implies that there are no empty segments in (3).

Theorem 4.2 shows that either 2+(σ, n) 6= 0 or 2−(σ, n− 1) 6= 0.
The following theorem describes the first occurrence indices of the strongly

positive discrete series of the metaplectic group.

Theorem 6.1. Let σ ∈ Irr(S̃p(n)) be a strongly positive discrete series. If

2+(σ, n) 6= 0,

let (ε, r)= (+, n); otherwise let (ε, r)= (−, n−1). Suppose that σcusp ∈ Irr(S̃p(n′))
is a partial cuspidal support of σ and τcusp ∈ Irr(O(V ε

r ′)) is the first nonzero lift
of σcusp. Further, set M = {|x | : χV,ψν

x appears in [σ ]} and denote by amin the
minimal element of M. If M =∅, let amin = n′− 1

2 dim V ε
r ′ + 2.

If amin =
1
2 or n′ = r ′+ 1

2(dim V ε
0 − 1), then the first occurrence index of σ is r .

Otherwise, the first occurrence index of σ is r − amin+
3
2 .

The rest of this section is devoted to the proof of Theorem 6.1. The proof is
divided into several cases depending on the structure of the cuspidal support of σ
and on the first nonzero lift of σcusp.

In this section, mr denotes 1
2 dim V ε

r = n + 1
2 and σ(l) denotes the unique

irreducible quotient of the representation 2ε(σ, l).
Observe that Proposition 5.2 implies that the representation σ(l) is not a discrete

series representation for l > r .
There are two main cases that we consider.
Suppose the representation χV,ψν

1/2 does not appear in [σ ]. Since mr − n = 1
2 ,

Theorem 4.3 yields n′ ≥ r ′+ 1
2(dim(V ε

0 )− 1). We have two possibilities:

• n′ = r ′+ 1
2(dim(V ε

0 )− 1):

In this case, both representations χV,ψν
s o σcusp and νs o τcusp reduce for s = 1

2 .
Therefore, by Theorem 3.1, there is no representation of the form χ,ψν

s appearing in
[σ ]. Further, Theorem 3.5 of [Hanzer and Muić 2011] implies that the representation
χV,ψν

sρi o σcusp reduces if and only if the representation νsρi o τcusp reduces.
One of the main results of [Gan and Savin 2012] states that σ(r) is a discrete

series representation. Applying Equation (2), we obtain the embedding

σ(r) ↪→ δ
(
[νa1ρ ′1, ν

b1ρ ′1]
)
× δ

(
[νa2ρ ′2, ν

b2ρ ′2]
)
× · · ·× δ

(
[νalρ ′l , ν

blρ ′l ]
)
o τsp,

where ai ≤ 0 and ρ ′i ∈ {ρ1, ρ2, . . . , ρk} for i = 1, 2, . . . , l, and τsp ∈ Irr(O(V ε
r ′)) is

a strongly positive discrete series for some r ′.
Since the representation σ is strongly positive, Theorem 4.3 and Lemma 3.3

show that for every i ∈ {1, 2, . . . , k}, there is at most one representation of the
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form νxρi that appears in [σ(r)] with 0 ≤ |x | < 1. In the same way as in the
proof of Proposition 5.3, we deduce σ(r)' τsp, that is, σ(r) is a strongly positive
representation.

It is now easy to see, using Lemma 3.2, that σ(r) is a unique irreducible subrep-
resentation of the induced representation( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Suppose that2ε(σ, r−1) 6= 0. Then Proposition 5.2 implies RP1(2
ε(σ, r))(ν1/2) 6=

0, which is impossible. Thus, r is the first occurrence index of σ .

• n′ > r ′+ 1
2(dim(V ε

0 )− 1).

In this case, the representation χV,ψν
s o σcusp reduces for s = n′−mr ′ + 1, and

the representation νs o τcusp reduces for s = n′−mr ′ .
Observe that [σ(r)] is obtained from [σ ] by multiplying by χ−1

V,ψ all represen-
tations of the form χV,ψν

xρi appearing in [σ ], adding the representations ν−1/2,
ν−3/2, . . . , νmr ′−n′ , and replacing σcusp with τcusp.

There are two possible cases that we consider:

(1) Some representation of the form χV,ψν
s , s ∈R appears in [σ ]: We may suppose

that ρ1 is a trivial representation. Note that aρ1 − k1+ 1 is strictly greater than 1
2

and that aρ1 equals n′−mr ′ + 1.
For simplicity of notation, let a j stand for aρ1 − k1 + j , for j = 1, 2, . . . , k1.

Again, we know that σ(r) is a discrete series representation. Inspecting its cuspidal
support more precisely, it is not hard to see that it has to be strongly positive.
Using Lemma 3.2, we get that σ(r) can be obtained as the unique irreducible
subrepresentation of

ν1/2
× ν3/2

× · · ·× νa1−2
×

( k1∏
j=1

δ
(
[νa j−1, ν

b(1)j ]
))

×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

If a1 ≥
5
2 , Theorem 5.3 of [Matić 2012] implies RP1(σ (r))(ν

1/2) 6= 0. If a1 =
3
2 ,

the same result shows that RP1(σ (r))(ν
1/2) = 0 (since b(1)1 ≥ a1 >

1
2 ). Using

Proposition 5.2, we conclude that 2ε(σ, r −1) 6= 0 if a1 ≥
5
2 , and 2ε(σ, r −1)= 0

otherwise.
If a1 ≥

5
2 , combining the square-integrability of σ(r − 1) (by Proposition 5.3)

with the fact that [σ(r − 1)] is obtained from [σ(r)] by subtracting ν1/2, we get
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that σ(r − 1) is a strongly positive discrete series that can be realized as a unique
irreducible subrepresentation of

ν3/2
× ν5/2

× · · ·× νa1−2
×

( k1∏
j=1

δ
(
[νa j−1, ν

b(1)j ]
))

×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Proceeding with the same analysis as above, we obtain that 2ε(σ, r − l) 6= 0 for
l = 1, 2, . . . , r − a1+

3
2 and that σ(r − l) is a strongly positive discrete series that

can be realized as a unique irreducible subrepresentation of

νl+1/2
× νl+3/2

× · · ·× νa1−2
×

( k1∏
j=1

δ
(
[νa j−1, ν

b(1)j ]
))

×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Further, it is easy to check that the first occurrence index of σ equals r − a1+
3
2 .

(2) There is no representation of the form χV,ψν
s , s ∈ R appearing in [σ ]: As in

the previous case, we conclude that σ(r) is a strongly positive discrete series. An
easy computation shows that σ(r) is a unique irreducible subrepresentation of the
induced representation

ν1/2
× ν3/2

× · · ·× νn′−mr ′ ×

( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Now Theorem 5.3 of [Matić 2012] shows that RP1(σ (r))(ν
1/2) 6= 0. Because

R P̃1(σ )(χV,ψν
1/2)= 0, part (2) of Proposition 5.2 implies 2ε(σ, r − 1) 6= 0.

Note that [σ(r − 1)] and [σ(r)] differ by ν1/2. Proposition 5.3 now shows that
σ(r − 1) is a discrete series representation, and we again conclude that it must be
strongly positive. Thus, σ(r − 1) is a unique irreducible subrepresentation of the
induced representation

ν3/2
× ν5/2

× · · ·× νn′−mr ′ ×

( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

If n′−mr ′ >
1
2 , in the same way as above we deduce 2ε(σ, r−2) 6= 0. We continue

in this fashion, obtaining that 2ε(σ, r − j) 6= 0 for j = 1, 2, . . . , n′−mr ′ +
1
2 , and

that σ(r − j) is a strongly positive discrete series that can be characterized as the
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unique irreducible subrepresentation of

ν j+(1/2)
× ν j+(3/2)

× · · ·× νn′−mr ′ ×

( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

From Proposition 5.2, we conclude that the first occurrence index of σ equals

r − n′+mr ′ −
1
2 = r − (n′− 1

2 dim V ε
r ′ + 2)+ 3

2 .

Second, suppose that the representation χV,ψν
1/2 appears in [σ ]. There is no

loss of generality in assuming that ρ1 is a trivial representation. We have to examine
the following three possibilities:

• n′ = r ′+ 1
2(dim(V ε

0 )− 1):

Observe that in this case both representations χV,ψν
s oσcusp and νs oτcusp reduce

for s = 1
2 . Obviously, Theorem 3.1 implies k1 = 1.

Observe that [σ(r)] is obtained from [σ ] simply by replacing σcusp with τcusp

and multiplying all G̃L-members of [σ ] by χ−1
V,ψ ; consequently, the discrete series

σ(r) may be realized as the unique irreducible subrepresentation of

δ
(
[ν1/2, νb(1)1 ]

)
×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

We note that for each i ∈ {1, 2, . . . , k}, there is at most one x ∈ R, 0≤ |x | ≤ 1 such
that νxρi appears in [σ(r)], and thus τ has to be strongly positive.

Obviously, RP1(σ (r))(ν
1/2) 6= 0 if and only if b(1)1 =

1
2 .

If b(1)1 > 1
2 , using Proposition 5.2, we directly conclude that 2ε(σ, r − 1) = 0.

Suppose that b(1)1 =
1
2 . If 2ε(σ, r − 1) 6= 0, we get that ν1/2 does not appear in

[σ(r − 1)], contradicting Proposition 5.5 (we are in the first case there). Thus, r is
the first occurrence index of σ .

• n′ < r ′+ 1
2(dim(V ε

0 )− 1):

In this case, the representation χV,ψν
s o σcusp reduces for s = mr ′ − n′− 1 and

the representation νs o τcusp reduces for s = mr ′ − n′.
According to Theorem 4.3, [σ(r)] is obtained from [σ ] by multiplying all G̃L-

members of [σ ] by χ−1
V,ψ , subtracting the representations ν1/2, ν3/2, . . . , νmr ′−n′−1,

and replacing σcusp with τcusp. In the same way as before, we conclude that σ(r)
is a strongly positive discrete series that is characterized as a unique irreducible
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subrepresentation of

δ
(
[ν3/2, νb(1)1 ]

)
× δ

(
[ν5/2, νb(1)2 ]

)
× · · ·× δ

(
[νmr ′−n′, ν

b(1)k1 ]
)

×

( k∏
i=2

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp.

Since ν1/2 does not appear in [σ(r)], it follows that r is the first occurrence index
of σ .

• n′ > r ′+ 1
2(dim(V ε

0 )− 1):

Now the representation χV,ψν
s o σcusp reduces for s = n′ −mr ′ + 1, and the

representation νs o τcusp reduces for s = n′−mr ′ .
Theorem 4.3 now shows that [σ(r)] is obtained from [σ ] by multiplying all

G̃L-members of [σ ] by χ−1
V,ψ , adding the representations ν−1/2, ν−3/2, . . ., νmr ′−n′ ,

and replacing σcusp with τcusp.
From Theorem 4.2, we know that the representation σ(r) is in the discrete series.

But ν1/2 appears in [σ(r)] with multiplicity two, and consequently σ(r) can’t be a
strongly positive representation (by Lemma 3.3).

In what follows, we use Theorem 3.5 to describe discrete series σ(r) as precisely
as we can. So, we write σ(r) as a subrepresentation of the induced representation
of the form

δ
(
[νa′1ρ ′1, ν

b′1ρ ′1]
)
× δ

(
[νa′2ρ ′2, ν

b′2ρ ′2]
)
× · · ·× δ

(
[νa′lρ ′l , ν

b′lρ ′l ]
)
o τsp,

where ρ ′i ∈ {ρ1, ρ2, . . . , ρk}, a′i ≤ 0, and a′i + b′i > 0 for i = 1, 2, . . . , l. Further,
τsp is an irreducible strongly positive representation such that [τsp] is contained in
[σ(r)]. Hence, at least one of the representations ν1/2 and ν−1/2 has to appear in
some segment [νa′iρ ′i , ν

b′iρ ′i ], i ∈ {1, 2, . . . , l}. Since a′i ≤ 0 and b′i > 0, both these
representations appear in this segment.

Our next claim is that l = 1. Suppose, on the contrary, that l > 1.
Then there is some j ∈ {1, 2, . . . , l}, j 6= i such that ν1/2 /∈ [ν

a′jρ ′j , ν
b′jρ ′j ]. But

the union of the segments [νa′i , νb′i ] and [νa′jρ ′j , ν
b′jρ ′j ] is contained in [σ(r)], so

there is at most one x , 0≤ |x | ≤ 1 such that νxρ ′j appears in [νa′jρ ′j , ν
b′jρ ′j ]. This

contradicts the fact that the ends of segment [νa′jρ ′j , ν
b′jρ ′j ] satisfy a′j ≤ 0 and b′j > 0.

Thus, l = 1 and ρ ′1 ∼= 1F× .
In this way we obtain the following embedding:

σ(r) ↪→ δ
(
[νa′1, νb′1]

)
o τsp.

Since a′1 ≤ 0, using Proposition 5.6 we obtain a contradiction with the strong
positivity of σ . Therefore, this case is impossible and Theorem 6.1 is proved.
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The results obtained closely parallel those contained in Theorem 4.2 of [Muić
2004] for the dual pair (Sp(n), O(V )).

7. Lifts of strongly positive discrete series of the orthogonal groups

The purpose of this section is to determine the first occurrence indices of strongly
positive discrete series of the odd orthogonal groups that appear in the correspon-
dence given by Theorem 4.2, and to provide a description of the lifts of such
representations in the metaplectic tower.

Thus, we let τ ∈ Irr(O(Vr )) denote a strongly positive discrete series such that
2(τ,mr −

1
2) 6= 0, and realize it as a unique irreducible subrepresentation of the

induced representation of the form( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

o τcusp,

with k minimal and ki minimal for i = 1, 2, . . . , k, where τcusp ∈ Irr(O(Vr ′)) is a
cuspidal representation and ρi an irreducible cuspidal representation of GL(nρi , F)
(this defines nρi ) for i = 1, 2, . . . , k.

Note that Proposition 5.1 yields that the representation τ(l) is not a discrete
series representation for l > mr −

1
2 .

In the following theorem, we describe the first occurrence indices of certain
strongly positive discrete series of the odd orthogonal groups.

Theorem 7.1. Let τ ∈ Irr(O(Vr )) be a strongly positive discrete series with a
nonzero lift on the (mr −

1
2)-th level of the metaplectic tower. Suppose that τcusp ∈

Irr(O(Vr ′)) is a partial cuspidal support of τ and that σcusp ∈ Irr(S̃p(n′)) is the first
nonzero lift of τcusp. Let n = mr −

1
2 . Further, define M = {|x | : νx appears in [τ ]}

and denote by amin the minimal element of M. If M =∅, let amin = mr ′ − n′+ 1.
If amin =

1
2 or r ′ = n′− 1

2(dim(V0)− 1), then the first occurrence index of τ is n.
Otherwise, the first occurrence index of τ is n− amin+

3
2 .

The remaining part of this section is devoted to the proof this theorem.
Again, we have two main cases to discuss.
First, assume that ν1/2 does not appear in [τ ]. This implies

r ′ ≥ n′− 1
2(dim(V0)− 1).

This leaves us two possibilities:

• r ′ = n′− 1
2(dim(V0)− 1):

In this case, both representations χV,ψν
s o σcusp and νs o τcusp reduce for s = 1

2 .
From the classification of strongly positive discrete series, elaborated in Section 2,
we deduce that there are no representations of the form νs appearing in [τ ].
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Applying Theorem 4.2, we obtain that τ(n) is a discrete series representation,
and in the same way as before, we may conclude that it is strongly positive. This
yields the embedding

τ(n) ↪→
( k∏

i=1

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

) )
o σcusp.

Proposition 5.1 implies 2(τ, n− 1)= 0, so n is the first occurrence index of τ .

• r ′ > n′− 1
2(dim(V0)− 1):

In this case, the representation νs o τcusp reduces for s = mr ′ − n′ and the
representation χV,ψν

s o σcusp reduces for s = mr ′ − n′− 1.
Theorem 4.3 shows that [τ(n)] is obtained from [τ ] by multiplying all elements

of R appearing in [τ ] by χV,ψ , adding the representations χV,ψν
1/2, χV,ψν

3/2, . . . ,
χV,ψν

mr ′−n′−1, and replacing τcusp with σcusp.
There are two main cases to consider:

(1) There is no representation of the form νs appearing in [τ ], for s ∈ R: As
before, we conclude that τ(n) is a strongly positive discrete series that is a unique
irreducible subrepresentation of

χV,ψν
1/2
×χV,ψν

3/2
× · · ·×χV,ψν

mr ′−n′−1

×

( k∏
i=1

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp.

Theorem 5.3 of [Matić 2012] implies RP1(τ (n))(χV,ψν
1/2) 6= 0. Since

RP1(τ )(ν
1/2)= 0,

part (2) of Proposition 5.1 shows 2(σ, n− 1) 6= 0.
From Corollary 5.4, we obtain that τ(n− l) is a discrete series representation

for each l > 0 such that 2(τ, n− l) 6= 0. In the same way as above, we see that it
must be strongly positive.

Since [τ(n− l)] is obtained from [τ(n)] by subtraction of the representations
χV,ψν

1/2, χV,ψν
3/2, . . . , χV,ψν

(2l−1)/2, for l ∈ {1, 2, . . ., mr ′−n′− 1
2}, it is not hard

to see, using Proposition 5.1, that 2(τ, n− l) 6= 0 for l ∈ {1, 2, . . . ,mr ′ − n′− 1
2}.

Furthermore, τ(n − l) is a unique irreducible subrepresentation of the induced
representation

χV,ψν
(2l+1)/2

×χV,ψν
(2l+3)/2

× · · ·×χV,ψν
mr ′−n′−1

×

( k∏
i=1

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp,

for l ∈ {1, 2, . . . ,mr ′ − n′− 1
2}.
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There is no representation of the form χV,ψν
s appearing in [τ(n−mr ′ + n′+ 1

2)],
so Proposition 5.1 shows that the first occurrence index of τ equals n−mr ′+n′+ 1

2 .

(2) There is some representation of the form νs appearing in [τ ]: We may suppose
that ρ1 is a trivial representation. Obviously, aρ1 − k1+ 1 is strictly greater than 1

2
and aρ1 equals mr ′ − n′.

For brevity, let a j stand for aρ1 − k1+ j , for j = 1, 2, . . . , k1. Since χV,ψν
1/2

appears in [τ(n)] with multiplicity one, it follows that τ(n1) is a strongly positive
representation for each n1 ≤ n such that 2(τ, n1) 6= 0.

Also, τ(n) is the unique irreducible subrepresentation of

χV,ψν
1/2
×χV,ψν

3/2
× · · ·×χV,ψν

a1−2
×

( k1∏
j=1

δ
(
[χV,ψν

a j−1, χV,ψν
b(1)j ]

))

×

( k∏
i=2

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp.

Arguing in the same way as in the analogous situation in the metaplectic case, we
deduce that 2(τ, n− l) 6= 0 for l ∈ {1, 2, . . . , a1−

3
2} and that n−a1+

3
2 is the first

occurrence index of τ . Further, τ(n− l) is a unique irreducible representation of
the induced representation

χV,ψν
l+1/2
×χV,ψν

l+3/2
× · · ·×χV,ψν

a1−2
×

( k1∏
j=1

δ
(
[χV,ψν

a j−1, χV,ψν
b(1)j ]

))

×

( k∏
i=2

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp,

for l ∈ {1, 2, . . . , a1−
3
2}.

It remains to consider the case when the representation ν1/2 appears in [τ ].
Without loss of generality, we may suppose that ρ1 is a trivial character. Similarly
to the previous section, we have to examine three possibilities.

• r ′ = n′− 1
2(dim(V0)− 1):

The specificity of this case is that both induced representations νs o τcusp and
χV,ψν

s o σcusp reduce for s = 1
2 . On account of Theorem 3.1, we have k1 = 1 and

aρ1 =
1
2 .

Furthermore, [τ(n)] is obtained from [τ ] by replacing τcusp with σcusp and multi-
plying all other members of [τ ] by χV,ψ .

From the equality of cuspidal reducibilities for τcusp and σcusp, it may be con-
cluded that τ(n) is the strongly positive discrete series that is a unique irreducible
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subrepresentation of

δ
(
[χV,ψν

1/2, χV,ψν
b(1)1 ]

)
×

( k∏
i=2

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j ρi ]

))
o σcusp.

Suppose that the lift2(τ, n−1) is nonzero. Then Proposition 5.1, enhanced by The-
orem 5.3 of [Matić 2012], implies b(1)1 =

1
2 . From Theorem 4.3, it follows that there

is no representation χV,ψν
1/2 appearing in [τ(n− 1)], contrary to Proposition 5.6.

It follows that n is the first occurrence index of τ .

• r ′ < n′− 1
2(dim(V0)− 1):

The induced representation νs o τcusp reduces for s = n′ −mr ′ and the induced
representation χV,ψν

soσcusp reduces for s=n′−mr ′+1. According to Theorem 4.3,
[τ(n)] is obtained from [τ ] by replacing τcusp with σcusp, multiplying GL-members
of [τ ] by χV,ψ , and then subtracting the representations χV,ψν

1/2, χV,ψν
3/2, . . . ,

χV,ψν
n′−mr ′ .

The strong positivity of the representation τ and the above discussion show that
for each i ∈ {1, 2, . . . , k}, there is at most one x , |x | ≤ 1 such that χV,ψν

x appears
in [τ(n)]. Since τ(n) is in the discrete series, from Theorem 3.5 we see that it is
strongly positive.

An easy computation shows that τ(n) is a unique irreducible subrepresentation
of the induced representation

δ
(
[χV,ψν

3/2, χV,ψν
b(1)1 ]

)
× δ

(
[χV,ψν

5/2, χV,ψν
b(1)2 ]

)
× · · ·

× δ
(
[χV,ψν

n′−mr ′+1, χV,ψν
b(1)k1 ]

)
×

( k∏
i=2

ki∏
j=1

δ
(
[χV,ψν

aρi−ki+ jρi , χV,ψν
b(i)j χV,ψρi ]

))
o σcusp.

That n is the first occurrence index of τ follows directly from Proposition 5.1.

• r ′ > n′− 1
2(dim(V0)− 1):

The induced representation νs o τcusp reduces for s = mr ′ − n′, and the represen-
tation χV,ψν

s o σcusp reduces for s = mr ′ − n′ − 1. The representation χV,ψν
1/2

appears in [τ(n)] with multiplicity two, since [τ(n)] is obtained from [τ ] by re-
placing τcusp with σcusp, multiplying other members of [τ ] by χV,ψ , and adding
χV,ψν

1/2, χV,ψν
3/2, . . . , χV,ψν

mr ′−n′−1.
According to Lemma 3.3, τ(n) is not a strongly positive discrete series, but the

results in [Gan and Savin 2012] show that it is a discrete series representation.
Applying Theorem 3.5 and analysis similar to that in the last case considered

in the previous section, we write τ(n) as an irreducible subrepresentation of the



470 IVAN MATIĆ

induced representation of the form

δ
(
[χV,ψν

a, χV,ψν
b
]
)
o σsp,

where a ≤ 0, a+ b > 0, and σsp ∈ S2 is a strongly positive discrete series.
Using Proposition 5.5, we obtain an embedding that contradicts the strong

positivity of τ . Consequently, this case is not possible.
This completes the proof of Theorem 7.1.
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