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FUSION SYMMETRIC SPACES AND SUBFACTORS

HANS WENZL

We construct analogs of the embedding of orthogonal and symplectic groups
into unitary groups in the context of fusion categories. At least some of
the resulting module categories also appear in boundary conformal field
theory. We determine when these categories are unitarizable, and explicitly
calculate the index and principal graph of the resulting subfactors.

This paper is a sequel of our previous paper [Wenzl 2012], where we introduced
a q-deformation of Brauer’s centralizer algebra for orthogonal and symplectic
groups; this algebra had already appeared more or less before in [Molev 2003];
see also the discussion in [Wenzl 2012]. It is motivated by finding a deformation
of orthogonal or symplectic subgroups of a unitary group that is compatible with
the standard quantum deformation of the big group. This has been done before
on the level of coideal subalgebras of Hopf algebras by Letzter. However, our
categorical approach also allows us to extend this to the level of fusion tensor
categories, where we find finite analogs of symmetric spaces related to the already
mentioned groups. Moreover, we can establish C∗ structures, necessary for the
construction of subfactors, in this categorical setting; this is not so obvious to see
in the setting of coideal algebras.

It is well-known how one can use a subgroup H of a (for simplicity here) finite
group G to construct a module category of the representation category Rep G of G.
This module category also appears in the context of subfactors of II1 von Neumann
factors as follows: Let R be the hyperfinite II1 factor, and let N= RG

⊂M= RH

be the fixed points under outer actions of G and H . Then the category of N−N

bimodules is equivalent to Rep G, and the module category is given via the M−N

bimodules of the inclusion N⊂M; its simple objects are labeled by the irreducible
representations of H . In particular, an important invariant called the principal graph
of the subfactor is determined by the restriction rules for representations from G
to H . Important examples of subfactors were constructed from fusion categories
whose Grothendieck semirings are quotients of the ones of semisimple Lie groups.
So a natural question to ask is whether one can perform a similar construction in this
context. More precisely, can we find restriction rules for type A fusion categories
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which describe a subfactor as before, and which will approach in the classical limit
the usual restriction rules from U(N ) to O(N ).

We answer this question in the positive in this paper via a fairly elementary
construction. We show that certain semisimple quotients of the q-Brauer algebras
have a C∗ structure and contain C∗-quotients of Hecke algebras of type A. The
subfactor is then obtained as the closure of inductive limits of such algebras. Due
to its close connection to Lie groups, we can give very explicit general formulas for
its index and its first principal graph. Observe that the Lie algebra slN decomposes
as an soN module into the direct sum soN ⊕ p, where p is a simple soN -module.
Then, the index can be expressed explicitly in terms of the weights of p; see
Theorem 3.4. As before in the group case, it can be interpreted as the quotient
of the dimension of the given fusion category by the sum of the squares of q-
dimensions of representations of orthogonal or symplectic subgroups whose labels
are in the alcove of a certain affine reflection group; however in our case, there is
no corresponding tensor category for the denominator, and the q-dimensions differ
from the ones of the corresponding quantum groups. Also, the restriction rules
for the corresponding bimodules of this subfactor, the first principal graph, can be
derived from the classical restriction rules via an action of the already mentioned
affine reflection group, similarly as it was done before for tensor product rules for
fusion categories. However, in our case, the affine reflection comes from the highest
short root of the corresponding Lie algebra in the nonsimply laced case; it is also
different from the one for fusion categories in the even-dimensional orthogonal case.

Not surprisingly for such a basic question, many related results have been obtained
before in the study of subfactors, tensor categories and boundary conformal field
theory. For N = 2, we obtain the Goodman–de la Harpe–Jones subfactors for
Dynkin diagrams Dn . Subgroups and module categories in connection with SU(3)
and SU(4) fusion categories have been studied by Ocneanu [2002] and by Evans
and Pugh [2011]; our examples for N = 3 and N = 4 appear among the series
in these works. The research in this and the just-mentioned papers has also been
influenced by closely related results in boundary conformal field theory, which
will be discussed in more detail at the end of the paper. Our examples for the
odd-dimensional orthogonal group and for symplectic groups also seem to be
closely related to type III1 subfactors constructed by Feng Xu [2009] and Antony
Wassermann [2010] by completely different methods.

The first chapter mostly contains basic material from subfactor theory which
will be needed later. In the second chapter we review and expand material on the
q-Brauer algebra as defined in [Wenzl 2012]; see also [Molev 2003]. In particular,
we define C∗-structures for certain quotients and use that to construct subfactors.
The third chapter is mainly concerned with the finer structure of these subfactors,
such as explicit closed formulas for the index and calculation of the first principal



FUSION SYMMETRIC SPACES AND SUBFACTORS 485

graph. The same techniques would also extend to other examples, such as the ones
in [Xu 2009].

1. II1 factors

1A. Periodic commuting squares. We will construct subfactors using the setup of
periodic commuting squares (going back to work of Jones and Popa) as in [Wenzl
1988a]. More precisely, we assume that we have increasing sequences of finite-
dimensional C∗ algebras A1 ⊂ A2 ⊂ · · · and B1 ⊂ B2 ⊂ · · · such that An ⊂ Bn for
all n ∈N. Let 3n and 3̃n be labeling sets for the simple components of Bn and An ,
respectively. Let Gn be the inclusion matrix for An ⊂ Bn . If we write a minimal
idempotent pµ ∈ An,µ as a sum of minimal mutually commuting idempotents of Bn ,
then the entry gλµ of Gn denotes the number of those idempotents which are in Bn,λ.
We say that our sequences of algebras are periodic with period d if there exists
an n0 ∈ N such that for any n > n0 we have bijections j between 3n and 3n+d

as well as between 3̃n and 3̃n+d that do not change the inclusion matrices for
An ⊂ Bn as well as for An ⊂ An+1 and Bn ⊂ Bn+1. This means, in particular, that
g j (λ) j (µ) = gλµ for all λ ∈3n , µ ∈ 3̃n , n > n0.

The trace functional defines inner products on the algebras An and Bn by

(b1, b2)= tr(b∗1b2).

Let eAn+1 and eBn be the orthogonal projections onto the subspaces An+1 and Bn of
Bn+1. Then, the commuting square condition says that eAn+1eBn = eAn = eBn eAn+1

for all n ∈ N. Finally, we also note that the trace tr is uniquely determined on An

and Bn by its weight vectors an and bn which are defined as follows: Let pµ be a
minimal idempotent in the simple component of An labeled by µ. Then we define
an,µ = tr(pµ), and an = (an,µ)µ, where µ runs through a labeling set of the simple
components of An . The weight vector bn for Bn is defined similarly. The following
proposition follows from [ibid.], Theorem 1.5 (where the matrix G = (gλµ) defined
here would correspond to the matrix G t in [ibid.]).

Proposition 1.1. Under the given conditions, we get a subfactor N ⊂ M whose
index [M : N] is equal to ‖an‖

2/‖bn‖
2 for any sufficiently large n. Moreover, we

have
∑

gλµan,λ = [M : N]bn,µ.

1B. Special periodic algebras. In general, it can be quite hard to determine finer
invariants of the subfactors, the so-called higher relative commutants (or centralizers)
from the generating sequence of algebras. However, under certain circumstances,
this can become quite easy. We describe such a setup. It is a moderate abstraction
of an approach which has already been used before by a number of authors. The
reader familiar with tensor categories and module categories should think of the
algebras An =EndC(X⊗n) and Bn =EndD(Y⊗X⊗n) for X an object in a C∗ tensor
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category C and Y an object in a module category D over C. In the following, we
will make the following assumptions beyond the ones in the previous subsection:

1. The algebras An will be monoidal C∗-algebras. This means we have canonical
embeddings of C∗ algebras Am ⊗ An → An+m with multiplicativity of the
trace, that is, tr(a1⊗ a2)= tr(a1) tr(a2).

2. We have canonical embeddings Bm ⊗ An→ Bn+m , again with multiplicativity
of the trace.

3. We have the commuting square condition for the sequences of algebras An⊂ Bn

and 1⊗ An−1 ⊂ An .

4. There exists d ∈N and a projection p∈ Ad such that (1m⊗p)Am+d(1⊗p)∼= Am

and (1m ⊗ p)Bm+d(1⊗ p)∼= Bm for all m ∈ N.

Examples for this setup will be given at the end of this section and in Section 2.
Moreover, any finite depth subfactor N⊂M (see [Goodman et al. 1989; Evans and
Kawahigashi 1998] for definitions) produces algebras for such a setup as follows:
Let M⊗n

=M⊗N M⊗N · · ·⊗N M (n factors). Obviously, M⊗n is an N−N as well
as an M−N bimodule. One can check that for

An = EndN−N M⊗n
⊂ Bn = EndM−N M⊗n+1

the axioms above are satisfied; here the embedding is defined by letting the elements
of An act on the second to (n + 1)− st factor of M⊗n+1. It is also possible to
define these algebras in connection of relative commutants in the Jones tower
of relative commutants (see [Bisch 1997] for details). Recall that for factors
N ⊂ M the relative commutant (or centralizer) N′ ∩M is defined to be the set
{b ∈M | ab = ba for all a ∈ N}.

Lemma 1.2. The subfactor N ⊂ M generated from the sequences of algebras
1m ⊗ An ⊂ Bn+m has relative commutant Bm . The same statement also holds with
Bn+m and Bm in the last sentence replaced by An+m and Am .

Proof. This is essentially the proof used for Theorem 3.7 in [Wenzl 1988a]. Observe
that by induction on r and assumption 4 above, we also have

(1m ⊗ p⊗r )Xm+rd(1m ⊗ p⊗r )∼= Xm

for X = A, B. It follows from Theorem 1.6 of [ibid.] that the dimension of the
relative commutant N′ ∩M is at most equal to the dimension of Bm . The claim
follows from the fact that Bm ⊗ 1n commutes with 1m ⊗ An for all n. �

1C. Bimodules and principal graphs. We calculate the first principal graph for
subfactors constructed in our setup, using fairly elementary methods from [ibid.]
as well as the bimodule approach. The latter was first used in the subfactor context
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by Ocneanu; see [Evans and Kawahigashi 1998]. For the connection between
bimodules and principal graphs, see [Bisch 1997] and for more details compatible
with our notation, see also [Erlijman and Wenzl 2007]. While most of this section
has already appeared before implicitly or explicitly, the presentation in our setup
might be useful also in other contexts.

Pick k large enough so that m = kd > n0. Hence, the inclusion matrices for
Ard ⊂ Brd coincide for all r ≥ k using the bijection of simple components as
described in Section 1A. Let3m and 3̃m be labeling sets for the simple components
of Bm and Am respectively. Let N and M be the factors generated by the increasing
sequences of algebras An and Bn respectively; see Proposition 1.1 or Lemma 1.2,
with the m there equal 0. Both of these factors have a subfactor Ñ generated by the
subalgebras

1m ⊗ An ⊂ An+m ⊂ Bn+m .

We now define for each λ ∈ 3̃m an N− Ñ bimodule Nλ as follows: It is the Hilbert
space completion of Npλ with respect to the inner product induced by tr, where pλ
is a minimal idempotent in Am,λ, the simple component of Am labeled by λ, with
obvious left and right actions by N and Ñ . To ease notation, we shall often refer to
it as an N−N bimodule, using the isomorphism between Ñ and N given by the
trace preserving maps a ∈ An 7→ 1m ⊗ a ∈ An+m .

Similarly, we define M−Ñ bimodules Mµ for anyµ∈3m which are Hilbert space
completions of Mpµ, where pµ is a minimal idempotent in the simple component
Bm,µ of Bm . Finally, we define the inclusion numbers bλµ for elements λ ∈ 3̃ and
µ ∈3m as usual (see Section 1A).

Lemma 1.3. The bimodules Nλ and Mµ are irreducible N−Ñ and M−Ñ bimodules,
respectively. We have the decomposition Mµ

∼=
⊕

λ bλµNλ as N− Ñ modules.

Proof. This is well-known (see [Erlijman and Wenzl 2007] for more details). It
follows from Lemma 1.2 that the endomorphism ring of the M− Ñ bimodule M

is given by Bm . Hence the M− Ñ bimodules Mµ are simple, as pµ was chosen to
be a minimal idempotent in Bm . One shows similarly that also the Nλ are simple
N− Ñ bimodules.

Observe that dimN Nλ = tr(pλ) and dimM Mµ = tr(pµ); see [Jones 1983]. Now
if pλ is a minimal idempotent in Am , it follows from the definitions that IndM

N Nλ :=
Mpλ is isomorphic as an M− Ñ bimodule to the direct sum ⊕bλµMµ. By Frobenius
reciprocity (see [Evans and Kawahigashi 1998; Bisch 1997]) it follows that the
module Nλ appears with multiplicity bλµ in Mµ, viewed as an N− Ñ bimodule.
Hence the N− Ñ bimodule Mµ has a submodule which is isomorphic to

⊕
λ bλµNλ.

But as Mµ has N-dimension [M : N] tr(pµ), it coincides with this submodule, by
Proposition 1.1. �
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Theorem 1.4. Let N ⊂ M be the subfactor generated by sequences of algebras
An ⊂ Bn satisfying the conditions in Section 1B. Then its first principal graph is
given by the inclusion graph for Akd ⊂ Bkd for sufficiently large k.

Proof. It is well-known that the first principal graph is given by the induction-
restriction graph of M−N and N−N bimodules appearing in the tensor products
M⊗n , n ∈ N, where M⊗n

= M⊗N M⊗N · · · ⊗N M (n factors); see [Evans and
Kawahigashi 1998; Bisch 1997]. Obviously, this graph does not change if we
replace all X −N bimodules H in this setting by X − qNq bimodules Hq, for
X = M,N and q a nonzero projection in N. The claim can now be shown for
q = p⊗k where k is chosen large enough so that kd > n0, using Lemma 1.3. �

Recall that many examples come from module tensor categories, where An =

EndC(X⊗n) and Bn = End(Y ⊗ (X⊗n)) for an object X in a tensor category C and
an object Y in the module category D over C. In this setting, the weight vectors
of our trace are given by an,λ = d̃λ/xn and bn,µ = dµ/yxn for positive quantities
dµ, d̃λ, x and y. Then we have:

Corollary 1.5. Assuming the conditions for the trace weights as just given, we have
subfactors N⊂Mµ with index [Mµ :N] = d2

µ[M :N], with N⊂M as in Theorem 1.4.

Remark 1.6. There is also a second important invariant for N ⊂ M, the dual
principal graph. It can be analogously defined as an induction-restriction graph
between irreducible M−M and M−N bimodules appearing in the tensor powers
M⊗n . Its calculation is more difficult than that of the first principal graph. This is
quite similar to the corresponding problem for subfactors coming from conformal
inclusions and related constructions; see [Xu 1998; Böckenhauer et al. 1999;
Erlijman and Wenzl 2007]. We plan to study this problem in a future publication
via suitable adaptions of techniques in those papers.

1D. The GHJ-construction. We give a well-known and well-studied example for
our current setup, which was first constructed in [Goodman et al. 1989]. Let G be a
matrix with nonnegative integer entries and norm less than 2. It is well-known that
such matrices are classified by Coxeter graphs of type ADE . We assume that the
columns of G are indexed by the even vertices, and the rows by the odd vertices.
We define C∗-algebras Bn by B0 = Cve , and B1 =⊕Md j , where ve is the number
of even vertices, and the summands of B1 are labeled by the odd vertices j , whose
dimension d j is equal to the number of even vertices to which j is connected. The
embedding Bo ⊂ B1 is given by the inclusion matrix G. Then we define recursively
Bn+1 via Jones’ basic construction [1983] for Bn−1 ⊂ Bn . Here the trace on Bn is
the unique normalized trace whose values on minimal idempotents are given by the
Perron–Frobenius vector of G t G or GG t , depending on whether n is even or odd,
and the vector is normalized such that tr(1)= 1. Then the algebra Bn+1 is generated
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by Bn , acting on itself via left multiplication, and the orthogonal projection en

onto the subspace Bn−1 of Bn , with respect to the inner product coming from the
trace. The algebra An is defined to be the subalgebra generated by the identity 1
and the projections ei , 1 ≤ i < 1. It is well-known that these algebras satisfy the
commuting square condition, that they are periodic with periodicity 2, and that the
Jones projections ei satisfy the conditions of the projection p in Section 1B. This
has already been shown in [Goodman et al. 1989].

2. q-Brauer algebras

2A. Definitions. Fix N ∈ Z and let [N ] = (q N
− q−N )/(q − q−1), where q is

considered to be a complex number. We denote by Hn(q2) the Hecke algebra of
type An−1. It is given by generators g1, g2, . . . , gn−1 which satisfy the usual braid
relations and the quadratic relation g2

i = (q
2
− 1)gi + q2. The q-Brauer algebra

Brn(N ) is the complex algebra defined via generators g1, g2, . . . , gn−1 and e and
the following relations:

(H) g1, g2, . . . , gn−1 satisfy the relations of the Hecke algebra Hn(q2).

(E1) e2
= [N ]e.

(E2) egi = gi e for i > 2, eg1 = q2e, eg2e = q N+1e and eg−1
2 e = q−1−N e.

(E3) g2g3g−1
1 g−1

2 e(2) = e(2) = e(2)g2g3g−1
1 g−1

2 , where e(2) = e(g2g3g−1
1 g−1

2 )e.

Remark 2.1. (a) Relation (E3) can be replaced by the perhaps slightly less myste-
rious relation e(2)g2g3 = e(2)g2g1 and g−1

1 g−1
2 e(2) = g−1

3 g−1
2 e(2).

(b) It is easy to see that this algebra coincides with the algebra defined in [Wenzl
2012] after substituting q there by q2, and e there by q1−N e (with the q of this
paper); this is also compatible with the different definition of [N ] in [ibid.]. We
have chosen this parametrization as it will make it easier to define a ∗-structure on
it. More precisely, if |q| = 1, there exists a complex conjugate antiautomorphism
b 7→ b∗ on Brn(N ) defined by

(2-1) e∗ = e, g∗i = g−1
i , where 1≤ i < n.

It is easy to check the relations to show this operation is well-defined.

2B. Molev representation. We give a representation of our algebra Brn(N ) in
End(V⊗n), where V = CN . For this we use the matrices used by Molev [2003] for
the definition of his q-deformation of Brauer’s centralizer algebra. His defining
relations are slightly different from ours, but Molev has informed the author that our
algebra satisfies the relations of his algebra. It turns out that also his matrices satisfy
the relations of our algebras, which we will outline here. Let R be the well-known
solution of the quantum Yang–Baxter equation for type A. For simplicity we will
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use this notation for what is often denoted as Ř. If Ei j are the matrix units for n×n
matrices, we define the following elements in End(V⊗2):

R =
∑

i

q Ei i ⊗ Ei i +
∑
i 6= j

Ei j ⊗ E j i +
∑
i< j

(q − q−1)Ei i ⊗ E j j ,

and
Q =

∑
i, j

q N+1−2i Ei j ⊗ Ei j .

Moreover, if A ∈ End(V⊗2), we define the operator Ai ∈ End(V⊗n) by

Ai = 1i−1⊗ A⊗ 1n−1−i ,

where 1k is the identity on V⊗k . Then we have the following proposition, all of
whose essential parts were already proved in [Molev 2003]. However, the relations
for our algebras are slightly different, so we spell out some of the adjustments of
the work in [ibid.] in our context below.

Proposition 2.2. The map gi 7→ q Rn−i and e 7→ Qn−1 defines a representation 8
of Brn(N ). It specializes to the usual representation of Brauer’s centralizer algebra
in End(V⊗n) for q = 1.

Proof. Most of the relations are already known or are easy to check. For example,
it is well-known that the matrices q Ri satisfy the relations of the Hecke algebra
Hn(q2). Relation (E1) is checked easily, and also the relations in (E2) are fairly
straightforward to check. It suffices to check (E3) for n = 4. For this observe that
by [ibid., (4.16)], we have

Q3 R2 R3 R1 R2 Q3 = Q1 Q3+ q N+1(q − q−1)Q3(R1+ q−11),

in our notation. Using the relation Ri = R−1
i + (q−q−1)1 for the second and third

factor of the left hand side, one derives from this

Q3 R−1
2 R−1

3 R1 R2 Q3 = Q1 Q3.

To check relation (E3), observe that

R1 R2(vi ⊗ vi ⊗ v j ⊗ v j )= R3 R2(vi ⊗ vi ⊗ v j ⊗ v j ),

where (vi ) is the standard basis for CN
= V . One derives from this that

R−1
2 R−1

1 R3 R2 Q1 Q3 = Q1 Q3.

Moreover, the same calculations above also work with Ri replaced by R−1
i and Q j

replaced by its transpose QT
j . Hence one can show as before that

R2 R3 R−1
1 R−1

2 QT
1 QT

3 = QT
1 QT

3 .
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Transposing this, using RT
i = Ri shows the last part of the claim. �

2C. Quotients. We can now rephrase the main results of [Wenzl 2012] in our
notation as follows:

Theorem 2.3. (a) There exists a well-defined functional tr on Brn(N ) defined
inductively by tr(g1)= q N+1/[N ], tr(e)= 1/[N ] and tr(bgn)= tr(b) tr(gn) for
all b ∈ Brn(N ).

(b) Let Brn(N )= Brn(N )/In , where In is the annihilator ideal of tr. Then Brn(N )
is semisimple and the inclusion Brn(N )⊂ Brn+1(N ) is well-defined for all n.

It is possible to explicitly describe the structure of the quotients Brn = Brn(N ).
To do so, we need the following definitions for the labeling sets of simple represen-
tations. More conceptually, the labeling sets 3(N , `) consist of all such diagrams
λ for which the quantities dµ(q) 6= 0 for any subdiagrams µ⊂ λ including λ itself,
where q2 is a primitive `-th root of unity and the dµ are defined in Section 2E.

Definition 2.4. Fix integers N and ` satisfying 1< |N |< `.

(i) The set 3̃(N , `) consists of all Young diagrams with at most N rows such that
the first and N -th row differ by at most `− N boxes for N > 0. If N < 0, the
Young diagrams have at most |N | columns, where the first and |N |-th column
differ by at most `− |N | boxes.

(ii) The set 3(N , `) consists of all Young diagrams λ with λi boxes in the i-th
row and λ′j boxes in the j-th column which satisfy

(a) λ′1+ λ
′

2 ≤ N and λ1 ≤ (`− N )/2 if N > 0 and `− N even,
(b) λ′1+ λ

′

2 ≤ N and λ1+ λ2 ≤ `− N if N > 0 and `− N odd,
(c) λ1 ≤ |N |/2 and λ′1+ λ

′

2 ≤ `− |N | if N < 0 is even,
(d) λ1+ λ2 ≤ |N | and λ′1+ λ

′

2 ≤ `− |N | if N < 0 is odd.

Diagrams which miss one of these inequalities only by the quantity one are called
boundary diagrams of 3(N , `); for example in case (a) if λ′1+ λ

′

2 = N + 1.

Theorem 2.5 [Wenzl 2012, Section 5]. Let q2 be a primitive `-th root of unity,
and let N be an integer satisfying 1 < |N | < `. Then the simple components of
Brn=Brn(N ) are labeled by the Young diagrams in3(N , `) with n, n−2, n−4, . . .
boxes. If Vn,λ is a simple Brn-module for such a diagram λ, it decomposes as a
Brn−1 module as

(2-2) Vn,λ ∼=
⊕
µ

Vn−1,µ,

where µ runs through diagrams in 3(N , `) obtained by removing or, if |λ| < n,
also by adding a box to λ.
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2D. Path idempotents and matrix units. We will give some details about the proof
of Theorem 2.5 which will also be needed for further results. Observe that the
restriction rule (2-2) implies that a minimal idempotent pµ in Brn−1,µ can be written
as a sum of minimal idempotents with exactly one in Brn,λ for each diagram λ in
3(N , `) that can be obtained by adding or subtracting a box fromµ. This inductively
determines a system of minimal idempotents and matrix units of Brn(q N , q) labeled
by paths and pairs of paths, respectively, in 3(N , `) of length n. Such a path is
defined to be a sequence of Young diagrams (λ(i))ni=0 where λ(0) is the empty Young
diagram, and λ(i+1) is obtained from λ(i) by adding or removing a box. It follows
from the restriction rule above that the dimension of Vn,λ is equal to the number of
paths of length n with λ(n) = λ, and that we can label a complete system of matrix
units for the simple component Brn,λ by pairs of such paths. We then have the
following lemma:

Lemma 2.6. For each pair of paths t1, t2 in 3(N ,∞) with the same endpoint we
can define the matrix unit Et1,t2 as a linear combination of products of generators
over algebraic functions (rational for path idempotents) in q with poles only at roots
of unity. More precisely, the formula for Et1,t2 is well-defined for q2 a primitive `-th
root of unity if both t1 and t2 are paths in 3(N , `).

Proof. This was proved in [Wenzl 2012], Section 5. As the result is not explicitly
stated as such, we give some details here. One observes that the two-sided ideal
generated by the element ē ∈ Brn+1 is isomorphic to Jones’ basic construction for
the algebras Brn−1 ⊂ Brn (or, strictly speaking, by certain conjugated subalgebras
which are denoted by i1(Brn) and i2(Brn−1); see Section 5.2 in [Wenzl 2012]). One
can then define path idempotents and matrix units inductively as it was done in
[Ram and Wenzl 1992, Theorem 1.4], using the formulas for the weights of traces,
which will also be reviewed in Section 2E; this is closely related to what is also
known in subfactor theory as the Ocneanu–Sunder path model [Sunder 1987]. The
complement of this ideal is a quotient of the Hecke algebra H̄n+1, for which matrix
units already were more or less defined in [Wenzl 1988a, p. 366]. �

Lemma 2.7. Let p[N ] and p[1N ] be the minimal idempotents in HN corresponding
to its one-dimensional trivial and sign representations. Then for all m > 0 we have

p̄⊗2
[1N ]

Brm+2N p̄⊗2
[1N ]
∼= Brm

for N > 0, and
p[−N ]Br−N+m p[−N ] ∼= Brm

for N < 0 even.

Proof. Let us assume N > 0 first. Observe that if p ∈ Br2N ,∅(N ), the simple com-
ponent labeled by the empty Young diagram ∅, then it follows from the restriction
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rule (2-2) (see also the equivalent version below Theorem 2.5) by induction on m
that pBrm+2N (N )p ∼= Brm(N ) for all m ≥ 0. Hence it suffices to show that p⊗2

[1N ]
is

such an idempotent.
If q= 1 and N > 0,8(Brn(N )) coincides with the commutant of the action of the

orthogonal group O(N ) on V⊗n , which is semisimple. Moreover, the trace tr is just a
multiple of the pull-back of the natural trace on End(V⊗n), so8(Brn(N ))∼=Brn(N )
at q = 1. As 8(p[1N ]) projects onto the one-dimensional determinant representation
in V⊗N , the claim follows easily in that case, using Brauer duality, that is, the fact
that 8(Brn(N )) is equal to the commutant of O(N ) on V⊗n for all n.

We will now use the fact that we can also define Brn(N ) over the field of rational
functions C(q); see [Wenzl 2012]. It follows from Lemma 2.6 that we can also
define the path idempotents for Brn(N ) over that field for paths of length n in
3(N ,∞). As the rank of an idempotent is an integer, the claim follows as well for
q a variable, and for q ∈ C not a root of unity. But as pt p̄⊗2

[1N ]
pt = 0 for any path t

of length 2N in 3(N , `) which ends in λ 6=∅, we also get rank 0 for p̄⊗2
[1N ]

at q2 a
primitive `-th root of unity in Br2N ,λ(N ). One also shows by a similar continuity
and path idempotent argument that the rank of p⊗2

[1N ]
is equal to 1 in Br2N ,∅(2n).

This finishes the proof for N > 0.
If N < 0 even, we would map the permutation (i, i + 1) to the negative of the

linear map permuting the i-th and (i +1)-st factor of V⊗n , where V =C|N |. Hence
p[−N ] would map onto the antisymmetrization of V⊗−N , on which Sp(|N |) acts
trivially. The map above extends to a map of Brn(N ) onto EndSp(|N |(V⊗n) (see
[Wenzl 1988b]), and we can now duplicate the proof for the orthogonal case. �

2E. Weights of the trace. Using the character formulas of orthogonal groups, one
can calculate the weights of tr for the algebras Brn(N ), that is, its values at minimal
idempotents of Brn(N ). We will need the following quantities for a given Young
diagram λ:

(2-3) d(i, j) =
{
λi + λ j − i − j if i ≤ j ,
−λ′i − λ

′

j + i + j − 2 if i > j .

Moreover, we define h(i, j) to be the length of the hook in the Young diagram
λ whose corner is the box in the i-th row and j-th column. We can now restate
[Wenzl 2012], Theorem 4.6 in the notations of this paper as follows:

Theorem 2.8. The weights of the Markov trace tr for the Hecke algebra H̄n(q2)

are given by ω̃λ = d̃λ/[N ]n , where |λ| = n, and for Brn(N ) they are given by
ωλ,n = dλ/[N ]n , where

d̃λ =
∏
(i, j)∈λ

[N+ j−i]
[h(i, j)]

, dλ =
∏
(i, j)∈λ

[N+d(i, j)]
[h(i, j)]

,
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where λ runs through all the Young diagrams in 3̃(N , `) with n boxes for H̄n(q2),
and through all Young diagrams in 3(N , `) with n, n− 2, n− 4, . . . boxes for Brn .

Lemma 2.9. The weights ωλ,n are positive for all λ ∈ 3(N , `) if and only if
q2
= e±2π i/` with ` > N and

(a) N > 0 and `− N even, or

(b) N < 0 odd.

Proof. The weights can be rewritten for our choice of q as

ωλ,n =
sinn(π/`)

sinn(Nπ/`)n
∏
(i, j)∈λ

sin(N+d(i, j))π/`
sin(h(i, j)π/`)

.

As h(i, j)≤ h(1, 1)= λ1+ λ
′

1− 1< ` for all boxes (i, j) of λ, it follows that all
factors in the formula above are positive for N > 0 (negative for N < 0) except
possibly the ones in the numerator under the product. If N > 0 and `− N odd, one
checks that for the diagram [`−N+1)/2]we have ωλ,|λ|<0. By the same argument,
one shows that ωλ,|λ| < 0 for λ= [(|N | + 1)/2] and N < 0. In the other two cases,
one checks that 0< |d(i, j)|< ` for all boxes (i, j) of a diagram λ ∈3(N , `). �

2F. C∗-quotients.

Proposition 2.10. If the weights ωλ,n are positive for all λ∈3(N , `), the star oper-
ation defined by e∗ = e and by g∗i = g−1

i makes the quotients Brn into C∗-algebras.

Proof. The proof goes by induction on n, with the claims for n = 1 and n = 2 easy
to check. By [Wenzl 2012], the two-sided ideal In+1 generated by e in Brn+1 is
isomorphic to Jones’ basic construction for Brn−1⊂Brn; see also the remarks before
Lemma 2.7. In particular, In+1 is spanned by elements b1eb2, with b1, b2 ∈ i1(Brn),
where i1(a) = 1n+1a1−1

n+1, with 1 = (g1g2 · · · gn−1)(g1 · · · gn−2) · · · g1. By in-
duction assumption and properties of Jones’ basic construction, this ideal has a
C∗-structure given by (b1eb2)

∗
=b∗2eb∗1 . This coincides with the ∗ operation defined

before algebraically. It was shown in [Wenzl 2012] that Brn+1 ∼= In+1 ⊕ H̄n+1,
where H̄n+1 is a semisimple quotient of the Hecke algebra Hn+1 whose simple
components are labeled by the Young diagrams λ ∈ 3(N , `) with n + 1 boxes.
All these simple representations satisfy the (k, `) condition in [Wenzl 1988a]. It
follows from that paper that the map g∗i = g−1

i induces a C∗ structure for any such
representation. This finishes the proof. �

Theorem 2.11. For each choice of N and ` with q2
= e±2π i/`, and for each

nonnegative integer m, we obtain a subfactor N ⊂ M with N′ ∩M = Brm and
with index

[M : N] = [N ]m
∑

µ∈3̃(N ,`),|µ|=k|N | d̃
2
µ∑

λ∈3(N ,`),2||λ| d
2
λ

,
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with notations as in Definition 2.4, and k fixed and sufficiently large. Moreover, its
first principal graph is given by the inclusion graph for H̄2|N |k ⊂ Br2|N |k+m for any
sufficiently large k.

Proof. We first check conditions 1–4 of Section 1B with An = H̄n and Bn =Brn(N )
for q = eπ i/` and 1 < |N | < `. Condition 1 is well-known and was checked, for
instance, in [Wenzl 1988a]. Similarly, Condition 2 follows from the results in
[Wenzl 2012], using the map b⊗ gi ∈ Brm ⊗ H̄n 7→ bgm+i . Condition 3 means
that the conditional expectation from Brn+1 to Brn maps H̄n+1 onto H̄n . But as any
element of H̄n+1 can be written as a linear combination of elements of the form
agnb, with a, b ∈ H̄n , we have for any c ∈ Brn that

tr(agnbc)= tr(gn) tr(abc)= tr(E H̄n
(agnb)c).

Hence the commuting square condition is satisfied for any four algebras of the
type above. Finally, Condition 4 follows for d = 2N and the projection p = p⊗2r

[1N ]

from Lemma 2.7.
The periodicity condition for H̄n was shown in [Wenzl 1988a] by proving that

p̄[1N ] H̄m+N p̄[1N ]
∼= H̄m , for N > 0. This induces an injective map

3̃(N , `)m→ 3̃(N , `)m+N

by adding a column of N boxes to the given Young diagram which has to become
surjective for sufficiently large m by definition of 3̃(N , `). The 2N periodicity
for the algebras Brn(N ) follows similarly using Lemma 2.7; or, see [Wenzl 2012].
The reader should have no problem adjusting this proof to the case N < 0 even,
using Lemma 2.7. �

3. S-matrix

We will need certain well-known identities, which can be found in [Kac 1990],
except for one case, which is a variation of the other ones. Because of this, we
review the material in more detail. This might also be useful to the nonexpert reader,
as the identities needed here can be derived by completely elementary methods.

3A. Lattices. Let M ⊂ L⊂Rk be two lattices of full rank. This means that they are
isomorphic to Zk as abelian groups, and each of them spans Rk over R. Moreover,
we assume that we have an inner product on Rk such that (x, y)∈Z for all x, y∈M .
We define the dual lattice M∗ to be the set of all y ∈ Rk such that (x, y) ∈ Z for all
x ∈ M ; the dual lattice L∗ is defined similarly. Obviously M ⊂ L implies L∗ ⊂ M∗.
Finally, we also assume that A= L/M is a finite abelian group. Then each γ ∈ M∗

defines a character of A via the map eγ : x ∈ L 7→ e2π i(γ,x). In particular, one can
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identify the group dual of A with M∗/L∗. Define the matrix

S̃ = 1
|L : M |1/2

(eγ (x)),

where γ and x are representatives for the cosets M∗/L∗ and L/M . Then S̃ is
the character matrix of A up to a multiple and one easily concludes that it is
unitary. More precisely, we can view it as a unitary operator between Hilbert spaces
V and V ∗ with orthonormal bases labeled by the elements of L/M and M∗/L∗

respectively.

3B. Weights of traces. We will primarily be interested in lattices related to root, co-
root and weight lattices of orthogonal and symplectic groups. We define the lattices

(3-1) Q =
{

x ∈ Zk, 2
∣∣∣∑ xi

}
and P = Zk

∪ (ε+Zk),

where ε is the element in Rk with all its coordinates equal to 1/2. Observe that
P∗ = Q with respect to the usual scalar product of Rk . Moreover, one can identify
coroot and weight lattices of so2k or so2k+1 with Q and P respectively. In particular,
we define for any γ ∈ P the functional eγ :Rk

→C by eγ (x)= e2π i(γ,x). The Weyl
group of type Bk acts as usual via permutations and sign changes on the coordinates.
Let aW =

∑
w ε(w)w, where ε(w) is the sign of the element w. Then the characters

χλ for so2k+1 and sp2k are given by χλ= aw(eλ+ρ)/aw(eρ), where ρ= (k+1/2−i)
for so2k+1 and ρ = (k+ 1− i) for sp2k , and W is the Weyl group of type Bk .

We will also need the somewhat less familiar character formulas for the full
orthogonal group O(N ): Recall that the irreducible representations of O(N ) are
labeled by Young diagrams λ with at most N boxes in the first two columns. O(N )-
modules labeled by Young diagrams λ 6= λ† restrict to isomorphic SO(N )-modules
if and only if λ′1 = N − (λ†)′1 and λ′i = (λ

†)′i for i > 1. Hence if g = exp(x) is an
element in SO(N ), it suffices to consider the quantities χλ(g)= χλ(x) for λ with
at most k rows for N = 2k or N = 2k + 1. We can now express the weights of
Theorem 2.8 in terms of these characters; in fact the formulas in Theorem 2.8 were
derived from these characters; see [Koike 1997; Wenzl 2012].

Lemma 3.1. Let dλ, d̃λ be as in Theorem 2.8 for q = eπ i/`. Moreover, we define
for |N | = 2k or N = 2k + 1 the vector ρ̌ ∈ Rk by ρ̌ = ((|N | + 1)/2− i)i . By the
discussion above, it suffices to evaluate χO(N )(ρ̌ /`) for Young diagrams λ with
λ′1 ≤ N/2, which will be assumed in the following:

(a) If N = 2k+ 1> 0, then dλ = χ
O(N )
λ (ρ̌ /`)= χ

SO(N )
λ (ρ̌ /`).

(b) If N = 2k > 0 and λ′1 ≤ k, then dλ = m(λ) det(cos(l j ρ̌ i )/ det(cos(k− j)ρ̌ i ),
where l j = (λ+ ρ) j = λ j + k − j and where m(λ) = 2 or 1, depending on
whether λ has exactly k rows or not.
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(c) If N = −2k, then dλ = (−1)|λ|χSp(|N |)
λt (ρ̌ /`) for the symplectic character

labeled by the transposed diagram λT .

(d) We have d̃λ= χ
SU(N )
λ (ρ/`) for N > 0 and d̃λ= (−1)|λ|χSU(N )

λT (ρ/`) for N < 0,
where ρ = ((|N | + 1)/2− i) ∈ R|N |.

Proof. Observe that ρ̌ is the element ρ of the Cartan subalgebra of slN , viewed as
an element of the Cartan subalgebra of the Lie subalgebra soN or spN , depending on
the case. The proof now goes as the proof of Theorem 4.6 in [Wenzl 2012], which
is essentially the one of [Koike 1997]. The fact that these arguments also work for
the special quotients Brn follows from the proof of [Wenzl 2012, Theorem 5.5]. �

Remark 3.2. Let 1+ be the set of positive roots of a semisimple Lie algebra and
|1+| be its cardinality. As usual, we can express the Weyl denominator in χλ(ρ̌ /`)
in product form as

(3-2) 1(ρ̌ /`)=
∏
α>0

(
e(α,ρ̌ )π i/`

− e−(α,ρ̌ )π i/`)
= (−i)|1+|

∏
α>0

2 sin((α, ρ̌ )π/`).

3C. Usual S-matrices. As usual, we pick as dominant chamber C+ the regions
given by x1 > x2 > · · · > xk > 0 for Lie types Bk and Ck . We also choose the
fundamental domains D with respect to the translation actions of M,M∗, L , L∗

such that it has 0 in its center; here the lattices M and L will be certain multiples
of the lattices P , Q or Zk to be specified later. Let P̄+ be the intersection of M∗

with the fundamental alcove D ∩C+.
Observe that we also obtain a representation of the Weyl group W on the vector

spaces V and V ∗. Then it is easy to check that aW (V ∗) has an orthonormal basis
|W |−1/2aw(eγ ), with γ ∈ P̄+, and we can define a similar basis aW (x) for aW (V ).
Let S be the matrix which describes the action of S̃|aW (V ) with respect to that basis.
Then it is not hard to check (and we will do a slightly more complicated case below)
that its coefficients are given by

(3-3) sγ,x =
1

|L : M |1/2
∑
w

ε(w)e2π i(w.γ,x).

If L is the weight lattice of a simple Lie algebra, the entry sγ,x is the numerator
of Weyl’s character formula for the dominant weight λ= γ − ρ, up to the factor
|L : M |−1/2. As the columns of the unitary matrix S have norm one, it follows that

(3-4)
∑
λ

χ2
λ(x)=

|L : M]
12(x)

,

where 1 is the Weyl denominator, and the summation goes over the dominant
weights λ such that λ+ρ ∈ P̄+. We are now in the position to prove some cases of
the following proposition:
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Proposition 3.3. Let 3(N , `)ev be the subset of 3(N , `) consisting of Young dia-
grams with an even number of boxes. Then we have∑

λ∈3(N ,`)ev

d2
λ =

`k

b(N )

∏
α>0

1

4 sin2(α, ρ̌ )π/`
,

where ρ̌ = ((|N | + 1)/2− i) and α > 0 runs through the positive roots of soN for
N > 0 and of sp|N | for N < 0 even, and b(N )= 2 for N = 2k > 0, and b(N )= 1
otherwise.

Proof. Let us consider the case N = 2k + 1 > 0, with P and Q as in (3-1). Let
L = `−1Zk and let M1 = Q and M2 = Zk . Then we have M∗1 = P , and M∗2 = Zk .
Now observe that M∗1 is the weight lattice of soN , and the elements γ ∈ P̄+ are in
1-1 correspondence with the dominant weights λ of soN satisfying λ1 ≤ (`− N )/2,
via the correspondence γ = λ+ ρ. Moreover, |L : M1| = 2`k . Hence it follows
from (3-4) that

∑
χ2
λ(ρ̌ )= 2`k/12(ρ̌ ). Playing the same game for the lattice M2,

we now only get the sum over the characters χ2
λ for which λ+ ρ is in Zk , which is

only half as large as before. Hence also the sum over the characters χ2
λ for which

λ ∈ Zk has to have the same value. This sum coincides with the right hand side
of the statement for N > 0 odd, by the restriction rules for O(N ) to SO(N ) (see
Lemma 3.1 and its preceding discussion).

The symplectic case N =−2k<0 goes similarly. Here we define M⊂ L= `−1 P ,
and with L∗ = `Q ⊂ M∗ = Zk . Then it follows that

∑
d2
λ = 2`k/12(ρ̌ /`), where

the summation goes over all diagrams λ such that λT
∈ 3(N , `). Playing the

same game for M = P and M∗ = Q, we get
∑

d2
λ = `

k/1(ρ̌ /`), where now the
summation goes over all even, or over all odd diagrams in 3(N , `), depending on
whether the sum of coordinates of ρ = (k+ 1− i) is odd or even. In each case, we
obtain that

∑
ev d2

λ = `
k/1(ρ̌ /`). We have proved the proposition except for the

case N = 2k > 0, for which we need a little more preparation. �

3D. Another S-matrix. We now consider a slight generalization of the above.
Observe that we can define a second sign function ε̃ for W = W (Bk) which
coincides with the usual sign function on its normal subgroup W (Dk), while we
have ε̃(w)=−ε(w) for w 6∈W (Dk). It is easy to see that also in this case we have
ε̃(vw)= ε̃(v)ε̃(w) for all v,w ∈W . We define ãW =

∑
ε̃(w)w, and also denote the

corresponding operators on the various (quotient) lattices and on the vector spaces
V and V ∗ by the same symbol. One observes that now we get an orthonormal
basis for ãW (V ∗) of the form bγ = |Stab(γ )|−1/2

|W |−1/2ãW (eγ ), labeled by the
elements of P̄+ which now consist of the γ ∈ D such that γ1 > γ2 > · · ·> γk ≥ 0.
Observe that |Stab(γ )| is equal to 1 or 2, depending on whether γk > 0 or γk = 0.
One similarly defines a basis for ãW (V ). Let x be such that Stab(x) = 1, that is,



FUSION SYMMETRIC SPACES AND SUBFACTORS 499

xk > 0, and let bx = |W |−1/2ãW (x). Then, writing M∗/`L∗ as a collection of W
orbits, we obtain

S̃bx = |W |−1/2
∑
λ∈P̄+

∑
v,w∈W

1
|StabW (γ )|

ε̃(w) s̃v.γ,w.x v.γ

=

∑
λ∈P̄+

∑
v

(∑
w

ε̃(w) s̃w.γ,x
1

|StabW (λ)|

)
ε̃(v) v.γ,

where we replaced ε̃(w) by ε̃(v)ε̃(w−1v), s̃v.λ,w.x by s̃w−1v.γ,x and finally also
substituted w−1v by w. We see from this that the coefficient of v.γ is equal to 0 if
γ has a nontrivial stabilizer except in the case when γk = 0. Hence it follows that
S̃ maps aW (V ) into aW (V ∗). Taking bases (ãW (γ ))γ∈P+ and (ãW (x)), we see that
S̃|aW (V ) can be described by the matrix S = (sγ,x) whose coefficients are given for
x with trivial stabilizer by

(3-5) sγ,x = |Stab(γ )|−1/2
|L : M |−1/2

∑
w

ε(w)e2π i(w.γ,x).

3E. Squares of characters. Using the discussion from before and the formulas of
Lemma 3.1 it is not hard to see that for N even and λ′1 ≤ N/2 we can write

χ
O(N )
λ = m(λ)ãW (eλ+ρ)/ãW (eρ),

where m(λ)= 2 or 1 depending on whether λ has exactly k rows or not. In particular,
applying this to the trivial representation, we obtain 21(ρ)= ãW (eρ).

Let P and Q be as in (3-1), and set L = `−1 P and M = Zk . Then

L∗ = `Q ⊂ M∗ = Zk,

and it is easy to see that all of these lattices are W =W (Bk)-invariant. Moreover,
let ρ̌ /`= (k+1/2−i)/`∈ `−1 P =M∗. Then it follows for N = 2k and ` even that∑
λ∈3(N ,`)

χ2
λ(ρ̌ `)=

1
12(ρ̌ `)

∑
λk+1=0

λ1≤(`−N )/2

(ãW (eλ+ρ)(ρ̌ )`)2 =
|L : M]
212(ρ̌ )

∑
λ

s2
λ,ρ̌ /` .

Now observe that the matrix S is unitary and that [L : M] = 2`k . Moreover, by
Proposition 1.1 and Theorem 2.11, the square sum over odd diagrams must be equal
to the square sum over even diagrams. Hence we obtain for N > 0 even, and ` even
that

(3-6)
∑

λ∈3(N ,`)ev

d2
λ =

`k

212(ρ̌ )
,
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where 3(N , `)ev denotes the set of diagrams in 3(N , `) with an even number of
boxes. This finishes the last case of the proof of Proposition 3.3

3F. Calculation of index. As usual, identify the Cartan algebra of slN with the
diagonal N × N matrices with zero trace. The embedding of the Cartan algebras of
an orthogonal or symplectic subalgebra is given via diagonal matrices for which
the (N + 1− i)-th entry is the negative of the i-th entry, for 1≤ i ≤ N/2. Hence,
if εi is the slN weight given by the projection onto the i-th diagonal entry, we
have (εN+1−i )|soN = (−εi )|soN , with a similar identity also holding for symplectic
subalgebras. Using our description of coroot and weight lattices of orthogonal and
symplectic Lie algebras as sublattices of Rk , and defining φi to be the projection
onto the i-coordinate, we see that (εN+1−i )|soN =−φi = (−εi )|soN . This allows us
to describe the decomposition of slN as both an soN - and spN -module:

(3-7) slN = soN ⊕ p and slN = spN ⊕ p,

where p denotes, respectively, the nontrivial irreducible submodule in the sym-
metrization of the vector representation of soN , and the nontrivial irreducible
submodule in the antisymmetrization of the vector representation of spN . The
nonzero weights ω > 0 of p coming from positive roots of slN and the multiplicity
n(p) of the weight 0 in p are given by

(a) 2φi , φi and φi±φ j for 1≤ i < j ≤ k with n(p)= k for soN with N =2k+1 odd,

(b) 2φi and φi±φ j for 1≤ i < j ≤ k with n(p)= k−1 for soN with N = 2k even,

(c) φi ±φ j for 1≤ i < j ≤ k with n(p)= k−1 for sp|N | with N =−2k < 0 even.

Theorem 3.4. The index of the subfactor N ⊂M obtained from the inclusions of
algebras H̄n(q)⊂ Brn(q N , q) is given by

[M : N] = b(N )`n(p)
∏
ω>0

1
4 sin2(ω, ρ̌ )π/`

,

where the product goes over the weights ω > 0 of p coming from positive roots of
slN , as listed above, n(p) is the multiplicity of the zero weight in p, and b(N ) and
ρ̌ are as in Proposition 3.3.

Corollary 3.5. If q= eπ i/`
→1, the index [M :N] goes to∞ with asymptotics `dim p.

Proof. We use Theorem 2.11, where the denominator has been calculated in
Proposition 3.3. The numerator follows from a standard argument for S-matrices
for Lie type A; see [Kac 1990], versions of which have also been used in this
section. For an elementary calculation, see [Erlijman 1998]. �

Remark 3.6. It is straightforward to adapt our index formula to subfactors related
to other fixed points H = Gα of an order two automorphism α of a compact Lie
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group G, up to some integer (or perhaps rational) constant b(H,G). Again, p would
be the −1 eigenspace of the induced action of α on the Lie algebra g, and the same
S-matrix techniques applied in this section would go through. For example, our
formulas for N = 3 and ` odd coincide with the ones at the end of [Xu 2009] for
even level of SU(3), up to a factor 3 (and missing squares, a misprint according to
the author). This is to be expected as in our case only those diagrams appear in the
principal graph (see next section) which also label representations of the projective
group PSU(3).

3G. Restriction rules and principal graph. It follows from Theorem 1.4 that the
principal graph of N ⊂ M is given by the inclusion matrix for H̄2k ⊂ Br2k for
k sufficiently large. This still leaves the question of how to explicitly calculate
these graphs. Observe that in the classical case q = 1 these would be given by the
restriction rules from the unitary group U(N ) to O(N ), for N > 0. Formulas for
these restriction coefficients are well-known; see for instance [Weyl 1997, Theorems
7.8F and 7.9C] and Littlewood’s formula (see [Koike and Terada 1987, Section
1.5], and the whole paper for additional results). Another approach closely related
to the setting of fusion categories can also be found in [Wenzl 2011].

Let bλµ(N ) be the multiplicity of the simple O(N )-module Vµ in the U(N )module
Fλ, for N > 0, where λ, µ are Young diagrams. It is well-known that for fixed
Young diagrams λ and µ, the number bλµ(N ) will become a constant bλµ for N
large enough. Fix now also ` > |N |. We define similar coefficients in our setting
as follows: Recall that the simple components of H̄n are labeled by the diagrams
in 3̃(N , `)n and the ones of Brn by the diagrams in 3(N , `). We then define for
λ ∈ 3̃(N , `) and µ ∈ 3(N , `) the number bλµ(N , `) to be the multiplicity of a
simple H̄n,λ module in a simple Brn,µ module.

In the following lemma the symbol χµ will also be used for the O(N ) character
corresponding to the simple representation labeled by the Young diagram µ. More-
over, we also denote by Br∞ the inductive limit of the finite dimensional algebras
Brn under their standard inclusions, for fixed N and `.

Lemma 3.7. (a) Each g ∈ O(N ) for which χµ(g)= 0 for all boundary diagrams
µ of 3(N , `) defines a trace on Br∞ determined by tr(pµ)= χµ(g)/χ[1](g)n ,
where pµ is a minimal projection of Brn,µ.

(b) For given λ ∈ 3̃(N , `)n the coefficients bλµ(N , `) are uniquely determined by
the equations

χ
U(N )
λ (g)=

∑
µ

bλµ(N , `)χµ(g)

for all g as in (a), where the summation goes over all diagrams µ in 3(N , `)
with n, n− 2, . . . boxes.
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Proof. The formula in statement (a) determines a trace on Brn for each n. To show
that these formulas are compatible with the standard embeddings we observe that a
minimal idempotent pµ ∈ Brn,µ is the sum of minimal idempotents eλ ∈ Brn+1,λ

where λ runs through all diagrams in 3(N , `) obtained by adding or removing a
box to/from λ; see (2-2) and the remarks below that theorem. Evaluating the traces
of these idempotents and multiplying everything by χλ(g)n+1, equality of the traces
is equivalent to

χµ(g)χ[1](g)=
∑
λ

χλ(g).

By the usual tensor product rule for orthogonal groups, the left hand side would be
equal to the sum of characters corresponding to all diagrams λ which differ from
µ by only one box. It is easy to check that this differs from the sum above only by
boundary diagrams, for which the characters at g are equal to 0. This shows (a).

For (b), we first show that

tr(pλ)=
χ

U(N )
λ (g)

χ
U(N )
[1] (g)n

for pλ ∈ H̄n,λ a minimal idempotent and tr a trace as in (a). As the weight vector
for Brn+2N is a multiple of that of Brn , for n large enough, the same must also
hold for the weight vectors of H̄n and H̄n+2N , by periodicity of the inclusions.
Hence, these weight vectors must be eigenvectors of the inclusion matrix for
H̄n ⊂ H̄n+2N . As this inclusion matrix is just a block of the 2N -th power of the
fusion matrix of the vector representation for the corresponding type A fusion
category, its entries must be given by U(N ) characters of a suitable group element.
To identify these elements, it suffices to observe that the antisymmetrizations of
the vector representation, labeled by the Young diagrams λ = [1 j

], 1 ≤ j ≤ N ,
remain irreducible as O(N ) modules. This means the corresponding Hecke algebra
idempotent remains a minimal idempotent also in Br j . Hence tr(pλ)=χ

U(N )
λ (g) for

λ= [1 j
] and 1≤ j ≤ N . But as the antisymmetrizations generate the representation

ring of U(N ), and also of the corresponding fusion ring, the claim follows for
general λ. For more details, see [Goodman and Wenzl 1990].

Recall that the coefficient bλµ(N , `) can be defined as the rank of pλ in an
irreducible Brn,µ representation. So obviously the formula in the statement holds
for any g as in (a). Examples for such g come from exp(x) with x ∈ M∗ = `−1 Q
for which the character is given by the expression χλ(x) as in Section 2E. As the
columns of the orthogonal S-matrix are linearly independent, this would identify
SO(N ) representations. If N is odd, the two O(N ) representations which reduce
to the same SO(N ) representation are labeled by Young diagrams with opposite
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parities. Hence only one of them can occur in the decomposition of a given U(N )
representation. A similar argument also works in the symplectic case.

For N even, we can have two diagrams λ and λ† with the same SO(N ) character,
where one of them, say λ, has less than k rows. They can be distinguished by
elements g ∈ O(N )\SO(N ) for which χλ†(g) = −χλ(g). It is well-known that
such elements g must have eigenvalues ±1, and χλ(g) is given by the character
formula for Sp(2k− 2) in the remaining 2k− 2 eigenvalues; see [Weyl 1997]. It
follows from the invertibility of the S-matrix for Sp(2k− 2) at level `/2− k (see
[Kac 1990]) that we can identify those diagrams λ by evaluating χSp(2k−2)

λ (x/`)
for x ∈ Zk−1 with `/2> x1 > x2 > · · ·> xk−1 > 0, and that those elements satisfy
the boundary condition χSp(2k−2)

λ (x)= 0 for any boundary diagram λ. �

The lemma above is illustrated in the following section for a number of explicit
examples. We can also give a closed formula for the restriction coefficients, using
a well-known quotient map for fusion rings (even though in our case, the quotient
ring does not correspond to a tensor category as far as we know). In the context
of fusion rings, this is known as the Kac–Walton formula; for type A see also
[Goodman and Wenzl 1990]. In our case, we need to use a slightly different affine
reflection group W. In the orthogonal case N = 2k and N = 2k+1 it is given by the
semidirect product of `Zk with the Weyl group of type Bk . In the symplectic case, it
is given by the semidirect product of `Q with the Weyl group of type Bk . As usual,
we define the dot action of W on Rk by w.x = w(x+ ρ)− ρ, where ρ is half the
sum of the positive roots of the corresponding Lie algebra, with the roots embedded
into Rk as described above, and ε is the usual sign function for reflection groups.
This can be extended to an action on the labeling set of O(N ) representations by
identifying a Young diagrams with at most k rows with the corresponding vector in
Zk , and by using the restriction rule from O(N ) to SO(N ) in the other cases. See
also [Wenzl 2011, Lemma 1.7] for more details.

Theorem 3.8. With notations as above, the restriction multiplicity bλµ(N , `) for
N = 2k+ 1> 0 and N =−2k is given by

bλµ(N , `)=
∑
w∈W

ε(w)bλw.µ(N ).

If N = 2k > 0, we have to replace ε by ε̃ (see Section 3D) in the formula above.

Proof. Looking at the character formulas, we see that an action of an element w of
the finite reflection group on λ just changes the character by the sign ofw. Moreover,
by definition of the elements x we have that χλ(x)= χλ+µ(x) for any µ ∈ M . It
follows that χw.λ(x) = ε(w)χλ(x) for all x ∈ M∗ and w ∈W. Hence summing
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over the W-orbits, we obtain for any x ∈ M∗, λ ∈ 3̃(N , `) and µ ∈3(N , `) that

χ
U(N )
λ (x)=

∑
γ

bλγ (N )χγ =
∑
µ

(∑
w

bλw.µ(N )
)
χµ.

The claim now follows from this and Lemma 3.7. �

4. Examples and other approaches

4A. The case N = 2. This corresponds to the Goodman–de la Harpe–Jones sub-
factors for type D`/2+1, where ` > 2 has to be even. It follows from our theorem
that the even vertices of the principal graph are labeled by the Young diagrams λ
with an even number n of boxes, at most two rows and with λ1 − λ2 ≤ `− 2;
there are (`− 2)/2 such diagrams. Their dimensions are given by d̃k = [2k + 1],
for 0≤ k < (`− 2)/2.

Moreover, one checks that 3(2, `) consists of Young diagrams [ j] such that
0 ≤ j ≤ (`/2) − 1 and of [12

], one column with 2 boxes, with dimensions
d[ j] = 2 cos jπ/` for j > 0 and dimension equal to 1 for the remaining cases
(that is, for ∅ and for [12

]). The restriction rule (that is, principal graph) follows
from writing the dimensions as

d̃k = 2 cos k̃π/`+ 2 cos(k̃− 2)π/`+ · · ·+ 1,

where k̃ =min{k, (`/2)− k}. Indeed, this determines the graph completely except
for whether to pick the diagram ∅ or [12

] for the object with dimension 1. It follows
from the restriction rule O(2)⊂U (2) that we take ∅ for j even, and [12

] for j odd.
To calculate the index one can check by elementary means that

∑
λ even d2

λ = `/2.
Moreover, it is well-known that the sum

∑
λ even d̃2

λ over even partitions for sl2 is
equal to `/(4 sin2 π/`). Hence we obtain as index [M : N] = 1/(2 sin2 π/`).

4B. The case N = 3. It is also fairly elementary to work out this case in detail.
A detailed discussion of SU(3) fusion modular categories has already been given
in [Ocneanu 2002] (without proofs) and in [Evans and Pugh 2011] and references
therein. These include our examples here. Recall that by Weyl’s dimension formula
we have

d̃λ =
[λ1− λ2+ 1][λ2− λ3+ 1][λ1− λ3+ 2]

[1]2[2]
.

Now observe that the product of two q-numbers is given by the tensor product rules
for sl2, that is, we have for n ≥ m that

[n][m] = [n+m− 1] + [n+m− 3] + · · · + [n−m+ 1].
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Figure 1. The principal graph of SO(3) for `= 9.

As an example, we have

d̃[4] =
[6][5]
[2]
=
[10]+[8]+[6]+[4]+[2]

[2]
= [9] + [5] + [1],

that is, the fourth antisymmetrization of the vector representation of U(3) decom-
poses as a direct sum of the one-, five- and nine-dimensional representation of SO(3).
One similarly can show the well-known result that the adjoint representation of
SU(3), labeled by the Young diagram [2, 1] decomposes into the direct sum of
the three- and the five-dimensional representation of SO(3), that is, p is the five
dimensional representation of SO(3). Hence we get from Theorem 3.4 that the
index is equal to

[M : N] =
`

42 sin2(2π/`) sin2(π/`)
.

We note that here as well as in the other examples, the dimensions (that is, en-
tries of the Perron–Frobenius vectors) are given by |d̃λ| for even vertices, and by
√
[M : N] |dµ| for odd vertices, with d̃λ and dµ as in Lemma 3.1. To consider

explicit examples, the first nontrivial case for N = 3 occurs for ` = 7. We leave
it to the reader to check that in this case the first principal graph is given by the
Dynkin graph D8. A more interesting graph is obtained for ` = 9; see Figure 1.
Here we have the three invertible objects of the SU(3)6 fusion category, including
the trivial object (often denoted as ∗) on the left; they generate a group isomorphic
to Z/3. The vertices with the double edge are labeled by the object corresponding
to the 5-dimensional representation of SO(3) and the diagram [4, 2] for SU(3)6.
This is the only fixed point under the Z/3 action given by the invertible objects (or,
in physics language, the currents). It would be interesting to see whether one can
carry out an orbifold construction in this context related to the one in [Evans and
Kawahigashi 1994].
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4C. The case N = 4. The combinatorics of these subfactors has already appeared
in [Ocneanu 2002; Evans and Gannon 2010] and also in the mathematical physics
literature (see below), but the author is not aware of a rigorous general construction
of the subfactors in the literature (but see the remarks below about the work in
[Wassermann 2010; Xu 2009]). As we shall see, somewhat surprisingly, the
corresponding construction for SO(4) does not seem to work. We do the case with
` = 8 in explicit detail. It is not hard to check that we already get the periodic
inclusion matrix for n = 12. As we consider an analog of the restriction to O(4) for
which the determinant can be ±1, we should, strictly speaking, consider a fusion
category for SU(4)×{±1}. We shall actually use the Young diagram notation for
representations of U(4). For n = 12 we have the invertible objects labeled by [34

],
[43
], [5212

] and [623
] (that is, the last diagram, for instance, has six boxes in the

first and two boxes each in the second, third and fourth rows). They generate a
subgroup isomorphic to Z/4. It follows from the O(4) restriction rules that [34

]

and [5212
] contain the determinant representation, and [43

] and [623
] contain the

trivial representation as one-dimensional O(4) subrepresentations. This allows us
to calculate the restrictions for representations of each Z/4 orbit simultaneously.
As usually for at least one element of each orbit the ordinary restriction rules still
hold, it makes the general calculations easier. The principal graph can be seen
in Figure 2. As in the N = 3 example, the one-dimensional currents, including
the trivial object ∗ appear as the left- and right-most vertices in the graph. The
lowest vertex corresponds to the O(4)-object [2] which is connected to the objects
in the Z/4-orbit {[2, 12

], [3, 1], [4, 3, 1], [3, 3, 2]}. We also note that we get the
same graph for the Sp(4) case N =−4 for `= 8. However, for other roots of unity,
already the indices of the subfactors differ, being given by

O(4) : 2`
4 sin2(3π/`)4 sin2(2π/`)16 sin4(π/`)

Sp(4) : `

4 sin2(2π/`)4 sin2(π/`)
.

It was originally thought that we should also be able to get fusion category
analogs for the restriction from SU(N ) to SO(N ) for N even. It is easy to check
that this is not possible for O(2). Some initial checks also seem to suggest a similar
phenomenon for higher ranks. For example, using the same element ρ̌ in the
SO(N ) character formula would give dimension functions which are not invariant
under the DN diagram automorphism.

4D. Related results. We discuss several results related to our findings. Our original
motivation was to construct subfactors related to twisted loop groups. It was shown
in R. Verrill’s PhD thesis [2001] that it is not possible to construct a fusion tensor
product for representations of twisted loop groups. However, it seemed reasonable
to expect that representations of twisted loop groups could become a module
category over representations of their untwisted counterparts. Many results, in
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Figure 2. The principal graph of O(4) and Sp(4) for `= 8.

particular about the combinatorics of such categories, can be found in the context
of boundary conformal field theory in papers by Evans, Gaberdiel, Gannon, Fuchs,
Pugh, Schweigert, Di Francesco, Petkova, Zuber and others; see for instance [Evans
and Gannon 2010; Gaberdiel and Gannon 2002; Fuchs and Schweigert 2000;
Petkova and Zuber 2002] and the papers cited therein. Understanding results in
these papers in mathematical terms was one of the motivations for this author.
Similarly, mathematical results in [Ocneanu 2002; Evans and Pugh 2011] for the
cases N = 3 and N = 4 (see the introduction) were influenced by these papers, in
particular by work of Zuber and his coauthors.

In the mathematics literature, one can find closely related results in [Xu 2009;
Wassermann 2010]. Here the authors construct module categories via a completely
different approach in the context of type III1 factors, using loop groups. For instance,
the formulas at the end of [Xu 2009] for the special case N = 3 differ only by a
factor 3 (which can be explained; see Remark 3.6), by our formulas for N = 3
for even level (together with Corollary 1.5), modulo misprints. Similar formulas
for the symplectic case as well as restriction coefficients also appear at the end of
[Wassermann 2010]. We cannot get results corresponding to the odd level cases in
[Xu 2009]. The combinatorics there suggests that this would require considering an
embedding of Sp(N − 1) into SU(N ) under which the vector representation would
not remain irreducible. In contrast, we can also construct module categories for
`− N odd, which would correspond to odd level; however, these categories are not
unitarizable (which follows from Lemma 2.9) and they have different fusion rules.
However, we do get fairly general formulas for the index and principal graphs of
this type of subfactors in the unitary case, which was one of the problems posed
in [Xu 2009]. These formulas were known to this author as well as to Antony
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Wassermann at least back in 2008 when they had discussions about their respective
works in Oberwolfach and at the Schrödinger Institute.

We close this section by mentioning that while our results for N > 0 odd and
N < 0 even are in many ways parallel to results obtained via other approaches in
connection with twisted loop groups, there does not seem to be an obvious analog
for our results for N > 0 even. For instance, the combinatorial results in [Gaberdiel
and Gannon 2002] for that case seem to be different to ours.

4E. Conclusions and further explorations. We have constructed module cate-
gories of fusion categories of type A via deformations of centralizer algebras
of certain subgroups of unitary groups. We have also classified when they are
unitarizable, we have constructed the corresponding subfactors, and we have ex-
plicitly calculated their indices and first principal graphs. These deformations
are compatible with the Drinfeld–Jimbo deformation of the unitary group but not
with the Drinfeld–Jimbo deformation of the subgroup. Most of the deformation
was already done in [Wenzl 2012] via elementary methods. In principle, at least,
it should be possible to use this elementary approach also for other inclusions.
However, this might become increasingly tedious.

As we have seen already in Section 2B, it should be possible to get a somewhat
more conceptual approach using different deformations of the subgroup; see [Noumi
1996; Molev 2003; Letzter 1997; Letzter 2002; Iorgov and Klimyk 2005] and
references therein. In particular in the work of Letzter, such deformations via
coideal algebras have been defined for a large class of embeddings of a semisimple
Lie algebra into another one. At this point, it does not seem obvious how to define
C∗-structures in this setting, and additional complications arise as these coideal
algebras are not expected to be semisimple at roots of unity. Nevertheless, the
results in this and other papers such as [Xu 2009; Wassermann 2010] would seem to
suggest that similar constructions might be possible also in a more general setting.
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