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THE DECOMPOSITION OF GLOBAL CONFORMAL
INVARIANTS: SOME TECHNICAL PROOFS II

SPYROS ALEXAKIS

This paper complements our research monograph The decomposition of
global conformal invariants (Princeton University Press, 2012) in proving
a conjecture of Deser and Schwimmer regarding the algebraic structure of
“global conformal invariants”; these are defined to be conformally invariant
integrals of geometric scalars. The conjecture asserts that the integrand of
any such integral can be expressed as a linear combination of a local con-
formal invariant, a divergence and of the Chern–Gauss–Bonnet integrand.

The present paper provides a proof of certain purely algebraic state-
ments announced in our previous work and whose rather technical proof
was deferred to this paper; the lemmas proven here serve to reduce “main
algebraic propositions” to certain technical inductive statements.
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1. Introduction

This paper complements our earlier work [A 2010, 2011, 2012] in proving a conjec-
ture of Deser and Schwimmer [1993] regarding the algebraic structure of “global
conformal invariants”. It provides a (rather technical) proof of certain lemmas
announced in [A 2010, 2012].

MSC2010: primary 53A55, 53B20; secondary 53A30.
Keywords: conformal invariant, global conformal invariant, Deser–Schwimmer conjecture,

Riemannian invariant.
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2 SPYROS ALEXAKIS

We recall that a global conformal invariant is an integral of a natural scalar-
valued function of Riemannian metrics,

∫
Mn P(g) dVg, which remains invariant

under conformal rescalings of the underlying metric.1 More precisely, P(g) is
assumed to be a linear combination, P(g)=

∑
l∈L alC l(g), where each C l(g) is a

complete contraction in the form

(1-1) contrl(
∇
(m1)R⊗ · · ·⊗∇(ms)R

)
;

here each factor ∇(m)R stands for the mth iterated covariant derivative of the cur-
vature tensor R, ∇ is the Levi-Civita connection of the metric g and R is the
curvature associated to this connection. The contractions are taken with respect to
the quadratic form gi j . In the present paper, along with [A 2011, 2012], we prove:

Theorem. Assume that P(g) =
∑

l∈L alC l(g), where each C l(g) is a complete
contraction in the form (1-1), with weight −n. Assume that for every closed Rie-
mannian manifold (Mn, g) and every φ ∈ C∞(Mn),∫

Mn
P(e2φg) dVe2φg =

∫
Mn

P(g) dVg.

We claim that P(g) can then be expressed in the form

P(g)=W (g)+ divi T i (g)+Pfaff(Rijkl).

Here W (g) stands for a local conformal invariant of weight −n (meaning that
W (e2φg) = e−nφW (g) for every φ ∈ C∞(Mn)), divi T i (g) is the divergence of a
Riemannian vector field of weight −n + 1, and Pfaff(Rijkl) is the Pfaffian of the
curvature tensor.

Before we discuss the position of the present paper in the entire work [A 2010,
2011, 2012] we digress to describe the relation between the present series of papers
with classical and recent work on scalar local invariants in various geometries.

Broad discussion. The theory of local invariants of Riemannian structures (and
indeed, of more general geometries, such as conformal, projective, or CR) has a
long history. As discussed in [A 2012], the original foundations of this field were
laid in the work of Hermann Weyl and Élie Cartan; see [Weyl 1939; Cartan 1896].
The task of writing out local invariants of a given geometry is intimately connected
with understanding polynomials in a space of tensors with given symmetries; these
polynomials are required to remain invariant under the action of a Lie group on
the components of the tensors. In particular, the problem of writing down all local
Riemannian invariants reduces to understanding the invariants of the orthogonal
group.

1See the introduction of [A 2012] for a detailed discussion of the Deser–Schwimmer conjecture,
and for background on scalar Riemannian invariants.
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In more recent times, a major program was laid out by C. Fefferman [1976]
aimed at finding all scalar local invariants in CR geometry. This was motivated by
the problem of understanding the local invariants that appear in the asymptotic ex-
pansion of the Bergman and Szegő kernels of strictly pseudoconvex CR manifolds,
in a similar way to Riemannian invariants that appear in the asymptotic expansion
of the heat kernel; the study of the local invariants in the singularities of these
kernels led to important breakthroughs in [Bailey et al. 1994b] and more recently
by Hirachi [2000]. This program was later extended to conformal geometry in
[Fefferman and Graham 1985]. Both these geometries belong to a broader class of
structures, the parabolic geometries; these admit a principal bundle whose struc-
ture group is a parabolic subgroup P of a semisimple Lie group G, and a Cartan
connection on that principle bundle (see the introduction in [Čap and Gover 2002]).
An important question in the study of these structures is the problem of constructing
all their local invariants, which can be thought of as the natural, intrinsic scalars
of these structures.

In the context of conformal geometry, the first (modern) landmark in understand-
ing local conformal invariants was the work of Fefferman and Graham [1985],
where they introduced the ambient metric. This allows one to construct local
conformal invariants of any order in odd dimensions, and up to order n

2 in even
dimensions. The question is then whether all invariants arise via this construction.

The subsequent work of Bailey–Eastwood–Graham [1994b] proved that this is
indeed true in odd dimensions; in even dimensions, they proved that the result
holds when the weight (in absolute value) is bounded by the dimension. The
ambient metric construction in even dimensions was recently extended by Gra-
ham and Hirachi [2008]; this enables them to identify in a satisfactory way all
local conformal invariants, even when the weight (in absolute value) exceeds the
dimension.

An alternative construction of local conformal invariants can be obtained via
the tractor calculus introduced by Bailey et al. [1994a]. This construction bears
a strong resemblance to the Cartan conformal connection, and to the work of
T.Y. Thomas [1934]. The tractor calculus has proven to be very universal; trac-
tor bundles have been constructed [Čap and Gover 2002] for an entire class of
parabolic geometries. The relation between the conformal tractor calculus and the
Fefferman–Graham ambient metric has been elucidated in [Čap and Gover 2003].

The present paper, along with [A 2010, 2011, 2012], while pertaining to the
question above (given that it ultimately deals with the algebraic form of local
Riemannian and conformal invariants), nonetheless addresses a different type of
problem: We here consider Riemannian invariants P(g) for which the integral∫

Mn P(g) dVg remains invariant under conformal changes of the underlying met-
ric; we then seek to understand the possible algebraic form of the integrand P(g),
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ultimately proving that it can be decomposed in the way that Deser and Schwim-
mer asserted. It is thus not surprising that the prior work on the construction and
understanding of local conformal invariants, in [A 2011] and in the second chapter
of [A 2012], plays a central role in this endeavor.

On the other hand, a central element of our proof are the “Main algebraic
propositions” 2.28, 3.27, 3.28 in [A 2012]; these deal exclusively with algebraic
properties of the classical scalar Riemannian invariants. (These “main algebraic
propositions” are discussed in brief below. A generalization of these propositions is
the Proposition 1.1 below). The “Fundamental proposition 1.1” makes no reference
to integration; it is purely a statement concerning local Riemannian invariants.
Thus, while the author was led to led to the main algebraic propositions in [A
2012] out of the strategy that he felt was necessary to solve the Deser–Schwimmer
conjecture, they can be thought of as results of an independent interest. The proof
of these propositions, presented in the second part of [A 2012] (and certain claims
announced there proven in the present paper), is in fact not particularly intuitive.
It is the author’s sincere hope that deeper insight (and hopefully a more intuitive
proof) will be obtained in the future as to why these algebraic propositions hold.

Let us now discuss the position of the present paper in the entire work [A 2010,
2011, 2012] in more detail: In the first part of [A 2012] (complemented by [A
2011]) we proved that the Deser–Schwimmer conjecture holds, provided one can
show certain “main algebraic propositions,” announced in Chapters 2 and 3 in [A
2012]. In [A 2010] (which is reproduced in Chapter 4 of [A 2012] — for conve-
nience we refer to propositions and lemmas in [A 2010]; the same propositions can
be found in [A 2012] with different numbering) we claimed a more general propo-
sition which implies the “main algebraic propositions;” this new “Fundamental
proposition” 2.1 in [A 2010]2 is to be proven by an induction of four parameters.
In [A 2010] we also reduced the inductive step of Proposition 2.1 to three lemmas
(in particular we distinguished Cases I, II, III of Proposition 2.1 by examining
the tensor fields appearing in its hypothesis, see (1-7) below; Lemmas 3.1, 3.2,
3.5 in [A 2010]3 correspond to these three cases). We proved that these three
lemmas imply the inductive step of the Fundamental proposition in Cases I, II, III
respectively, apart from certain special cases which were deferred to the present
paper. In these special cases we will derive Proposition 2.1 in [A 2010] directly,4 in
Section 3. Now, in proving that the inductive step of Proposition 1.1 follows from
Lemmas 3.1, 3.2, 3.5 in [A 2010] we asserted certain technical lemmas, whose
proof was deferred to the present paper. These were Lemmas 4.6, 4.8, and 4.7, 4.9

2This is reproduced as Proposition 4.13 in [A 2012].
3These correspond respectively to Lemmas 4.16, 4.19 and 4.24 in [A 2012].
4By this we mean without recourse to the Lemmas 3.1, 3.2, 3.5 in [A 2010].
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in [A 2010];5 also, the proof of Lemma A.1 in [A 2010] was deferred to the present
paper. We prove all these lemmas from [A 2010] in Section 2.

For reference purposes, and for the reader’s convenience, we recall the precise
formulation of the “Fundamental proposition” 2.1 in [A 2010], referring the reader
to [A 2010] for a definition of many of the terms appearing in the formulation. First
however, we will recall (schematically) the first “Main algebraic proposition” 2.28
in [A 2012]; this is a special case of Proposition 2.1 in [A 2010], and provides a
simpler version of it.

A simpler version of Proposition 2.1 in [A 2010]. Given a Riemannian metric
g over an n-dimensional manifold Mn and auxiliary C∞ scalar-valued functions
�1, . . . , �p defined over Mn , the objects of study are linear combinations of tensor
fields

∑
l∈L alC l,i1...iα

g , where each C l,i1...iα
g is a partial contraction with α free

indices, in the form

(1-2) pcontr
(
∇
(m)R⊗ · · ·⊗∇(ms)R⊗∇(b1)�1⊗ · · ·⊗∇

(bm)�p
)
;

here ∇(m)R stands for the mth covariant derivative of the curvature tensor R,6

and ∇(b)�h stands for the bth covariant derivative of the function �h . A partial
contraction means that we have list of pairs of indices (a, b), . . . , (c, d) in (1-2), that
are contracted against each other via the metric gi j . The remaining indices (which
are not contracted against another index in (1-2)) are the free indices i1, . . . , iα .

The “Main algebraic proposition” 2.28 in [A 2012] (roughly) asserts the follow-
ing: Let

∑
l∈Lµ alC l,i1...iµ

g stand for a linear combination of partial contractions in
the form (1-2), where each C l,i1...iµ

g has a given number σ1 of factors and a given
number p of factor ∇(b)�h . Assume also that σ1+ p ≥ 3, each bi ≥ 2,7 and that
for each contracting pair of indices (a, b) in any given C l,i1...iµ

g , the indices a, b do
not belong to the same factor. Assume also the rank µ> 0 is fixed and each partial
contraction C l,i1...iµ

g , l ∈ Lµ has a given weight−n+µ.8 Let also
∑

l∈L>µ alC l,i1...iylg
stand for a (formal) linear combination of partial contractions of weight −n+ yl ,
with all the properties of the terms indexed in Lµ, except that now all the partial
contractions have a different rank yl , and each yl > µ.

Assume also that the local equation

(1-3)
∑
l∈Lµ

al X divi1 . . . X diviµ C l,i1...iµ
g +

∑
l∈L>µ

al X divi1 . . . X diviyl
C

l,i1...iyl
g = 0

5These correspond to Lemmas 4.35, 4.41, 4.37 and 4.42 in [A 2012].
6In particular it is a tensor of rank m + 4; if we write out its free indices it would be in the form

∇
(m)
r1...rm Rijkl.

7bi ≥ 2 means that the function �i is differentiated at least twice.
8See [A 2012] for a precise definition of weight.
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holds modulo complete contractions with σ + 1 factors. Here, given a partial con-
traction C l,i1...iα

g in the form (1-2) X divis [C
l,i1...iα
g ] stands for sum of σ − 1 terms

in divis [C
l,i1...iα
g ] where the derivative ∇ is is not allowed to hit the factor to which

the free index is belongs.9

The “Main algebraic proposition” 2.28 in [A 2012] says that there exists a linear
combination of partial contractions in the form (1-2),

∑
h∈H ahCh,i1...iµ+1

g , with all
the properties of the terms indexed in L>µ, and all with rank (µ+ 1), so that

(1-4)
∑
l∈L1

alC
l,(i1...iµ)
g +

∑
h∈H

ah X diviµ+1 C l,(i1...iµ)iµ+1
g = 0;

the above holds modulo terms of length σ + 1. The symbol (. . . ) means that we
are symmetrizing over the indices between parentheses.

In [A 2010] we set up a multiple induction by which we will prove the “main
algebraic propositions” in Chapters 2, 3 in [A 2012]. The inductive step is proven
in the “Fundamental proposition” 2.1 in [A 2010], which we reproduce here in
Proposition 1.1. This deals with tensor fields in the forms

pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(ms)Rijkl⊗∇
(b1)�1(1-5)

⊗ · · ·⊗∇
(bp)�p⊗∇φ1⊗ · · ·⊗∇φu

)
,

pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl(1-6)

⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇φz1 ⊗ · · ·⊗∇φzw

⊗∇φ′zw+1
⊗ · · ·⊗∇φ′zw+d

⊗ · · ·⊗∇φ̃zw+d+1 ⊗ · · ·⊗∇φ̃zw+d+y

)
.

(See the introduction in [A 2010] for a detailed description of the above form.) In
keeping with the conventions introduced in [A 2010], we remark that a complete
or partial contraction in the above form will be called “acceptable” if each bi ≥ 2,
for 1≤ i ≤ p.10

Proposition 1.1. Consider two linear combinations of acceptable tensor fields in
the form (1-6), ∑

l∈Lµ

alC
l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu),

9Recall that given a partial contraction Cl,i1...iα
g in the form (1-2) with σ factors, divis Cl,i1...iα

g
is a sum of σ partial contractions of rank α−1. The first summand arises by adding a derivative ∇is

onto the first factor T1 and then contracting the upper index is against the free index is ; the second
summand arises by adding a derivative ∇is onto the second factor T2 and then contracting the upper
index is against the free index is and so on.

10In other words, we are requiring each function �i is differentiated at least twice.
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l∈L>µ

alC
l,i1...iβl
g (�1, . . . , �p, φ1, . . . , φu),

where each tensor field above has real length σ ≥ 3 and a given simple character
Eκsimp. We assume that for each l ∈ L>µ, βl ≥ µ+ 1. We also assume that none of
the tensor fields of maximal refined double character in Lµ are “forbidden” (see
Definition 2.12 in [A 2010]).

We denote by ∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu)

a generic linear combination of complete contractions (not necessarily acceptable)
in the form (1-5) that are simply subsequent to Eκsimp.11 We assume that

(1-7)
∑
l∈Lµ

al X divi1 . . . X diviα

×C l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

+

∑
l∈L>µ

al X divi1 . . . X diviβl

×C
l,i1...iβl
g (�1, . . . , �p, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu)= 0.

We draw our conclusion with a little more notation: We break the index set Lµ
into subsets L z, z ∈ Z (Z is finite), with the rule that each L z indexes tensor fields
with the same refined double character, and conversely two tensor fields with the
same refined double character must be indexed in the same L z . For each index set
L z , we denote the refined double character in question by EL z . Consider the subsets
L z that index the tensor fields of maximal refined double character.12 We assume
that the index set of those z is ZMax ⊂ Z.

We claim that for each z ∈ ZMax there is some linear combination of acceptable
(µ+1)-tensor fields,∑

r∈Rz

ar Cr,i1...iα+1
g (�1, . . . , �p, φ1, . . . , φu),

where each
Cr,i1...iµ+1

g (�1, . . . , �p, φ1, . . . , φu)

11Of course if Def (Eκsimp)=∅ then by definition
∑

j∈J · · · = 0.
12Note that in any set S of µ-refined double characters with the same simple character there is

going to be a subset S′ consisting of the maximal refined double characters.
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has a µ-double character EL z
1 and also the same set of factors S∗∇(ν)Rijkl as in EL z

contain special free indices, so that

(1-8)
∑
l∈L z

alC l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)∇i1υ . . .∇iµυ

−

∑
r∈Rz

ar X diviµ+1 Cr,i1...iµ+1
g (�1, . . . , �p, φ1, . . . , φu)∇i1υ . . .∇iµυ

=

∑
t∈T1

atC
t,i1...iµ
g (�1, . . . , �p, , φ1, . . . , φu)∇i1υ . . .∇iµυ,

modulo complete contractions of length ≥ σ + u+µ+ 1. Here each

C t,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

is acceptable and is either simply or doubly subsequent to EL z .13

(See the first section in [A 2010] for a description of the notions of real length,
acceptable tensor fields, simple character, refined double character, maximal re-
fined double character, simply subsequent, strongly doubly subsequent.) We prove
Proposition 1.1 by a multiple induction on the parameters −n (the weight of the
complete contractions appearing in (1-7)), σ (the total number of factors in the
form ∇(m)Rijkl, S∗∇(ν)Rijkl,∇

(A)�h among the partial contractions in (1-7)),14 8

(the number of factors ∇φ1, . . . ,∇φu appearing in (1-7)), and σ1 + σ2 (the total
number of factors ∇(m)Rijkl, S∗∇(ν)Rijkl). When 8 = 0, Proposition 1.1 coincides
with the “Main algebraic proposition” 2.28 in [A 2012] outlined above.15

2. Proof of the technical lemmas from [A 2010]

2A. Restatement of the technical Lemmas 4.6–4.9 from [A 2010]. We start by
recalling a definition from [A 2010] that will be used frequently in the present
paper:

Definition. Consider any partial contraction in the form (1-6). We consider any set
of indices, {x1, . . . , xs } belonging to a factor T , which is either in the form ∇(B)�h

or ∇(m)Rijkl. We assume that these indices are not free and are not contracting
against a factor ∇φh .

If the indices belong to a factor T in the form ∇(B)�h then {x1, . . . , xs } are
removable provided B ≥ s+ 2.

13Recall that “simply subsequent” means that the simple character of C
t,i1...iµ
g is subsequent to

Simp( ELz).
14The partial contractions in (1-7) are assumed to all have the same simple character–this implies

that they all have the same number of factors ∇(m)Rijkl, S∗∇(ν)Rijkl, ∇(A)�h respectively.
15Similarly, the “Main algebraic propositions” 3.27 and 3.28 in Chapter 3 of [A 2012] coincide

with Proposition 1.1 above when 8= 1.
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Now, we consider indices that belong to a factor T in the form ∇(m)Rijkl (and
are not free and do not contract against a factor ∇φh). Any such index x which
is a derivative index will be removable. Furthermore, if T has at least two free
derivative indices, then if neither of the indices i , j are free we will say one of i , j

is removable; accordingly, if neither of k, l is free then we will say that one of k, l

is removable. Moreover, if T has one free derivative index then: if none of the
indices i , j are free we will say that one of the indices i , j is removable; on the
other hand if one of the indices i , j is also free and none of the indices k, l are free
then we will say that one of the indices k, l is removable.

Now, we consider a set of indices {x1, . . . , xs } that belong to a factor T in the form
S∗∇(ν)r1...rν Rijkl; if {x1, . . . , xs} ⊂ {r1 . . . rν, j} and none of them are free and none of
them contract against a factor∇φx , then we will say this set of indices is removable.
Furthermore, we will say that the indices k, l in such a factor are removable if
neither k nor l is free and ν > 0 and at least one of the indices r1, . . . , rν , j is free.

For the two Lemmas 2.1 and 2.2 we will consider tensor fields in the form

pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl(2-1)

⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl⊗∇Y

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇φz1 · · · ⊗∇φzw

⊗∇φ′zw+1
⊗ · · ·⊗∇φ′zw+d

⊗ · · ·⊗∇φ̃zw+d+1 ⊗ · · ·⊗∇φ̃zw+d+y

)
.

(Notice this is the same as the form (1-6), but for the fact that we have inserted a
factor ∇Y in the second line.) We recall that for a partial contraction C i1...ih

g in the
above form, X∗ divir C i1...ih

g stands for the sublinear combination in the divergence
divir C i1...ih

g where the derivative ∇ ir is not allowed to hit the factor to which ir

belongs, nor any factor ∇φx , nor the factor ∇Y .
The claims whose proof was deferred to the present paper are then as follows:

Lemma 2.1. Assume that

(2-2)
∑
h∈H2

ah X∗ divi1 . . . X∗ diviah
C

h,i1...iah
g (�1, . . . , �p, Y, φ1, . . . , φu′)

=

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu′),

where all tensor fields have rank ah ≥ α. All tensor fields have a given u-simple
character Eκ ′simp, for which σ ≥ 4. Moreover, we assume that if we formally treat the
factor ∇Y as a factor ∇φu′+1 in the above equation, then the inductive assumption
of Proposition 1.1 can be applied. (See Subsection 3.1 in [A 2010] for a strict
discussion of the multiparameter induction by which we prove Proposition 1.1.)

The conclusion (under various assumptions which we will explain below) is:
Denote by H2,α ⊂ H2 the index set of tensor fields with rank α in (2-2).
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We claim that there is a linear combination of acceptable16 tensor fields∑
d∈D

adCd,i1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu),

each with a simple character Eκ ′simp, so that

(2-3)
∑

h∈H2,α

ahCh,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu′)∇i1υ . . .∇iαυ

− X∗ diviα+1

∑
d∈D

adCd,i1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu′)∇i1υ . . .∇iαυ

=

∑
t∈T

atC t
g(�1, . . . , �p, Y, φ1, . . . , φu′, υ

α).

The linear combination on the right-hand side stands for a generic linear combina-
tion of complete contractions in the form (2-1) with a factor ∇Y and with a simple
character that is subsequent to Eκ ′simp.

The assumption under which (2-3) holds is that there should be no tensor fields
of rank α in (2-2) that are “bad”. Here “bad” means the following:

If σ2 = 0 in Eκ ′simp then a tensor field in the form (2-1) is “bad” provided:

(1) The factor ∇Y contains a free index.

(2) If we formally erase the factor ∇Y (which contains a free index), then the re-
sulting tensor field should have no removable indices,17 and no free indices.18

Moreover, any factors S∗Rijkl should be simple.

If σ2 > 0 in Eκ ′simp then a tensor field in the form (2-1) is “bad” provided:

(1) The factor ∇Y contains a free index.

(2) If we formally erase the factor ∇Y (which contains a free index), then the
resulting tensor field should have no removable indices, any factors S∗Rijkl

should be simple, any factor ∇(2)ab �h should have at most one of the indices
a, b free or contracting against a factor ∇φs .

(3) Any factor ∇(m)Rijkl can contain at most one (necessarily special, by virtue of
(2)) free index.

Furthermore, we claim that the proof of this lemma will only rely on the induc-
tive assumption of Proposition 1.1. Moreover, we claim that if none of the tensor
fields indexed in H2 (in (2-2)) have a free index in ∇Y , then we may assume that
none of the tensor fields indexed in D in (2-3) have that property either.

16“Acceptable” in the sense that each factor �i is differentiated at least twice).
17Thus, the tensor field should consist of factors S∗Rijkl,∇

(2)�h , and factors ∇(m)r1...rm Rijkl with
all the indices r1 , . . . , rm contracting against factors ∇φh .

18That is α = 1 in (2-2).
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Lemma 2.2. We assume that (2-2) holds for σ = 3. We also assume that for each
of the tensor fields in Hα,∗

2
19 there is at least one removable index. We then have

two claims:
First, the conclusion of Lemma 2.1 holds in this setting. Second, we can write

(2-4)
∑
h∈H2

ah X divi1 . . . X diviα Ch,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu′)

=

∑
q∈Q

aq X divi1 . . . X divia′
Cq,i1...ia′

g (�1, . . . , �p, Y, φ1, . . . , φu′)

+

∑
t∈T

atC t
g(�1, . . . , �p, Y, φ1, . . . , φu′),

where the linear combination
∑

q∈Q aqCq,i1...ia′
g stands for a generic linear combi-

nation of tensor fields in the form

pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl(2-5)

⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl⊗∇
(B)Y

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇φz1 · · · ⊗∇φzw

⊗∇φ′zw+1
⊗ · · ·⊗∇φ′zw+d

⊗ · · ·⊗∇φ̃zw+d+1 ⊗ · · ·⊗∇φ̃zw+d+y

)
,

with B ≥ 2, with a simple character Eκ ′simp and with each a′ ≥ α. The acceptable
complete contractions C t

g(�1, . . . , �p, Y, φ1, . . . , φu′) are simply subsequent to
Eκ ′simp. X divi here means that ∇i is not allowed to hit the factors ∇φh (but it is
allowed to hit ∇(B)Y ).

For our next two lemmas, we will be considering tensor fields in the general
form

(2-6) contr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(ms)Rijkl

⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νb)Rijkl

⊗∇
(B,+)
r1...rB

(∇aω1∇bω2−∇bω1∇aω1)

⊗∇
(d1)�p⊗ · · ·⊗∇

(dp)�p⊗∇φ1⊗ · · ·⊗∇φu
)
;

here ∇(B,+)r1...rB (. . . ) stands for the sublinear combination in ∇(B)r1...rB (. . . ) where each
derivative ∇ri is not allowed to hit the factor ∇ω2.

We also recall from [A 2010] that X+ divi stands for the sublinear combination
in X divi where ∇i is in addition not allowed to hit the factor ∇ω2 (it is allowed to
hit the factor ∇(B)ω1).

19Recall from [A 2010] that Hα,∗
2 is the index set of tensor fields of rank α in (2-2) with a free

index in the factor ∇Y .
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Lemma 2.3. Consider a linear combination of partial contractions,∑
x∈X

axC x,i1...ia
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu′),

where each of the tensor fields C x,i1...ia
g is in the form (2-6) with B = 0 (and is

antisymmetric in the factors ∇aω1,∇bω2 by definition), with rank a ≥ α and real
length σ ≥4.20 We assume that all these tensor fields have a given simple character
which we denote by Eκ ′simp (we use u′ instead of u to stress that this lemma holds in
generality). We assume that

(2-7)
∑
x∈X

ax X∗ divi1 . . . X∗ divia C x,i1...ia
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)= 0,

where X∗ divi stands for the sublinear combination in X divi where ∇i is in addi-
tion not allowed to hit the factors ∇ω1,∇ω2. The contractions C j here are simply
subsequent to Eκ ′simp. We assume that if we formally treat the factors ∇ω1,∇ω2 as
factors ∇φu+1,∇φu+2 (disregarding whether they are contracting against special
indices) in the above, then the inductive assumption of Proposition 1.1 applies.

The conclusion we will draw (under various hypotheses that we will explain
below) is that we can write

(2-8)
∑
x∈X

ax X+ divi1 . . . X+ divia C x,i1...ia
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

=

∑
x∈X ′

ax X+ divi1 . . . X+ divia C x,i1...ia
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)= 0,

where the tensor fields indexed in X ′ on the right-hand side are in the form (2-6)
with B > 0. All the other sublinear combinations are as above.

Assumptions needed for (2-8): We claim that (2-8) holds under certain assump-
tions on the α-tensor fields in (2-7) that have rank α and have a free index in one
of the factors ∇ω1,∇ω2 (say in ∇ω1 without loss of generality) — we denote the
index set of those tensor fields by Xα,∗

⊂ X.
The assumption we need in order for the claim to hold is that no tensor field

indexed in Xα,∗ should be “bad”. A tensor field is “bad” if it has the property that
when we erase the expression ∇[aω1∇b]ω2 (and make the index that contracted

20 Recall that in the definition of “real length” in this setting, we count each factor ∇(m)R,
S∗∇(ν)R, ∇(B)�x once, the two factors ∇(a)ω1, ∇ω2 as one, and the factors ∇φ, ∇φ′, ∇φ̃ as
nothing.
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against b into a free index) then the resulting tensor field will have no removable
indices, and all factors S∗Rijkl will be simple.

Lemma 2.4. We assume that (2-7) holds, where now the tensor fields have length
σ = 3. We also assume that for each of the tensor fields indexed in X , there is a
removable index in each of the real factors. We then claim that the conclusion of
Lemma 2.3 is still true in this setting.

For the most part, the remainder of this paper is devoted to proving the above
lemmas. However, we first state and prove some further technical claims, one of
which appeared as Lemma A.1 in [A 2010].21

2B. Two more technical lemmas. We claim that an analogue of Lemma 4.10 in
[A 2010]22 can be derived for tensor fields with a given simple character Eκsimp, and
where rather than having one additional factor ∇φu+1 (which is not encoded in the
simple character Eκsimp), we have two additional factors ∇aφu+1,∇bφu+2.

Lemma 2.5. Consider a linear combination∑
l∈L

alC
l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)

of acceptable tensor fields in the form (1-6) with a given u-simple character Eκsimp.
Assume that the minimum rank among those tensor fields above is α ≥ 2. Assume
that

(2-9)
∑
l∈L

al X∗ divi3 . . . X∗ diviβ C l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2φu+2

+

∑
j∈J

a j C j,i1i2
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2 = 0;

here X∗ divi means that ∇ i is in addition not allowed to hit either of the fac-
tors ∇φu+1, ∇φu+2. We also assume that if we formally treat the factors ∇φu+1,
∇φu+2 as factors ∇φu+1, ∇φu+2 then (2-9) falls under the inductive assumption of
Proposition 1.1 (with respect to the parameters (n, σ,8, u)). Denote by Lα ⊂ L
the index set of terms with rank α. We additionally assume that none of the ten-
sor fields C l,i1...iβ

g (�1, . . . , �p, φ1, . . . , φu) are “forbidden,” in the sense defined
above Proposition 2.1 in [A 2010].

21Its proof was also deferred to the present paper.
22This corresponds to Lemma 4.44 in [A 2012].



14 SPYROS ALEXAKIS

We then claim that there exists a linear combination of (α+1)-tensor fields with
a u-simple character Eκsimp (indexed in Y below) so that

(2-10)
∑
l∈Lα

alC l,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2∇i3υ . . .∇iαυ

= X∗ diviα+1

∑
y∈Y

ayC l,i1...iα+1
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2φu+2∇i3υ . . .∇iαυ

+

∑
j∈J

a j C j,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2φu+2∇i3υ . . .∇iαυ.

We also claim that we can write

(2-11)
∑
l∈L

al X divi3 . . . X diviβ C l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

=

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu)

+

∑
q∈Q1

aq X divi3 . . . X diviα

×Cq,i3...iα
g (�1, . . . , �p, φ1, . . . , φu+2)∇i1φu+1∇i2φu+2

+

∑
q∈Q2

aq X divi3 . . . X diviα

×Cq,i3...iα
g (�1, . . . , �p, φ1, . . . , φu+2),

where the tensor fields indexed in Q1 are acceptable with a u-simple character
Eκsimp and with a factor ∇(2)φu+1 and a factor ∇φu+2. The tensor fields indexed in
Q2 are acceptable with a u-simple character Eκsimp and with a factor ∇(2)φu+2 and
a factor ∇φu+1.

Proof of Lemma 2.5. We may divide the index set Lα into subsets LαI , LαI I ac-
cording to whether the two factors ∇φu+1,∇φu+2 are contracting against the same
factor or not — we will then prove our claim for those two index sets separately.
Our claim for the index set LαI I follows by a straightforward adaptation of the proof
of Lemma 4.10 in [A 2010]. (Notice that the forbidden cases of the present lemma
are exactly in correspondence with the forbidden cases of that lemma.) Therefore,
we now prove our claim for the index set LαI :

We denote by L I ⊂ L , JI ⊂ J the index sets of terms for which the two factors
∇φu+1,∇φu+2 are contracting against the same factor. It then follows that (2-9)
holds with the index sets L , J replaced by L I , JI — denote the resulting new equa-
tion by New(2-9). Now, for each tensor field C l,i1...iβ

g and each complete contraction
C j

g , we let Sym[C l,i1...iβ
g ], Sym[C l,i1...iβ

g ], AntSym[C j
g ],AntSym[C j

g ] stand for the
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tensor field/complete contraction that arises from C l,i1...iβ
g ,C j

g by symmetrizing (re-
spectively antisymmetrizing) the indices a, b in the two factors ∇aφu+1,∇bφu+2.
We accordingly derive two new equations from New(2-9), which we denote by
New(2-9)Sym and New(2-9)AntSym.

We will then prove the claim separately for the tensor fields in the sublinear com-
bination

∑
l∈LαI

al Sym[C]l,i1...iα
g and the tensor fields in the sublinear combination∑

l∈LαI
al AntSym[C]l,i1...iα

g .
The claim (2-10) for the sublinear combination

∑
l∈LαI

al AntSym[C]l,i1...iα
g fol-

lows directly from the arguments in the proof of Lemma 2.3 (see this proof below).
Therefore it suffices to show our claim for

∑
l∈LαI

al Sym[C]l,i1...iα
g .

We prove this claim as follows: We divide the index set LαI according to the
form of the factor against which the two factors ∇φu+1,∇φu+2 contract: List
out the nongeneric factors {T1, . . . , Ta} in Eκsimp.23 Then, for each k ≤ a we let
LαI,k stand for the index set of terms for which the factors ∇φu+1,∇φu+2 are
contracting against the factor Tk . We also let LαI,a+1 stand for the index set of
terms for which the factors ∇φu+1,∇φu+2 are contracting against a generic fac-
tor ∇(m)Rijkl. We will prove our claim for each of the sublinear combinations∑

l∈LαI,a+1
al Sym[C]l,i1...iα

g separately.
We first observe that for each k≤ a+1, we may obtain a new true equation from

(2-9) by replacing L by L I,a+1 — denote the resulting equation by (2-9)I,Sym,k .
Therefore, for each k ≤ a + 1 for which Tk is in the form ∇(p)�h , our claim
follows straightforwardly by applying Corollary 1 from [A 2010].24

Now, we consider the case where the factor Tk is in the form S∗∇(ν)Rabcd : In
that case we denote by L I,k,] the index set of terms for which one of the factors
∇φu+1,∇φu+2 is contracting against a special index in Tk . In particular, we will
let LαI,k,] ⊂ L I,k,] stand for the index set of terms with rank α. We will then show
that two equations hold:

First, we claim that there exists a linear combination of tensor fields as claimed
in (2-10) so that∑

l∈LαI,k,]

al Sym[C]l,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)(2-12)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

−

∑
y∈Y

ay X diviα+1 C y,i1...iα+1
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

23Recall from [A 2010] that the nongeneric factors in Eκsimp are all the factors in the form
∇
(A)�h , S∗∇(ν)Rijkl, and also all the factors ∇(m)Rijkl that contract against at least one factor ∇φs .

24This corresponds to Corollary 4.14 in [A 2012]. There is no danger of falling under a “forbidden
case,” since we started with tensor fields which were not forbidden.
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=

∑
l∈LαOK

al X diviα+1 C l,i1...iα iα+1
g ∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

+

∑
j∈J

a j C j,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ,

where the tensor fields in LαOK have all the properties of the terms in L I,k , rank α
and furthermore none of the factors∇φu+1,∇φu+2 are contracting against a special
index.

Then (under the assumption that LαI,k,] =∅) we claim that we can write

(2-13)
∑

l∈L I,k,]

al X divi3 . . . X diviβ

×Sym[C]l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

=

∑
l∈L I,k,OK

al X divi3 . . . X diviβ

×Sym[C]l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

+

∑
j∈J

a j Sym[C] j,i1i2
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2,

where the tensor fields in L I,k,OK have all the properties of the terms in L I,k ,
but they additionally have rank ≥ α + 1 and furthermore none of the factors
∇φu+1,∇φu+2 are contracting against a special index.

If we can show the above two equations, then we are reduced to showing our
claim under the additional assumption that no tensor field indexed in L in Sym(2-9)
has any factors∇φu+1,∇φu+2 that contract against a special index in Tk . Under that
assumption, we may additionally assume that none of the complete contractions
indexed in J in (2-9) have that property.25 Therefore, we may then erase the factor
∇φu+1 from all the complete contractions and tensor fields in (2-9)k by virtue of
the operation Erase, introduced in the Appendix in [A 2012] — our claim then
follows by applying Corollary 1 from [A 2010] to the resulting equation and then
reintroducing the erased factor ∇φu+1. �

Outline of the proofs of (2-12) and (2-13). First we prove (2-12): Suppose without
loss of generality that Tk contracts against ∇φ̃1 and ∇φ′2, . . . ,∇φ

′

h ; then replace
the two factors ∇aφ1,∇bφu+1 by gab and then apply Ricto�p+1,26 (obtaining a
new true equation) an then apply the eraser to the resulting true equation. We then
apply Corollary 1 from [A 2010] to the resulting equation,27 and finally we replace

25This can be derived by repeating the proof of (2-12), (2-13).
26See the relevant lemma in the Appendix of [A 2012].
27Since the factor ∇φu+2 survives this operation, and since we started out with terms that were

not “forbidden,” there is no danger of falling under a “forbidden case” of Corollary 1 from [A 2010].
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the factor ∇(b)r1...rb�p+1 by an expression

S∗∇(b+h−1)
y2...yhr1...rb−1

Ri jkrb∇
i φ̃1∇

jφu+2∇
kφu+1∇

y2φ′2 . . .∇
yhφ′h .

As in the proof of Lemma 4.10 in [A 2010], we derive our claim. Then (2-13) is
proven by iteratively applying this step and making each ∇υ into an X div at every
stage.

We analogously show our claim when the factor Tk is in the form ∇(m)Rijkl:
In that case we denote by L I,k,] the index set of terms for which both the factors
∇φu+1,∇φu+2 are contracting against a special index in Tk . We will then show
two claims:

First, that there exists a linear combination of partial contractions (indexed in Y
below) as claimed in (2-10) so that

(2-14)
∑

l∈LαI,k,]

al Sym[C]l,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

=

∑
y∈Y

ay X diviα+1 C y,i1...iα+1
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

+

∑
l∈LαOK

al X diviα+1 C l,i1...iα iα+1
g ∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

+

∑
j∈J

a j C j,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ,

where the tensor fields in LαOK have all the properties of the terms in L I,k , but they
additionally have rank α and furthermore one of the factors ∇φu+1,∇φu+2 does
not contract against a special index. Then (under the assumption that LαI,k,] = ∅)
we denote by L I,k,] the sublinear combination of terms in L I,k where both factors
∇φu+1 or ∇φu+1 contract against a special index in Tk . We claim that we can write

(2-15)
∑

l∈L I,k,]

al X divi3 . . . X diviβ

×Sym[C]l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

=

∑
l∈L I,k,OK

al X divi3 . . . X diviβ

×Sym[C]l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

+

∑
j∈J

a j Sym[C] j,i1i2
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2,

where the tensor fields in L I,k,OK have all the properties of the terms in L I,k , but
they additionally have rank ≥ α + 1 and furthermore one of the factors ∇φu+1,
∇φu+2 does not contract against a special index.
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If we can show the above two equations, then we are reduced to showing our
claim under the additional assumption that no tensor field indexed in L in Sym(2-9)
has the two factors ∇φu+1,∇φu+2, contracting against a special index in Tk . Under
that assumption, we may additionally assume that none of the complete contrac-
tions indexed in J in (2-9) have that property. Therefore, we may then erase the
factor ∇φu+1 from all the complete contractions and tensor fields in (2-9)k — our
claim then follows by applying Lemma 4.10 in [A 2010] to the resulting equation28

and then reintroducing the erased factor ∇φu+1. �

Outline of the proofs of (2-14) and (2-15). First we prove (2-14). Suppose without
loss of generality that Tk contracts against ∇φ1, . . . ,∇φh (possibly with h = 0);
then replace the two factors ∇aφ1,∇bφu+1 by gab and then apply Ricto�p+1 (ob-
taining a new true equation), and then apply the eraser to the factors ∇φ1, . . . ,∇φh

in the resulting true equation. Then (apart from the cases, discussed below, where
the above operation may lead to a “forbidden case” of Corollary 1 in [A 2010]),
we apply that corollary to the resulting equation, and finally we replace the factor
∇
(b)
r1...rb�p+1 by an expression

∇
(b+h)
s1...shr1...rb−2

Rirb−1krb∇
iφu+1∇

kφu+2∇
s1φ1 . . .∇

shφh .

As in the proof of Lemma 4.10 in [A 2010], we derive our claim. Then (2-14) is
proven by iteratively applying this step and making each ∇υ into an X div at every
stage (again, provided we never encounter “forbidden cases”). If we do encounter
forbidden cases, then our claims follow by just making the factors ∇φu+1,∇φu+2

into X divs and then applying Corollary 1 in [A 2012] to the resulting equation
(the resulting equation is not forbidden, since it will contain a factor ∇(m)Rijkl with
two free indices), and in the end renaming two factors ∇υ as ∇φu+1,∇φu+2. �

A further generalization: Proof of Lemma A.1 from [A 2010]. We remark that
on a few occasions later in this series of papers we will be using a generalized ver-
sion of the Lemma 2.5. The generalized version asserts that the claim of Lemma 2.5
remains true, for the general case where rather than one or two “additional” factors
∇φu+1,∇φu+2 we have β ≥ 3 “additional” factors ∇φu+1, . . . ,∇φu+β . Moreover,
in that case there are no “forbidden cases”.

Lemma 2.6. Let∑
l∈L1

alC
l,i1...iµ,iµ+1...iµ+β
g (�1, . . . , �p, φ1, . . . , φu),

∑
l∈L2

alC
l,i1...ibl ,ibl+1...ibl+β
g (�1, . . . , �p, φ1, . . . , φu),

28Notice that there is no danger of falling under a “forbidden case” of that lemma, since there
will be a nonsimple factor S∗∇(ν)Rijkl by virtue of the factor ∇φu+2.



DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS 19

stand for two linear combinations of acceptable tensor fields in the form (1-6),
each with u-simple character Eκsimp. We assume that the terms indexed in L1 have
rank µ+β, while the ones indexed in L2 have rank greater than µ+β.

Assume that

(2-16)
∑
l∈L1

al X diviβ+1 . . . X diviµ+β

×C l,i1...iµ+β
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

+

∑
l∈L2

al X diviβ+1 . . . X divibl

×C
l,i1...ibl+β
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu+β)= 0,

modulo terms of length ≥ σ + u+ β + 1. Furthermore, we assume that the above
equation falls under the inductive assumption of Proposition 2.1 in [A 2010] (with
regard to the parameter weights, σ,8, p). We are not excluding any “forbidden
cases”.

We claim that there exists a linear combination of (µ+β+1)-tensor fields in the
form (1-6) with u-simple character Eκsimp and length σ + u (indexed in H below)
such that

(2-17)
∑
l∈L1

alC
l,i1...iµ+β
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβφu+β∇iβ+1υ . . .∇iβ+µυ

+

∑
h∈H

ah X diviµ+β+1 C l,i1...iµ+β+1
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβφβ+1∇i1υ . . .∇iβ+µυ

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu+β, υ

µ)= 0,

modulo terms of length ≥ σ + u + β + µ+ 1. The terms indexed in J here are
u-simply subsequent to Eκsimp.

Proof of Lemma 2.6. The proof of the above is a straightforward adaptation of the
proof of Lemma 2.5, except for the cases where the tensor fields C l,i1...iµ,iµ+1...iµ+β

g
are “bad,” where “bad” in this case means that all factors are in the form Rijkl,
S∗Rijkl, ∇(2)�h ,29 and in addition each factor ∇(2)�h contracts against at most one
factor ∇φh, 1≤ h ≤ u+β. So we now focus on that case.

29Notice that if this property holds for one of the terms C
l,i1...iµ,iµ+1...iµ+β
g , then it will hold for

all of them by weight considerations.
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The “bad” case. Let us observe that by weight considerations, all tensor fields in
(2-9) must now have rank µ.

We recall that this special proof applies only in the case where there are special
free indices in factors S∗Rijkl among the tensor fields of minimum rank in (2-9).
(If there were no such terms, then the regular proof of Lemma 2.5 would apply.)
We distinguish three cases: Either p > 0, or p = 0 and σ1 > 0, or p = σ1 = 0 and
σ2 > 0. We will prove the above by an induction on the parameters (weight), σ :
Suppose that the weight of the terms in (2-16) is −K and the real length is σ ≥ 3.
We assume that the lemma holds when the Equation (2-16) consists of terms with
weight −K ′, K ′ < K , or of terms with weight −K and real length σ ′, 3≤ σ ′ < σ .

The case p > 0. We first consider the µ-tensor fields in (2-9) with the extra factor
∇φu+1 contracting against a factor ∇(2)�h . Denote the index set of those terms by
Lµ. We will first prove that

(2-18)
∑
l∈Lµ

alC
l,i1...iµ+β
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβφu+β∇iβ+1υ . . .∇iβ+µυ = 0.

It suffices to prove the above for the sublinear combination of µ-tensor fields
where ∇φu+1 contracts against ∇(2)�1. (2-18) will then follow by relabeling the
functions �1, . . . , �p and repeating this step p times.

We start by a preparatory claim: Let us denote by Lµ,] ⊂ Lµ the index set of
µ-tensor fields for which the factor ∇(2)�1 contains a free index, say the index i1

without loss of generality. We will first prove that

(2-19)
∑

l∈Lµ,]

alC
l,i1...iµ
g ∇i1φu+1 . . .∇iβφu+β∇iβ+1υ . . .∇iβ+µυ = 0.

Proof of (2-19). We will use the technique (introduced in Subsection 3.1 of [A
2011]) of “inverse integration by parts” followed by the silly divergence formula.

Let us denote by Ĉ l
g the complete contraction that arises from each C l,i1...iµ+β

g

by formally erasing the expression ∇(2)si1
�1∇

sφu+1 and then making all free indices

iβ+1, . . . , iβ+µ into internal contractions.30 Then, the “inverse integration by parts”
implies a new integral equation

(2-20)
∫

Mn

∑
l∈Lµ

alĈ l
g +

∑
j∈J

a j C j
g +

∑
z∈Z

azC z
g dVg = 0.

Here the complete contractions indexed in J have length σ +u and u factors ∇φu ,
but they are simply subsequent to the simple character Eκsimp. The terms indexed in

30We recall that to “make a free index iy into an internal contraction” means that we add a
derivative ∇iy onto the factor Tiy to which the free index iy belongs. The new derivative index
∇

iy is then contracted against the index iy in Tiy .
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Z either have length ≥ σ + u+ 1 or have length σ + u, but also have at least one
factor ∇(B)φh with B ≥ 2.

Now, in the above, we consider the complete contractions indexed in Lµ,]⊂ Lµ
and we “pull out” the expression 1∇t�1∇

tφu+1 to write∑
l∈Lµ,]

alĈ l
g =

∑
l∈Lµ,]

alC l
g · (1∇t�1∇

tφ1).

Now, we consider the silly divergence formula applied to (2-20) obtained by
integrating by parts with respect to the function �1. If we denote the integrand
in (2-20) by Fg, we denote the resulting (local) equation by silly[Fg] = 0. We
consider the sublinear combination silly∗[Fg] which consists of terms with length
σ+u, µ internal contractions and u−1+β factors ∇φh, h≥2, and a factor1φu+1.
Clearly, this sublinear combination must vanish separately modulo longer terms,

silly∗[Fg] = 0.

The above equation can be expressed as

(2-21) Spread∇
s ,∇s

[ ∑
l∈Lµ,]

alC l
g

]
·�1 ·1φu+1 = 0.

(Here Spread∇
s ,∇s is a formal operation that acts on complete contractions in the

form (1-5) by hitting a factor T in the form ∇(m)Rijkl or ∇(p)�h with a derivative
∇

s and then hitting another factor T ′ 6= T in the form ∇(m)Rijkl or ∇(p)�h with a
derivative ∇s that contracts against ∇s and then adding over all the terms we can
thus obtain.) Now, using the fact that (2-21) holds formally, we derive31

(2-22)
∑

l∈Lµ,]

alC l
g = 0.

Thus, applying the operation Subυ µ− 1 times to the above and then multiplying
by ∇i1i2�1∇

i1υ∇ i2φu+1 we derive (2-19). So for the rest of this proof we may
assume that Lµ,] =∅. �

Now we prove our claim under the additional assumption that for the tensor
fields indexed in Lµ, the factor ∇(2)�1 contains no free index.

We again refer to (2-20) and perform integrations by parts with respect to the
factor ∇(B)�1. We denote the resulting local equation by silly[Lg] = 0. We pick
out the sublinear combination silly∗[Lg] of terms with σ +u factors, u+β factors
∇φh , µ internal contractions, with u+β−1 factors ∇φh , h ≥ 2, and a factor 1φ1.
This sublinear combination must vanish separately, silly∗[Lg] = 0; the resulting
new true equation can be described easily: Let us denote by Ĉ l, j1

g the 1-vector

31This can be proven by using the operation Erase[. . . ], see the Appendix in [A 2010].
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field that arises from C l,i1...iµ
g , l ∈ Lµ,∗ by formally erasing the factor ∇(2)js �1∇

sφ1,
making the index j that contracted against j into a free index j1 , and making all
the free indices i1, . . . , iµ into internal contractions. (Denote by Eκ ′simp the simple
character of these vector fields.) Then the equation silly∗[Lg]= 0 can be expressed
in the form

(2-23)
∑

l∈Lµ,∗

al{X div j1 Ĉ l, j1
g }1φ1+

∑
j∈J

a j C j
g1φ1 = 0;

here the complete contractions C j
g are simply subsequent to Eκ ′simp. The above holds

modulo terms of length≥σ+u+1. Now, we apply the operation Subω µ times (see
the Appendix in [A 2012]). In the case σ > 3, we apply the inductive assumption
of our Lemma 2.6 to the resulting equation (notice that the above falls under the
inductive assumption of this lemma since we have lowered the weight in absolute
value); we ensure that Lemma 2.6 can be applied by just labeling one of the factors
∇ω into ∇φu+1. We derive (due to weight considerations) that there can not be
tensor fields of higher rank, thus

(2-24)
∑
l∈Lµ

al Subµ−1
ω

[
Ĉ l, j1

g
]
∇i1υ1φ1 = 0.

Now, formally replacing the factor ∇i1υ by ∇(2)j1t�1∇
tφ1, and then setting ω = υ,

we derive the claim of our lemma. In the case σ = 3 (2-24) follows by inspection,
since the only two possible cases are σ2 = 2 and σ1 = 2; in the first case there
are only two possible partial contractions in Lµ while in the second there are four.
Equation (2-23) (by inspection) implies that the coefficients of all these tensor
fields must vanish, which is equivalent to (2-24).

Now, we will prove our claim under the additional assumption Lµ=∅ (still for
p>0). We again refer to (2-20) and again consider the same equation silly[Lg]=0
as above. We now pick out the sublinear combination of terms with σ +u factors,
u+β factors ∇φh , and µ internal contractions. We derive that

(2-25)
∑
l∈Lµ

al X div j1 X div j2 Ĉ l, j1 j2
g +

∑
j∈J

a j C j
g = 0;

here the terms Ĉ l, j1 j2
g arise from the µ-tensor fields C li1...iµ

g by replacing all µ free
indices by internal contractions, erasing the factor ∇(2)jk �1 and making the indices
j , k into free indices j1, j2 . Now, applying Subω µ times, and then applying the
inductive assumption of Lemma 4.10 in [A 2010] (this applies by length consid-
erations as above for σ > 3; while if σ = 3 the claim (2-26) will again follow by
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inspection) we derive that

(2-26)
∑
l∈Lµ

alĈ l, j1 j2
g ∇ j1υ∇ j2υ = 0.

Replacing the expression ∇ j1υ∇ j2υ by a factor ∇(2)j1 j2�2 and then setting ω = υ,
we derive our claim in the case p > 0.

The case p = 0, σ1 > 0. We will reduce to the previous case: We let L1
µ be the

index set of µ-tensor fields where the factor T1 = S∗Rijkl∇
i φ̃1 contains a special

free index (say the index k is the free index iβ+1 without loss of generality). We will
prove our claim for the index set L1

µ; if we can prove this, then clearly our lemma
will follow by induction.

To prove this claim, we consider the first conformal variation of our hypothesis,
Image1

Y [Lg] = 0, and we pick out the sublinear combination of terms with length
σ+u+β, where the factor ∇(ν)S∗Rijkl∇

i φ̃1 has been replaced by a factor ∇(ν+2)Y ,
and the factor ∇φ1 now contracts against a factor T2 = Rijkl. This sublinear com-
bination vanishes separately, thus we derive a new local equation. To describe the
resulting equation, we denote by

Ĉ l,i1...îβ+1...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

the (µ−1)-tensor field that arises from

C l,i1...îβ+1...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

by formally replacing the factor T1 = S∗Rijkl∇
i φ̃1 by ∇(2)jl Y and also adding a

derivative index ∇i∗ onto the factor T2 = Rijkl and then contracting that index i∗
against an (added anew) factor ∇φ1. Denote the (u − 1)-simple character of the
above (the one defined by ∇φ2, . . . ,∇φu) by Eκ ′simp. We then have an equation

(2-27)∑
l∈L1

µ

al X diviβ+2 . . . X diviβ+µ Ĉ l,i1...îβ+1...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

+

∑
h∈H

ah X diviβ+1 . . . X diviµ+β C l,i2...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

=

∑
j∈J

a j C
j,iµ+1...iβ
g (Y, φ1, . . . , φu)∇iµ+1φu+1 . . .∇iβφu+β .

The terms indexed in H are acceptable, have a (u− 1)-simple character Eκ ′simp and
the factor ∇φ1 contracts against an internal index (without loss of generality, say
the index i in the factor T2= Rijkl); writing that factor as S∗Rijkl∇

i φ̃1, we denote the
resulting u-simple factor by κ̃simp. The terms indexed in J are simply subsequent
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to Eκ ′simp. Now, applying the inductive assumption of Lemma 2.6,32 we derive that

(2-28)
∑
h∈H

ahC l,i2...iµ+β
g (Y, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβ+1φu+β∇iβ+1υ . . .∇iβ+µυ = 0.

Thus, we may assume without loss of generality that H = ∅ in (2-27). Now, we
again apply Lemma 2.6 to (2-27) (under that additional assumption), and we derive
that

(2-29)
∑
l∈L1

µ

alĈ
l,i1...îβ+1...iµ+β
g (Y, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβφu+β∇iβ+1υ . . .∇iβ+µυ = 0.

Now, erasing the factor ∇φ1 from the above, and then formally replacing the factor
∇
(2)
ab Y by S∗Ri(ab)l∇

i φ̃1∇
lυ, we derive our claim.

The case p = 0, σ1 = 0. In this case σ = σ2. In other words, all factors in Eκsimp

are simple factors in the form S∗Rijkl∇
i φ̃h . We recall that in this case all µ-tensor

fields in (2-9) must have at most one free index in any factor S∗Rijkl. In that case,
we will prove our claim in a more convoluted manner, again reducing ourselves to
the inductive assumption of Proposition 2.1 in [A 2010].

A key observation is that by the definition of the special cases, µ + β ≤ σ2.
In the case of strict inequality, we see (by a counting argument) that at least one
of the special indices in one of the factors S∗Rijkl must contract against a special
index in another factor S∗Rabcd . In the case µ+ β = σ2 this remains true, except
for the terms for which the β factors ∇φu+h contract against special indices, say
the indices k , in β factors Ty = S∗Rikl∇

i φ̃y , and moreover these factors must not
contain a free index, and all other factors S∗Rikl contain exactly one free index,
which must be special. In this subcase, we will prove our claim for all µ-tensor
fields excluding this particular “bad” sublinear combination; we will prove our
claim for this sublinear combination in the end.

We will now proceed to normalize the different (µ+β)-tensor fields in (2-9).
A normalized tensor field will be in the form (1-6), with possibly certain pairs of
indices in certain of the factors S∗Rijkl being symmetrized over.

Let us first introduce a few definitions: Given each C l,i1...iµ
g , we list out the

factors T1, . . . Tσ2 in the form S∗Rikl . Here Ta is the factor for which the index i

is contracting against the factor ∇φ̃a . We say that factors S∗Rikl are of type I if
they contain no free index. We say they are of type II if they contain a special free
index. We say they are of type III if they contain a nonspecial free index.

Given any tensor field C l,i1...iµ
g in the form (1-6), pick out the pairs of factors

Tα, Tβ in the form S∗Rijkl for which a special index in Tα contracts against a special

32The terms indexed in L1
µ are now simply subsequent to κ̃simp.
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index in Tβ . (Call such particular contractions “special-to-special” particular con-
tractions.) Now, in any C l,i1...iµ

g we define an ordering among all its factors S∗Rijkl:
The factor Ta = S∗Rikl∇

i φ̃a is more important than Tb = S∗Ri ′ j ′k′l ′∇
i ′ φ̃b if a < b.

Now, consider a tensor field C l,i1...iµ
g and list out all the pairs of factors Ta, Tb

with a special-to-special particular contraction. We say that (Ta, Tb) is the most
important pair of factors with a special-to-special particular contraction33 if any
other such pair (Tc, Td)

34 has either Tc less important than Ta or Ta = Tc and Td

less important than Tb.
Now, consider a tensor field C l,i1...iµ

g and consider the most important pair of
factors (Ta, Tb) with a special-to-special particular contraction. Assume without
loss of generality that the index l in Ta = S∗Rijkl∇

i φ̃a contracts against the index
l ′ in Tb = S∗Ri ′ j ′k′l ′∇

i ′ φ̃b. We say that C l,i1...iµ
g is normalized if both factors Ta, Tb

are normalized. The factor Ta = S∗Rikl∇
i φ̃a is normalized if: Either the index j

contracts against a factor Tc that is more important than Tb, or if the indices j , k are
symmetrized. If Ta is of type II, then we require that the index j in Tb= S∗Ri j (free)l

must contract against a special index of some other factor Tc, and moreover Tc must
be more important than Tb. If Ta is of type III, then it is automatically normalized.
The same definition applies to Tb, where any reference to Tb must be replaced by
a reference to Ta .

Let us now prove that we may assume without loss of generality that all µ-
tensor fields in (2-9) are normalized: Consider a C l,i1...iµ

g in (2-9) for which the
most important pair of factors with a special-to-special particular contraction is
the pair (Ta, Tb). We will prove that we can write

(2-30) C l,i1...iµ+β
g = C̃ l,i1...iµ+β

g +

∑
t∈T

atC
t,i1...iµ+β
g ;

here the term C̃ l,i1...iµ+β
g is normalized, the most important pair of factors with

a special-to-special particular contraction is the pair (Ta, Tb), and moreover its
refined double character is the same as for C l,i1...iµ+β

g . Each term C t,i1...iµ+β
g has

either the same, or a doubly subsequent refined double character to C l,i1...iµ+β
g ;

moreover in the first case its most important pair of factors with a special-to-special
particular contraction will be less important than the pair (Ta, Tb). In the second
case the most important pair will either be (Ta, Tb) or a less important pair.

Clearly, if we can prove the above, then by iterative repetition we may assume
without loss of generality that all (µ+β)-tensor fields in (2-9) are normalized.

Proof of (2-30). Pick out the most important pair of factors with a special-to-
special particular contraction is the pair (Ta, Tb) in C l,i1...iµ+β

g . Let us first normalize

33Assume without loss of generality that Ta is more important than Tb.
34Again assume without loss of generality that Tc is more important than Td .
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Ta . If Ta is of type III, there is nothing to do. If it is of type II and already
normalized, there is again nothing to do. If it is of type II and not normalized, then
we interchange the indices j , k . The resulting factor is normalized. The correction
term we obtain by virtue of the first Bianchi identity is also normalized (it is of
type III). Moreover, the resulting tensor field is doubly subsequent to C l,i1...iµ+β

g .
Finally, if the factor Ta is of type I, we inquire on the factor Tc against which j in
Ta = S∗Rijkl contracts: If it is more important than Tb, then we leave Ta as it is;
it is already normalized. If not, we symmetrize j , k . The resulting tensor field is
normalized. The correction term we obtain by virtue of the first Bianchi identity
will then have the same refined double character as C l,i1...iµ+β

g , and moreover its
most important pair of factors with a special-to-special particular contraction is
less important than that pair (Ta, Tb). �

We may now prove the claim of Lemma 2.6 in this special case, under the
additional assumption that all tensor fields in (2-9) are normalized. We list out the
most important pair of special-to-special particular contractions in each C l,i1...iµ+β

g ,
and denote it by (a, b)l . We let (α, β) stand for the lexicographically minimal pair
among the list (a, b)l, l ∈ Lµ. We denote by L(α,β)µ ⊂ Lµ the index set of terms
with a special-to-special particular contraction among the terms Tα, Tβ . We will
prove that

(2-31)
∑

l∈L(α,β)µ

alC
l,i1...iµ+β
g ∇i1υ . . .∇iµυ = 0.

Clearly, the above will imply our claim, by iterative repetition.35

Proof of (2-31). Consider Image2
Y1,Y2
[Lg] = 0 and pick out the sublinear combina-

tion where the factors Tα, Tβ are replaced by ∇(A)Y1⊗ g,∇(B)Y2⊗ g, and the two
factors ∇φ̃α,∇φ̃β contract against each other. The resulting sublinear combination
must vanish separately. We erase the expression∇t φ̃α∇

t φ̃β ,36 and derive a new true
equation in the form

(2-32)
∑

l∈L(α,β)µ

al X divi1 . . . X diviµC̃ l,i1...iµ+β
g (�1, Y1, Y2)+

∑
j∈J

a j C j
g (�1, Y1, Y2)= 0;

here the tensor fields C̃ l,i1...iµ+β
g (�1, Y1, Y2) arise from the tensor fields C l,i1...iµ+β

g by
replacing the expression ∇ i φ̃αS∗Rijkl⊗S∗Ri ′ jk

l
∇

i ′ φ̃β with ∇ jkY1⊗∇ j ′k′Y2 (notice
we have lowered the weight in absolute value).

35In the subcaseµ+β=σ2 it will only imply it for the “excluded” sublinear combination defined
above.

36Denote the resulting (u− 2)-simple character by Eκ ′′′simp.
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Now, applying the inductive assumption of Lemma 2.6 to the above,37 we derive

(2-33)
∑

l∈L(α,β)µ

alC̃
l,i1...iµ+β
g (�1, Y1, Y2)∇i1υ . . .∇iµυ = 0.

The proof of (2-31) is only one step away. Let us start with an important obser-
vation: For each given complete contraction above, examine the factor ∇(2)zx Y1; it
either contracts against no factor ∇υ or against one factor ∇υ.38 In the first case,
the factor∇(2)zx Y1 must have arisen from a factor S∗Rijkl of type I. In fact, the indices
z, x correspond to the indices j , k in the original factor, and we can even determine
their position: Since the pair (α, β) is the most important pair in (2-9), at most
one of the indices z, x can contract against a special index in a more important
factor than Tβ . If one of them does (say z), then that index must have been the
index j in Tα = S∗Rikl . If none of them does, then the two indices z, x must be
symmetrized over, since the two indices j , k in Tα to which they correspond were
symmetrized over. Now, these two separate sublinear combinations in (2-33) must
vanish separately (this can be proven using the eraser from the Appendix in [A
2012]), and furthermore in the first case, we may assume that the index z (which
contracts against a special index in a more important factor than Tβ) occupies
the leftmost position in ∇(2)zx Y1 and is not permuted in the formal permutations of
indices that make (2-33) hold formally).

On the other hand, consider the terms in (2-33) with the factor∇(2)Y1 contracting
against a factor ∇υ. By examining the index y in the factor ∇(2)yt Y1∇

tυ, we can
determine the type of factor in C l,i1...iµ+β

g from which the factor ∇(2)Y1 arose: If the
index y contracts against a special index in a factor S∗Rijkl which is more important
than Tβ , then ∇(2)Y1 can only have arisen from a factor of type II in C l,i1...iµ+β

g . In
fact, the index y in ∇(2)Y1 must correspond to the index j in S∗Ri j (free)l in Tα. If
the index y in ∇(2)yt Y1∇

tυ does not contract against a special index in a factor Tc

which is more important than Tβ , then the factor ∇(2)Y1 can only have arisen from
a factor of type III in C l,i1...iµ+β

g . In fact, the index y in ∇(2)Y1 must correspond to
the index k in S∗Ri(free)kl in Tα.

The same analysis can be repeated for the factor ∇(2)Y2, with any reference to
the factor Tβ now replaced by the factor Tα.

In view of the above analysis, we can break the left-hand side of (2-33) into
four sublinear combinations that vanish separately (depending on whether ∇(2)Y1,
∇
(2)Y2 contract against a factor ∇υ or not). Then in each of the four sublinear

combinations, we can arrange that in the formal permutations that make the left-
hand side of (2-33) formally zero, the two indices in the factors ∇(2)Y1,∇

(2)Y2 are

37We have lowered the weight in absolute value.
38The two corresponding sublinear combinations vanish separately, of course.
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not permuted (by virtue of the remarks above). In view of this and the analysis in
the previous paragraph, we can then replace the two factors ∇(2)zx Y1,∇

(2)
qwY2 by an

expression ∇ i φ̃αS∗Ri zxl ⊗ S∗Ri ′qw
l
∇

i ′ φ̃β , in such a way that the resulting linear
combination vanishes formally without permuting the two indices q , w, q ′, w′ . This
proves our claim, except for the subcase µ+ β = σ2 where we only derive our
claim for all terms except for the “bad sublinear combination”. We now prove our
claim for that case.

The “bad sublinear combination”. We break up the left-hand side of (2-16) accord-
ing to which factor Ts the factor ∇φu+1 contracts — denote the index set of those
terms by L K

µ . Denote the resulting sublinear combinations by L K
g , K = 1, . . . , σ2.

Given any K , we consider the equation Image1
Y [Lg] = 0, and we pick out the sub-

linear combination where the term ∇(B)S∗Rijkl∇
i φ̃K is replaced by ∇(B+2)Y , and

the factor∇φK now contracts against the factor∇φu+1. This sublinear combination
must vanish separately. We then again perform the “inverse integration by parts”
to this true equation (deriving an integral equation), and then we consider the silly
divergence formula for this integral equation, obtained by integrating by parts with
respect to ∇(B)Y . We pick out the sublinear combination with σ+u+β factors, µ
internal contractions and u+β factors ∇φh , and an expression ∇sφu+1∇

s φ̃K This
gives us a new true local equation,

(2-34)
∑
l∈L K

µ

al X∗ div j1 X∗ div j2 C̃ l, j1 j2
g +

∑
j∈J

a j C j
g = 0.

Here the tensor fields C̃ l, j1 j2
g arise from C l,i1...iµ

g by formally replacing all µ free
indices with internal contractions, and also replacing∇xφu+1⊗S∗Ri( jk)

x
∇

i φ̃K with
∇xφu+1∇

s φ̃K⊗Y , and then making the indices j , k that contracted against j , k into
free indices j1, j2 . X∗ div j stands for the sublinear combination in X div j where
∇

j is not allowed to hit the factor Y . Now, applying the inductive assumption of
Lemma 2.6 to the above,39 we derive that∑

l∈L K
µ

alC̃ l,1 j2
g ∇ j1ω∇ j2ω = 0.

We replace ∇xφK∇xφu+1∇ j1ω∇ j2ω∇lY with ∇lφu+1S∗Ri( j1 j2)l∇
i φ̃K and then re-

place all internal contractions by factors ∇υ (applying the operation Subυ from the
Appendix in [A 2012]). The resulting (true) equation is precisely our remaining
claim for the “bad” sublinear combination. �

39We have lowered the weight in absolute value.
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2C. Proof of Lemmas 4.6, 4.8 in [A 2010]: The main part. We first write down
the form of the complete and partial contractions that we are dealing with in Lem-
mas 2.1 and 2.3. In the setting of Lemma 2.1 we recall that the tensor fields Ch,i1...iα

indexed in H2 (in the hypothesis of Lemma 2.1) are all partial contractions in the
form

(2-35) pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇Y ⊗∇φz1 · · · ⊗∇φz f

⊗∇φ′z f+1
⊗ · · ·⊗∇φ′z f+d

⊗ · · ·⊗∇φ̃z f+d+1 ⊗ · · ·⊗∇φ̃z f+d+y

)
,

where we let f +d+ y= u′. The main assumption here is that all tensor fields have
the same u′-simple character (the one defined by∇φ1, . . . ,∇φu′), which we denote
by Eκ+simp. The other main assumption is that if we formally treat the factor ∇Y as
a function ∇φu+1, then the hypothesis of Lemma 2.1 falls under the inductive
assumptions of Proposition 1.1 (i.e., the weight, real length, 8 and p are as in our
inductive assumption of Proposition 1.1).

In the setting of Lemma 2.3 we recall that we are dealing with complete and
partial contractions in the form

(2-36) contr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗[∇ω1⊗∇ω2]⊗∇φz1 · · · ⊗∇φz f

⊗∇φ′z f+1
⊗ · · ·⊗∇φ′z f+d

⊗ · · ·⊗ φ̃z f+d+1 ⊗ · · ·⊗ φ̃z f+d+y

)
,

where we let f+d+y=u′. The main assumption here is that all partial contractions
have the same u′-simple character (the one defined by ∇φ1, . . . ,∇φu′), which we
denote by Eκ+simp. The other main assumption is that if we formally treat the factors
∇ω1,∇ω2 as factors ∇φu+1,∇φu+2, then the hypothesis of Lemma 2.3 falls under
the inductive assumptions of Proposition 1.1 (i.e., the weight, real length, 8 and p
are as in our inductive assumption of Proposition 1.1).

Note. From now on, we will be writing u′ = u, for simplicity. We will also be
writing Eκ+simp = Eκsimp, for simplicity. We will also be labeling the indices i1, . . . , iα
as iπ+1, . . . , iα+1 .

New induction. We will now prove the two Lemmas 2.1 and 2.3 by a new induction
on the weight of the complete contractions in the hypotheses of those lemmas.
We will assume that these two lemmas are true when the weight of the complete
contractions in their hypotheses is −W , for any W < K ≤ n. We will then show
our lemmas for weight −K .

Reduce Lemma 2.1 to two lemmas. In order to show Lemma 2.1, we further break
up H2 into subsets: We say that h ∈ Ha

2 if Ch,iπ+1...iα+1 has a free index (say the
free index iα+1 without loss of generality) belonging to the factor ∇Y . On the other
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hand, we say that h ∈ H b
2 if the index in the factor ∇Y is not free. Lemma 2.1 will

then follow from Lemmas 2.7 and 2.8 below.

Lemma 2.7. There exists a linear combination of acceptable (α−π+1)-tensor
fields,

∑
v∈V avC

v,iπ+1...iα+2
g (�1, . . . , �p, Y, φ1, . . . , φu), where the index iα+1 be-

longs to the factor ∇Y , with a simple character Eκsimp, so that

(2-37)
∑

h∈Ha
2

ahCh,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ

=

∑
v∈V

avX∗ diviα+2 Cv,iπ+1...iα+2
g (�1, . . . , �p, Y, φ1, . . . , φu)

×∇iπ+1υ . . .∇iα+1υ

+

∑
j∈J

a j C j,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ.

Each C j is simply subsequent to Eκsimp.

We observe that if we can show our first claim, then we can assume, with no
loss of generality, that Ha

2 =∅, since it immediately follows from the above that

(2-38)
∑

h∈Ha
2

ah X∗ diviπ+1 . . . X∗ diviα+1 Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

=

∑
v∈V

avX∗ diviπ+1 . . . X∗ diviα+1 X∗ diviα+2

×Cv,iπ+1...iα+2
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where each complete contraction C j is subsequent to Eκsimp. (Note that one of the
free indices in the tensor fields Cv,iπ+1...iα+2

g will belong to the factor ∇Y.)
The second claim, in the setting of Lemma 2.1 is:

Lemma 2.8. We assume Ha
2 = ∅. We then claim that modulo complete contrac-

tions of length ≥ σ + u+ 1,

(2-39)
∑
h∈H2

ahCh,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ

=

∑
t∈T

at X∗ diviα+2 C t,iπ+1...iα+2
g (�1, . . . , �p, Y, φ1, . . . , φu)

×∇iπ+1υ . . .∇iα+1υ

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where each C j is acceptable and subsequent to Eκsimp.
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We observe that if we can show the above two lemmas then Lemma 2.1 will
follow. (Notice that replacing by the right-hand side of (2-38) into the hypothesis
of Lemma 2.1, we do not introduce 1-forbidden terms.)

We make two analogous claims for Lemma 2.3:

Reduce Lemma 2.3 to two lemmas. We say that h ∈ Ha
2 if Ch,iπ+1...iα+1 has a free

index belonging to one of the factors ∇ω1,∇ω2. On the other hand, we say that
h ∈ H b

2 if none of the factors ∇ω1,∇ω2 in Ch,iπ+1...iα+1 contains a free index.
(Observe that we may assume with no loss of generality that there are no tensor
fields Ch,iπ+1...iα+1 with free indices in both factors ∇ω1,∇ω2 — this is by virtue
of the antisymmetry of the factors ∇ω1,∇ω2.) We make two claims. First:

Lemma 2.9. There is a linear combination of acceptable (α−π+1)-tensor fields,∑
v∈V avC

v,iπ+1...iα+2
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu), in the form (2-35) with a

simple character Eκsimp, so that

(2-40)
∑

h∈Ha
2

ah X+ diviπ+1 . . . X+ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

=

∑
v∈V

avX+ diviπ+1 . . . X+ diviα+1 X+ diviα+2

×Cv,iπ+1...iα+2
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

+

∑
q∈Q

aq X+ diviπ+1 . . . X+ diviα+1

×Cq,iπ+1...iα+1
g (�1, . . . , �p,∇+[ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu).

(Recall that by definition the complete contractions indexed in Q have a factor
∇
(2)ω1.)

We observe that if we can show our first claim, then we can, with no loss of
generality, assume that Ha

2 =∅.
Second claim:

Lemma 2.10. We assume Ha
2 =∅, and that for some k ≥ 1, we can write

(2-41)
∑

h∈Hb
2

ax X+ diviπ+1 . . . X+ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

=

∑
t∈Tk

at X+ diviπ+1 . . . X+ diviα+k

×C t,iπ+1...iα+k
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)
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+

∑
q∈Q

aq X+ divπ+1 . . . X+ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p,∇+[ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu),

where the last two linear combinations on the left-hand side of the equality are
generic linear combinations in the form described in the claim of Lemma 2.3.40

On the other hand,∑
t∈Tk

atC t,iπ+1...iα+k
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

is a linear combination of acceptable (α−π+k)-tensor fields in the form (2-36)
with a simple character Eκsimp, and with two antisymmetric factors ∇ω1,∇ω2 that
do not contain a free index. We then claim that modulo complete contractions of
length ≥ σ + u+ 1 we can write

(2-42)
∑
t∈Tk

at X+ divi1 . . . X+ divia+k

×C t,i1...ia+k
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

=

∑
t∈Tk+1

at X+ diviπ+1 . . . X+ divia+k+1

×C t,iπ+1...ia+k+1
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

+

∑
q∈Q

aq X+ divi1 . . . X+ divia+1

×Cq,i1...ia+1
g (�1, . . . , �p,∇+[ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu),

with the same notational conventions as above.

We observe that if we can show the above two claims, then Lemma 2.3 will
follow by iterative repetition of the second claim.

We will now show the four lemmas above.

Proof of Lemmas 2.8 and 2.10. Lemma 2.8 is a direct consequence of Lemma 4.10
in [A 2010].41 Lemma 2.10 can be proven in two steps: First, by Lemma 2.5 we
derive that there exists a linear combination of acceptable (a+k+1)-tensor fields

40In Lemma 2.3, Q is called V .
41Observe that our hypotheses on the tensor fields in the equation in Lemma 2.1 not being “bad”

ensure that we do not fall under the “forbidden” cases of Lemma 4.10 in [A 2010].
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(indexed in X below) with a u-simple character Eκsimp so that

(2-43)
∑
t∈Tk

atC t,i1...ia+k
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)∇i1υ . . .∇ia+kυ

−

∑
t∈Tk+1

at X∗ divia+k+1 C t,iπ+1...ia+k+1
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

×∇i1υ . . .∇ia+kυ

=

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu, υ

a+k),

where the complete contractions indexed in J have length σ + a + k + 1 and are
simply subsequent to Eκsimp. Then, making each factor ∇υ in the above into an
X+ div, we derive Lemma 2.10. �

Proof of Lemma 2.7. We have denoted by Eκsimp the simple character of our tensor
fields. We distinguish two cases: In Case A there is a factor ∇(m)Rijkl in Eκsimp, and
in Case B there is no such factor.

We denote α+ 1= γ , for brevity.
Now we break the set H b

2 into subsets: In Case A we say that h ∈ H b,+
2 if ∇Y

contracts against an internal index of a factor ∇(m)Rijkl. In Case B we say that
h ∈ H b,+

2 if ∇Y contracts against one of the indices k, l in a factor S∗∇(ν)Rijkl.
We define H b,−

2 = H b
2 \ H b,+

2 .
In each of the above cases and subcases we treat the term ∇Y as a term ∇φu+1

in our lemma hypothesis. Then, by applying the first claim in Lemma 4.10 in [A
2010]42 to our lemma hypothesis and then making each ∇υ into an X∗ div, we
derive that we can write

(2-44) X∗ diviπ+1 . . . X∗ diviγ

∑
h∈Hb,+

2

ahCh,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu)

= X∗ diviπ+1 . . . X∗ diviγ

∑
h∈Hb,∗,−

2

ahCh,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where
∑

h∈Hb,∗,−
2

ahCh,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu) stands for a generic

linear combination as defined above (i.e., it is in the general form
∑

h∈Hb
2
. . . but

the factor ∇Y is not contracting against a special index in any factor ∇(m)Rijkl

42By weight considerations, since we started out with no “bad terms” in Lemma 2.1, we will not
encounter no “forbidden tensor fields” for Lemma 4.10 in [A 2010].
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or S∗∇(ν)Rijkl).43 On the other hand, each C j
g (�1, . . . , �p, Y, φ1, . . . , φu) is a

complete contraction with a simple character that is subsequent to Eκsimp.
Thus, by virtue of (2-44), we reduce ourselves to the case where H b,+

2 =∅. We
will then show Lemma 2.7 separately in Cases A and B, under the assumption that
H b,+

2 =∅.

Proof of Lemma 2.7 in Case A. We will define the C-crucial factor, for the purposes
of this proof only: We denote by Set the set of numbers u for which ∇φu contracts
against one of the factors ∇(m)Rijkl. If Set 6= ∅, we define u+ to be the minimum
element of Set, and we pick out the factor ∇(m)Rijkl in each Ch against which
∇φu+ contracts. We call that factor ∇(m)Rijkl C-crucial. If Set = ∅, we will say
the C-crucial factors and will mean any of the factors ∇(m)Rijkl.

Now we pick out the subset H b,∗
2 ⊂ H b

2 , that is defined by the rule h ∈ H b,∗
2 if

∇Y contracts against the (one of the) C-crucial factor.
Now, for each h ∈ Ha

2 we denote by

Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

the sublinear combination in X∗ diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu) that

arises when ∇iγ hits the (one of the) C-crucial factor.44 It then follows that

(2-45)∑
h∈Ha

2

ah X∗ diviπ+1 . . . X∗ diviα Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
h∈Hb,∗

2

ah X∗ diviπ+1 . . . X∗ diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where each C j
g has the factor ∇Y contracting against the C-crucial factor ∇(m)Rijkl

and is simply subsequent to Eκsimp.
Denote the (u+1)-simple character (the one defined by ∇φ1, . . . ,∇φu+1=∇Y )

of the tensor fields Hit diviγ Ch,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu) by Eκ ′simp. (Ob-

serve that they all have the same (u+ 1)-simple character.)

43Recall that a special index in a factor ∇(m)Rijkl is an internal index, while a special index in a
factor S∗∇(ν)Rijkl is an index k , l .

44Recall that iγ is the free index that belongs to ∇Y .
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We observe that by applying Corollary 1 in [A 2010] to (2-45) (all tensor fields
are acceptable and have the same simple character Eκ ′simp),45 we obtain

(2-46)
∑

h∈Ha
2

ah Hit diviγ Ch,iπ+1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ

+

∑
u∈U

au X diviα+1 Cu,iπ+1...iα,iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

×∇iπ+1υ . . .∇iαυ

=

∑
j∈J

a j C j,iπ+1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ = 0,

where the tensor fields indexed in U are acceptable (we are treating ∇Y as a factor
∇φu+1), have a simple character Eκ ′simp and each C j is simply subsequent to Eκ ′simp.

But then, our first claim follows almost immediately. We recall the operation
Erase∇Y [. . . ] from the Appendix in [A 2012] which acts on the complete con-
tractions in the above by erasing the factor ∇Y and the (derivative) index that it
contracts against. Then, since (2-46) holds formally, we have that the tensor field
required for Lemma 2.7 is∑

u∈U

au Erase∇Y [Cu,iπ+1...iα,iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)] · ∇iγ Y.

Proof of Lemma 2.7 in Case B. We again distinguish two subcases: In Subcase (i)
there is some nonsimple factor S∗∇(ν)Rijkl in Eκsimp or a nonsimple factor ∇(B)�x

contracting against two factors ∇φ′h in Eκsimp. In Subcase (ii) there are no such
factors.

In Subcase (i), we arbitrarily pick out one factor S∗∇(ν)Rijkl or ∇(B)�x with the
properties described above and call it the D-crucial factor. In this first subcase we
will show our claim for the whole sublinear combination

∑
h∈Ha

2
. . . in one piece.

In Subcase (ii), we will introduce some notation: We will examine each factor
T = S∗∇(ν)Rijkl, T = ∇(B)�x in each tensor field Ch,iπ+1...iα,iα+1

g and define its
“measure” as follows: If T = S∗∇(ν)Rijkl then its “measure” will stand for its total
number of free indices plus 1

2 . If T = ∇(B)�x then its “measure” will stand for
its total number of free indices plus the number of factors ∇φh against which it
contracts.

We divide the index set Ha
2 into subsets according to the measure of any given

factor. We denote by M the maximum measure among all factors among the ten-
sor fields Ch,iπ+1...iα,iα+1

g , h ∈ Ha
2 . We denote by H 2,∗

a ⊂ Ha
2 the index set of the

tensor fields that contain a factor of maximum measure. We will show the claim of

45Notice that by weight considerations, since we started out with no “bad” terms in the hypothesis
of Lemma 2.1, there is no danger of falling under a “forbidden case” of that corollary.
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Lemma 2.7 for the sublinear combination
∑

h∈H2,∗
a
. . . . Clearly, if we can do this,

then Lemma 2.7 will follow by induction.
We will prove Lemma 2.7 in the second subcase (which is the hardest). The

proof in the first subcase follows by the same argument, only by disregarding any
reference to M free indices belonging to a given factor and so on.

Proof of Lemma 2.7 in Case B for the sublinear combination
∑

h∈H2,∗
a
. . . . We

will further divide H 2,∗
a into subsets, H 2,∗,k

a , k = 1, . . . , σ , according to the factor
of maximum measure: First, we order the factors S∗∇(ν)Rijkl, . . .∇

(p)�h in Eκsimp,
and label them T1, . . . , Tσ (observe each factor is well-defined in Eκsimp, because
we are in Case B). We then say that h ∈ Ha,∗,1

2 if in Cu,iπ+1...iα
g the factor T1 has

measure M . We say that h ∈ Ha,∗,2
2 if in Cu,iπ+1...iα

g the factor T2 has measure M
and T1 has measure less than M , and so on. We will then prove our claim for each
of the index sets h ∈ Ha,∗,k

2 :46 We arbitrarily pick a k ≤ K and show our claim for∑
h∈H2,∗,k

a
. . . .

For the purposes of this proof, we call the factor Tk the D-crucial factor.
Now we pick out the subset H b,k

2 ⊂ H b
2 , that is defined by the rule h ∈ H b,k

2 if
and only if ∇Y is contracting against the D-crucial factor Tk .

Now, for each h ∈ Ha
2 we denote by

Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

the sublinear combination in X diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu) that

arises when ∇iγ hits the D-crucial factor.47 It then follows that

(2-47)
∑

h∈Ha
2

ah X diviπ+1 . . . X diviαHit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
h∈Hb,k

2

ah X diviπ+1 . . . X diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where each C j
g has the factor ∇Y contracting against the D-crucial factor and is

simply subsequent to Eκsimp.
Denote the (u+1)-simple character (the one defined by ∇φ1, . . . , ∇φu+1=∇Y )

of the tensor fields Hit diviγ Ch,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu) by Eκ ′simp. (Ob-

serve that they all have the same (u+ 1)-simple character.)
We apply Corollary 1 in [A 2010] to (2-47) (all tensor fields are acceptable and

have the same simple character Eκ ′simp) and then pick out the sublinear combination

46Again we observe that if we can prove this then Lemma 2.7 in Case B will follow by induction.
47Recall that iγ = iα+1 belongs to ∇Y by hypothesis.
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where there are M factors ∇υ or ∇φh or ∇φ′h contracting against Tk , obtaining

(2-48)
∑

h∈Ha,∗,k
2

ah Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ

+

∑
u∈U

au X diviα+1Ch,iπ+1...iα,iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

×∇iπ+1υ . . .∇iαυ

=

∑
j∈J

a j C j,iπ+1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ = 0,

where the tensor fields indexed in U are acceptable and have a simple character
Eκ ′simp and each C j is simply subsequent to Eκ ′simp.

Now, observe that if M ≥ 3
2 , we can apply the eraser to ∇Y (see the Appendix

in [A 2012]) and the index it contracts against in the D-crucial factor and derive
our conclusion as in Case A.

On the other hand, in the remaining cases48 the above argument cannot be di-
rectly applied. In those cases, we derive our claim as follows:

In the case M = 1 the D-crucial factor is of the form ∇(p)�h , then we cannot
directly derive our claim by the above argument, because if for some tensor fields in
U above we have ∇Y contracting according to the pattern ∇i Y∇ i j�h∇ jψ (where
ψ = υ or ψ = φh), then we will not obtain acceptable tensor fields after we apply
the eraser. Therefore, if M = 1 and the D-crucial factor is of the form ∇(p)�h , we
apply Lemma 4.6 in [A 2010] to (2-48) (treating the factors ∇υ as factors ∇φ)49 to
obtain a new equation in the form (2-48), where for any tensor field indexed in U
the factor ∇Y contracts against a factor ∇(l)�h , l ≥ 3.50 Then, applying the eraser
as explained, we derive our Lemma 2.7 in this case.

When M = 1
2 or M = 0, then we first apply the inductive assumptions of Corol-

laries 3 and 2 in [A 2010] (respectively) to (2-48),51 in order to assume with no
loss of generality that for each tensor field indexed in U there, the factor ∇Y either
contracts against a factor ∇(B)�h , B ≥ 3 or a factor S∗∇(ν)Rijkl, ν ≥ 1. Then the
eraser can be applied and it produces acceptable tensor fields. Hence, applying
Erase∇Y to (2-48) we derive our claim. �

48Observe that the remaining cases are when M = 0, M = 1
2 , M = 1.

49Furthermore, we can observe that we do not fall under a “forbidden case” of Lemma 4.1 in [A
2010], by weight considerations, and since the tensor fields in our lemma assumption are not “bad”.

50Note that the weight becomes less negative, hence Lemma 4.10 in [A 2010] applies.
51By our assumptions there will be a removable index in these cases. Hence our extra require-

ments of those lemmas are fulfilled.
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Proof of Lemma 2.9. We rewrite the hypothesis of Lemma 2.3 (which is also the
hypothesis of Lemma 2.9) as

(2-49)
∑
h∈H2

ah X∗ diviπ+1 . . . X∗ diviα+1

{
Ch,i1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
=

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu).

Here the operation Switch interchanges the indices a and b in the two factors ∇aω1,
∇bω2.

Notational conventions: We have again denoted by Ha
2 ⊂ H2 the index set of

those vector fields for which one of the free indices (say iα+1) belongs to a factor
∇ω1 or ∇ω2. With no loss of generality we assume that for each h ∈ Ha

2 , the index
iα+1 belongs to the factor ∇ω1. We can clearly do this, due to the antisymmetry of
the factors ∇ω1,∇ω2.

We have defined H b
2 = H2 \ Ha

2 . For each h ∈ H b
2 we denote by Tω1, Tω2 the

factors against which ∇ω1,∇ω2 contract. Also, for each h ∈ Ha
2 we will denote

by Tω2 the factor against which ∇ω2 contracts.52

For each h ∈ H2, we will call the factors Tω1, Tω2 against which ∇ω1 or ∇ω2

are contracting “problematic” in the following cases: If Tω1 or Tω2 is of the form
∇
(m)Rijkl and ∇ω1 or ∇ω2 contracts against an internal index; or if Tω1 or Tω2 is of

the form S∗∇(ν)Rijkl and the factor ∇ω1 or ∇ω2 contracts against one of the indices
k or l .

We then define a few subsets of Ha
2 , H b

2 :

Definition. We define H b
2,∗∗ to be the index set of the tensor fields Ch,iπ+1...iα+1

g

for which ∇ω1,∇ω2 contract against different factors and both Tω1 and Tω2 are
problematic.

We define Ha
2,∗ ⊂ Ha

2 to be the index set of the tensor fields Ch,iπ+1...iα+1
g s for

which Tω2 is problematic.
We define H b

2,∗ to stand for the index set of the tensor fields Ch,iπ+1...iα+1
g s for

which either Tω1 = Tω2 or Tω1 6= Tω2 and one of the factors Tω1, Tω2 is problematic.

Abusing notation, we will use the symbols
∑

h∈Hb
2,∗

and so on to denote generic
linear combinations as above, when these symbols appear in the right-hand sides
of the equations below.

52Note that the definition of Tω1 , Tω2 depends on h; however, to simplify notation we suppress
the index h that should appear in Tω1 , Tω2 .
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We then state three preparatory claims. First, we claim that we can write

(2-50)
∑

h∈Hb
2,∗∗

ah X+ diviπ+1 . . . X+ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
=

∑
h∈Hb

2,∗

ah X+ diviπ+1 . . . X+ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu),

where the linear combination
∑

h∈Hb
2,∗
. . . on the right-hand side stands for a generic

linear combination in the form described above. Observe that if we can show
(2-50) then we may assume with no loss of generality that H b

2,∗∗=∅ in our lemma
hypothesis.

Then, assuming that H b
2,∗∗=∅ in our lemma hypothesis we will show that there

exists a linear combination of (α−π+1)-tensor fields (indexed in X below) which
are in the form (2-5) with a simple character Eκsimp so that

(2-51)
∑

h∈Ha
2,∗

ah
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
∇iπ+1υ . . .∇iα+1υ

− X∗ diviα+2

∑
x∈X

ax
{
C x,i1...iα+1iα+2

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
∇iπ+1υ . . .∇iα+1υ

+

∑
h∈Hb

2,∗

ah
{
Ch,i1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
∇iπ+1υ . . .∇iα+1υ

=

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu, υ

α−π ).

We observe that if we can show the above, we may then assume that Ha
2,∗ =∅

(and H b
2,∗∗ =∅) in the hypothesis of Lemma 2.9.
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Finally, under the assumption that H b
2,∗∗ = Ha

2,∗ = ∅ in our lemma hypothesis,
we will show that we can write

(2-52)
∑

h∈Hb
2,∗

ah X+ diviπ+1 . . . X+ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
=

∑
h∈Hb

2,OK

ah X+ diviπ+1 . . . X+ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu),

where the sublinear combination
∑

h∈Hb
2,OK

. . . on the right-hand side stands for a
generic linear combination of acceptable tensor fields in the form (2-5) with simple
character Eκsimp, with no free indices in the factors ∇ω1,∇ω2 and where the factors
Tω1, Tω2 are not problematic. Therefore, if we can show the above equations, we
are reduced to showing Lemma 2.9 under the assumptions that H 2

a,∗ = H 2
b,∗∗ =

H 2
b,∗ =∅.

Sketch of the proof of (2-50), (2-51), (2-52). Equation (2-50) follows by reiterat-
ing the proof of the first claim of Lemma 4.10 in [A 2010].53 (2-51) follows by
reiterating the proof of the first claim of Lemma 4.10 in [A 2010], but rather than
applying Corollary 1 [A 2010] in that proof, we now apply Lemma 2.7 (which we
have shown).54 Finally, the claim of (2-52) for the sublinear combination in H b

2,∗
where Tω1 6= Tω2 follows by applying Lemma 2.5.55 We can then show that the
remaining sublinear combination in

∑
h∈Hb

2,∗
. . . must vanish separately (modulo

a linear combination
∑

j∈J . . . ) by picking out the sublinear combination in the
hypothesis of Lemma 2.10 where both factors ∇ω1,∇ω2 are contracting against
the same factor. �

Now, under these additional assumptions that H 2
a,∗= H 2

b,∗∗= H 2
b,∗=∅, we will

show our claim by distinguishing two cases: In Case A there is a factor ∇(m)Rijkl

53By the additional restrictions imposed on the assumption of Lemma 2.3 there is no danger of
falling under a “forbidden case” of Corollary 1 in [A 2010].

54Observe that the assumption that Lemma 2.3 does not include “forbidden cases” ensures that
we will not need to apply Lemma 2.7 in a “forbidden case”.

55In this case there will be a factor ∇ω1 or ∇ω2 contracting against a nonspecial index; therefore
there is no danger of falling under a “forbidden” case of Lemma 2.7.
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in Eκsimp; in Case B there is no such factor. An important note: We may now use
Lemma 2.7, which we have proven earlier in this section.

Proof of Lemma 2.9 in Case A. We define the (set of) C-crucial factors (which will
necessarily be of the form ∇(m)Rijkl) as in the setting of Lemma 2.7. First we prove
a mini-claim which only applies to the case where the C-crucial factor is unique.

Mini-claim, when the C-crucial factor is unique. We then consider the tensor
fields Ch,iπ+1...iα+1

g , h ∈ Ha
2 for which ∇ω2 contracts against the C-crucial factor.

Notice that by our hypothesis that H 2
a,∗ =∅, it follows that ∇ω2 contracts against

a derivative index in the C-crucial factor. Denote by Ha,+
2 ⊂ Ha

2 the index set of
these tensor fields.

We observe that for each h ∈ Ha,+
2 we can now construct a tensor field by

erasing the index in the factor ∇(m)Rijkl that contracts against the factor ∇ω2 and
making the index in ∇ω2 into a free index iβ . We denote this tensor field by
Ch,iπ+1...iα+1iβ

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu). By the analogous operation we
obtain a tensor field Switch[Ch,iπ+1...iα+1iβ

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)].
It follows that in the case where the C-crucial factor is unique, for each h∈Ha,+

2 ,

(2-53) X∗ diviπ+1 . . . X∗ diviα+1

{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
= X∗ diviπ+1 . . . X∗ diviα+1 X∗ diviβ

×
{
Ch,iπ+1...iα+1iβ

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1iβ
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
+

∑
r∈R

ar X∗ diviπ+1 . . . X∗ diviα+1

×
{
Cr,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]r,iπ+1...iα+1(�1, . . . , �p, ω1, ω2, φ1, . . . , φu)
}

+

∑
j∈J

a j C j
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu),

where each tensor field Cr,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu) has the factor

∇ω2 contracting against some factor other than the C-crucial factor.
But we observe that

(2-54) X∗ diviπ+1 . . . X∗ diviα+1 X∗ diviβ

×
{
Ch,iπ+1...iα+1iβ

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1iβ
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
= 0.
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Therefore, in the case Set 6= ∅ or Set = ∅ and σ1 = 1, we have now reduced
Lemma 2.9 to the case where Ha,+

2 =∅.
Now (under the assumption that Ha,+

2 =∅ when the C-crucial factor is unique)
we consider the sublinear combination Special in the hypothesis of Lemma 2.9 that
consists of complete contractions with∇ω1 contracting against the C-crucial factor
while the factor∇ω2 is contracting against some other factor. (If Set=∅ and σ1>1
Special stands for the sublinear combination where ∇ω1 is contracting against a
generic C-crucial factor and ∇ω2 is contracting against some other factor.) In
particular, for each h ∈ Ha

2 , since Ha,+
2 =∅ we see that the sublinear combination

in

(2-55)
∑

h∈Ha
2

ah X∗ diviπ+1 . . . X∗ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
that belongs to Special is precisely∑
h∈Ha

2

ah X∗ diviπ+1 . . . X∗ diviα

×Hit diviα+1 Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu);

(in the case Set = ∅ and σ1 > 1, Hit diviα+1 just means that ∇iγ can hit any factor
∇
(m)Rijkl that is not contracting against ∇ω2; recall that in the other cases it means

that it must hit the unique C-crucial factor).
We also consider the tensor fields Ch,iπ+1...iα+1 , Switch[C]h,iπ+1...iα+1 , h ∈ H b

2 ,
for which ∇ω1 contracts against the C-crucial factor and ∇ω2 does not (or, if
there are multiple C-crucial factors, where ∇ω1,∇ω2 contract against different C-
crucial factors). For this proof, we index all those tensor fields in H b,9

2 and we
will denote them by Ch,iπ+1...iα+1

g .
Thus we derive

(2-56)
∑

h∈Ha
2

ah X∗ diviπ+1 . . . X∗ diviα Hit diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

+

∑
h∈Hb,9

2

ah X∗ diviπ+1 . . . X∗ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu).

We group up the vector fields on the left-hand side according to their weak (u+
2)-characters56 (defined by ∇φ1, . . . ,∇φu,∇ω1,∇ω2). (Recall that we started off

56See [A 2010] for a definition of this notion.
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with complete contractions with the same u-simple characters — so the only new
information that we are taking into account is what type of factor ∇ω2 contracts
against.) We consider the set of weak simple characters that we have obtained. We
denote this set by {Eκ1, . . . EκB}, and we respectively have the index sets Ha,Eκ f

2 and
H b,Eκ f

2 .

We will show our Lemma 2.9 by replacing the index set Ha
2 by any Ha,Eκ f

2 ,
f ≤ B.

It follows that for each f ≤ B,

(2-57)
∑

h∈H
a,Eκ f
2

ah X∗ diviπ+1 . . . X∗ diviα Hit diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

+

∑
h∈H

b,Eκ f
2

ah X∗ diviπ+1 . . . X∗ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu),

where the complete contractions C j
g have a u-simple character that is subsequent

to Eκsimp. We will show our claim for each of the index sets H b,Eκ f
2 separately.

Now, we treat the factors ∇ω1,∇ω2 in the above as factors ∇φu+1,∇φu+2. We
see that since H b

2,∗∗ = H 2
b,∗ = H 2

a,∗ =∅, all the tensor fields in the above have the
same (u+ 2)-simple character.

Our claim (Lemma 2.9) for the index set Ha,Eκ f
2 then follows: First, apply the

operator Erase∇ω1[. . . ] to (2-57).57 We are then left with tensor fields (denote them
by

Ch,iπ+1...iα
g (�1, . . . , �p, ω2, φ1, . . . , φu), h ∈ Ha,Eκ f

2 ,

Ch,iπ+1...iα+1
g (�1, . . . , �p, ω2, φ1, . . . , φu), h ∈ H b,Eκ f

2 ,

respectively) with the same (u + 1)-simple character; say Eκsimp, f . We can then
apply Corollary 1 from [A 2010] (since we have weight −n+ 2k, k > 0 by virtue
of the eraser — notice that by weight considerations, since we started out with no
“bad” tensor fields, there is no danger of falling under a “forbidden case”), to derive
that there is a linear combination of acceptable α-tensor fields indexed in V below,
with (u+ 1)-simple character Eκsimp, f , so that∑

h∈H
a,Eκ f
2

ahCh,iπ+1...iα
g (�1, . . . , �p, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ(2-58)

57See the relevant lemma in the Appendix of [A 2012].
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−

∑
v∈V

avX∗ diviα+1Cv,iπ+1...iα+1
g (�1, . . . , �p, ω2, φ1, . . . , φu)

×∇iπ+1υ . . .∇iαυ

=

∑
j∈J

a j C j,iπ+1...iα
g (�1, . . . , �p, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ,

where each complete contraction indexed in J is (u+1)-subsequent to Eκsimp, f . In
this setting X∗ divi just means that in addition to the restrictions imposed on X divi

we are not allowed to hit the factor ∇ω2.
Then, if we multiply the above equation by an expression ∇iω1∇

iυ and then
antisymmetrize the indices a, b in the factors ∇aω1,∇bω2 and finally make all ∇υs
into X+ divs, we derive our claim. �

Proof of Lemma 2.9 in Case B (when σ1 = 0). Our proof follows the same pattern
as the proof of Lemma 2.7 in Case B.

We again define the “measure” of each factor in each tensor field Ch,iπ+1...iα+1
g

as in the proof of Case B in Lemma 2.7. Again, let M stand for the maximum
measure among all factors in all tensor fields Ch,iπ+1...iα+1

g , h ∈ Ha
2 . We denote by

Ha,M
2 ⊂ Ha

2 the index set of the tensor fields for which some factor has measure
M .

We will further divide H 2,M
a into subsets H 2,M,k

a , k= 1, . . . , σ , according to the
factor which has measure M : First, we order the factors S∗∇(ν)Rijkl, . . .∇

(p)�h

in Eκsimp, and label them T1, . . . , Tσ (observe each factor is well-defined in Eκsimp,
because we are in Case B). We then say that h ∈ Ha,M,1

2 if in Ch,iπ+1...iα
g , T1 has

measure M . We say that h ∈ Ha,M,2
2 if in Ch,iπ+1...iα

g , T2 has measure M and T1

has measure less than M , and so on. We will then prove our claim for each of
the index sets h ∈ Ha,M,k

2 .58 We arbitrarily pick a k ≤ σ and show our claim for∑
h∈H2,M,k

a
. . . .

For the purposes of this proof, we call the factor Tk the D-crucial factor (in this
setting the D-crucial factor is unique).

Now, we pick out the subset H b,k,+
2 ⊂ H b

2 that is defined by the rule h ∈ H b,k
2

if and only if ∇ω1 contracts against the D-crucial factor Tk . We also pick out the
subset H b,k,−

2 ⊂ H b
2 that is defined by the rule h ∈ H b,k

2 if and only if ∇ω2 contracts
against the D-crucial factor Tk . Finally, we define Ha,̃

2 ⊂ Ha
2 , Ha,−

2 ⊂ Ha
2 to stand

for the index set of tensor fields for which ∇ω2 contracts against the D-crucial
factor.

Now, for each h ∈ Ha
2 we denote by

Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

58Again we observe that if we can prove this then Lemma 2.9 in Case B will follow by induction.
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the sublinear combination in X diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

that arises when ∇iγ hits the D-crucial factor. It then follows that

(2-59)
∑

h∈Ha
2

ah X∗ diviπ+1 . . . X∗ diviα

×Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−

∑
h∈Ha,̃

2

ah X∗ diviπ+1 . . . X∗ diviα+1

×Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

+

∑
h∈Hb,k,+

2

ah X diviπ+1 . . . X diviγ

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−

∑
h∈Hb,k,−

2

ah X diviπ+1 . . . X diviγ

×Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu),

where each C j
g has the factor ∇ω1 contracting against the D-crucial factor and is

simply subsequent to Eκsimp.
We now denote the (u+1)-simple character (the one defined by ∇φ1, . . . ,∇ω1)

of the tensor fields Hit diviγ Ch,iπ+1...iα,iγ
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu) by Eκ ′simp.

(Observe that they all have the same (u+ 1)-simple character.)
We observe that just applying Lemma 2.1 to (2-59) (all tensor fields are accept-

able and have the same simple character Eκ ′simp — we treat ∇ω1 as a factor ∇φu+1

and the factor ∇ω2 as a factor ∇Y ) and we then pick out the sublinear combination
where there are M factors ∇υ contracting against Tk , we obtain

(2-60)
∑

h∈Ha,∗,k
2

ah Hit diviγ Ch,iπ+1...iα
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ

+

∑
x∈X

ax X diviα+1 C x,iπ+1...iα,iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

×∇iπ+1υ . . .∇iαυ

+

∑
j∈J

a j C j,iπ+1...iα
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ = 0,

where the tensor fields indexed in X are acceptable and have a (u + 1)-simple
character Eκ ′simp and each C j is simply subsequent to Eκ ′simp.

Now, observe that if M ≥ 3
2 then we can apply the Eraser (from the Appendix

in [A 2012]) to ∇ω1 and the index it contracts against in the D-crucial factor and
derive our conclusion as in Case A.
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The remaining cases are when M = 1,M = 1
2 and M = 0. The first one is easier,

so we proceed to show our claim in that case. The two subcases M = 1
2 ,M = 0

will be discussed in the next subsection.
In the case M = 1, i.e., the D-crucial factor is of the form ∇(p)�h , then we

cannot derive our claim, because of the possibility that some tensor fields indexed
in X above have ∇ω1 contracting according to the pattern ∇iω1∇

i j�h∇ jψ , where
ψ=υ orψ=φh . Therefore, in this setting, we first apply the eraser twice to remove
the expression ∇(2)i j �h∇

iψ∇ jω1 and then apply Corollary 2 from [A 2010]59 to
(2-60) (observe that (2-60) now falls under the inductive assumption of Lemma 4.6
in [A 2010] since we have lowered the weight60 to obtain a new equation in the
form (2-60), where each tensor field in X has the factor ∇ω1 contracting against
a factor ∇(l)�h , l ≥ 3. Then, applying the eraser as explained, we derive our
Lemma 2.9 in this case.

The cases M = 1
2 , M = 0. Notice that in these cases we must have α = π , by

virtue of the definition of maximal “measure” above. We will then prove our claim
by proving a more general claim by induction, in the next subsection. �

2D. The remaining cases of Lemma 2.9. We prove our claim in these cases via an
induction. In order to give a detailed proof, we will restate our lemma hypothesis
in this case (with a slight change of notation).

The hypothesis of the remaining cases of Lemma 2.9. Recall that we assume that

(2-61)
∑
x∈Xa

ax X∗ divi1 C x,i1
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2])

+

∑
x∈Xb

ax X∗ divi1 C x,i1
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2])

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu)= 0

holds modulo complete contractions of length ≥ σ +u+3 (σ ≥ 3 — here σ stands
for u+ p — see the next equation). We denote the weight of the complete contrac-
tions in the above by −K . The tensor fields in the above equation are each in the
form

(2-62) pcontr
(
S∗∇(ν1)Rx1 jkl ⊗ · · ·⊗ S∗∇(νu)Rxz j ′k′l ′

⊗∇
(a1)�1⊗ · · ·⊗∇

(ap)�p⊗[∇ω1⊗∇ω2]⊗∇
x1 φ̃1⊗ · · ·⊗∇

xu φ̃z
)
.

59Recall that we showed in [A 2010] that this is a corollary of Lemma 4.6 in [A 2010], which we
have now shown.

60There is no danger of falling under a “forbidden case” of Lemma 2.1 by weight considerations
since we are assuming that none of the tensor fields of minimum rank in the assumption of Lemma 2.3
are “bad”.



DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS 47

We recall that the u-simple character of the above has been denoted by Eκsimp. Recall
that we are now assuming that all the factors ∇(ai )�x in Eκsimp are acceptable.61 The
complete contractions indexed in J in (2-61) are simply subsequent to Eκsimp. We
also recall that X∗ divi stands for the sublinear combination in X divi where ∇i is
not allowed to hit either of the factors ∇ω1,∇ω2.

We recall that the tensor fields indexed in Xa have the free index i1 belonging to
the factor ∇ω1. The tensor fields indexed in Xb have the free index i1 not belonging
to any of the factors ∇ω1,∇ω2.

We recall the key assumption that for each of the tensor fields indexed in Xa ,
there is at least one removable index in each tensor field

C x,i1
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2]),

x ∈ Xa .62

In order to complete our proof of Lemma 2.9, we will show that we can write

(2-63)
∑
x∈Xa

axC x,i1
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2])∇i1υ

=

∑
x∈X ′

ax X∗ divi2 . . . X∗ divia

×C x,i1...ia
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2])∇i1υ

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu),

where the tensor fields indexed in X ′ are acceptable in the form (2-62), each with
rank a≥2. Note that this will imply the remaining cases of Lemma 2.9, completing
the proof of Lemma 2.3.

We recall that we are proving this claim when the assumption (2-61) formally
falls under our inductive assumption of Proposition 1.1 (if we formally treat ∇ω1,
∇ω2 as factors ∇φz+1, ∇φz+2).

We will prove (2-63) by inductively proving a more general statement.

Assumptions. We consider vector fields (that is, partial contractions with one free
index)

Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

61Meaning that each ai ≥ 2.
62Recall the definition of a “removable” index from page 9.
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in the following forms, respectively,

pcontr
(
S∗∇(ν1)Rx1 jkl ⊗ · · ·⊗ S∗∇(νv)Rxv j ′k′l ′(2-64)

⊗∇
(a1)�1⊗ . . .∇

(ab)�b⊗∇Y

⊗∇ψ1⊗ · · ·⊗∇ψτ ⊗∇
x1 φ̃1⊗ · · ·⊗∇

xv φ̃v
)
,

pcontr
(
S∗∇(ν1)Rx1 jkl ⊗ · · ·⊗ S∗∇(νv)Rxv j ′k′l ′(2-65)

⊗∇
(a1)�1⊗ . . .∇

(ab)�b⊗[∇χ1⊗∇χ2]

⊗∇ψ1⊗ · · ·⊗∇ψτ ⊗∇
x1 φ̃1⊗ · · ·⊗∇

xv φ̃v
)
,

for which the weight is −W + 1,W ≤ K . We also assume v + b ≥ 2. Note: the
bracket [. . . ] stands for the antisymmetrization of the indices a, b in the expression
∇aω1∇bω2.

We assume (respectively) that

(2-66)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Za

aζ X∗ divi1 . . . X∗ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )= 0,

and

(2-67)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Za

aζ X∗ divi1 . . . X∗ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )= 0,

hold modulo complete contractions of length ≥ v+ b+ τ + 3.
The tensor fields indexed in Za are assumed to have the free index in one of the

factors ∇Y,∇ψ1, . . . ,∇ψτ , or one of the factors ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ , re-
spectively. The tensor fields indexed in Za have rank γ ≥2 and all their free indices
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belong to the factors∇Y,∇ψ1, . . . ,∇ψτ , or the factors∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,
respectively. The tensor fields indexed in Zb have the property that i1 does not
belong to any of the factors

∇Y,∇ψ1, . . . ,∇ψτ or ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,

respectively. We also assume that for the tensor fields indexed in Za ∪ Zb ∪ Za ,
none of the factors ∇ψ1, . . . ,∇ψτ are contracting against a special index in any
factor S∗∇(ν)Rijkl and none of them are contracting against the rightmost index in
any ∇(ah)�h (we will refer to this property as the p-property). We assume that
v+ b ≥ 2, and furthermore if v+ b= 2 then for each ζ ∈ Za ∪ Zb, the factors ∇Y
(or ∇χ1,∇χ2) are also not contracting against a special index in any S∗∇(ν)Rijkl

and are not contracting against the rightmost index in any ∇(ah)�h . Finally (and
importantly) we assume that for the tensor fields indexed in Za , there is at least
one removable index in each Cζ,i1 . (In this setting, for a tensor field indexed in
Za , a “removable” index is either a nonspecial index in a factor S∗∇(ν)Rijkl, with
ν > 0 or an index in a factor ∇(B)�h , B ≥ 3.)

Convention. In this subsection only, for tensor fields in the forms (2-66), (2-67)
we say then an index is special if it is one of the indices k, l in a factor S∗∇(ν)Rijkl

(this is the usual convention), or if it is an index in a factor ∇(B)r1...rB
�h for which all

the other indices are contracting against factors ∇ψ1, . . . ,∇ψτ .

All tensor fields in (2-66), (2-67) have a given v-simple character κsimp. We as-
sume the complete contractions indexed in J have a weak v-character Weak(κsimp)

and are simply subsequent to κsimp. Here X∗ divi stands for the sublinear combi-
nation in X divi where ∇i is not allowed to hit any of the factors

∇Y,∇ψ1, . . . ,∇ψτ or ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,

respectively.

The claims of the general statement. We claim that under the assumption (2-67),
there exists a linear combination of acceptable 2-tensor fields in the form (2-64),
(2-65) respectively (indexed in W below), for which the p-property is satisfied, so
that (respectively)

(2-68)
∑
ζ∈Za

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ

−

∑
w∈W

awX∗ divi2 Cw,i1i2
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ

+

∑
j∈J

a j C j,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ = 0,
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and

(2-69)
∑
ζ∈Za

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

+

∑
w∈W

awX∗ divi2

×Cw,i1i2
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

+

∑
j∈J

a j C j,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ = 0.

We observe that when τ = 0 and v + b ≥ 3, (2-69) coincides with (2-63).63

Therefore, if we can prove this general statement, we will have shown Lemma 2.9
in full generality, thus also completing the proof of Lemma 2.3.

We also have a further claim, when we assume (2-66), (2-67) with v + b = 2.
In that case, we also claim that we can write

(2-70)
∑

ζ∈Za∪Zb∪Za

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-71)
∑

ζ∈Za∪Za∪Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

where the tensor fields indexed in Q are in the same form as (2-64) or (2-65)
respectively, but have a factor (expression) ∇(2)Y or ∇(2)a[iω1∇ j]ω2, respectively,
and satisfy all the other properties of the tensor fields in Za .

Consequence of (2-68), (2-69) when v+b ≥ 3. We here codify an implication one
can derive from (2-68), (2-69). This implication will be useful further down in this
subsection. We see that by making the factors ∇υ into X∗ div in (2-66),64 (2-67)

63Also, the assumption of existence of a non removable index coincides with the corresponding
assumption of Lemma 2.3.

64See the Appendix in [A 2012].
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and replacing into (2-68), (2-69), we obtain

(2-72)
∑
ζ∈Z ′a

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )= 0,

and

(2-73)
∑
ζ∈Z ′a

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )= 0,

where here the tensor fields indexed in Z ′a are like the tensor fields indexed in Za

in (2-66), (2-67) but have the additional feature that no free index belongs to the
factor ∇ψ1 (and all the other assumptions of equations (2-66), (2-67) continue to
hold).

We then claim that we can derive new equations

(2-74)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

and

(2-75)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),
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where here X+ divi stands for the sublinear combination in X divi where ∇i is al-
lowed to hit the factor∇Y or∇χ1 (respectively), but not the factors∇ψ1, . . . ,∇φτ ,
(∇χ2). Furthermore, the linear combinations indexed in Q stand for generic linear
combinations of vector fields in the form (2-64) or (2-65), only with the expressions
∇Y or ∇[aω1∇b]ω2 replaced by expressions ∇(2)Y , ∇(2)c[aω1∇b]ω2.

Proof that (2-74), (2-75) follow from (2-68), (2-69). We prove the above by an
induction. We will first subdivide Z ′a, Zb into subsets as follows: ζ ∈ Z ′a,p or
ζ ∈ Zb,p if the factor ∇Y (or one of the factors ∇χ1,∇χ2) contracts against a
special index in the same factor against which ∇ψ1 contracts.

Now, if Z ′a,p ∪ Zb,p 6=∅ our inductive statement will be that we can write

(2-76)
∑
ζ∈Z ′a,p

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
t∈T k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Z ′a,Nop

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and ∑
ζ∈Z ′a,p

aζ X+ divi1 Cζ,i1
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )(2-77)

=

∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )

+

∑
t∈T k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )

+

∑
ζ∈Z ′a,Nop

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )
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+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )

+

∑
j∈J

a j C j
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ ),

where the tensor fields indexed in T k have all the properties of the tensor fields
indexed in Z ′a,p (in particular the index in ∇ψ1 is not free) and in addition have
rank k. The tensor fields indexed in Z ′a,Nop in the right-hand side have all the
regular features of the terms indexed in Z ′a (in particular rank γ ≥ 1 and the factor
∇ψ1 does not contain a free index) and in addition none of the factors ∇Y (or
∇χ1,∇χ2) contract against a special index.

Our inductive claim is that we can write

(2-78)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
t∈T k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Z ′a,Nop

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and ∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )(2-79)

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
t∈T k+1

at X+ divi1 . . . X+ divik

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Z ′a,Nop

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )



54 SPYROS ALEXAKIS

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )= 0.

We will derive (2-78), (2-79) momentarily. For now, we observe that by iterative
repetition of the above inductive step we are reduced to showing (2-74), (2-75)
under the additional assumption that Z ′a,p =∅.

Under that assumption, we denote by Zb,p⊂ Zb the index set of vector fields for
which the factor ∇Y (or one of the factors ∇χ1,∇χ2) contracts against a special
index. We will then prove another inductive statement: We assume that we can
write

(2-80)
∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
t∈V k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb,Nop

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-81)
∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
t∈V k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb,Nop

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

where the tensor fields indexed in V k have all the features of the tensor fields
indexed in Zb,p but in addition have all the k free indices not belonging to factors
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∇ψ1, . . . ,∇ψτ . The tensor fields indexed in Zb,Nop have all the regular features of
the tensor fields in Zb and in addition have the factor ∇Y (or the factors ∇χ1,∇χ2)
not contracting against special indices. The terms indexed in Q are as required in
the right-hand side of (2-74), (2-75) (which are the equations that we are proving).

We will then show that we can write

(2-82)
∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
t∈V k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb,Nop

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-83)
∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
t∈V k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb,Nop

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ).

(Here the tensor fields indexed in V k+1 have all the features described above and
moreover have rank k+ 1.)

Thus, by iterative repetition of this step we are reduced to showing our claim
under the additional assumption that Z ′a,p = Zb,p =∅.

We prove (2-82), (2-83) below. Now, we present the rest of our claims under
the assumption that Z ′a,p = Zb,p = ∅. For the rest of this proof we may assume
that all tensor fields have the factor ∇Y (or the factors ∇χ1,∇χ2) not contracting
against special indices.
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We then perform a new induction: We assume that we can write

(2-84)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
t∈T k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-85)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
t∈T k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

where the tensor fields indexed in T k have all the properties of the tensor fields
indexed in Z ′a (in particular the index in ∇ψ1 is not free) and in addition have rank
k. We then show that we can write∑

ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )(2-86)

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
t∈T k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )



DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS 57

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-87)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
t∈T k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ).

We will derive (2-86), (2-87) momentarily. For now, we observe that by iterative
repetition of the above we are reduced to showing (2-74), (2-75) under the further
assumption that Z ′a = ∅. In that setting, we can just repeatedly apply the eraser
(see the Appendix in [A 2012] for a definition of this notion) to as many factors
∇ψτ as needed in order to reduce ourselves to a new true equation where each of
the real factors contracts against at most one of the factors ∇ψ1, . . . ,∇ψτ ,∇Y (or
∇χ1,∇χ2).65 Then, by invoking Corollary 1 from [A 2010]66 and then reintroduc-
ing the factors we erased, we derive our claim.

Proof of (2-86) and (2-87). Picking out the sublinear combination in (2-84), (2-85)
with one derivative on ∇Y or ∇χ1 and substituting into (2-72), (2-73) we derive

(2-88)
∑
t∈T k

at X∗ divi1 . . . X∗ divik C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

65All remaining factors ∇ψ1, . . . ,∇ψτ and also the factor(s) ∇Y (or ∇χ1,∇χ2) are treated as
factors ∇φh .

66Notice that there will necessarily be at least one nonsimple factor S∗∇(ν)Rijkl or ∇(B)�h , by
virtue of the factors ∇Y (or ∇ω1,∇ω2), therefore that corollary can be applied.
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and

(2-89)
∑
t∈T k

at X∗ divi1 . . . X∗ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ );

the sublinear combination
∑

ζ∈Zb
. . . above is generic.

Split the index set T k according to which of the factors ∇ψ2, . . . , ∇ψτ , ∇Y (or
∇ψ1, . . . ,∇ψτ ,∇χ1) contain the k free indices. Thus we write T k

=
⋃
α∈A T k,α

(each α ∈ A corresponds to a k-subset of the set of factors ∇ψ1,. . . ,∇ψτ ,∇Y or
∇ψ1,. . . ,∇ψτ ,∇χ1). We will then show that for each α ∈ A there exists a linear
combination

∑
b∈Bα abCb,i1...ik+1

g of partial contractions in the form (2-64) or (2-65)
with the first k free indices belonging to the factors in the set α, and the free index
ik+1 not belonging to ∇ψ1, so that

(2-90)
∑

t∈T k,α

atC t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ . . .∇ikυ

− X∗ divik+1

∑
b∈Bα

abCb,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ

=

∑
j∈J

a j C j,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ,

and

(2-91)
∑

t∈T k,α

atC t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ

−X∗ divik+1

∑
b∈Bα

abCb,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ

=

∑
j∈J

a j C j,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ.

If we can show the above for every α ∈ A, then replacing the factor ∇υ by X+ div
we can derive our claim (2-86), (2-87). �

Proof of (2-90) and (2-91). Refer to (2-88) and (2-89). Denote Y or χ1 by ψτ+1

for uniformity. We pick out any α ∈ A; assume that α = {∇ψx1, . . . ,∇ψxk }.
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Pick out the sublinear combination where the factors ∇ψx1, . . . ,∇ψxk which
belong to α contract against the same factor as ∇ψ1. This sublinear combina-
tion Zg vanishes separately (that is, Zg = 0). We then apply the eraser to the
factors ∇ψ2, . . . ,∇Y ∈ A (notice this is well-defined, since all the above factors
and the factor ∇ψ1 contract against nonspecial indices). We obtain a new true
equation, which we denote by Erase[Zg] = 0. It then follows that Erase[Zg] ·

(∇i1ψx1∇
i1υ . . .∇ikψxk∇

ikυ)= 0 is our desired conclusion (2-90), (2-91). �

Sketch of proof of (2-78), (2-79), (2-82), (2-83). These equations can be proven
by only a slight modification of the idea above. We again subdivide the index sets
T k, V k according to the set of factors ∇ψ2, . . . ,∇ψτ or ∇ψ2, . . . ,∇ψτ ,∇ω1 that
contain the k free indices (so we write T k

=
⋃
α∈A T k,α and V k

=
⋃
α∈A V k,α) and

we prove the claims above separately for those sublinear combinations.
To prove this, we pick out the sublinear combination in our hypotheses with the

factors ∇ψh , h ∈ α contracting against the same factor against which ∇ψ1 and ∇Y
(or ∇ψ1 and ∇ω1) are contracting. Say α={h1, . . . , hk}; we then formally replace
the expressions

S∗∇
(ν)
r1...rµl1...lk

Rijkl∇l1ψh1 . . .∇
lkψhk∇

i φ̃1∇
jψ1∇

kY or

∇
(A)
r1...rµl1...lkst�1∇

l1ψh1 . . .∇
lkψhk∇

sψ1∇
t Y

and so on by expressions

S∗∇(ν−k)
r1...rµ Rijkl∇

i φ̃1∇
jψ1∇

kY or ∇(A−k)
r1...rµst�1∇

sψ1∇
t Y

and derive our claims (2-78), (2-79), (2-82), (2-83) as above. �

Proof of the claims of our general statement: Equations (2-68) and (2-69). We
will prove these claims by an induction. Our inductive assumptions are that (2-68),
(2-69) follow from (2-66), (2-67) for any weight −W ′, W ′< K and when W ′= K
they hold for any length v + b ≥ γ ≥ 2. We will then show the claim when the
weight is −K , and v+b= γ +1. In the end, we will check our claims for the base
case v+ b = 2.

Proof of the inductive step. Refer back to (2-66), (2-67). We will prove this claim
in four steps.

Step 1: First, we will denote by Z spec
a , Z spec

a , Z spec
b the index sets of the tensor fields

for which ∇Y or one of the factors ∇χ1, ∇χ2 (respectively) contracts against a
special index. Then using the inductive assumptions of our general claim, we will
show that there exists a linear combination of 2-tensor fields (indexed in W below)
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which satisfies all the requirements of (2-66), (2-68) so that

(2-92)
∑
ζ∈Z spec

a

aζCζ,i1
g ∇i1υ − X∗ divi2

∑
w∈W

awCw,i1i2
g ∇i1υ

=

∑
ζ∈ZOK

a

aζCζ,i1
g ∇i1υ +

∑
j∈J

a j C j,i1
g ∇i1υ,

where the tensor fields n ZOK
a are generic linear combinations of tensor fields of

the same general type as the ones indexed in Za in (2-66), (2-68) and where in
addition none of the factors ∇Y or ∇χ1,∇χ2 contract against a special index.

Thus, if we can show the above, by replacing ∇υ by an X∗ divi , and substitut-
ing back into (2-66), (2-68), we are reduced to showing (2-67), (2-69) under the
additional assumption that Z spec

a =∅.

Step 2: Then, under the assumption that Z spec
a =∅, we will show that we can write

(2-93)
∑
ζ∈Z spec

b

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z spec

a

aζ X∗ divi1 . . . X∗ divic Cζ,i1...ic
g

= X∗ divi1 . . . X∗ divib

∑
c∈C

acCc,i1...ib
g +

∑
j∈J

a j C j,i1
g ,

where the tensor fields on the right-hand side are of the general form as the ones
indexed in Zb, Za in our hypothesis, and moreover the factors ∇Y (or the factors
∇χ1,∇χ2) are not contracting against special indices.

Notice that if we can show (2-92), (2-93) then we are reduced to showing our
claim under the additional assumption that for each ζ ∈ Za∪Za∪Zb the factors∇Y
(or ∇χ1,∇χ2) are not contracting against special indices. We will show (2-92),
(2-93) below.

Proof of (2-67), (2-69) under the assumption that for each ζ ∈ Za ∪ Za ∪ Zb the
factors ∇Y or (∇χ1,∇χ2) do not contract against special indices.

Step 3: Proof of (2-94) below. We note that for all the tensor fields in the rest of
this proof will not have the factor ∇Y (or any of the factors ∇χ1,∇χ2) contracting
against a special index in any factor S∗∇(ν)Rijkl or ∇(B)�h . Now, we arbitrarily
pick out one factor T = S∗∇(ν)Rijkl or T =∇(B)�x in κsimp and call it the “chosen
factor” for the rest of this subsection.

We will say that the factor ∇Y (or ∇ω2) contracts against a good index in T ,
if it contracts against a nonspecial index in T when T is of the form S∗∇(ν)Rijkl

with ν > 0; when T is of the form ∇(B)�x , then it contracts against a good index
provided B ≥ 3.

We will say that the factor ∇Y (or ∇ω2) contracts against a bad index if it con-
tracts against the index j in a factor T = S∗Rijkl or an index in a factor T =∇(2)�x .
We denote by ZBAD

a ⊂ Za the index set of tensor fields for which ∇Y (or ∇ω2)
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contracts against a bad index. We also denote by ZBAD
b ⊂ Zb the index set of the

vector fields for which ∇Y contracts against a bad index in T and T also contains
a free index. We will show that we can write

(2-94)
∑

ζ∈ZBAD
a ∪ZBAD

b

aζCζ,i1
g ∇i1υ − X∗ divi2

∑
h∈H

ahC i1i2
g ∇i1υ

=

∑
ζ∈Z ′GOOD

a ∪Z ′GOOD
b

aζCζ,i1
g ∇i1υ +

∑
j∈J

a j C j
g ,

where all the tensor fields indexed in Z ′GOOD
a ∪ Z ′GOOD

b are generic vector fields of
the forms indexed in Za, Zb, only with the factors ∇Y or ∇ω2 contracting against
a good index in the factor T . The tensor fields indexed in H are as required in the
claim of our general statement (they correspond to the index set W in our general
statement).

Step 4: Proof that (2-94) implies our claims (2-68), (2-69). We start by proving
(2-94) (that is, we prove Step 3). Then, we will show how we can derive our claim
from (2-94) (that is, we then prove Step 4).

Proof of Step 3: Proof of (2-94). We can prove this equation by virtue of our
inductive assumption on our general claim. First, we define ZBAD

a ⊂ Za to stand for
the index set of tensor fields where the factor ∇Y (or ∇ω2) is contracting against
a bad index in the chosen factor. We pick out the sublinear combination in our
lemma assumption where ∇Y (or ∇ω2) are contracting against the chosen factor
T = S∗Rijkl or T = ∇(2)�x ). This sublinear combination must vanish separately,
and we thus derive that

(2-95)
∑

ζ∈ZBAD
a ∪ZBAD

b

aζ X∗∗ divi1 Cζ,i1
g +

∑
ζ∈ZBAD

a

aζ X∗∗ divi1 . . . X∗∗ divic Cζ,i1...ic
g

+

∑
ζ∈ZnvBAD

b

a f C f,i1
g =

∑
j∈J

a j C j
g ,

where X∗∗ divi1 stands for the sublinear combination for which ∇i1 is not allowed
to hit the chosen factor T . ZnvBAD

b ⊂ Zb stands for the index set of tensor fields
indexed in Zb with the free index i1 not belonging to the chosen factor and also
with the factor ∇Y (or ∇ω2) contracting against a bad index.

Now, define an operation Op[. . . ] that acts on the complete contractions above
by formally replacing any expression ∇(2)i j �x∇

i Y (or ∇(2)i j �x∇
iχ2) by ∇ j D (D

is a scalar function), or any expression S∗Rijkl∇
i φ̃1∇

j Y (or S∗Rijkl∇
i φ̃1∇

jχ2) by
∇[kθ1∇l]θ2. (Denote by κ̃simp the simple character of these resulting vector fields.)
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Acting on (2-95) by Op[. . . ] produces a true equation, which we may write out as

(2-96)
∑

ζ∈ZBAD
a ∪ZBAD

b

aζ X∗∗ divi1 Op[C]ζ,i1
g + X∗∗ divi1

∑
f ∈F

a f C f,i1
g

+

∑
ζ∈ZBAD

a

aζ X∗∗ divi1 . . . X∗∗ divic Cζ,i1...ic
g =

∑
j∈J

a j C j
g .

Here X∗∗ divi stands for the sublinear combination in divi where ∇i is not al-
lowed to hit the factor to which ∇i belongs, nor any of the factors ∇φ1, . . . ,∇φu ,
∇ψ1, . . . ,∇ψτ , nor any of the factors ∇D,∇θ1,∇θ2. The vector fields indexed
in F are generic vector fields with a simple character κ̃simp, for which the free
index i1 does not belong to any of the factors ∇ψ1, . . . ,∇ψτ or any of the factors
∇D, (∇χ1),∇θ1,∇θ2.

Now, observe that the above equation falls under our inductive assumption of
the general statement we are proving: We now either have factors

∇ψ1, . . . ,∇ψτ ,∇D, or

∇ψ1, . . . ,∇ψτ ,∇χ1,∇D, or

∇ψ1, . . . ,∇ψτ , [∇θ1,∇θ2], or

∇ψ1, . . . ,∇ψτ ,∇χ1, [∇θ1,∇θ2].

Notice that the tensor fields indexed in H BAD
a , H BAD

b are precisely the ones that
contain a free index in one of these factors. Therefore, by our inductive assumption
of the “general claim” we derive that there exists a linear combination of 2-tensor
fields,

∑
v∈V . . . , (with factors ∇ψ1,. . . ,∇ψτ ,∇D and so on, and which satisfy the

p-property for the factors ∇ψ1,. . . ,∇ψτ ) so that

(2-97)
∑

ζ∈ZBAD
a ∪ZBAD

b

aζ Op[C]ζ,i1
g ∇i1υ − X∗∗ divi2

∑
v∈V

avCv,i1i2
g ∇i1υ =

∑
j∈J

a j C j,i1
g ∇i1υ.

Now, we define an operation Op−1
[. . . ] that acts on the complete contractions in

the above equation by replacing the factor ∇ j D by an expression ∇i j�x∇
j Y (or

∇i j�x∇
jω2), or by replacing the expression ∇[aθ1∇b]θ2 by S∗Ri jab∇

i φ̃1∇
j Y (or

S∗Ri jab∇
i φ̃1∇

jω2). The operation Op−1 clearly produces a true equation, which
is our desired conclusion, (2-94). �

Proof of Step 4. We derive our conclusions (2-68), (2-69) in pieces. First, we
show these equations with the sublinear combinations Za replaced by the index set
Za,spec, which index the terms with the free index i1 belonging to the factor ∇Y
or ∇ω1 (this will be Substep A). After proving this claim, we will show (2-68),
(2-69) under the additional assumption that Za,spec =∅ (this will be Substep B).
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Proof of Substep A. We make the ∇υs into X∗ divs in (2-94) and insert the resulting
equations into our lemma hypothesis. We thus derive a new equation

(2-98)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z1

b

aζ X∗ divi1 Cζ,i1
g

+

∑
ζ∈Z2

b

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g +

∑
j∈J

a j C j
g = 0,

where we now have that the tensor fields indexed in Za have a free index among
the factors ∇ψ1, . . . ,∇ψτ ,∇Y (or ∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2), and furthermore
the factors ∇Y (or the factors ∇ω1,∇ω2) are not contracting against a bad index in
the chosen factor T . The tensor fields indexed in Z1

b have a free index that does not
belong to one of the factors ∇ψ1, . . . ,∇ψτ ,∇Y (or ∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2),
and furthermore if the factor ∇Y (or one of the factors ∇ω1,∇ω2) is contracting
against a bad index in the chosen factor T , then T does not contain the free index
i1 . Finally the tensor fields indexed in Z2

b each have rank a ≥ 2 and all free in-
dices belong to the factors ∇ψ1, . . . ,∇ψτ ,∇Y , (∇ω1,∇ω2). We may then rewrite
(2-98) in the form

(2-99)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z1

b

aζ X∗ divi1 Cζ,i1
g

+

∑
ζ∈Z2

b
′

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g +

∑
j∈J

a j C j
g = 0,

where now for the tensor fields indexed in Z2
b
′, each a ≥ 1 and the factor ∇ψ1

does not contain a free index for any of the tensor fields for which ∇Y (or one of
∇ω1,∇ω2) contracts against a bad index in the chosen factor.

We will denote by Z1
b,]⊂ Z1

b and Z2
b,]
′
⊂ Z2

b
′ the index sets of tensor fields where

∇Y (or one of ∇ω1,∇ω2) contracts against a bad index in the chosen factor T .
From (2-99) we derive

(2-100)
∑
ζ∈Z1

b,]

aζ X∗∗ divi1 Cζ,i1
g +

∑
ζ∈Z2

b,]
′

aζ X∗∗ divi1 . . . X∗∗ divia Cζ,i1...ia
g

+

∑
j∈J

a j C j
g = 0,

where X∗∗ divi stands for the sublinear combination in X∗ divi for which ∇i is in
addition no allowed to hit the chosen factor T .

Then, applying operation Op as in Step 3 and the inductive assumption of the
general claim we are proving,67 and then using the operation Op−1

[. . . ] as in the

67The resulting equation falls under the inductive assumption, as in Step 3.
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proof of Step 3, we derive

(2-101)
∑
ζ∈Z1

b,]

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z2

b,]
′

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g

=

∑
ζ∈ZOK

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g +

∑
j∈J

a j C j
g = 0,

where the tensor fields indexed in ZOK have rank a ≥ 1 (no free indices belonging
to factors ∇ψ1, . . . ,∇Y or ∇ψ1, . . . ,∇χ2) and furthermore have the property that
the one index in ∇Y or ∇ω1 does not contract against a bad index in the chosen
factor (and it is also not free). Thus, replacing the above back into (2-99), we
derive

(2-102)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z1

b
′

aζ X∗ divi1 Cζ,i1
g

+

∑
ζ∈Z2

b
′′

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g +

∑
j∈J

a j C j
g = 0,

where the tensor fields indexed in Z1
b
′, Z2

b
′′ have the additional restriction that if

the factor ∇Y (or ∇ω1,∇ω2) is contracting against the chosen factor T then it is
not contracting against a bad index in T .

We are now in a position to derive Substep A from the above: To see this claim,
we just apply Erase∇Y or Erase∇ω1 to (2-102) and multiply the resulting equation
by ∇i1Y∇ i1υ.

Substep B: Now, we are reduced to showing our claim when Za,spec = ∅. In that
setting, we denote by Za,s ⊂ Za the index set of vector fields in Za for which the
free index i1 belongs to the factor ∇ψs ; we prove our claim separately for each of
the sublinear combinations

∑
ζ∈Za,s

. . . . This claim is proven by picking out the
sublinear combinations in (2-66), (2-67) where the factors ∇ψs and ∇Y (or ∇χ1)
contract against the same factor;68 we then apply the eraser to ∇ψs (this is well-
defined and produces a true equation), and multiply by ∇i1ψs∇

i1υ. The resulting
equation is precisely our claim for the sublinear combination

∑
ζ∈Za,s

. . . .

Sketch of the proof of Steps 1 and 2: Equations (2-92) and (2-93). We will sketch
the proof of these claims for the sublinear combinations in Z spec

a ∪ Z spec
b ∪ Za

spec
where one of the special indices in Cζ,i1 is an index k or l that belongs to a fac-
tor S∗∇(ν)Rijkl. The remaining case (where the special indices belong to factors
∇
(a)�h) can be seen by a similar (simpler) argument.69

68These sublinear combinations vanish separately.
69The only extra feature in this setting is that one must prove the claim by a separate induction

on the number of factors ∇ψz that are contracting against ∇(a)�h .
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For each ζ ∈ Z spec
a ∪ Z spec

b ∪ Za
spec, we denote by Cζ,i1

g , Cζ,i1...iγ
g the tensor fields

that arise from Cζ,i1 , Cζ,i1...iγ
g in (2-66), (2-68) by replacing the expressions

S∗∇(ν)r1...rν Rijkl∇
i φ̃1∇

kY and S∗∇(ν)r1...rν Rijkl∇
i φ̃1∇

kχ2

with a factor ∇(ν+2)
r1...rν jl�b+1. We denote by κ̃simp the resulting simple character. We

derive

(2-103)
∑

ζ∈Z spec
a ∪Z spec

b

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z spec

a

aζ X∗ divi1 . . . X∗ diviγ Cζ,i1
g +

∑
j∈J

a j C j
g = 0.

Now, again applying the inductive assumption of our general statement to the
above, we derive that there is a linear combination of tensor fields (indexed in
W below) with a free index i1 belonging to one of the factors ∇ψ1, . . . ,∇ψτ or
∇ψ1, . . . ,∇ψτ ,∇χ1 so that

(2-104)
∑
ζ∈Z spec

a

aζCζ,i1
g ∇i1υ − X∗ divi2

∑
w∈W

awCw,i1i2
g ∇i1υ =

∑
j∈J

a j C j
g.

Now, by applying an operation Op∗ to the above which formally replaces the
factor ∇(A)r1...rA�x with a factor

S∗∇(A−2)
r1...rA−2

RirA−1krA∇
i φ̃1∇

kY or S∗∇(A−2)
r1...rA−2

RirA−1krA∇
i φ̃1∇

kχ2,

we derive (2-92) (since we can repeat the permutations by which (2-104) is made to
hold formally, modulo introducing correction terms that allowed in the right-hand
side of (2-92)).

We will now prove (2-93) (that is, Step 2) by repeating the induction performed
in the “Consequence” we derived above (where we showed that inductively assum-
ing (2-76), (2-77) we can derive (2-78), (2-79)):

We will show the claim of Step 2 in pieces: First consider the tensor fields
indexed in Za,p of minimum rank 2 (denote the corresponding index set by Z2

a,p);
we then show that we can write

(2-105)
∑
ζ∈Z2

a,p

aζ X divi1 X divi2 Cζ,i1i2
g =

∑
ζ∈Z3

a,p

aζ X divi1 . . . X divi3 Cζ,i1...i3
g

+

∑
ζ∈Zb,p

aζ X divi1 Cζ,i1
g +

∑
ζ∈ZOK

aζ X divi1 . . . X divia Cζ,i1...ia
g +

∑
j∈

a j C j .

The tensor fields indexed in Z3
a,p, Zb,p on the right-hand side are generic linear

combinations in those forms (the first with rank 3). The tensor fields indexed in
ZOK are generic linear combinations as allowed in the right-hand side of (2-93).
Assuming we can prove (2-105), we are then reduced to showing our claim when
the minimum rank among the tensor fields indexed in Za,p is 3. We may then
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“forget” about any X divih where ih belongs to the factor ∇ψ1. Therefore, we are
reduced to showing our claim when the minimum rank is 2 and the factor ∇ψ1

does not contain a free index. We then claim our claim by an induction (for the
rest of this derivation, all tensor fields will not have a free index in the factor ∇ψ1):
Assume that the minimum rank of the tensor fields indexed in Za,p is k, and they
are indexed in Z k

a,p. We then show that we can write

(2-106)
∑
ζ∈Z k

a,p

aζ X divi1 . . . X divik Cζ,i1...ik
g =

∑
ζ∈Z k+1

a,p

aζ X divi1 . . . X divik+1 Cζ,i1...ik+1
g

+

∑
ζ∈Zb,p

aζ X divi1 Cζ,i1
g +

∑
ζ∈ZOK

aζ X divi1 . . . X divia Cζ,i1...ia
g +

∑
j∈

a j C j .

The tensor fields indexed in Z3
a,p, Zb,p on the right-hand side are generic linear

combinations in those forms (the first with rank k + 1). The tensor fields indexed
in ZOK are generic linear combinations as allowed in the right-hand side of our
Step 2.

Iteratively repeating this step we are reduced to proving Step 2 when Za,p =∅.
In that case we then assume that the tensor fields indexed in Zb,p have minimum
rank k (and the corresponding index set is Z k

b,p) and we show that we can write

(2-107)
∑
ζ∈Z k

b,p

aζ X divi1 . . . X divik Cζ,i1...ik
g =

∑
ζ∈Z k+1

b,p

aζ X divi1 . . . X divik+1 Cζ,i1...ik+1
g

+

∑
ζ∈ZOK

aζ X divi1 . . . X divia Cζ,i1...ia
g +

∑
j∈

a j C j ,

(with the same conventions as in the above equation).
If we can prove (2-105) and (2-107) we will have shown our Step 2.

Proof of (2-105), (2-106), (2-107). We start with a small remark: If the chosen
factor is of the form S∗∇(ν)Rijkl, our assumption implies a more convenient equa-
tion: Consider the tensor fields Cζ,i1...ia

g , ζ ∈ Za,p∪ Zb,p; we denote by C̃ζ,i1...ia
g the

tensor fields that arise from Cζ,i1...ia
g by replacing the expression

∇
(ν)
r1...rν Rijkl∇

i φ̃1∇
kY (or ∇(ν)r1...rν Rijkl∇

i φ̃1∇
kχ2)

by a factor ∇(ν+2)
r1...rν jl�p+1. We then derive

(2-108)
∑

ζ∈Za∪Zb

aζ X∗ divi1 . . . X∗ divia

× C̃ζ,i1...ia
g (�1, . . . , �p+1, φ2, . . . , φu, (χ1), ψ1, . . . , ψτ )

=

∑
j∈J

a j C j
g (�1, . . . , �p+1, φ2, . . . , φu, (χ1), ψ1, . . . , ψτ ).

Now we can derive our claims.
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Proof of (2-106). We split the index set Z Z2
a,p

according to the two factors that
contain the two free indices and we show our claim for each of those tensor fields
separately. The proof goes as follows: We pick out the sublinear combination in
our hypothesis (or in (2-108)) where the factors ∇ψh,∇ψh′ (or ∇ψh,∇χ2) con-
tract against the same factor. Clearly, this sublinear combination, Xg, vanishes
separately. We then formally erase the factor ∇ψh . Then, we apply the inductive
assumption of our general claim to the resulting equation (the minimum rank of
the tensor fields will be 1), and (in case our assumption is (2-108) we also apply
an operation Op−1 which replaces the factor ∇(y)r1...ry

�p+1 by

S∗∇(y−2)
r1...ry−2

Riry−1kry∇
i φ̃1∇

kY (∇kχ1).

This is our desired conclusion. �

Proof of (2-105), (2-107). Now we show (2-105) for the subset Z k,α
a,p (which indexes

the k-tensor fields for which the free indices i1, . . . , ik belong to a chosen subset of
the factors ∇ψ1, . . . ,∇ψτ , (∇χ1) (hence the label α designates the chosen subset).
To prove this equation, we pick out the sublinear combination in (2-108) where
the factors ∇ψ2, . . . ,∇ψτ , (∇χ1) (indexed in α) contract against the same factor
as ∇ψ1. Then we apply the eraser to these factors and the indices they contract
against. This is our desired conclusion. To show (2-107), we only have to treat the
factors ∇ψh as factors ∇φh . The claim then follows by applying Corollary 1 in [A
2010] and making the factors ∇υ into X divs.70 �

Proof of the base case (v+ b = 2) of the general claim. We first prove our claim
when our hypothesis is (2-67) (as opposed to (2-66)).

Proof of the base case under the hypothesis (2-67). We observe that the weight
−K in our assumption must satisfy K ≥ 2τ + 8 if v > 0 and K ≥ 2τ + 6 if v = 0.

First consider the case where we have the strict inequalities K > 2τ +8 if v > 0
and K > 2τ + 6 if v = 0. In that case our first claim of the base case can be
proven straightforwardly, by picking out a removable index in each Cζ,ia

g , ζ ∈ Za

and treating it as an X∗ div (which can be done when we only have two real factors).
Thus, in this setting we only have to show our second claims (2-70), (2-71).

In this setting, by using the “manual” constructions as in [A 2011], we can
construct explicit tensor fields which satisfy all the assumptions of our claim in the

70Observe that by virtue of the factor ∇ψ1, we must have at least one nonsimple factor
S∗∇(ν)Rijkl or ∇(B)�h in (2-108)–hence (2-108) does not fall under any of the “forbidden cases” of
Corollary 1 in [A 2010], by inspection.
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base case (each with rank ≥ 2), so that

(2-109) X+ divi1

∑
ζ∈Z ′a∪Zb

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,iq
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
p∈P

ap X+ divi1 . . . X+ divic+1

×C p,i1...ic+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g .

Here the tensor field C p,i1...ic+1
g will be in one of three forms:

• If v = 2 then each C p,i1...ic+1
g will be in the form

(2-110) pcontr
(
S∗∇(ν1)

fb1 ... fbh
i1...ic−1

Rx1 j icl ⊗ S∗∇(ν2) fd1 ... fdy Rxv
j ′
ic+1

l

⊗[∇
jχ1⊗∇ j ′χ2]⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇

x1 φ̃1⊗∇
x2 φ̃2

)
,

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ }.

• If v=1 then
∑

p∈P · · ·=0 (this can be arranged because of the two antisymmetric
indices k, l in the one factor S∗∇(ν)Rijkl).

• If v = 0 then each C p,i1...ic+1
g will be in the form

(2-111) pcontr
(
∇
(A1)

fb1 ... fbh
i1...ic−1 j ic

�1⊗∇
(A2) fd1 ... fdy j ′ic+1

�2

⊗[∇
jχ1⊗∇ j ′χ2]⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇

x1 φ̃1⊗∇
x2 φ̃2

)
,

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ }.

Then, picking out the sublinear combination in (2-110), (2-111) with factors
∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2, we derive that

∑
p∈P · · · = 0. This is precisely our

desired conclusion in this case.
Now, the case where we have the equalities in our lemma hypothesis, K =2τ+8

if v > 0 and K = 2τ+6 if v= 0. In this case we note that in our hypothesis Zb=∅
if v 6= 1, while Za = Za =∅ if v = 1.

Then, if v 6= 1, by the “manual” constructions as in [A 2011], it follows that
we can construct tensor fields (as required in the claim of our “general claim”), so
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that:

(2-112)
∑
ζ∈Za

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

× X∗ divi2 aζCζ,i1i2
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

= a∗C∗,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

+

∑
j∈J

a j C j,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ,

where the tensor field C∗,i1
g is in the form

(2-113) pcontr
(
S∗∇(ν1) f1... fτ−1 Rx1

fτ
kl ⊗ Rx2

j ′kl

⊗[∇i1χ1⊗∇ j ′χ2]⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇
x1 φ̃1⊗∇

x2 φ̃2
)
,

if v = 2, and in the form

(2-114) pcontr
(
∇
(τ+1) f1... fτ

s�1⊗∇
j ′s�2

⊗[∇i1χ1⊗∇ j ′χ2]⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇
x1 φ̃1⊗∇

x2 φ̃2
)
,

if v = 0.
Thus, we are reduced to the case where Za only consists of the vector field

(2-113) or (2-114), and all other tensor fields in our lemma hypothesis have rank
≥ 2 (we have denoted their index set by Z ′a). We then show that we can write

(2-115) X+ divi1

∑
ζ∈Z ′a

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
p∈P

ap X+ divi1 . . . X+ divic+1

×C p,i1...ic+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g ,

where the tensor fields indexed in P here each have rank ≥ 2 and are all in one of
the forms

(2-116) pcontr
(
S∗∇(ν1) f1... fτ−1 Rx1

fτ
ik l ⊗ S∗Rxv

j ′kl

⊗[∇i1χ1⊗∇ j ′χ2]⊗∇y1ψ1 · · · ⊗∇yτψτ ⊗∇
x1 φ̃1⊗∇

x2 φ̃2
)
,

or

(2-117) pcontr
(
∇
(ν1) f1... fτ

s�1⊗∇
j ′s�2⊗[∇i1χ1⊗∇ j ′χ2]⊗∇y1ψ1 · · ·⊗∇yτψτ

)
,
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where each of the indices fh contracts against one of the indices yq . The indices yq

that do not contract against an index fh are free indices.
Then, replacing the above into our lemma hypothesis (and making all the ∇υs

into X+ divs), we derive that ap = 0 for every p ∈ P and a∗ = 0. This concludes
the proof of the base case when v+ b = 2, v 6= 1. In the case v = 1 we show our
claim by just observing that we can write

(2-118) X+ divi1

∑
ζ∈Zb

aζCζ,i1
g (�1, . . . , �b, φ1, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, [χ1, χ2], ψ1, . . . , ψτ );

this concludes the proof of the base case, when the tensor fields in our lemma
hypothesis are in the form (2-67). �

Now, we consider the setting where our hypothesis is (2-66). We again observe
that if v = 0 then the weight −K in our hypothesis must satisfy K ≥ 2τ + 4. If
v > 0 it must satisfy K ≥ 2τ + 6. We then again first consider the case where we
have the strict inequalities in the hypothesis of our general claim.

In this case (where we have the strict inequalities K > 2τ + 4 if v = 0 and
K > 2τ + 6 if v 6= 0) our first claim follows straightforwardly (as above, we just
pick out one removable index in each Cζ,i1

g , ζ ∈ Za and treat it as an X∗ div). To
show the second claim we proceed much as before:

We can “manually” construct tensor fields in order to write

(2-119) X+ divi1

∑
ζ∈Z ′a∪Zb

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,iq
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
p∈P

ap X+ divi1 . . . X+ divic+1

×C p,i1...ic+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g .

Here the tensor field C p,i1...ic+1
g will be in one of three forms:
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• If v = 2 then each C p,i1...ic+1
g will be

(2-120) pcontr
(
S∗∇(ν1)

fb1 ... fbh
i1...ic−1

Rx1
fbh+1

icl ⊗ S∗∇(ν2) fd1 ... fdy Rxv
fdy+1

ic+1

l

⊗∇ fτ+1Y ⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇
x1 φ̃1⊗∇

x2 φ̃2
)
,

where {b1, . . . , bh+1, d1, . . . , dy+1} = {1, . . . , τ + 1}.

• If v = 1 then
∑

p∈P · · · = 0 (this is because of the two antisymmetric indices k, l

in the one factor S∗∇(ν)Rijkl).

• If v = 0 then each C p,i1...ic+1
g will be in the form

(2-121) pcontr
(
∇
(A1)

fb1 ... fbh
i1...ic−1ic

�1⊗∇
(A2) fd1 ... fdy ic+1

�2

⊗∇ fτ+1Y ⊗∇ f1ψ1 · · · ⊗∇ fτψτ
)
,

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ + 1}.

Then, picking out the sublinear combination in (2-120), (2-121) with factors
∇ψ1, . . . ,∇ψτ ,∇Y we derive that

∑
p∈P · · · = 0. This is precisely our desired

conclusion in this case.
Finally, we prove our claim when we have the equalities K = 2τ + 4 if v < 2

and K = 2τ + 6 if v = 2) in the hypothesis of our general claim.
In this case by “manually” constructing X+ divs so that we can write

(2-122)
∑

ζ∈Z ′a∪Zb∪Za

aζ X+ divi1 . . . X+ divia Cζ,i1...ia
g (�1, . . . �b, Y, ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 . . . X+ divia Cq,i1...ia
g (�1, . . . �b, Y, ψ1, . . . , ψτ )

+

∑
p∈P

ap X+ divi1 . . . X+ divia C p,i1...ia
g (�1, . . . �b, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . �b, Y, ψ1, . . . , ψτ ).

Here the tensor fields indexed in P are in specific forms:

• If v = 0 then they will either be in the form

(2-123) pcontr
(
∇i∗Y⊗∇

(A) fx1 ... fxa s
�1⊗∇

(B) fxa+1 ... fxτ
s �2⊗∇ f1ψ1⊗· · ·⊗∇ fτφτ

)
,

where {x1, . . . , xτ } = {1, . . . , τ }, or in the form

(2-124) pcontr
(
∇qY⊗∇(A)

fx1 ... fxa
i∗ �1⊗∇

(B) fxa+1 ... fxτ q
�2⊗∇ f1ψ1⊗· · ·⊗∇ fτφτ

)
,

where {x1, . . . , xτ } = {1, . . . , τ }.
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• If v = 2 they will be in the form

(2-125) pcontr
(
∇i∗Y ⊗∇

(A) fx1 ... fxa−1 S∗Ri fxa kl
⊗∇

(B) fxa+1 ... fxτ−1 Ri ′ fxτ kl

⊗∇ f1ψ1⊗ · · ·⊗∇ fτφτ∇i φ̃1⊗∇i ′ φ̃2
)
,

where {x1, . . . , xτ } = {1, . . . , τ }, or in the form

(2-126) pcontr
(
∇qY ⊗∇(A)

fx1 ... fxa−1 S∗Ri fxa ql
⊗∇

(B) fxa+1 ... fxτ−1 Ri ′ fxτ i∗l

⊗∇y1ψ1⊗ · · ·⊗∇yτφτ∇i φ̃1⊗∇i ′ φ̃2
)
.

• If v = 1, Equation (2-122) will hold with P =∅.

Then, picking out the sublinear combination in (2-122) which consists of terms
with a factor ∇Y and replacing into our hypothesis, we derive that the coefficient
of each of the tensor fields indexed in P must be zero. This completes the proof
of our claim. �

2E. Proof of Lemmas 2.2 and 2.4.
Proof of Lemma 2.2. The first claim follows immediately, since each tensor field
has a removable index (thus each tensor field separately can be written as an
X∗ div).

The proof of the second claim essentially follows the “manual” construction of
divergences, as in [A 2011]. By “manually” constructing explicit divergences out
of each Ch,i1...iα

g (�1, . . . , �p, φ1, . . . , φu), h ∈ H2, we derive that we can write

(2-127)
∑
h∈H2

ah X divi1 . . . X diviα Ch,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)

= (Const)1 X divi1 . . . X diviξ C1,i1...iξ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+ (Const)2 X divi1 . . . X diviζ C2,i1...iζ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
q∈Q

aq X divi1 . . . X diviα Cq,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where the tensor fields indexed in Q are as required by our lemma hypothesis,
while the tensor fields C1,C2 are explicit tensor fields which we will write out
below (their precise form depends on the values p, σ1, σ2).71

We will then show that in (2-127) we will have (Const)1 = (Const)2 = 0. That
will complete the proof of Lemma 2.2. We distinguish cases based on the value of
p: Either p = 2 or p = 1 or p = 0.

71In some cases there will be no tensor fields C1,C2 (in which case we will just say that in
(2-127) we have (Const)1 = 0, (Const)2 = 0).
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The case p = 2. With no loss of generality we assume that ∇(A)�1 contracts
against ∇φ1, . . . ,∇φx and that ∇(B)�2 contracts against ∇φx+1, . . . ,∇φx+t ; we
may also assume without loss of generality that x ≤ t . By manually constructing
divergences, it follows that we can derive (2-127), where each of the tensor fields
C1,C2 will be in the forms, respectively,

(2-128) pcontr
(
∇i∗Y⊗∇

(A)
v1...vx i1...iγ�1⊗∇

(B)
y1...yt iγ+1...iγ+δ�2⊗∇

v1φ1⊗· · ·⊗∇
ytφu

)
,

where if t ≥ 2 then δ = 0, otherwise t + δ = 2; or

(2-129) pcontr
(
∇qY ⊗∇q

∇
(A)
v1...vx i1...iγ�1⊗∇

(B)
y1...yt iγ+1...iγ+δ�2

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,

where if t ≥ 2 then δ = 0, otherwise t + δ = 2.

The case p = 1. We “manually” construct divergences to derive (2-127), where
if σ1 = 1 then there are no tensor fields C1,C2 (and hence (2-127) is our desired
conclusion); if σ1 = 0, σ2 = 1 then there is only the tensor field C1 in (2-127) and
it is in the form

(2-130) pcontr
(
∇

qY ⊗ S∗∇
(ν)
v2...vx i1...iγ Ri iγ+1iγ+2q ⊗∇

(B)
y1...yt iγ+1...iγ+δ�2

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu

)
,

where if t ≥ 2 then δ = 0, otherwise δ = 2− t .

The case p = 0. We have three subcases: First σ2 = 2, second σ2 = 1 and σ1 = 1,
and third σ1 = 2.

In the case σ2 = 2, the tensor fields C1,C2 must be in the forms, respectively,

(2-131) pcontr
(
∇i∗Y ⊗ S∗∇

(ν)
v2...vx i1...iγ Ri iγ+1iγ+2l ⊗ S∗∇(t−1)

y1...yt
Ri ′iγ+3iγ+4

l

⊗∇
i φ̃1⊗∇

i ′ φ̃2⊗∇
v1φ3⊗ · · ·⊗∇

ytφu
)
,

or

(2-132) pcontr
(
∇

qY ⊗ S∗∇
(ν)
qv2...vx i1...iγ Ri iγ+1iγ+2l ⊗ S∗∇(t−1)

y1...yt
Ri ′iγ+3iγ+4

l

⊗∇
i φ̃1⊗∇

i ′ φ̃2⊗∇
v1φ3⊗ · · ·⊗∇

ytφu
)
,

(if x = t = 0 then the tensor field C1 above will not be present).
In the case σ1 = 2, the tensor fields C1,C2 must be in one of the two forms

(2-133) pcontr
(
∇i∗Y ⊗∇

(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Ri
iγ+3iγ+4

l

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,
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or

(2-134) pcontr
(
∇qY ⊗∇q

∇
(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Ri
iγ+3iγ+4

l

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
.

In the case σ1= 1 and σ2= 1, there will be only one tensor field C1, in the form

(2-135) pcontr
(
∇

qY ⊗ S∗∇
(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Rqiγ+3iγ+4
l

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu

)
.

We then derive that (Const)1 = (Const)2 = 0 as in [A 2011] (by picking out
the sublinear combination in (2-127) that consists of complete contractions with a
factor ∇Y — differentiated only once). �

Proof of Lemma 2.4. We again “manually” construct explicit X div to write

(2-136)
∑
h∈H2

ah X divi1 . . . X diviα Ch,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)

= (Const)1 X divi1 . . . X diviξ C1,i1...iξ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+ (Const)2 X divi1 . . . X diviζ C2,i1...iζ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
q∈Q

aq X divi1 . . . X diviα Cq,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where the tensor fields indexed in Q are as required by our lemma hypothesis,
while the tensor fields C1,C2 are explicit tensor fields which we will write out
below (they depend on the values p, σ1, σ2). In some cases there will be no tensor
fields C1,C2 (in which case we will just say that in (2-127) we have (Const)1= 0,
(Const)2 = 0).

The case p = 2. With no loss of generality we assume that ∇(A)�1 contracts
against ∇φ1, . . . ,∇φx and that ∇(B)�2 contracts against ∇φx+1, . . . ,∇φx+t ; we
may also assume without loss of generality that x ≤ t . By manual construction of
divergences, it follows that we can derive (2-127), where there is only the tensor
field C1 and it is in the form

(2-137) pcontr
(
∇[i∗χ1⊗∇

q]χ2⊗∇
(A)
v1...vx i1...iγ�1⊗∇

(B)
qy1...yt iγ+1...iγ+δ�2

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,

where if t ≥ 1 then δ = 0, otherwise δ = 1.

The case p = 1. We “manually” construct divergences to derive (2-136), where
if σ1 = 1 then there are no tensor fields C1,C2 in the right-hand side of (2-136)
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(and this is our desired conclusion); and if σ1 = 0 and σ2 = 1 then there is only the
tensor field C1 in the right-hand side of (2-136) and it is of the form

(2-138) pcontr
(
∇[i∗ω1⊗∇

q]ω2⊗ S∗∇
(ν)
v2...vx i1...iγ Ri iγ+1iγ+2q ⊗∇

(B)
y1...yt iγ+1...iγ+δ�2

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu

)
,

where if t ≥ 2 then δ = 0, otherwise δ = 2− t .

The case p = 0. We have three subcases: First σ2 = 2, second σ2 = 1 and σ1 = 1,
and third σ1 = 2.

In the case σ2= 2, the tensor fields C1,C2 in the right-hand side of (2-127) will
be in the two forms, respectively,

(2-139) pcontr
(
∇[i∗ω1⊗∇

q]ω2⊗ S∗∇
(ν)
qv2...vx i1...iγ Ri iγ+1iγ+2l

⊗S∗∇(t−1)
y1...yt

Ri ′iγ+3iγ+4
l
⊗∇

i φ̃1⊗∇
i ′ φ̃2⊗∇

v1φ3⊗ · · ·⊗∇
ytφu

)
,

or

(2-140) pcontr(∇[pω1⊗∇
q]ω2⊗ S∗∇

(ν)
qv2...vx i1...iγ Ri iγ+1iγ+2 p

⊗S∗∇(t−1)
y1...yt

Ri ′iγ+3iγ+4q ⊗∇
i φ̃1⊗∇

i ′ φ̃2⊗∇
v1φ3⊗ · · ·⊗∇

ytφu).

In the case σ1 = 2, the tensor fields C1,C2 will be the forms, respectively,

(2-141) pcontr
(
∇[i∗ω1⊗∇

q]
⊗∇

(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
qy1...yt

Ri
iγ+3iγ+4

l

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,

or

(2-142) pcontr
(
∇[pω1⊗∇

q]ω2⊗∇
(m1)
v1...vx i1...iγ Ri iγ+1iγ+2 p⊗∇

(t−1)
y1...yt

Ri
iγ+3iγ+4q

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,

if at least one of the two factors ∇(m)Rijkl contracts against a factor ∇φh , otherwise
we can prove (2-136) with no tensor fields C1,C2 on the right-hand side.

In the case σ1= 1, σ2= 1, the tensor fields C1,C2 must be in the forms, respec-
tively,

(2-143) pcontr
(
∇[i∗ω1⊗∇

q]ω2⊗ S∗∇
(ν)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Rqiγ+3iγ+4
l

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu

)
,

or

(2-144) pcontr(∇[pω1⊗∇
q]ω2⊗ S∗∇

(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Rpqiγ+3
l

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu).
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We then derive that (Const)1 = (Const)2 = 0 by picking out the sublinear
combination in (2-136) that consists of complete contractions with two factors
∇Y,∇ω2 — each factor differentiated only once. �

3. The proof of Proposition 1.1 in the special cases

3A. The direct proof of Proposition 1.1 (in Case II) in the special cases. We now
prove Proposition 1.1 directly in the special subcases of Case II. We recall that the
settings of the special subcases of Proposition 1.1 in Case II are as follows: In
Subcase IIA for each µ-tensor field (in (1-7)) of maximal refined double character,
C l,i1...iµ

g there is a unique factor in the form T = ∇(m)Rijkl for which two internal
indices are free, and each derivative index is either free or contracting against a
factor ∇φh . For Subcase IIB there is a unique factor in the form T = ∇(m)Rijkl

for which one internal index is free, and each derivative index is either free or
contracting against a factor ∇φh . In both Subcases IIA, IIB there is at least one
free derivative index in the factor T .

Moreover, in both Subcases IIA and IIB, all other factors in one of the forms
∇
(m)Rijkl, S∗∇(ν)Rijkl, ∇(p)�h in C l,i1...iµ

g are either in the form S∗Rijkl or ∇(2)�h ,
or they are in the form ∇(m)Rijkl, where all the m derivative indices contract against
factors ∇φh .72

In order to prove Proposition 1.1 directly in the special subcases of Subcases IIA,
IIB we will rely on a new lemma. It deals with two different settings, which we
will label Setting A and Setting B below.

In Setting A, we let∑
l∈L

alC l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

stand for a linear combination of µ-tensor fields with one factor ∇(m)Rijkl contain-
ing α≥ 2 free indices, distributed according to the pattern ∇(m)(free)...(free)R(free) j (free)l ,
and all other factors being in one of the forms Rijkl, S∗Rijkl, ∇(2)�h . (In particular
they have no removable indices.)

In Setting B we let∑
l∈L

alC l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

stand for a linear combination of µ-tensor fields with one factor ∇(m)Rijkl contain-
ing α≥ 2 free indices, distributed according to the pattern ∇(m)(free)...(free)R(free) j (free)l ,
and all but one of the other factors being in one of the forms Rijkl, S∗Rijkl, ∇(2)�h ;

72For the rest of this subsection, we will slightly abuse notation and not write out the derivative
indices that contract against factors ∇φh — we will thus refer to factors Rijkl, setting m = 0.
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one of the other factors (which we label T ′) will be in the form ∇Rijkl, S∗∇Rijkl,
∇
(3)�h . We will call this other factor “the factor with the extra derivative”. More-

over, in Setting B we impose the additional restriction that if both the indices j , l

in the factor ∇(m)(free)...(free)R(free) j (free)l contract against the same other factor T ′, then
either T ′ is not the factor with the extra derivative, or if it is, then T ′ is in the form
∇s Rabcd , and furthermore the indices j , l contract against the indices b, c and we
assume that the indices s, a, c are symmetrized over.73

Lemma 3.1. Let
∑

l∈L alC l,i1...iµ
g be a linear combination of µ-tensor fields as

described above. We assume the following special case of (1-7),

(3-1)
∑

l∈L∪L ′

al X divi1 . . . X diviµ C l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

+

∑
h∈H

ah X divi1 . . . X diviβ Ch,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu),

holds; here, in both Cases A and B the terms indexed in L will be as described
above; the µ-tensor fields indexed in L ′ will have fewer than α free indices in any
given factor of the form ∇(m)Rijkl. The tensor fields indexed in H each have rank
> µ and also each of them has fewer than α free indices in any given factor of the
form ∇(m)Rijkl. Finally, the terms indexed in J are simply subsequent to Eκsimp.

We claim that

(3-2)
∑
l∈L

alC l,i1...iµ
g ∇i1υ . . .∇iµυ = 0.

We will prove this lemma shortly. Let us now prove that the above lemma
directly implies Proposition 1.1 in the special Subcases IIA (directly) and IIB (after
some manipulation).

Lemma 3.1 implies Proposition 1.1 in the special subcases of Case II. We first
start with Subcase IIA: Consider the sublinear combination of µ-tensor fields of
maximal refined double character in (1-7). Denote their index set by LMax ⊂ L .
Recall that since we are considering the subcase where (1-7) falls under the special
case of Proposition 1.1 in Case IIA, it follows that for each C l,i1...iµ

g there is a
unique factor in the form ∇(m)Rijkl for which two internal indices are free, and
each derivative index is either free or contracting against a factor ∇φh ; denote by
M + 2 the number of free indices in that factor.74

73To put it in other words, in that case the two factors T , T ′ contract according to the pattern
∇
(m)
(free)...(free)R(free) j (free)l∇(s Ra

jk
d), where the indices s , a, d are symmetrized over.

74So we set α = M + 2.
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By weight considerations (since we are in a special subcase of Proposition 1.1
in Case IIA), any tensor field of rank > µ in (1-7) must have strictly fewer than
M + 2 free indices in any given factor ∇(m)Rijkl. Therefore in Subcase IA, (1-7)
is of the form (3-1), with LMax ⊂ L . Therefore, we apply Lemma 3.1 to (1-7)
and pick out the sublinear combination of terms with a refined double charac-
ter Doub( EL z), z ∈ Z ′Max,75 we thus obtain a new true equation, since (3-2) holds
formally, and the double character is invariant under the formal permutations of
indices that make (3-2) formally zero. This proves our claim in Subcase IIA.

Now we deal with Subcase IIB: We consider the µ-tensor fields of maximal
refined double character in (1-7). By definition (since we now fall under a special
case), they will each have a factor in the form ∇(m)(free)...(free)R(free) jkl , with a total of
M + 1 > 1 free indices.76 Each of the other factors will be in the form Rijkl or be
simple factors in the form S∗Rijkl, or in the form ∇(2)�h .

We denote by L ⊂ L the index set of µ-tensor fields with M+1 free indices in a
factor ∇(m)Rijkl. It follows by weight considerations that the factor in question will
be unique for each C l,i1...iµ

g , l∈ L . We then start out with some explicit manipulation
of the terms indexed in L:

We will prove that there exists a linear combination of (µ+1)-tensor fields,∑
h∈H ahCh,i1...iµ+1

g , as allowed in the statement of Proposition 1.1, so that

(3-3)
∑
l∈L

alC l,i1...iµ
g ∇i1υ . . .∇iµυ =

∑
h∈H

ah X diviµ+1 Ch,i1...iµ+1
g ∇i1υ . . .∇iµυ

+

∑
l∈Lnew

alC l,i1...iµ
g ∇i1υ . . .∇iµυ

∑
j∈J

a j C
l,i1...iµ
g ∇i1υ . . .∇iµυ.

Here the µ-tensor fields indexed in Lnew have a factor T =∇(M−1)
(free)...(free)R(free) j (free)l ,

and one other factor T ′ has an extra derivative (meaning that T ′ is either in the
form ∇Rijkl or S∗∇Rijkl, or ∇(3)�h). Moreover if both indices j , l in T contract
against indices j , l in the same factor T ′′ and at least one of j , l is removable, then
T ′ 6= T ′′. Clearly, (3-3) in conjunction with Lemma 3.1 implies Proposition 1.1 in
the “special cases” of Case II. So, matters are reduced to showing (3-3) (and then
deriving Lemma 3.1).

Proof of (3-3). Apply the second Bianchi identity to the factor T to move one of
the derivative free indices into the position k, l in the factor∇(M−1)

(free)...(free)R(free) j (free)l .
Thus, we derive that modulo terms of length ≥ σ + u+ 1,

C l,i1...iµ
g =−C l,1,i1...,iµ

g +C l,2,i1...,iµ
g ,

75Recall that ELz , z ∈ Z ′Max, is the collection of maximal refined double characters that
Proposition 1.1 deals with.

76So, we set α = M + 1.
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where the partial contractions C l,1,i1...iµ
g and C l,2,i1...iµ

g have the factor T replaced
by a factor in the form

∇
(m)
k(free)...(free)R(free) j (free)l and ∇

(m)
l(free)...(free)R(free) jk(free),

respectively. We then erase the indices k, l in these two factors (thus creating new
tensor fields C l,1,i1...,iµiµ+1

g and C l,2,i1...,iµiµ+1
g ) by creating a free index iµ+1 , and

subtract the X diviµ+1[. . . ] of the corresponding (µ+1)-tensor field. We then derive

(3-4) C l,1,i1...,iµ
g = X diviµ+1 C l,1,i1...iµ+1

g +

∑
l∈Lnew

C l,i1...iµ
g ,

where all the fields indexed in Lnew satisfy the required property of Lemma 3.1,
except for that one could have both indices j , l in the factor ∇(M−1)

(free)...(free)R(free) j (free)l

contracting against indices j , l in a factor T ′ which has an additional derivative
index. If C l,i1...iµ

g , l ∈ Lnew, is not in the form allowed in the claim of Lemma 3.1,
then (after possibly applying the second Bianchi identity and possibly introducing
simply subsequent complete contractions) we may arrange that one of the indices
j , l is a derivative index.

In that case we construct another (µ+1)-tensor field by erasing the derivative
index j or l and making the index j or l in a free index iµ+1 . Then, subtracting the
corresponding X diviµ+1 of this new (µ+1)-tensor field, we derive our claim. �

Therefore, matters are reduced to proving Lemma 3.1.

Proof of Lemma 3.1. Let us start with some notational conventions.
Recall the first variation law of the curvature tensor under variations by a sym-

metric 2-tensor by vi j : For any complete or partial contraction T (gi j ) (which is a
function of the metric gi j ), we define

Image1
vi j
=

d
dt

∣∣∣
t=0

[
T (gi j + tvi j )

]
.

(We write Image1
vi j
[. . . ] or Image1

vab
[. . . ] below to stress that we are varying by a

2-tensor, rather than just by a scalar.)
We consider the equation Image1

vi j
[Lg]=0 (which corresponds to the first metric

variation of our lemma hypothesis (that is, of (1-7)). This equation holds modulo
complete contractions with at least σ + u+ 1 factors.

Thus, we derive a new local equation,

(3-5)
∑
l∈Lµ

al X divi1 . . . X diviµ Image1
vab
[C l,i1...iµ

g ]

+

∑
l∈L\Lµ

al X divi1 . . . X divia Image1
vab
[C l,i1...ia

g ] =

∑
j∈J

a j Image1
vab
[C j

g ],

which holds modulo terms of length ≥ σ + u+ 1.
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Now, we wish to pass from the local equation above to an integral equation, and
then to apply the silly divergence formula from [A 2009] to that integral equation
(thus deriving a new local equation).

In order to do this, we start by introducing some more notation: Let us write out

Image1
vab
[C l,i1...iµ

g ] =

∑
t∈T l

atC t,i1...ia
g ,

where each C t,i1...ia
g is in the form

(3-6) pcontr
(
∇
(A+2)
r1...rA+2

vab⊗∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ−1)R

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇φ1⊗ · · ·⊗∇φu
)
.

For our next technical tool we introduce some notation: For each tensor field
C l,i1...ia

g in the form above, we denote by C l
g the complete contraction that arises by

hitting each factor Ti (i = 1, 2, 3) by m derivative indices ∇u1...um , where u1, . . . , um

are the free indices that belong to Ti in C l,i1...ia
g (thus we obtain a factor with m

internal contraction, each involving a derivative index). Notice there is a one-to-
one correspondence between the tensor fields and the complete contractions we are
constructing. We can then easily observe that there are two linear combinations∑

r∈R1

ar Cr
g(�1, . . . �p, φ1, . . . , φu),∑

r∈R2

ar Cr
g(�1, . . . �p, φ1, . . . , φu),

where each Cr
g, r ∈ R1 has at least σ + u + 1 factors, while each Cr

g, r ∈ R2 has
σ + u factors but at least one factor ∇(p)φh 6= 1φh with p ≥ 2, so that for any
compact orientable (M, g),

(3-7)
∫

M

∑
l∈L

al

∑
t∈T l

atC t,∗
g (vab)+

∑
r∈R1

ar Cr
g(vab)+

∑
r∈R2

ar Cr
g(vab) dVg = 0

(denote the integrand of the above by Zg(vab)). Here again each C j
g has σ + u

factors and all factors ∇φh have only one derivative but its simple character is
subsequent to Eκ . We call this technique (of going from the local equation (3-5) to
the integral equation (3-7)) the “‘inverse integration by parts”.

Now, we derive a “silly divergence formula” from the above by performing
integrations by parts with respect to the factor ∇(B)vab (until we are left with a
factor vab — without derivatives). This produces a new local equation which we
denote by silly[Zg(vab)] = 0. We will be using this equation in our derivation of
Lemma 3.1.
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Now, for each C l,i1...iµ
g , l ∈ L , we consider the factor

T =∇(M)(free)...(free)R(free) j (free)l

with the M+2 free indices. We define T j to be the factor in C l,i1...iµ
g that contracts

against the index j in T and by T l to be the factor in C l,i1...iµ
g that contracts against

the index l in T . We define Lsame ⊂ L to be the index set of tensor fields for which
T j
= T l ; we define Lnot.same ⊂ L to be the index set of tensor fields for which

T j
6= T l . We will then prove (3-2) separately for the two sublinear combinations

indexed in Lsame, Lnot.same.

Proof of (3-2) for the index set Lsame. We first prove our claim for σ > 3 and then
note how to prove it when σ = 3.

Consider silly[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0. Pick out the sublinear
combination silly+[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0 with µ−M−2 internal
contractions, and with the indices in the factor vab contracting against a factor T ′

which either has no extra derivative indices, or if it does, then the contraction is
according to the pattern vab

⊗∇s Rajbl ; we also require that the two factors T ′′,
T ′′′ with an extra M + 2 extra derivatives each. This sublinear combination must
vanish separately, hence we derive

(3-8) silly+[Zg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0.

We also observe that this sublinear combination can only arise (in the process of
passing from the equation Lg = 0 to deriving silly+[Zg(vab)] = 0) by replacing
the factor ∇(M)(free)...(free)R(free) j (free)l by ∇(M)(free)...(free)v jl and then (in the inverse inte-
gration by parts) replacing all µ free indices by internal contractions,77 and finally
integrating by parts the M + 2 pairs of derivative indices (∇a,∇a) and forcing all
upper indices hit a factor T ′′ 6= T ′ and the lower indices to hit a factor T ′′′ 6= T ′,
T ′′′ 6= T ′′.78

Thus, we can prove our claim by starting from (3-8) and applying Subυ µ−M−2
times,79 just applying the eraser to the extra M+2 pairs of contracting derivatives,80

and then replacing the factor vab by ∇(M)r1...rM Ria jb∇
r1υ . . .∇rMυ∇aυ∇bυ. Finally

we just divide by the combinatorial constant
(
σ−3

2

)
.

Let us now consider the case σ = 3: In this case the terms of maximal refined
double character can only arise in Subcase IIA,81 and can only be in one of the

77Thus the factor ∇(M)(free)...(free)v jl gets replaced by 1M+2vi j .
78The fact that σ > 3 ensures the existence of two such factors.
79See the Appendix in [A 2012] for this operation, and just set ω = υ.
80This can be done by repeating the proof of the “Eraser” lemma in the Appendix in [A 2012].
81This follows by the symmetry of the indices s , a, d in any factor ∇s Rabcd as discussed above.
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forms
∇
(M)
(free)...(free)R(free) j (free)l ⊗ Rijkl

⊗∇
(2)
ik �1,

∇
(M)
(free)...(free)R(free) j (free)l ⊗ Rijkl

⊗ R(free)i(free)k .

Thus, in that case we define silly+[Zg(vab)] to stand for the terms

v jl ⊗∇
(M+2)
t1...tM+2

Rijkl
⊗∇

(M+4)
t1...tM+4ik�1,

v jl ⊗∇
(M+2)
t1...tM+2

Rijkl(∇(M+2))t1...tM+2 ⊗ R(free)i(free)k,

respectively, and then repeat the argument above. �

Proof of (3-2) for the index set Lnot.same. We prove our claim in steps: We first
denote by L∗∗not.same ⊂ Lnot.same the index set of tensor fields in Lnot.same for which
both indices j , l in the factor T = ∇(M)(free)...(free)R(free) j (free)l contract against special
indices in factors T j , T l of the form S∗Rijkl. We will first prove that

(3-9)
∑

l∈L∗∗not.same

alC l,i1...iµ
g ∇i1υ . . .∇iµυ =

∑
l∈L ′

alC l,i1...iµ
g ∇i1υ . . .∇iµυ.

Here the terms in the right-hand side have all the features of the terms in Lnot.same,
but in addition at most one of the indices in the factor T =∇(M)(free)...(free)R(free) j (free)l

contract against a special index in a factor of the form S∗Rijkl. Thus, if we can
prove (3-9), we are reduced to proving our claim under the additional assumption
that L∗∗not.same =∅.

For our next claim, we denote by L∗not.same ⊂ Lnot.same the index set of tensor
fields in Lnot.same for which one of the indices j , l in the factor

T =∇(M)(free)...(free)R(free) j (free)l

contracts against a special index in factors T j , T l of the form S∗Rijkl.
We will then prove that

(3-10)
∑

l∈L∗not.same

alC l,i1...iµ
g ∇i1υ . . .∇iµυ =

∑
l∈L ′′

alC l,i1...iµ
g ∇i1υ . . .∇iµυ.

Here the terms in the right-hand side have all the features of the terms in Lnot.same,
but in addition none of the indices in the factor T =∇(M)(free)...(free)R(free) j (free)l contract
against a special index in a factors of the form S∗Rijkl. Thus, if we can prove
(3-9), we are reduced to proving our claim under the further assumption that for
each C l,i1...iµ

g , l ∈ L , the two indices j , l in the factor T = ∇(M)(free)...(free)R(free) j (free)l

contract against two different factors and none of the indices j , l are special indices
in a factor of the form S∗Rijkl.
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In our third step, we prove (3-2) under this additional assumption. We will
indicate in the end how this proof can be easily modified to derive the first two
steps.

For each l ∈ Lnot.same, let us denote by link(l) the number of particular con-
tractions between the factors T j , T l in the tensor fields C l,i1...iµ

g . (Note that by
weight considerations, 0 ≤ link(l) ≤ 3.) Let B be the maximum value of link(l),
l ∈ Lnot.same, and denote by L B

not.same ⊂ Lnot.same the corresponding index set. We
will then prove our claim for the tensor fields indexed in L B

not.same. By repeating
this step at most four times, we will derive our third claim.

Consider silly[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0. Pick out the sublinear
combination silly∗[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0 with µ−M−2 internal
contractions, and with extra M+2 derivatives on the factors T j , T l against which
the two indices of the factor vab contract, and with M+2+B particular contractions
between the factors T j , T l . This sublinear combination must vanish separately,

silly∗[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0.

Moreover, we observe by following the “inverse integration by parts” and the silly
divergence formula obtained from

∫
Mn Zg(vab) dVg = 0, that the left-hand side of

the above can be described as follows:
For each C l,i1...iµ

g , l ∈ L B
not.same, we denote by C̃ l

g(vab) the complete contraction
that arises by replacing the factor T = ∇(M)(free)...(free)R(free) j (free)l by ∇(M+2)

(free)...(free)v jl ,
and then replacing each free index that does not belong to the factor T by an internal
contraction. We then denote by Ĉ l

g(vab) the complete contraction that arises from
C̃ l

g(vab) by hitting the factor T j (against which the index j in v jl contracts) by
(M + 2) derivative indices ∇t1, . . . ,∇tM+2 and hitting the factor T l (against which
the index l in v jl contracts) by derivatives ∇ t1, . . . ,∇ tM+2 .82 It follows that

(0=) silly∗[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] =
∑

L B
not.same

al2M+1
[Ĉ l

g(vab)].

Now, to derive our claim, we introduce a formal operation Op[. . . ] which acts on
the terms above by applying Subυ to each of the µ−M−2 internal contractions,83

erasing M+2 particular contractions between the factors T j , T l and then replacing
the factor v jl by∇(m)r1...rM Rijkl∇

r1υ . . .∇rMυ∇ iυ∇kυ. This operation produces a new
true equation; after we divide this new true equation by 2M+1, we derive our claim.

�

Note on the derivation of (3-9), (3-10). The equations can be derived by a straight-
forward modification of the ideas above: The only extra feature we add is that in

82These derivatives contract against the indices ∇t1 , . . . ,∇tM+2 that have hit T j .
83See the Appendix of [A 2012] for the definition of this operation.
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the silly divergence formula we must pick out the terms for which (both/one of the)
indices j , l in v jl contract against a special index in a factor S∗∇(M+2)Rabcd∇

aφ̃h .
This linear combination will vanish, modulo terms where one/none of the indices
j , l in v jl contract against a special index in the factor S∗Rijkl: This follows by
the same argument that is used in [A 2010] to derive that Lemma 3.1 in [A 2010]
implies Proposition 1.1 in Case I: We first replace the factor v jl by an expression
y( j yl). We then just replace both/one of the expressions ∇i φ̃h, y j by gi j and apply
Ricto� twice/once.84 The only terms that survive this true equation are the ones in-
dexed in Lnot.same, for which the expression(s) S∗∇(ν)r1...rν Rijkl∇

i φ̃h∇
k y are replaced

by ∇(ν+2)
r1...rν jlY f . We then proceed as above, deriving that the sublinear combination

of terms indexed in Lnot.same must vanish, after we replace two/one expressions
S∗∇(ν)r1...rν Rijkl∇

i φ̃h∇
k y by ∇(ν+2)

r1...rν jlY f . Then, repeating the permutations applied to
any factors ∇(ν+2)

r1...rν jlY f , to S∗∇(ν)r1...rν Rijkl∇
i φ̃h∇

k y we derive our claim.

3B. The remaining cases of Proposition 1.1 in Case III. We recall that there are
remaining cases only when σ = 3. In that case we have the remaining cases when
p = 3 and n− 2u− 2µ≤ 2, or when p = 2, σ2 = 1 and n = 2u+ 2µ.

The case p = 3. Let us start with the subcase n − 2u − 2µ = 0. In this case, all
tensor fields in (1-7) will be in the form

(3-11) pcontr
(
∇
(A)
i1...ia j1... jb�1⊗∇

(B)
ia+1...ia+a′ jb+1... jb+b′

�2

⊗∇
(C)
ia+a′+1...ia+a′+a′′ jb+b′+1... jb+b′+b′′

�3⊗∇
jx1φ1 · · · ⊗∇

x j+ j ′+ j ′′φu
)
,

where we make the following conventions: Each of the indices i f is free; also, each
of the indices j f contracts against some factor ∇φh , and also A, B,C ≥ 2.

Thus, we observe that in this subcase µ is also the maximum rank among the
tensor fields appearing in (1-7). Now, assume that the µ-tensor fields in (1-7) of
maximal refined double character have a = α, a′ = α′, a′′ = α′′. With no loss
of generality (only up to renaming the factors �1, �2, �3, φ1, . . . , φu) we may
assume that α≥α′≥α′′ and that only the functions∇φ1, . . . ,∇φu1 contract against
∇
(A)�1 in Eκsimp. We will then show that the coefficient aα,α′,α′′ of this tensor field

must be zero. This will prove Proposition 1.1 in this subcase.
We prove that aα,α′,α′′ = 0 by considering the global equation

∫
Zg dVg = 0 and

considering the silly divergence formula silly[Zg]=0. We then consider the sublin-
ear combination silly+[Zg] consisting of terms with α′, α′′ internal contractions in
the factors ∇(D)�2,∇

(E)�3, with α particular contractions between those factors
and with all factors ∇φh that contracted against ∇(A)�1 in Eκsimp being replaced
by 1φh , while all factors ∇φh that contracted against ∇(B)�2,∇

(C)�3 still do so.

84Recall that this operation has been defined in the Appendix in [A 2012] and produces a true
equation.
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We easily observe that silly+[Zg] = 0, and furthermore silly+[Zg] consists of the
complete contraction

(3-12) contr
(
�1⊗∇

f1... fα
jb+1... jb+b′

1α
′

�2⊗∇ f1... fα jb+b′+1... jb+b′+b′′
1α

′′

�3

⊗1φ1 . . .∇
jxb+b′+b′′ φu

)
times the constant (−1)u12αaα,α′,α′′ . Thus, we derive that aα,α′,α′′ = 0.

The second subcase. We now consider the setting where σ = p= 3, n−2u−2µ=
2. In this setting, the maximum rank of the tensor fields appearing in (1-7) is
µ+1. In this case, all (µ+1)-tensor fields in (1-7) will be in the form (3-11) (with
α + α′ + α′′ = µ+ 1, while all the µ-tensor fields will be in the form (3-11) but
with α+α′+α′′ = µ, and with one particular contraction c,

c between two of the
factors ∇(A)�1,∇

(B)�2,∇
(C)�3.

Now, if both the indices c,
c described above are removable, we can explicitly

express C l,i1...iµ
g as an X div of an acceptable (µ+1)-tensor field. Therefore, we

are reduced to showing our claim in this setting where for each µ-tensor field in
(1-7) at least one of the indices c,

c is not removable. Now, let z ∈ ZMax stand
for one of the index sets for which the sublinear combination

∑
l∈L z alC l,i1...iµ

g in
(1-7) indexes tensor fields of maximal refined double character. We assume with
no loss of generality that for each l ∈ L z the factors ∇(A)�1, ∇(B)�2, ∇(C)�3 have
α ≥ α′ ≥ α′′ free indices respectively.85 Therefore, the tensor fields indexed in L z

can be in one of the two forms

(3-13) pcontr
(
∇

c
∇
(A)
i1...iα j1... jb�1⊗∇

(B)
iα+1...iα+α′ jb+1... jb+b′

�2

⊗∇
(2)
ciα+α′+1...iα+α′+α′′ jb+b′+1... jb+b′+b′′

�3⊗∇
jx1φ1 · · · ⊗∇

x j+ j ′+ j ′′φu
)
,

or

(3-14) pcontr
(
∇
(A)
i1...iα j1... jb�1⊗∇

c
∇
(B)
iα+1...iα+α′ jb+1... jb+b′

�2

⊗∇
(2)
ciα+α′+1...iα+α′+α′′ jb+b′+1... jb+b′+b′′

�3⊗∇
jx1φ1 · · · ⊗∇

x j+ j ′+ j ′′φu
)
,

where A, B ≥ 3.
Now, by “manually subtracting” X divs from these µ-tensor fields, we can as-

sume without loss of generality that the tensor fields indexed in our chosen L z are
in the form (3-14).

With that extra assumption, we can show that the coefficient of the tensor field
(3-14) is zero. We see this by considering the (global) equation

∫
M Zg dVg = 0

and using the silly divergence formula silly[Zg] = 0 (which arises by integrations
by parts with respect to the factor ∇(A)�1). Picking out the sublinear combination

85Recall that by our hypothesis α′ ≥ 2.
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silly+[Zg] which consists of the complete contraction

(3-15) contr
(
�1⊗∇

c f1... fα
jb+1... jb+b′

1α
′

�2⊗∇c f1... fα jb+b′+1... jb+b′+b′′
1α

′′

�3

⊗1φ1 . . .∇
jxb+b′+b′′ φu

)
(notice that silly+[Zg] = 0), we derive that the coefficient of (3-14) must vanish.
Thus, we have shown our claim in this second subcase also. �

The case p= 2, σ2= 1. Recall that in this case we fall under the special case when
n = 2u + 2µ. In this setting, we will have that in each index set L z, z ∈ Z ′Max,
(see the statement of Lemma 3.5 in [A 2010]) there is a unique µ-tensor field of
maximal refined double character in (1-7), where the two indices k, l in the factor
S∗∇(ν)Rijkl will be contracting against one of the factors ∇(A)�1,∇

(B)�2 (without
loss of generality we may assume that they are contracting against different factors).
But now, recall that since we are considering Case A of Lemma 3.5 in [A 2010],
one of the factors ∇(A)�1,∇

(B)�2 will have at least two free indices. Hence, in at
least one of the factors ∇(A)�1,∇

(B)�2, the index k, l is removable (meaning that
it can be erased, and we will be left with an acceptable tensor field). We denote by
C l,i1...iµiµ+1

g the tensor field that arises from C l,i1...iµ
g by erasing the aforementioned

k, l and making k or l into a free index, we then observe that

(3-16) C l,i1...iµ
g − X diviµ+1 C l,i1...iµiµ+1

g = 0

(modulo complete contractions of length ≥ σ + u + 1). This completes the proof
of our claim. �
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[Čap and Gover 2003] A. Čap and A. R. Gover, “Standard tractors and the conformal ambient metric
construction”, Ann. Global Anal. Geom. 24:3 (2003), 231–259. MR 2004g:53016 Zbl 1039.53021

[Cartan 1896] E. Cartan, “Sur la reduction a sa forme canonique de la structure d’un groupe de
transformations fini et continu”, Amer. J. Math. 18:1 (1896), 1–61. Reprinted as pp. 293–355 in his
Oeuvres Complètes, Partie 1, Gauthier-Villars, Paris, 1952. MR 1505696 JFM 27.0288.01

[Deser and Schwimmer 1993] S. Deser and A. Schwimmer, “Geometric classification of conformal
anomalies in arbitrary dimensions”, Phys. Lett. B 309:3-4 (1993), 279–284. MR 94g:81195

[Fefferman 1976] C. L. Fefferman, “Monge–Ampère equations, the Bergman kernel, and geometry
of pseudoconvex domains”, Ann. of Math. (2) 103:2 (1976), 395–416. Correction in 104:2 (1976),
393–394. MR 0407320 (53 #11097a) Zbl 0322.32012

[Fefferman and Graham 1985] C. Fefferman and C. R. Graham, “Conformal invariants”, pp. 95–116
in Élie Cartan et les mathématiques d’aujourd’hui (Lyon, 1984), Astérisque, 1985. Numéro hors
série. MR 87g:53060 Zbl 0602.53007

[Graham and Hirachi 2008] C. R. Graham and K. Hirachi, “Inhomogeneous ambient metrics”, pp.
403–420 in Symmetries and overdetermined systems of partial differential equations (Minneapolis,
MN, 2006), edited by M. Eastwood and W. Miller, Jr., IMA Vol. Math. Appl. 144, Springer, New
York, 2008. MR 2009f:53012 Zbl 1148.53023

[Hirachi 2000] K. Hirachi, “Construction of boundary invariants and the logarithmic singularity of
the Bergman kernel”, Ann. of Math. (2) 151:1 (2000), 151–191. MR 2001f:32003 Zbl 0954.32002

[Thomas 1934] T. Y. Thomas, The differential invariants of generalized spaces, Cambridge Univer-
sity Press, 1934. JFM 60.0363.02

[Weyl 1939] H. Weyl, The classical groups: Their invariants and representations, Princeton Uni-
versity Press, 1939. MR 0000255 (1,42c) Zbl 0020.20601

Received December 21, 2009.

SPYROS ALEXAKIS

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF TORONTO

40 ST. GEORGE ST

TORONTO M5S 2E4
CANADA

alexakis@math.toronto.edu





PACIFIC JOURNAL OF MATHEMATICS
Vol. 260, No. 1, 2012

dx.doi.org/10.2140/pjm.2012.260.89

ON DEFORMATION QUANTIZATIONS OF
HYPERTORIC VARIETIES

GWYN BELLAMY AND TOSHIRO KUWABARA

Based on a construction by Kashiwara and Rouquier, we present an ana-
logue of the Beilinson–Bernstein localization theorem for hypertoric vari-
eties. In this case, sheaves of differential operators are replaced by sheaves
of W-algebras. As a special case, our result gives a localization theorem for
rational Cherednik algebras associated to cyclic groups.

1. Introduction

Kontsevich [2001] and Polesello and Schapira [2004] have shown that one can
construct a stack of “W-algebroids” (or deformation-quantization algebroids) on
any symplectic manifold. These stacks of W-algebroids provide a quantization of
the sheaf of holomorphic functions on the manifold. In certain cases, these stacks of
W-algebroids are the algebroids associated to a sheaf of noncommutative algebras
called W-algebras. Locally this is always the case. When the symplectic manifold
in question is the Hamiltonian reduction of a space equipped with a genuine sheaf
of W-algebras, Kashiwara and Rouquier [2008] have shown that one can define a
family of sheaves of W-algebras on the Hamiltonian reduction coming from the
sheaf upstairs. This provides a large class of examples of sheaves of W-algebras on
nontrivial symplectic manifolds. In this paper we study W-algebras on the simplest
class of Hamiltonian reductions, those coming from the action of a torus T on a
symplectic vector space V . These spaces Y (A, δ), where A is a matrix encoding
the action of T on V and δ ∈ X(T ) is a character of T , are called hypertoric
varieties. They were originally studied as hyperkähler manifolds by Bielawski and
Dancer [2000]. Examples of hypertoric varieties include the cotangent space of
projective n-space and resolutions of cyclic Kleinian singularities. More generally,

Kuwabara was partially supported by Grant-in-Aid for Young Scientists (B) 21740013, and by GCOE
“Fostering top leaders in mathematics”, Kyoto University. He was also partially supported by Basic
Science Research Program through the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MEST)(2010-0019516).
MSC2010: primary 14A22, 16S80; secondary 18E35.
Keywords: deformation quantization, hypertoric varieties.
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the cotangent space of any smooth toric variety can be realized as a dense, open
subvariety of the corresponding hypertoric variety.

One can also associate to the data of a reductive group G acting on a symplectic
vector space a certain family of noncommutative algebras Uχ , where χ ∈ X(g) is
a character of g = Lie(G), called quantum Hamiltonian reductions. In the case
G = T is a torus, these algebras have been extensively studied by Musson and Van
den Bergh [1998]. The main goal of this paper is to prove a localization theorem,
analogous to the celebrated Beilinson–Bernstein localization theorem [1981], giving
an equivalence between the category of finitely generated modules for the quantum
Hamiltonian reduction and a certain category of modules for a W-algebra. When
the character δ is chosen to lie in the interior C of a G.I.T. chamber in X(T ), the
hypertoric variety Y (A, δ) is a symplectic manifold. Then each character χ ∈ X(t)

gives a sheaf of W-algebras Aχ on Y (A, δ). Associated to Aχ is a category of “good”
Aχ -modules, Modgood

F (Aχ ) and a subcategory Modgood
F (Aχ ) consisting (roughly)

of those modules generated by their global section (the reader is referred to section
2 for the precise definition of these categories). Then we have natural localization
and global section functors

Loc : Uχ -mod−→Modgood
F (Aχ ), Loc(M)=Aχ ⊗Uχ M,

Sec :Modgood
F (Aχ )−→ Uχ -mod, Sec(M)= HomModgood

F (Aχ )
(Aχ ,M).

Our main result can be stated as follows.

Theorem 1.1. Let χ ∈ CQ.

(i) The functor Loc defines an equivalence of categories Uχ -mod−→∼ Modgood
F (Aχ )

with quasiinverse Sec.

(ii) There exists some θ ∈C∩X(T ) such that the functor Loc defines an equivalence
of categories Uχ+θ -mod−→∼ Modgood

F (Aχ+θ ) with quasiinverse Sec.

The theorem shows that localization always gives an equivalence of categories,
provided one is sufficiently far away from the G.I.T. walls.

Corollary 1.2. Let χ ∈ CQ. If the global dimension of Uχ is finite then the functor
Loc defines an equivalence of categories Uχ -mod−→∼ Modgood

F (Aχ ) with quasiin-
verse Sec.

A particular class of examples of hypertoric varieties are the minimal resolutions
(C2/Zm)

∼ of the Kleinian singularities of type A. Under mild restrictions on the pa-
rameters, the corresponding quantum Hamiltonian reductions are Morita equivalent
to the rational Cherednik algebras Hh associated to cyclic groups. Then a corollary
of our main result is a localization theorem for these rational Cherednik algebras.
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Corollary 1.3. For h not lying on a G.I.T. wall, the functor Loc(e · ( · )) defines an
equivalence of categories

Hh-mod−→∼ Modgood
F (Ah)

with quasiinverse Hhe⊗eHhe Sec( · ).

We summarize the content of each section. In Section 2 we introduce, following
Kashiwara and Rouquier, W-algebras on symplectic manifolds in the equivariant
setting. In Section 3 we give a criterion for the W-affinity of a class of W-algebras on
those symplectic manifolds that are obtained by Hamiltonian reduction of a vector
space acted upon by a reductive group. The W-algebras on hypertoric varieties that
we will consider later are a special case of this more general setup. The main result
of this section is Theorem 3.3.

Hypertoric varieties are introduced in Section 4 and we show that they possess the
correct geometric properties that are required to apply the results of Section 3. Using
the results of Musson and Van den Bergh, we prove our main results, Theorem 5.2
and Corollary 5.3. In the final section we consider the special case where the
hypertoric variety is the resolution of a Kleinian singularity of type A and the global
sections of the sheaf of W-algebras on this resolution can be identified with the
spherical subalgebra of the rational Cherednik algebra associated to a cyclic group.

Convention. Throughout, a variety will always mean an integral, separated scheme
of finite type over C. A nonreduced space will be referred to as a scheme, again
assumed to be over C.

2. W-algebras

2A. In this section we recall the definition of W-algebras as given in [Kashiwara and
Rouquier 2008]. We state results about the existence and “affinity” of W-algebras.
Let X be a complex analytic manifold and let OX denote the sheaf of regular,
holomorphic functions on X . Denote by DX the sheaf of differential operators on
X with holomorphic coefficients. Denote by k = C((h̄)) the field of formal Laurent
series in h̄ and by k(0) the subring C[[h̄]] of formal functions on C. Consider-
ing k and k(0) as abelian groups, the corresponding sheaves of locally constant
functions on X will be denoted kX and k(0)X respectively. Given m ∈ Z, we
define WT ∗Cn (m) to be the sheaf of formal power series

∑
i≥−m h̄i ai , ai ∈ OT ∗Cn ,

on the cotangent bundle T ∗Cn of Cn . Let us fix coordinates x1, . . . , xn on Cn

and dual coordinates ξ1, . . . , ξn on (Cn)∗, identifying T ∗Cn with Cn
× (Cn)∗. Set

WT ∗Cn =
⋃

m∈Z WT ∗Cn (m). Then WT ∗Cn is a sheaf of (noncommutative) k-algebras
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on T ∗Cn . Multiplication is defined by

(1) a ◦ b =
∑
α∈Zn

≥0

h̄|α|

α!
∂αξ a · ∂αx b,

where |α|=
∑n

i=1 αi , α!=α1! · · ·αn! and ∂αξ =∂
|α|/(∂α1ξ1 · · · ∂

αnξn). There is a ring
homomorphism DCn (Cn)→WT ∗Cn (T ∗Cn) given by xi 7→ xi and ∂/∂xi 7→ h̄−1ξi .
Note that WT ∗Cn (0) is a k(0)-subalgebra. We denote the symbol map for WT ∗Cn by

σm :WT ∗Cn (m)−→WT ∗Cn (m)/WT ∗Cn (m− 1)' h̄−mOT ∗Cn .

The sheaf OT ∗Cn is a sheaf of Poisson algebras with Poisson bracket given by

{xi , x j } = {ξi , ξ j } = 0, {ξi , x j } = δi j for all i, j ∈ [1, n].

One sees from (1) that σ0(h̄−1
[a, b])= {σ0(a), σ0(b)} for all a, b ∈WT ∗Cn (0).

2B. Let us now assume that X is a complex symplectic manifold with holomorphic
2-form ωX . A map f between open subsets U ⊂ X and V ⊂ Y of the symplectic
manifolds (X, ω1) and (Y, ω2) is said to be a symplectic map if f ∗ω2 =ω1. A sym-
plectic map is always locally biholomorphic [Björk 1979, Lemma 5.5.2], therefore
by symplectic map we will actually mean a biholomorphic symplectic map. Based
on [Kontsevich 2001; Polesello and Schapira 2004], we have:

Definition 2.1. A W-algebra on X is a sheaf of k-algebras WX together with a k(0)-
subalgebra WX (0) such that for each point x ∈ X there exists an open neighborhood
U of x in X , a symplectic map f :U −→ V ⊂ T ∗Cn and a k-algebra isomorphism
r : f −1(WT ∗Cn |V )−→

∼ WX |U such that:

(i) The isomorphism r restricts to a k(0)-isomorphism

f −1(WT ∗Cn (0)|V )−→∼ WX (0)|U .

(ii) Setting WX (m)= h̄−mW(0) for all m ∈ Z, we have

σ0 :WX (0)−→WX (0)/WX (−1)' OX ,

and the following diagram commutes:

f −1(WT ∗Cn (0)|V )
r //

σ0

��

WX (0)|U

ν0

��
f −1(OT ∗Cn )

f ]
// OX
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2C. The first statement of property (ii) of Definition 2.1 is actually a consequence
of property (i). Next, Definition 2.1(ii) implies that σ0(h̄−1

[a, b])= {σ0(a), σ0(b)}
for all a, b ∈WX (0), where the Poisson bracket on OX is the one induced from the
symplectic form ω on X .

2D. Categories of W-modules. Unless explicitly stated, all modules will be left
modules. Since WX (0) is Noetherian (see [Kashiwara and Rouquier 2008, (2.2.2)]),
a WX (0)-module M is said to be coherent if it is locally finitely generated. For a
WX -module M, a WX (0)-lattice of M is a WX (0)-submodule N of M such that the
natural map W⊗W(0)N→M is an isomorphism. A W-module M is said to be good
if for every relatively compact open set U there exists a coherent WX (0)|U -lattice
for M|U . We will denote the category of left WX -modules as Mod(WX ) and the full
subcategory of good WX -modules as Modgood(WX ). It is an abelian subcategory. If
M(0) is a WX (0)-lattice of M, set M(m) := h̄−mM(0).

Lemma 2.2. Let M be a coherent WX -module, equipped with a global WX (0)-
lattice M(0). Then the filtration M(n), n ∈Z, is exhaustive, Hausdorff and complete;
that is,

(i)
⋃

n∈Z M(n)=M,

(ii)
⋂

n∈Z M(n)= 0,

(iii) lim
−∞←n

M/M(n)=M.

(Our terminology is chosen to agree with that of [Weibel 1994, §5].)

Proof. The statement (i) is true if M=WX . But, by the definition of a lattice, we
have ⋃

n∈Z

M(n)=
⋃
n∈N

WX (n)⊗WX (0) M(0)=WX ⊗WX (0) M(0)=M.

Part (ii) follows from [Kashiwara and Rouquier 2008, Lemma 2.11]. Fix some open
subset U of X and take a section ( fn)n∈Z ∈lim−∞←n(M/M(n))(U ). Then, by part
(i), there exists some integer k> n such that the image fn of f in (M/M(n))(U ) lies
in (M(k)/M(n))(U ). Now by definition fn is the image of fn−1 in the surjection

(M/M(n− 1))(U )−→ (M/M(n))(U ),

hence fn−1 ∈ (M(k)/M(n− 1))(U ) too. Thus (h̄−k fn)n∈Z is in

lim
−∞←n

(M(0)/M(n))(U ).

This implies that we have a surjective morphism

kX ⊗k(0)X lim
−∞←n

M(0)/M(n)−→ lim
−∞←n

M/M(n).
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But it follows once again from [Kashiwara and Rouquier 2008, Lemma 2.11] that

M' kX ⊗k(0)X M(0)' kX ⊗k(0)X lim
−∞←n

M(0)/M(n).

Thus M surjects onto lim
−∞←n

M/M(n). Part (ii) implies this map is also injective. �

2E. G-equivariance. Let G be a complex Lie group acting symplectically on X ,
via Tg : X −→∼ X for all g ∈ G. We assume that this action is Hamiltonian with
moment map µX : X→ g∗, where g is the Lie algebra of G.

Definition 2.3. A G-action on the W-algebra WX is a kX -algebra isomorphism
ρg :WX −→

∼ T−1
g WX for every g ∈ G such that ρg(a) depends holomorphically on

g ∈ G for each section a ∈WX and ρg1 ◦ ρg2 = ρg1g2 for all g1, g2 ∈ G.

Definition 2.4. Suppose we have fixed a G-action on WX . A quasi-G-equivariant
WX -module is a left WX -module M, together with a kX -module isomorphism

ρM
g :M−→

∼ T−1
g M

for every g ∈ G such that ρM
g (m) depends holomorphically on g ∈ G for each

section m ∈M, ρM
g ◦ρ

M
h = ρ

M
gh for all g, h ∈ G and ρM

g (a ·m)= ρg(a) ·ρM
g (m) for

all g ∈ G, a ∈WX and m ∈M.

The category of quasi-G-equivariant WX -modules will be denoted ModG(WX ).
If M and N are elements in Obj(ModG(WX )), a morphism φ ∈HomModG(WX )(M,N)

is a collection of morphisms φU :M(U )→N(U ) of WX (U )-modules, one for each
open set U ⊂ X , that satisfies the usual conditions of being a WX -homomorphism
and is such that, for each g ∈ G, the diagram

M(U )
φU //

ρM
g (U )

��

N(U )

ρN
g (U )

��
M(Tg(U ))

φTg (U )

// N(Tg(U ))

is commutative.

Definition 2.5. Let G act on the algebra WX . A map µW : g→WX (1) is said to be
a quantized moment map for the G-action if µW satisfies the following properties:

(i) [µW(A), a] = d
dt
ρexp(t A)(a)|t=0,

(ii) σ0(h̄µW(A))= A ◦µX ,

(iii) µW(Ad(g)A)= ρg(µW(A)),

for every A ∈ g, a ∈WX and g ∈ G.
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Let X(G) :=Homgp(G,C∗) be the lattice of G-characters. Note that if a ∈WX is
a θ -semiinvariant of G (that is, ρg(a)= θ(g)a for all g ∈G), where θ ∈X(G), then

(2) [µW(A), a] = dθ(A)a,

where d :X(G)→ (g∗)G is the differential sending a G-character to the correspond-
ing g-character. From now on we omit the symbol d and think of θ ∈ X(G) as a
character for both G and g. For χ ∈ (g∗)G , we set

(3) LX,χ =WX
/∑

A∈g

WX (µW(A)−χ(A)).

Note that LX,χ is a good quasi-G-equivariant WX -module, and has lattice

LX,χ (0) :=WX (0)
/∑

A∈g

WX (−1)(µW(A)−χ(A)).

We will require the following result, whose proof is based on Holland’s result [1999,
Proposition 2.4].

Proposition 2.6. Assume that the moment map µX is flat. Then, on X we have an
isomorphism of graded sheaves

gr(LX,χ )'
⊕
n∈Z

Oµ−1
X (0)h̄

−n.

Proof. The moment map µW makes WX into a right U (g)-module. Let Cχ be the
one-dimensional U (g)-module defined by the character χ so that

LX,χ =WX ⊗U (g) Cχ .

As in [Holland 1999, Proposition 2.4], we denote by B• the Chevalley–Eilenberg
resolution of Cχ . Thus, Bk =U (g)⊗

∧k
g, and the differential is given by

dk( f ⊗x1∧· · ·∧xk)=

k∑
i=1

(−1)i+1 f (xi−χ(xi ))⊗x1∧· · ·∧ x̂i∧· · ·∧xk

+

∑
1≤i< j≤k

(−1)i+ j f ⊗[xi , x j ]∧x1∧· · ·∧ x̂i∧· · ·∧ x̂ j∧· · ·∧xk .

Then B• is a complex of free U (g)-modules such that H 0(B•)=Cχ and H k(B•)=0
for k nonzero. Let C• =WX ⊗U (g) B• =WX ⊗

∧
•
g. The filtration on WX induces a

filtration FnCk=WX (n−k)⊗
∧k

g on the complex C• such that dk(FnCk)⊆ FnCk−1

(recall that µW(g)⊂WX (1)). Note that the filtration is not bounded above or below.
However, by Lemma 2.2 the filtration on C• is exhaustive, Hausdorff and complete.
We denote by Er

p,q the spectral sequence corresponding to the filtration Fn on C•.
Since the filtration is exhaustive, Hausdorff and complete, the proof of [Weibel
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1994, Theorem 5.5.10] shows that the spectral sequence E converges to H•(C)
(that the sequence is regular follows from the fact, to be shown below, that it
collapses at E1). By construction, we have an isomorphism of filtered sheaves
H 0(C)' LX,χ and hence gr(H0(C))' gr(LX,χ ). Denote by A the graded sheaf
of algebras

⊕
n∈Z OX h̄−n , where OX is in degree zero and h̄ has degree −1. The

0-th page of the spectral sequence is given by

E0
p,q =WX (p− q)⊗

∧p+q
g/WX (p− 1− q)⊗

∧p+q
g' Ap−q ⊗

∧p+q
g.

Since C[g∗] is a domain and µX is assumed to be flat, µ∗X : µ
−1
X Og∗ → OX is

an embedding and we may think of µ−1
X Og∗ as a subsheaf of OX . Let x1, . . . , xr

be a basis of g. Then [Bruns and Herzog 1993, Proposition 1.1.2] implies that
h̄−1x1, . . . , h̄−1xr form a regular sequence in A at those points where they vanish.
By Definition 2.5(ii), the symbol σ1(µW(xi )) equals h̄−1xi ∈ A. Thus the differential
on E0 is given by

dp+q( f ⊗ x1 ∧ · · · ∧ x p+q)=

p+q∑
i=1

f h̄−1xi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x p+q .

As is explained in [Holland 1999, Proposition 2.4], the only nonzero homology of
E0 is in the (p,−p) position, where we have

E1
(p,−p) =

Ap

Ap−1 ·h̄µ∗X (g)
' Oµ−1

X (0)h̄
−p.

Therefore the sequence collapses at E1 and we have

gr(LX,χ )p ' gr(H0(C))p ' Oµ−1
X (0)h̄

−p,

as required. �

2F. F-actions. Here we repeat the definition of an F-action on WX -modules as
defined in [Kashiwara and Rouquier 2008]. Let C× 3 t 7→ Tt ∈ Aut(X) denote an
action of the torus C× on X such that the symplectic 2-form is a semiinvariant of
positive weight: T ∗t ωX = tmωX for some m > 0.

Definition 2.7. An F-action with exponent m on WX is an action of the group C×

on WX as in Definition 2.3 except that C× also acts on h̄: if Ft :WX −→
∼ T−1

t WX

denotes the action of t ∈ C× then we require that Ft(h̄)= tm h̄ for all t ∈ C×.

It will be convenient to extend the F-action of C× to an action on

W[h̄1/m
] := k(h̄1/m)⊗k W

by setting Ft(h̄1/m) = t h̄1/m . The category of F-equivariant WX -modules will
be denoted ModF (WX ). As noted in [Kashiwara and Rouquier 2008, §2.3.1],
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ModF (WX ) is an abelian category. Moreover [ibid., §2.3], if there exists a relatively
compact open subset U of X such that C× ·U = X then every good, F-equivariant
WX -module admits globally a coherent WX (0)-lattice. Such an open set U will
exist in the cases we consider. The following lemma will be used later.

Lemma 2.8. Let M,N ∈ Modgood
F,G (WX ). Assume that M 'WX/I is a cyclic WX -

module, generated by some G, F-invariant element, where I is a left ideal generated
by finitely many global sections. Then

HomModgood
F,G (WX )

(M,N)= HomWX (X)(M(X),N(X))G,F .

2G. Example. Let V be an n-dimensional vector space. We fix X = T ∗V with
coordinates x1, . . . , xn, ξ1, . . . , ξn and define an action Tt of C× on X such that
the corresponding action on coordinate functions is given by Tt(xi ) = t xi and
Tt(ξi )= tξi . Then T ∗t ωX = t2ωX . We extend this to an F-action on WT ∗V by setting
Ft(h̄)= t2h̄. Let D(V ) denote the ring of algebraic differential operators on V .

Lemma 2.9. Taking F-invariants in WT ∗V (T ∗V ) gives

EndModF (WT∗V [h̄1/2
])(WT ∗V [h̄1/2

])opp
= C

[
h̄−1/2xi , h̄−1/2ξi : i ∈ [1, n]

]
= C

[
h̄−1/2xi , h̄1/2 ∂

∂xi
: i ∈ [1, n]

]
,

where the second equality comes from

D(V ) ↪→WT ∗V (T ∗V ), xi 7→ xi and ∂

∂xi
7→ h̄−1ξi .

Proof. We can identify EndModF (WT∗V [h̄1/2
])(WT ∗V [h̄1/2

])opp with the algebra of
F-invariant global sections, WT ∗V [h̄1/2

](T ∗V )F . Since T ∗V is connected, taking
a power series expansion in a sufficiently small neighborhood of 0 ∈ T ∗V defines
an embedding OT ∗V (T ∗V ) ↪→ C[[x1, . . . , xn, ξ1, . . . , ξn]]. As C×-modules, we can
identify WT ∗V [h̄1/2

]with OT ∗V ⊗̂C((h̄1/2)) and we get a C×-equivariant embedding

WT ∗V [h̄1/2
](T ∗V ) ↪→ C[[x1, . . . , xn, ξ1, . . . , ξn]] ⊗̂C((h̄1/2)),

where we denote by ⊗̂ the completed tensor product with respect to the linear
topology. Taking invariants gives the desired result. �

A trivial application of Theorem 3.3 below, with f = idCn and G = {1}, shows

ModF (WT ∗V [h̄1/2
])' C

[
h̄−1/2xi , h̄1/2 ∂

∂xi
: i ∈ [1, n]

]
-mod.

3. W-affinity

In this section we give a criterion for the W-affinity of a class of W-algebras on
those symplectic manifolds that are obtained by Hamiltonian reduction.
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3A. The geometric setup. Let V be an n-dimensional vector space over C. Its
cotangent bundle T ∗V has the structure of a complex symplectic manifold. Let G
be a connected, reductive algebraic group acting algebraically on V . This action
induces a Hamiltonian action on T ∗V and we have a moment map

µT ∗V : T ∗V −→ g∗ := (Lie G)∗

such that µT ∗V (0)= 0. We fix a character ϑ ∈ X(G). Let X be the open subset of
all ϑ-semistable points in T ∗V and denote the restriction of µT ∗V to X by µX. We
assume that

(i) the set µ−1
X (0) is nonempty,

(ii) G acts freely on µ−1
X (0),

(iii) the moment map µT ∗V is flat.

Set
Yϑ := µ−1

X (0)//G = Proj
⊕
n≥0

C[µ−1
T ∗V (0)]

nϑ

and write f : Yϑ → µ−1
T ∗V (0)//G =: Y0 for the corresponding projective morphism.

Condition (i) implies that the categorical quotient Yϑ is nonempty. Condition (ii)
implies that the morphism µX is regular at all points in µ−1

X (0) and hence Yϑ is a
nonsingular symplectic manifold. Condition (iii) will be used in Proposition 3.5.
We add to our previous assumptions:

(iv) The morphism f is birational and Y0 is a normal variety.

In the case of hypertoric varieties, it is shown in Section 4 that assumptions (i)–(iv)
hold when the matrix A is unimodular.

Lemma 3.1. Let O
alg
Yϑ and O

alg
Y0

denote the sheaves of regular functions on Yϑ and

Y0, respectively. If Yϑ , Y0, f satisfy assumption (iv) then 0(Yϑ ,O
alg
Yϑ )= 0(Y0,O

alg
Y0
).

Proof. It is well-known that the condition implies the statement of the lemma, but
we were unable to find any suitable reference, therefore we include a proof for the
reader’s convenience. For s ≥ 0, fix Rs = C[µ−1

T ∗V (0)]
sϑ and R =

⊕
s≥0 Rs so that

Yϑ = Proj R and recall that f is the canonical projective morphism from Yϑ to Y0.
By Hilbert’s Theorem (see [Kraft 1984, Zusatz 3.2]), R is finitely generated as an
R0-algebra. Let x1, . . . , xn ∈ R be homogeneous generators (of degree at least one)
of R as an R0-algebra. Then the affine open sets D+(xi )= Spec R(xi ) form an open
cover of Yϑ and

0(Yϑ ,O
alg
Yϑ )=

n⋂
i=1

R(xi ) ⊆

n⋂
i=1

Rxi ,

Let r ∈ 0(Yϑ ,O
alg
Yϑ ). Then, for each i , there exists an m such that xm

i · r ∈ R. We
choose one m sufficiently large so that xm

i · r ∈ R for all i . Since the xi generate
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R, we actually have y · r ∈ R for all y ∈ Rs and s ≥ m0 := nmd, where d is the
maximum of the degrees of x1, . . . , xn . Therefore y · r ∈ R for all y ∈

⊕
s≥m0

Rs .
Since r has degree zero,

y · r ∈
⊕
s≥m0

Rs for all y ∈
⊕
s≥m0

Rs .

Inductively, y · rq
∈
⊕

s≥m0
Rs for all q ≥ 1. Take y = xm0

1 , then rq
∈ (1/xm0

1 )R
for all q ≥ 1 and hence R[r ] ⊂ (1/xm0

1 )R. But, by Hilbert’s basis theorem, R is
Noetherian and the R-module (1/xm0

1 )R is finitely generated, hence the algebra R[r ]
is finite over R. This means r satisfies some monic polynomial ut

+r1ut−1
+· · ·+rt

with coefficients in R. However R has degree zero so without loss of generality
ri ∈ R0. Thus r is in the integral closure of R0 in the degree zero part of the field
of fractions of R. Now [Hartshorne 1977, Theorem 7.17] says that, since the map
f is projective and birational, there exists an ideal I in R0 such that Rk ' I k as
R0-modules and we have an isomorphism of graded rings R '

⊕
k≥0 I k . That is,

Yϑ is isomorphic to the blowup of Y0 along V (I ). Therefore we can identify the
degree zero part of the field of fractions of R with the field of fractions of R0. Since
R0 is assumed to be normal, r ∈ R0 as required. �

3B. The quotient morphism will be written p : µ−1
X (0)→ Yϑ . For each character

θ ∈X(G) and vector space M on which G acts, we denote by Mθ the set of elements
m ∈ M such that g ·m = θ(g)m for all g ∈G. We can define a coherent sheaf Lθ on
the quotient Yϑ by Lθ (U ) :=

[
Oµ−1

X (0)(p
−1(U ))

]θ . Since G acts freely on µ−1
X (0),

Lθ is a line bundle on Yϑ .

3C. Quantum Hamiltonian reduction. Differentiating the action of G on V pro-
duces a morphism of Lie algebras µD : g→ Vect(V ), from g into the Lie algebra
of algebraic vector fields on V :

µD(A)(r) :=
d
dt

a∗exp(t A)(r)|t=0,

where a : G × V → V is the action map and a∗ : G ×O(V )→ O(V ) the induced
action on functions. We write D(V ) for the ring of algebraic differential operators
on V . Since Vect(V ) ⊂ D(V ) we get a map µD : g→ D(V ) which extends to
an algebra morphism U (g)→ D(V ). For χ ∈ (g∗)G , θ ∈ X, we define the left
D(V )-module

LD,χ :=D(V )
/∑

A∈g

D(V )(µD(A)−χ(A)),

and the algebra and (Uχ ,Uχ+θ )-bimodule, respectively:

Uχ =
(
EndD(V )(LD,χ )

G)opp
, Uθχ = HomD(V )(LD,χ ,LD,χ+θ ⊗Cθ )

G .
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Fix χ ∈ (g∗)G and θ ∈ X. We consider the following natural homomorphisms:

U−θχ+θ ⊗C Uθχ −→ Uχ+θ , φ⊗ψ 7→ (idUχ+θ ⊗ ev) ◦ (ψ ⊗ id−θ ) ◦φ,(4)

Uθχ ⊗C U−θχ+θ −→ Uχ , φ⊗ψ 7→ (idUχ ⊗ ev) ◦ (ψ ⊗ idθ ) ◦φ,(5)

where ◦ is composition of morphisms and ev : C−θ ⊗Cθ → C is the natural map.
We write χ → χ + θ if the map (4) is surjective and similarly χ + θ → χ if the
map (5) is surjective. Note that if χ + θ � χ then, as shown in [McConnell and
Robson 2001, Corollary 3.5.4], the algebras Uχ and Uχ+θ are Morita equivalent.

3D. The sheaf of W-algebras. Denote by WX the restriction of the canonical W-
algebra WT ∗V to X. We define an action of the torus C× on T ∗V by Tt(v)= t−1v

for all v ∈ T ∗V ; X is a C×-stable open set. The algebra WX is then equipped
with an F-action of weight 2 as defined in the setup of Lemma 2.9. Define
W̃T ∗V :=WT ∗V [h̄1/2

] and write W̃X for its restriction to X. As noted in Section 2A,
we have an embedding j :D(V ) ↪→WT ∗V , xi 7→ xi and ∂/∂xi 7→ h̄−1ξi . Composing
this morphism with the mapµD :g→D(V ) gives us a mapµW= j◦µD :g→WT ∗V .
It is a quantized moment map in the sense of Definition 2.5. Then, as in (3), for
each χ ∈ (g∗)G , we have defined the W̃T ∗V -module LT ∗V,χ . Its restriction to X

is denoted Lχ . Recall that Lχ is a good quasi-G-equivariant W̃X-module. If we
let C× act trivially on g then the morphism µW is F-equivariant and hence Lχ is
equipped with an F-action. The image of 1 in Lχ will be denoted by uχ .

3E. Kashiwara and Rouquier [2008] show that one can quantize the process of
Hamiltonian reduction to get a family of sheaves of W-algebras on Yϑ beginning
from a W-algebra on T ∗V . Set

Aχ =
((

p∗EndW̃X
(Lχ )

)G)opp and Aχ,θ =
(

p∗HomW̃X
(Lχ ,Lχ+θ ⊗Cθ )

)G
,

where θ ∈ X(G) and Cθ denotes the corresponding one dimensional G-module. By
[Kashiwara and Rouquier 2008, Proposition 2.8], Aχ is a W-algebra on Yϑ and
Aχ,θ is a (Aχ ,Aχ+θ )-bimodule. Let

Aχ (0)=
((

p∗EndW̃X(0)(Lχ (0))
)G)opp

,

Aχ,θ (0)= (p∗HomW̃X(0)(Lχ (0),Lχ+θ (0)⊗Cθ ))
G,

so that Aχ,θ (0) is a Aχ (0)-lattice of Aχ,θ . We have Aχ (0)/Aχ (−1/2)'OYϑ and, as
noted in [ibid., Proposition 2.8(iii)], Aχ,θ (0)/Aχ,θ (−1/2)' L−θ , where Lθ is the
line bundle as defined above. We say that a good Aχ -module M is generated, locally
on Y0, by its global sections if for each y ∈ Y0 there exists some open neighborhood
(in the complex analytic topology) U ⊂ Y0 of y such that the natural map of left
(Aχ )| f −1(U )-modules (Aχ )| f −1(U )⊗M( f −1(U ))→M| f −1(U ) is surjective.
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Definition 3.2. We denote by Modgood
F (Aχ ) the full subcategory of Modgood

F (Aχ )

consisting of all good, F-equivariant Aχ -modules M such that:

(i) M is generated, locally on Y0, by its global sections.

(ii) For any nonzero submodule N of M in Modgood
F (Aχ ) we have

HomModgood
F (Aχ )

(Aχ ,N) 6= 0.

3F. W-affinity. We can now state the main result relating the sheaf of W-algebras
Aχ on Yϑ and the algebra of quantum Hamiltonian reduction Uχ .

Theorem 3.3. Let Aχ and Uχ be as above and choose some θ ∈ X(G) such that
Lθ is ample.

(i) There is an isomorphism of algebras 0(Yϑ ,Aχ )
F
' Uχ .

(ii) Assume that we have χ← χ + nθ for all n ∈ Z≥0. Then the functor

M 7→ HomModgood
F (Aχ )

(Aχ ,M)

defines an equivalence of categories Modgood
F (Aχ )−→

∼ Uχ -mod with quasiin-
verse M 7→Aχ ⊗Uχ M.

(iii) Assume that we have χ � χ + nθ for all n ∈ Z≥0. Then the functor

M 7→ HomModgood
F (Aχ )

(Aχ ,M)

defines an equivalence of categories Modgood
F (Aχ )−→

∼ Uχ -mod with quasiin-
verse M 7→Aχ ⊗Uχ M.

The proof of Theorem 3.3 will occupy the remainder of Section 3.

3G. Proof of the theorem. We fix Aχ , Uχ and Lθ as in Theorem 3.3. First we re-
quire some preparatory lemmata. Denote by ι the embedding D(V ) ↪→W̃T ∗V (T ∗V )
given by xi 7→ h̄−1/2xi and ∂i 7→ h̄−1/2ξi . Equip D(V )with a 1

2 Z-filtration F• D(V )
by placing xi and ∂i in degree 1

2 (this is the Bernstein filtration). Then ι is a strictly
filtered embedding in the sense that

ι(FkD(V ))= ι(D(V ))∩ W̃T ∗V (T ∗V )(k), for all k ∈ 1
2 Z.

By Lemma 2.9, the image of D(V ) in W̃T ∗V (T ∗V ) is W̃T ∗V (T ∗V )F . This implies,
since C× is reductive and µW is equivariant, that

(6)
∑
A∈g

W̃T ∗V (T ∗V )(µW(A)−χ(A))∩ ι(D(V ))

=

∑
A∈g

W̃T ∗V (T ∗V )F (µW(A)−χ(A)),
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which in turn equals

(7)
∑
A∈g

D(V )(µD(A)−χ(A)).

Lemma 3.4 [Ginzburg et al. 2009, Lemma 2.2].

(i) Multiplication in D(V ) defines an algebra structure on (LD,χ )
G such that

there is isomorphism of algebras Uχ −→∼ (LD,χ )
G given by φ 7→ φ(uχ ) with

inverse f 7→ r f , where r f = · f is right multiplication by f .

(ii) We have an isomorphism of (Uχ , Uχ+θ )-bimodules Uθχ −→
∼ (LD,χ+θ )

−θ given
by φ 7→ f , where φ(uχ )= f uχ+θ ⊗ θ , with inverse f uχ+θ 7→ r f ⊗ θ .

Let us introduce

Eχ =
(
EndModG,F W̃X

(Lχ )
)opp and Eθχ = HomModF,G W̃X

(Lχ ,Lχ+θ ⊗Cθ ),

so that Eθχ is a (Eχ ,Eχ+θ )-bimodule and Lχ is a (W̃X,Eχ )-bimodule. By Lemma 2.8,
we can identify

Eχ =
(
EndW̃X(X)

(Lχ )
G,F)opp and Eθχ = HomW̃X(X)

(
Lχ ,Lχ+θ ⊗Cθ

)G,F
.

Note that (6) implies that the map ι induces an embedding ι :LD,χ ↪→LT ∗V,χ (T ∗V ),
and after taking G, F-invariants,

(8) ι : Uχ −→∼
(
EndW̃T∗V (T ∗V )(LT ∗V,χ )

G,F)opp
,

and Uθχ ' HomW̃T∗V (T ∗V )(LT ∗V,χ ,LT ∗V,χ+θ ⊗Cθ )
G,F .

Proposition 3.5. We have a filtered isomorphism 9χ : Uχ −→∼ Eχ in the sense that
9χ (FkUχ )= FkEχ for all k ∈ 1

2 Z.

Proof. The isomorphism (8) induced by the embedding ι is filtered in the same
sense as 9χ above. Therefore it suffices to show that the natural map

(LT ∗V,χ (T ∗V ))G,F =
(
EndW̃T∗V (T ∗V )(LT ∗V,χ )

G,F)opp

−→
(
EndW̃X(X)

(LX,χ )
G,F)opp

= (LX,χ (X))
G,F

is a filtered isomorphism. The localization morphism LT ∗V,χ (T ∗V )→LT ∗V,χ (X)

is clearly filtered in the weaker sense that it restricts to a map

LT ∗V,χ (T ∗V )(k)→ LT ∗V,χ (X)(k)

for each k ∈ 1
2 Z. Since the moment map µT ∗V is assumed to be flat, Proposition 2.6

says that the morphism of associated graded spaces is the natural localization map⊕
k∈ 1

2 Z

Oµ−1
T∗V (0)

(T ∗V )h̄−k
−→

⊕
k∈ 1

2 Z

Oµ−1
T∗V (0)

(X)h̄−k .
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Note that the filtration on LT ∗V,χ is stable with respect to both G and F . Lemma 2.2
says that the globally defined good filtration on LT ∗V,χ is exhaustive and Hausdorff.
Therefore, taking invariants with respect to G and F , it suffices to show that⊕

k∈ 1
2 Z

(
Oµ−1

T∗V (0)
(T ∗V )h̄−k)G,F

−→

⊕
k∈ 1

2 Z

(
Oµ−1

T∗V (0)
(X)h̄−k)G,F

is an isomorphism. But, since the F-action is contracting,(
Oµ−1

T∗V (0)
(T ∗V )h̄−k)G,F

= C
[
µ−1

T ∗V (0)
]G
−2k ,

which is the space of G-invariant homogeneous polynomials on µ−1
T ∗V (0) of degree

−2k. Similarly, (
Oµ−1

T∗V (0)
(X)h̄−k)G,F

= C
[
µ−1

X (0)
]G
−2k .

Therefore the result follows from Lemma 3.1, which says that

C[µ−1
X (0)]G = 0(Yϑ ,O

alg
Yϑ )= 0(Y0,O

alg
Y0
)= C[µ−1

T ∗V (0)]
G . �

Remark 3.6. In general, it is not true that Uθχ ' Eθχ when θ 6= 0.

3H. Shifting. The localization theorem relies on the following result by Kashiwara
and Rouquier:

Theorem 3.7 [Kashiwara and Rouquier 2008, Theorem 2.9]. Let Aχ,θ and Lθ be
as above such that Lθ is ample.

(i) Assume that for all n� 0, there exists a finite dimensional vector space Wn

and a split epimorphism of left Aχ -modules Aχ,nθ ⊗Wn � Aχ . Then, for
every good Aχ -module M, we have Ri f∗(M)= 0 for i 6= 0.

(ii) Assume that for all n� 0 there exists a finite dimensional vector space Un and
a split epimorphism of left Aχ -modules Aχ ⊗Un � Aχ,nθ . Then every good
Aχ -module is generated, locally on Y0, by its global sections.

Lemma 3.8. Let Aχ and Uχ be as above and choose θ ∈ X(G).

(i) If χ← χ + θ then there exists a finite dimensional vector space W and a split
epimorphism Aχ,θ ⊗W � Aχ .

(ii) If χ→ χ + θ then there exists a finite dimensional vector space U and a split
epimorphism Aχ ⊗U � Aχ,θ .
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Proof. We begin with (i). Equation (8) implies that we have a morphism Uθχ → Eθχ ,
which a direct calculation shows is a morphism of (Uχ ,Uχ+θ ) = (Eχ ,Eχ+θ )-
bimodules (here we identify Uχ with Eχ via the isomorphism of Proposition 3.5).
Thus χ← χ + θ implies that Eθχ ⊗E−θχ+θ � Eχ . Therefore there exists some k and
φi ∈ Eθχ , ψi ∈ E−θχ+θ for i ∈ [1, k] such that

(idLχ
⊗ ev) ◦

( k∑
i=1

(ψi ⊗ idCθ ) ◦φi

)
= idLχ

.

Let W = SpanC{ψi : i ∈ [1, k]} and define 9 : Lχ+θ ⊗Cθ ⊗W → Lχ by

9(u⊗ θ ⊗ψ)= (idLχ
⊗ ev)(ψ(u)⊗ θ).

The map 9̃ :Lχ→Lχ+θ⊗Cθ⊗W defined by v 7→
∑k

i=1 φi (v)⊗ψi is a right inverse
to 9. Hence 9 is a split epimorphism. Since 9 and 9̃ are (G,C×)-equivariant
we can apply the functor p∗HomW̃X

(Lχ ,−)
G , which by [Kashiwara and Rouquier

2008, Proposition 2.8(ii)] is an equivalence, to the morphism Lχ+θ⊗Cθ⊗W→Lχ

to get the required (necessarily split, epic) morphism.
Part (ii) is similar. Again using Proposition 3.5, χ→ χ + θ implies that

E−θχ+θ ⊗Eθχ � Eχ+θ .

Therefore there exists some k and φi ∈ E−θχ+θ , ψi ∈ Eθχ for i ∈ [1, k] such that

(idLχ+θ
⊗ ev) ◦

( k∑
i=1

(ψi ⊗ idC−θ ) ◦φi

)
= idLχ+θ

.

Let U = SpanC{ψi : i ∈ [1, k]} and define 8 : Lχ ⊗U → Lχ+θ ⊗Cθ by 8(u ⊗
ψ)= ψ(u). The map 8̃ : Lχ+θ ⊗Cθ → Lχ ⊗U defined by

v 7→ (idLχ
⊗ idU ⊗ ev)

( k∑
i=1

φi (v)⊗ψi

)
is a right inverse to 8. Hence 8 is a split epimorphism. Since 8 and 8̃ are
(G,C×)-equivariant we can apply p∗HomW̃X

(Lχ ,−)
G to the morphism

Lχ ⊗U → Lχ+θ ⊗Cθ

to get the required (necessarily split, epic) morphism. �

Proof of Theorem 3.3. It follows from the equivalence in [Kashiwara and Rouquier
2008, Proposition 2.8(iv)] that 0(Yϑ ,Aχ )

F
= Eχ . Therefore part (i) follows from

Proposition 3.5. Lemma 3.8 and Theorem 3.7 show that χ ← χ + nθ for all
n ∈Z≥0 implies that Ri f∗(M)= 0 for all i > 0 and all M∈Modgood

F (Aχ ). Similarly,
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χ→χ+nθ for all n ∈Z≥0 implies that every good Aχ -module is generated, locally
on Y0, by its global sections. Let o denote the image of the origin of T ∗V in Y0.
The C×-action we have defined on Y0 (via the C×-action on T ∗V ) shrinks every
point to o, in the sense that limt→∞ Tt(y) = o for all y ∈ Y0. In such a situation,
[ibid., Lemma 2.13] says that Ri f∗(M)= 0 for all i > 0 and all M ∈Modgood

F (Aχ )

implies that HomModgood
F (Aχ )

(Aχ ,−) is an exact functor. Similarly, [ibid., Lemma
2.14] says that if every good Aχ -module M is generated, locally on Y0, by its global
sections then every M is generated by its F-invariant global sections. That is,

Aχ ⊗Uχ HomModgood
F (Aχ )

(Aχ ,M)� M.

With these facts, one can follow the proof of [Hotta et al. 2008, Corollary 11.2.6],
more or less word for word. �

4. Hypertoric varieties

4A. As we have seen in the previous section, when one has a reductive group G
acting on a vector space V , there exists a family of W-algebras on the Hamiltonian
reduction of the cotangent bundle of V . The simplest such situation is where G =T,
a d-dimensional torus. In this case the corresponding Hamiltonian reduction is
called a hypertoric variety. In this section we recall the definition of, and basic facts
about, hypertoric varieties. The reader is advised to consult [Proudfoot 2008] for
an excellent introduction to hypertoric varieties. Here we will follow the algebraic
presentation given in [Hausel and Sturmfels 2002]. Thus, in this section only, spaces
will be algebraic varieties over C in the Zariski topology.

4B. Torus actions. Fix 1≤ d < n ∈ N and let T := (C×)d . We consider T acting
algebraically on the n-dimensional vector space V . If we fix coordinates on V such
that the corresponding coordinate functions x1, . . . , xn are eigenvectors for T then
the action of T is encoded by a d × n integer valued matrix

A = [a1, . . . , an] = (ai j )i∈[1,d], j∈[1,n],

and is given by (ξ1, . . . , ξd) · xi = ξ
a1i
1 · · · ξ

adi
d xi for all (ξ1, . . . , ξd) ∈ T. We fix the

coordinate ring of V to be R := C[x1, . . . , xn]. The algebra R is graded by the
action of T, deg(xi )= ai . We make the assumption that the d × d minors of A are
relatively prime. This ensures that the map Zn A

−→ Zd is surjective and hence the
stabilizer of a generic point is trivial.

4C. Since Zd is a free Z-module, the above assumption implies that we can choose
an n × (n − d) integer valued matrix B = [b1, . . . , bn]

T so that the following
sequence is exact:

(9) 0−→ Zn−d B
−→ Zn A

−→ Zd
= X −→ 0,
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where, as before, X :=Homgp(T,C×) is the character lattice of T and Zn is identified
with the character lattice of (C×)n ⊂ GL(Cn). The dual HomZ(X,Z) of X, which
parametrizes one-parameter subgroups of T, will be denoted Y. Applying the functor
Hom( · ,C×) to the sequence (9) gives a short exact sequence of abelian groups

(10) 1−→ T
AT

−→ (C×)n
BT

−→ (C×)n−d
−→ 1.

Let t denote the Lie algebra of T and g the Lie algebra of (C×)n . Differentiating
the sequence (10) produces the short exact sequence

(11) 0−→ t
AT

−→ g
BT

−→ Lie(C×)n−d
−→ 0

of abelian Lie algebras.

4D. Geometric invariant theory. The standard approach to defining “sensible” al-
gebraic quotients of V by T is to use geometric invariant theory. We recall here the
basic construction that will be used. Let XQ := X⊗Z Q be the space of fractional
characters. We fix a stability parameter δ ∈ XQ. For k = (k1, . . . , kn) ∈ Nn , the
monomial xk1

1 · · · x
kn
n will be written xk . Then λ · xk

= λA·k xk and we define

Rδ := SpanC(x
k
| A · k = δ)

to be the space of T-semiinvariants of weight δ. Note that Rδ = 0 if δ /∈ X. A
point p ∈ V is said to be δ-semistable if there exists an n > 0 such that nδ ∈ X and
f ∈ Rnδ with f (p) 6= 0. A point p is called δ-stable if it is δ-semistable and in
addition its stabilizer under T is finite. The set of δ-semistable points in V will be
denoted V ss

δ . The parameter δ is said to be effective if Rnδ
6= 0 for some n > 0 (by

the Nullstellensatz this is equivalent to V ss
δ 6=∅).

Definition 4.1. Let δ ∈ XQ be an effective stability condition. The G.I.T quotient
of V by T with respect to δ is the variety

X (A, δ) := Proj
⊕
k≥0

Rkδ
;

it is projective over the affine quotient X (A, 0) := Spec(RT).

If a point p ∈ V is not δ-semistable it is called δ-unstable. Using the one-
parameter subgroups of T one can describe the set V us

δ of δ-unstable points. We
denote by 〈 · , · 〉 the natural pairing between Y and X (and by extension between
t and t∗). Let V ( f1, . . . , fk) denote the set of common zeros of the polynomials
f1, . . . , fk ∈ R.
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Lemma 4.2. Let δ ∈ XQ be an effective stability parameter. The δ-unstable locus is

(12) V us
δ =

⋃
λ∈Y
〈λ,δ〉<0

V (xi | 〈λ, ai 〉< 0).

Moreover, there exists a finite set F(δ)= {λ1, . . . , λk} ⊂ Y, 〈λi , δ〉< 0 such that⋃
λ∈Y
〈λ,δ〉<0

V (xi | 〈λ, ai 〉< 0)=
⋃

λ∈F(δ)

V (xi | 〈λ, ai 〉< 0).

Proof. Let S := R[t] and extend the action of T from R to S by setting g ·t = δ(g)−1t
for all g ∈ T. Then (S)T =

⊕
n≥0 Rnδ

· tn . Now

u ∈ V us
δ ⇐⇒ f (u)= 0 for all f ∈ Rnδ, n > 0,

⇐⇒ F(u, 1)= 0 for all F ∈ (ST)+ = (S+)T,

⇐⇒ T · (u, 1)∩ V ×{0} 6=∅,

where (ST)+ = (S+)T follows from the fact that T is reductive. Then [Kempf
1978, Theorem 1.4] says that there exists a one-parameter subgroup λ ∈ Y such
that limt→0 λ(t) · (u, 1) ∈ V ×{0}. Writing u = u1+ · · ·+ un such that xi (u)= ui ,
we have

λ(t) · (u, 1)=
( n∑

i=1

t−〈λ,ai 〉ui , t 〈λ,δ〉
)
,

which implies that ui = 0 for all i ∈ [1, n] such that 〈λ, ai 〉> 0 and 〈λ, δ〉> 0. This
shows that the left hand side of (12) is contained in the right hand side. Conversely,
if u is δ-semistable then it is also φ-semistable with respect to the action of the
one dimensional torus λ : T ↪→ T on V , where φ is the character of T defined
by t 7→ t 〈λ,δ〉. �

4E. The variety X (A, δ) is a toric variety and, as shown in [Hausel and Sturmfels
2002, Corollary 2.7], any semiprojective toric variety equipped with a fixed point is
isomorphic to X (A, δ) for suitable A and δ. Fix S ⊂ V and let δ1, δ2 ∈ XQ be two
stability parameters such that Sss

δ1
, Sss

δ2
6= 0. Then δ1 and δ2 are said to be equivalent

if Sss
δ1
= Sss

δ2
. The set of all ρ equivalent to a fixed δ will be denoted C(δ). These

equivalence classes form the relative interiors of the cones of a rational polyhedral
fan 1(T, S), called the G.I.T. fan, in XQ. The support of 1(T, S) is the set of all
effective δ ∈ XQ such that Sss

δ 6= 0 and is denoted |1(T, S)|. We will mainly be
concerned with S = V . The cones in 1(T, V ) having the property that the stable
locus is properly contained in the semistable locus are called the walls of 1(T, V ).
The G.I.T. fan is quite difficult to describe explicitly; see [Oda and Park 1991].
However one has the following explicit description of the walls of 1(T, V ).
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Lemma 4.3. Let T act on V via A as in Section 4B. Then |1(T, V )|=
∑n

i=1 Q≥0·ai

and the walls of the fan are
∑

i∈J Q≥0 · ai , where J ⊂ [1, n] is any subset such that
dimQ(SpanQ(ai | i ∈ J ))= d − 1.

Proof. Let 0 6= δ∈
∑n

i=1 Z≥0 ·ai and write δ=
∑

i∈I ni ai where I ⊂[1, n] and ni >0
for all i ∈ I . Then 0 6= f =

∏
i∈I xni

i ∈ Rδ implies that δ is effective. Now let δ ∈X

be any effective stability parameter and choose 0 6= p∈ V ss
δ . Write p= p1+· · ·+ pn

so that xi (p)= pi and let I = {i ∈ [1, n] | pi 6= 0}. Then Lemma 4.2 shows that

p ∈ V ss
δ ⇐⇒ (〈λ, δ〉< 0 ⇒ there exists i ∈ I such that 〈λ, ai 〉< 0)

⇐⇒ {λ ∈ Y | 〈λ, δ〉< 0} ∩
(∑

i∈I

Z≥0 · ai

)∨
=∅

⇐⇒

(∑
i∈I

Z≥0 · ai

)∨
⊂ {λ ∈ Y | 〈λ, δ〉 ≥ 0}

⇐⇒ δ ∈
∑
i∈I

Z≥0 · ai .

Now choose δ ∈X to lie on a wall. By definition, there exists a δ-semistable point p
such that dim Stab T(p)≥ 1. Let I be as above. Then dim Stab T(p)≥ 1 implies that
the subspace

∑
i∈I Q · ai must be a proper subspace of XQ. The above reasoning

shows that δ ∈
∑

i∈I Z≥0 · ai as required. �

Lemma 4.3 shows that, under our assumption on A, the maximal cones of
1(T, V ) are all d-dimensional. We will refer to these maximal cones as the d-
cones of 1(T, V ). The integer valued matrix A is said to be unimodular1 if every
d × d minor of A takes values in {−1, 0, 1}. Combining [Hausel and Sturmfels
2002, Corollary 2.7 and Corollary 2.9] gives the following theorem:

Theorem 4.4. The variety X (A, δ) is an orbifold if and only if δ belongs to the
interior of a d-cone of 1(T, V ). It is a smooth variety if and only if δ belongs to
the interior of a d-cone of 1(T, V ) and A is unimodular.

4F. Hypertoric varieties. Define A± := [A,−A], a d × 2n matrix. It defines a
grading on the ring R :=C[T ∗V ] =C[x1, . . . , xn, y1, . . . , yn]. For δ in the interior
of a d-cone of 1(T, T ∗V ), the corresponding toric variety X (A±, δ) is called a
Lawrence toric variety associated to A. It is a G.I.T. quotient of the symplectic
vector space T ∗V with canonical symplectic form

ω = dx1 ∧ dy1+ · · ·+ dxn ∧ dyn.

1In [Hausel and Sturmfels 2002], the authors define A to be unimodular if every nonzero d × d
minor of A has the same absolute value. However they also, as do we, make the assumption that the
d × d minors of A are relatively prime. Thus, their definition agrees with ours.
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The action of T is Hamiltonian and the moment map is given by

µ : T ∗V −→ t∗, µ(x, y)=
( n∑

j=1

ai j x j y j

)
i∈[1,d]

.

Consider the ideal

I := I (µ−1(0))=
〈 n∑

j=1

ai j x j y j

∣∣∣∣ i ∈ [1, d]
〉
⊂ R;

it is homogeneous and generated by T-invariant polynomials.

Definition 4.5. The hypertoric variety associated to A and δ is defined to be

Y (A, δ) := µ−1(0)//δ T = Proj
⊕
k≥0

(R/I )kδ;

it is projective over the affine quotient Y (A, 0) := Spec((R/I )T).

The basic properties of hypertoric varieties can be summarized as follows:

Proposition 4.6 [Hausel and Sturmfels 2002, Proposition 6.2]. If δ is in the interior
of a d-cone of 1(T, µ−1(0)) then the hypertoric variety Y (A, δ) is an orbifold. It
is smooth if and only if δ is in the interior of a d-cone of 1(T, µ−1(0)) and A is
unimodular.

4G. In this subsection we show that the assumptions of Section 3A are valid for
hypertoric varieties. Let f : Y (A, δ)→ Y (A, 0) be the projective morphism from
Y (A, δ) to Y (A, 0). Lemma 4.9 below together with Proposition 4.6 implies that
f is birational and hence a resolution of singularities when Y (A, δ) is smooth.
The symplectic form ω on T ∗V induces a symplectic 2-form on the smooth locus
of Y (A, δ). In particular, when Y (A, δ) is smooth it is a symplectic manifold.
Proposition 4.11 below shows that Y (A, 0) is a symplectic variety and the resolution
f is a symplectic resolution.2 This implies that Y (A, 0) is also normal.

Lemma 4.7. The moment map is flat and µ−1(0) is a reduced complete intersection
in T ∗V . If no row of the matrix B is zero then µ−1(0) is irreducible.

Proof. The graded lexicographic ordering on a monomial xα , α ∈ Z2n , is defined by
saying that xα > xβ if and only if |α|> |β|, or |α| = |β| and the leftmost nonzero
entry of α − β is positive; see [Cox et al. 2007, page 58]. After permuting the
variables x1, . . . , xn , we may assume that the first d columns of A are linearly
independent. Applying an automorphism of T and then letting T act is the same as
multiplying A on the right by some unimodular d × d-matrix. Using this fact we

2We refer the reader to [Fu 2006] for the definition of symplectic variety and symplectic resolution.
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may assume that the leftmost d × d-block of A is the identity matrix. This allows
us to rewrite the generators of I as{

xi yi −

n∑
j=d+1

ci, j x j y j

∣∣∣∣ i = 1, . . . , d
}
, where ci, j ∈ Z.

By [Cox et al. 2007, Theorem 8, page 461], dimµ−1(0)=dim V (in(I )), where in(I )
denotes the initial ideal of I with respect to the ordering x1> x2> · · ·> y1> y2 · · · .
Now by [Cox et al. 2007, Theorem 3 (Division algorithm), page 64], we have
in(I )= 〈x1 y1, . . . , xd yd〉. This is the zero set of a union of 2d linear subspaces of
T ∗V of dimension 2n − d. Therefore dimµ−1(0) = 2n − d and it follows from
[Holland 1999, Lemma 2.3] that the moment map is flat. To prove that it is a
complete intersection we must show that the generators of I given above form a
regular sequence in the polynomial ring R. Once again, it suffices to note that
x1 y1, . . . , xd yd is a regular sequence. Also, since the ideal in(I ) is radical, the ideal
I is itself radical.

Now note that, since the sequence (9) is exact, the matrix B contains a row of
zeros if and only if there exists an i ∈ [1, .., d] such that ci, j = 0 for all j > d . So,
when B contains no rows equal to zero we can write

yi = x−1
i

n∑
j=d+1

ci, j x j y j mod I

on the open set µ−1(0)\V (x1 · · · xd). This shows that µ−1(0) contains an open
set isomorphic to A2n−d . We just need to show that this open set is dense. Since
µ−1(0) is a complete intersection, it is pure dimensional. Therefore it suffices to
show that the dimension of µ−1(0)∩ V (x1 · · · xd) is at most 2n− d − 1. Consider
Y = µ−1(0)∩ V (x1) and let J = I (Y ). We may assume without loss of generality
that c1,d+1 6= 0. Then J is generated by x1, xi yi−

∑n
j=d+2 ci, j x j y j for j = 2, . . . , d

and xd+1 yd+1+
∑n

j=d+2 c1, j x j y j . Hence in(J )=〈x1, x2 y2, . . . , xd+1 yd+1〉, which
defines a variety of dimension 2n− d − 1 as required. �

From now on we assume that no row of the matrix B is zero.

Lemma 4.8. For any A, we have dim X (A±, 0)= 2n− d.

Proof. Let U = V \V (x1 · · · xn) and let S1 = C[x±1
1 , . . . , x±1

n ]
T denote the co-

ordinate ring of the quotient U/T. Let F1 be the field of fractions of S1. Let
S2 = C[X (A±, 0)] and F2 its field of fractions. We claim that F1 ⊂ F2. An
element in F1 is a fraction f (x1, . . . , xn)/g(x1, . . . , xn), where f and g are homo-
geneous of the same weight with respect to T. Then f (x) f ( y), g(x) f ( y) ∈ S2 and
f (x) f ( y)/g(x) f ( y)= f (x)/g(x) as required. Since dim Tn/T= n− d , to prove
the lemma it suffices to show that the field extension F1 ⊂ F2 has transcendental
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degree n. Consider the field K = F1〈x1 y1, . . . , xn yn〉. Then F1 ⊂ K ⊂ F2 and K
is a purely transcendental extension of F1 of degree n. We claim that K = F2. To
show this it is sufficient to show that if f ∈ S2 is a polynomial in the xi and y j

then f ∈ K . We show more generally that if f = f1/g, where f1, g ∈ S2 and g a
monomial, then f ∈ K . We prove the claim by induction on the number of terms
in f (note that even though there is some choice in the exact form of each of the
terms in f , the number of terms is unique). Let u = αx i y j , i, j ∈ Zn , be some
nonzero term of f . Then (xy)− j u ∈ F1 and (xy)− j f − (xy)− j u ∈ K by induction.
Since (xy)− j

∈ K , this implies that f ∈ K . �

Note that, unlike X (A±, 0), the dimension of X (A, 0) can vary greatly depending
on the specific entries of A.

Lemma 4.9. For any A, we have dim Y (A, 0)= 2(n− d) and Y (A, 0) is Cohen–
Macaulay.

Proof. By Hochster’s Theorem [Bruns and Herzog 1993, Theorem 6.4.2], the
ring C[X (A±, 0)] is Cohen–Macaulay. As noted in Lemma 4.7, the generators
u1, . . . , ud of I form a regular sequence in R. Since T is reductive,

R = C[X (A±, 0)]⊕ E

as a C[X (A±, 0)]-module. Therefore projection from R to C[X (A±, 0)] is a
Reynolds operator in the sense of [ibid., page 270]. Since u1, . . . , ud are T-
invariant, [ibid., Proposition 6.4.4] now says that they form a regular sequence in
X (A±, 0). Therefore [ibid., Theorem 2.1.3] says that Y (A, 0) is Cohen–Macaulay
with dim Y (A, 0)= dim X (A±, 0)− d . The lemma follows from Lemma 4.8. �

Lemma 4.10. Let δ ∈ XQ. The graded ring
⊕

k≥0 (R/I )kδ is Cohen–Macaulay,
that is, Y (A, δ) is arithmetically Cohen–Macaulay.

Proof. Consider S = R[t] with T acting on t via g · t = δ(g)−1t . Replacing R with
S in the proof of Lemma 4.9 gives a proof of the statement. �

Proposition 4.11. Let A be unimodular and choose δ in the interior of a d-
cone of 1(T, µ−1(0)). Then Y (A, 0) is a symplectic variety and the morphism
f : Y (A, δ)→ Y (A, 0) is a symplectic resolution.

Proof. The construction of Y (A, δ) and Y (A, 0) as Hamiltonian reductions means
that they are Poisson varieties and f preserves the Poisson structure. Therefore the
smooth locus of Y (A, 0) is a symplectic manifold since Y (A, δ) is a symplectic man-
ifold. In [Proudfoot and Webster 2007, §2], a stratification of Y (A, 0) into smooth
locally closed subvarieties of even dimensions is constructed. This stratification
shows that Y (A, 0) is smooth in codimension one. Therefore the fact (Lemma 4.9)
that Y (A, 0) is Cohen–Macaulay together with Serre’s normality criterion [Bruns
and Herzog 1993, Theorem 2.2.22] implies that Y (A, 0) is normal. Also, the fact
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that Y (A, δ) is a symplectic manifold implies that its canonical bundle is trivial.
Therefore the Grauert–Riemenschneider vanishing theorem implies that Y (A, 0)
has rational Gorenstein singularities. Then [Namikawa 2001, Theorem 6] says that
Y (A, 0) is a symplectic variety. �

4H. G.I.T. chambers for hypertoric varieties. Define the subvariety E of T ∗V
by E = {(x, y) ∈ T ∗V | xi · yi = 0 for all i ∈ [1, n]}. We decompose E into its
n-dimensional irreducible components

E=
⋃

I⊂[1,n]

EI , EI :={(x, y)∈T ∗V | xi=0 for all i ∈ I, yi=0 for all i ∈[1, n]\I }.

The subvariety E is preserved under the T-action. Therefore we may consider the
corresponding G.I.T. quotients. The G.I.T. quotient E//δ T is a closed subvariety of
Y (A, δ), called the extended core of Y (A, δ); see [Proudfoot 2008] for details.

Lemma 4.12. In XQ we have equalities of G.I.T. fans

1(T, T ∗V )=1(T,E)=1(T, µ−1(0)).

Proof. For a fixed I ⊂ [1, n], denote by πI : T ∗V � EI the projection that sends xi

to zero if i ∈ I and y j to zero if j ∈ [1, n]\I . The restriction of πI to µ−1(0) will
be denoted π̃I . The statement of lemma follows from the claim

(13) (T ∗V )ss
δ =

⋃
I⊂[1,n]

π−1
I ((EI )

ss
δ ) and (µ−1(0))ss

δ =

⋃
I⊂[1,n]

(π̃I )
−1((EI )

ss
δ )

for each δ ∈ X. Let p ∈ (EI )
ss
δ . Then, without loss of generality, we may assume

that there exists a monomial f ∈ RNδ , N ≥ 1, such that f (p) 6= 0. Then f (q) 6= 0
for all q ∈π−1

I (p). Hence (T ∗V )ss
δ ⊃π

−1
I ((EI )

ss
δ ) and (µ−1(0))ss

δ ⊃ (π̃I )
−1((EI )

ss
δ )

for all I ⊂ [1, n]. Now choose p ∈ (T ∗V )ss
δ . Then there exist m ∈ N and g ∈ Rmδ

such that g(p) 6= 0. We may assume without loss of generality that

g =
∏

i

xui
i

∏
i

yvi
i for some ui , vi ≥ 0.

By definition,
∑

i (ui − vi )ai = mδ. For each i , define si and ti by

(1) ui − vi > 0 =⇒ si = ui − vi , ti = 0;

(2) ui − vi < 0 =⇒ ti = vi − ui , si = 0;

(3) ui − vi = 0 =⇒ si = ti = 0.

Set I = {i ∈ [1, n] | ti 6= 0}. Then g(p) 6= 0 implies that πI (p) 6= 0. Define
g̃ =

∏
i x si

i
∏

i yti
i ∈ Rmδ. Then g̃(πI (p)) 6= 0 implies that p ∈ π−1

I ((EI )
ss
δ ) and

hence (T ∗V )ss
δ =

⋃
I⊂[1,n] π

−1
I ((EI )

ss
δ ) as required. The second equality in (13)

follows from the first one. �



ON DEFORMATION QUANTIZATIONS OF HYPERTORIC VARIETIES 113

Corollary 4.13. Let T act on V via A as in Section 4B. Then |1(T, µ−1(0))| =XQ

and the walls of the fan 1(T, µ−1(0)) are
∑

i∈J Q · ai , where J ⊂ [1, n] is any
subset such that dimQ(SpanQ(ai | i ∈ J ))= d − 1.

Assume now that A is unimodular and choose δ ∈X to lie in the interior, denoted
C(δ), of a d-cone of 1(T, µ−1(0)). If ζ ∈ C(δ) ∩ X then Y (A, δ) = Y (A, ζ ).
Recall from Section 3A that ζ also defines a line bundle Lζ on Y (A, δ). From
the definition of Y (A, δ) as proj of a graded ring, we see that Lζ is an ample line
bundle on Y (A, δ). Summarizing:

Lemma 4.14. Let A be unimodular and let C(δ) denote the interior of a d-cone of
1(T, µ−1(0)). Then the line bundle Lζ on Y (A, δ) is ample for all ζ ∈ C(δ)∩X.

5. Quantum Hamiltonian reduction

5A. Recall that D(V ) denotes the ring of algebraic differential operators on the
n-dimensional space V . Let T act on V with weights described by the matrix A (as
in Sections 4B and 4C) and choose an element χ of the dual t∗ of the Lie algebra
t of T. As explained in Section 3D, by differentiating the action of T we get a
quantum moment map µD : t→ D(V ), ti 7→

∑n
j=1 ai j x j∂ j . As in Section 3C,

the quantum Hamiltonian reduction of V with respect to χ is defined to be the
noncommutative algebra

Uχ :=
(
D(V )

/
D(V )(µD −χ)(t)

)T
.

We also have bimodules

Uθχ :=
(
D(V )

/
D(V )(µD − (χ + θ))(t)

)−θ
.

We say that χ and χ+θ are comparable if the multiplication map Uθχ⊗U−θχ+θ→Uχ
is nonzero. By [Musson and Van den Bergh 1998, Theorem 7.3.1], the ring Uχ is a
domain. Then [ibid., Proposition 4.4.2] says that this implies that comparability is
an equivalence relation. As in Section 3C, write χ→ χ + θ if U−θχ+θ ⊗Uθχ � Uχ+θ .
As noted in [ibid., Remark 4.4.3], the relation→ is transitive. Therefore it defines
a preorder on the set of elements in t∗ comparable to χ . We say that χ is maximal
if χ is maximal in this preordering, that is, χ ′→ χ implies χ→ χ ′.

5B. The main results. Write pr : C→Q for the Q-linear projection onto Q and
denote by the same symbol the corresponding extension to t∗:

pr : t∗ = X⊗Z C−→ XQ.

We also write pr for the map Cn
= C⊗Z Zn

→Qn . Then pr(A · v)= A · pr(v) for
all v ∈ Cn . The following proposition is the key to proving our main result. Its
proof is given in Section 5D.
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Proposition 5.1. Let C ⊂ XQ be the interior of a d-cone in the fan 1(T, µ−1(0)).
Choose χ ∈ t∗ such that pr(χ) ∈ C. Then there exists a nonempty d-dimensional
integral cone C(χ) ⊂ C ∩ X ∪ {0} such that for all θ ∈ C(χ), χ ← χ + pθ for
all p ∈ Z≥0.

Recall from Sections 4F and 3D that for each χ ∈ t∗ and δ ∈ C , where C is the
interior of a d-cone of 1(T, µ−1(0)), we have defined the sheaf of algebras Aχ on
the smooth symplectic manifold Y (A, δ).

Theorem 5.2. Let C ⊂ XQ be the interior of a d-cone of 1(T, µ−1(0)). Choose
χ ∈ t∗ such that pr(χ) ∈ C and choose δ ∈ C. Let Aχ be the corresponding
W-algebra on Y (A, δ).

(i) The functor HomModgood
F (Aχ )

(Aχ , · ) defines an equivalence of categories

Modgood
F (Aχ )−→

∼ Uχ -mod

with quasiinverse Aχ ⊗Uχ ( · ).

(ii) For any 0 6= θ ∈ C(χ), there exists some N > 0 such that the functor
HomModgood

F (Aχ )
(Aχ , · ) defines an equivalence of categories

Modgood
F (Aχ+Nθ )−→

∼ Uχ+Nθ -mod

with quasiinverse Aχ ⊗Uχ ( · ).

Proof. By Proposition 5.1 we can choose 0 6= θ ∈ C(χ) such that χ← χ + pθ for
all p ∈ Z≥0. Since C(χ)\{0} ⊂ C , Lemma 4.14 says that θ defines an ample line
bundle Lθ on Y (A, δ) and we have Aχ,θ (0)/Aχ,θ (−1/2)' L−θ . Then part (i) of
the theorem is a particular case of Theorem 3.3 (ii). The proof of Proposition 5.1
shows that we actually have

χ← χ + θ← χ + 2θ← · · · .

Since the set of all covectors of the oriented matroid defined by A is finite and each
Qχ (which will be defined in Definition 5.9) is a subset of this set, we see that there
are only finitely many different Qχ . Therefore we eventually get

χ + Nθ � χ + (N + 1)θ � · · ·

for some sufficiently large N . Then part (ii) of the theorem is a particular case of
Theorem 3.3(iii). �

Corollary 5.3. Let Y (A, δ),Aχ ,Uχ , . . . be as in Theorem 5.2 (with pr(χ) ∈ C).
If the global dimension of Uχ is finite then the functor HomModgood

F (Aχ )
(Aχ , · )

defines an equivalence of categories Modgood
F (Aχ )−→

∼ Uχ -mod with quasiinverse
Aχ ⊗Uχ ( · ).
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Proof. By Proposition 5.1 we can choose 0 6= θ ∈ C(χ) such that χ← χ + pθ for
all p ∈ Z≥0. However, [Musson and Van den Bergh 1998, Theorem 9.1.1] says
that χ is maximal if and only if the global dimension of Uχ is finite. Therefore
χ � χ + θ for all θ ∈ C(χ). Then, as in the proof of Theorem 5.2, Theorem 3.3
implies the statement of the corollary. �

It seems natural to conjecture that, for any χ ∈ t∗, Uχ has finite global dimension
if and only if Modgood

F (Aχ )−→
∼ Uχ -mod, where Aχ is the corresponding W-algebra,

defined on some Y (A, δ).

5C. The case d = 1. In specific cases it is possible to strengthen Proposition 5.1.
One such case is when the torus T is one-dimensional. Here the sets Qχ (which will
be defined in Definition 5.9) can be explicitly described, as was done in [Van den
Bergh 1991]. Since A is assumed to be unimodular and ai 6= 0 for all i we see
that ai = ±1 for all i . After reordering we may assume that a1, . . . , ak = 1 and
ak+1, . . . , an =−1. For simplicity let us assume that n > 1. Then

Qχ = {0} ⇐⇒ χ ∈ (C\Z)∪ {k− n+ 1, k− n+ 2, . . . , n− k− 2, n− k− 1},

Qχ = {0,+}⇐⇒ χ ∈ Z≥n−k,

Qχ = {0,−}⇐⇒ χ ∈ Z≤k−n.

In this situation XQ =Q and there are two 1-cones with respect to the action of T

on µ−1(0); they are Q≥0 and Q≤0. Applying Theorem 3.3 gives:

Proposition 5.4. Let dim T = 1 and n > 1 and choose χ ∈ t∗. For δ 6= 0, let Aχ

denote the corresponding W-algebra on Y (A, δ).

(i) When δ = 1 we have an equivalence

Modgood
F (Aχ )−→

∼ Uχ -mod

if and only if χ ∈ (C\Z)∪Z≥0 and Modgood
F (Aχ )=Modgood

F (Aχ ) if and only
if χ ∈ (C\Z)∪Z≥n−k .

(ii) When δ = −1 we have an equivalence Modgood
F (Aχ ) −→

∼ Uχ -mod if and
only if χ ∈ (C\Z) ∪ Z<0 and Modgood

F (Aχ ) = Modgood
F (Aχ ) if and only if

χ ∈ (C\Z)∪Z≤k−n .

This result can be viewed as a variant of [Van den Bergh 1991, Theorem 6.1.3],
where sufficient conditions for the D-affinity of weighted projective spaces are
stated.

5D. The remainder of this section is devoted to the proof of Proposition 5.1. Since
T can be considered as a subgroup of Tn , t is a Lie subalgebra of g= Lie(Tn) and
we may regard elements of t as linear functionals on g∗. Let ρ : g∗ � t∗ be the
natural map.
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Definition 5.5. Let λ ∈ Y and θ ∈
(∑
〈λ,ai 〉=0 C · ai

) / (∑
〈λ,ai 〉=0 Z · ai

)
. We say

that the pair (λ, θ) is attached to χ if there exists α ∈ ρ−1(χ) such that∑
〈λ,ai 〉=0

αi ai ≡ θ mod
∑
〈λ,ai 〉=0

Z · ai ,

and
〈λ, ai 〉> 0 =⇒ αi ∈ Z, αi ≥ 0,
〈λ, ai 〉< 0 =⇒ αi ∈ Z, αi < 0,
〈λ, ai 〉 = 0 =⇒ αi ∈ C\Z.

Remark 5.6. The above definition is based on [Musson and Van den Bergh 1998,
Definition 7.2.1]. There it is stipulated that λ ∈ t ∩Qn , but we only care about
whether 〈λ, ai 〉 is greater than, less than or equal to 0; therefore we can assume
λ ∈ Y. Also our sign convention in Definition 5.5 is opposite to that given in [ibid.,
Definition 7.2.1] so that it agrees with the conventions of Section 4.

5E. Let us define an equivalence relation on the set of pairs (λ, θ) by saying
that (λ1, θ1) is equivalent to (λ2, θ2) if {i | 〈λ1, ai 〉 > 0} = {i | 〈λ2, ai 〉 > 0},
{i | 〈λ1, ai 〉 < 0} = {i | 〈λ2, ai 〉 < 0} and θ2 ≡ θ1 mod

∑
〈λ1,ai 〉=0 Z · ai . Denote

by Pχ the set of equivalence classes of pairs (λ, θ) that are attached to χ . The
set of all possible λ up to equivalence consist of the (finitely many) covectors of
the oriented matroid defined by A. It will be convenient to parametrize each λ
(again up to equivalence) as an element in {+, 0,−}n , λ↔ (ei )i∈[1,n] with ei =+

if 〈λ, ai 〉> 0 and so forth. Note, however, that not every element of {+, 0,−}n can
be realized as some λ.

Proposition 5.7 [Musson and Van den Bergh 1998, Proposition 7.7.1]. Choose
χ, χ ′ ∈ t∗. Then, the set Pχ parametrizes the primitive ideals in Uχ and χ→ χ ′ if
and only if Pχ ′ ⊆ Pχ .

Since we are interested in sheaves of W-algebras on smooth hypertoric vari-
eties we may assume that A is unimodular. This allows us to remove θ from the
description of Pχ .

Lemma 5.8. Assume that A is unimodular and let (λ, θ) and (λ, ϑ), be attached to
χ via α ∈ ρ−1(χ) and β ∈ ρ−1(χ), respectively. Then (λ, θ) is equivalent to (λ, ϑ).

Proof. By definition, θ is the equivalence class of
∑
〈λ,ai 〉=0 αi ai in the quotient(∑

〈λ,ai 〉=0 C ·ai
) / (∑

〈λ,ai 〉=0 Z ·ai
)
, and similarly for ϑ . Therefore we must show

that
∑n

i=1 αi ai =
∑n

i=1 βi ai implies

(14)
n∑

〈λ,ai 〉=0

αi ai ≡

n∑
〈λ,ai 〉=0

βi ai mod
∑
〈λ,ai 〉=0

Z · ai .
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Choose {ai1, . . . , aik } ⊂ {ai | 〈λ, ai 〉 = 0} to be a basis of the space spanned by the
set {ai | 〈λ, ai 〉 = 0}. We can extend this to a basis ai1, . . . , aik , aik+1, . . . , ad of t∗.
Since A is unimodular the determinant of this basis is ±1. Hence {ai1, . . . , aik }

span a direct summand of the lattice X. This implies

(15)
( ∑
〈λ,ai 〉=0

C · ai

)
∩X =

∑
〈λ,ai 〉=0

Z · ai ,

which in turn implies (14). �

It is shown in [ibid., Example 7.2.7] that θ is not defined up to equivalence by χ
and λ if A is not unimodular.

5F. Based on Lemma 5.8, we make the following definition.

Definition 5.9. Let λ ∈ Y and χ ∈ t∗. We say that λ is attached to χ if there exists
α ∈ ρ−1(χ) such that

(16)

〈λ, ai 〉> 0 =⇒ αi ∈ Z, αi ≥ 0,

〈λ, ai 〉< 0 =⇒ αi ∈ Z, αi < 0,

〈λ, ai 〉 = 0 =⇒ αi ∈ C\Z.

If λ1, λ2 ∈ Y are attached to χ then we say that λ1 is equivalent to λ2 if

{i | 〈λ1, ai 〉> 0} = {i | 〈λ2, ai 〉> 0} and {i | 〈λ1, ai 〉< 0} = {i | 〈λ2, ai 〉< 0}.

Let Qχ denote the set of equivalence classes of elements in Y that are attached to χ .

Lemma 5.10. Assume that A is unimodular. Then χ→ χ ′ if and only if Qχ ′ ⊆ Qχ
and χ −χ ′ ∈ X.

Proof. If χ→χ ′ then clearly χ−χ ′ ∈X and Proposition 5.7 implies that Pχ ′ ⊆Pχ .
This implies that Qχ ′ ⊆ Qχ .

Now assume that Qχ ′ ⊆Qχ and χ−χ ′ ∈X. Let λ∈Qχ ′ and choose α ∈ ρ−1(χ ′),
respectively β ∈ρ−1(χ), satisfying the conditions of Definition 5.9 for λwith respect
to χ ′, respectively χ . Write α = α(1)+α(2), where (α(1))i = αi if 〈λ, ai 〉 6= 0 and
(α(1))i = 0 if 〈λ, ai 〉 = 0. Decompose β = β(1)+β(2) in a similar fashion. Then

(χ −χ ′)− ρ(β(1)−α(1)) ∈
( ∑
〈λ,ai 〉=0

C · ai

)
∩X,

which, by (15), equals
∑
〈λ,ai 〉=0 Z · ai . Therefore we can choose u ∈ Zn such that

ui = 0 for all i such that 〈λ, ai 〉 = 0 and ρ(u)= (χ −χ ′)− ρ(β(1)−α(1)). Define
δ(2) = α(2)+ u and δ = β(1)+ δ(2) so that ρ(δ)= χ . We have

δ̄(2) = ᾱ(2) ∈
( ∑
〈λ,ai 〉=0

C · ai

) / ( ∑
〈λ,ai 〉=0

Z · ai

)
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and (λ, ᾱ(2)) and (λ, δ̄(2)) are attached to χ ′ and χ , respectively, in the sense of
Definition 5.5. Therefore (λ, δ̄(2))= (λ, ᾱ(2)) ∈ Pχ implies that Pχ ′ ⊆ Pχ . Hence
Proposition 5.7 implies that χ→ χ ′. �

Proof of Proposition 5.1. As was stated in Section 4D, the cone C is a rational cone.
Therefore we can choose µ1, . . . , µk in Y such that

C = {χ ∈ XR | 〈µi , χ〉 ≥ 0 for all i ∈ [1, k]}

⊃ {χ ∈ XR | 〈µi , χ〉> 0 for all i ∈ [1, k]} = C.

We will construct C(χ) in three stages.

Claim 1. There exists an integer N0 � 0 such that pN0 · pr(χ) ∈ X ∩ C and
χ + pN0 · pr(χ)→ χ for all p ∈ N.

For each λ ∈ Qχ fix an element βλ ∈ ρ−1(χ) such that βλ satisfies the proper-
ties listed in Definition 5.9 with respect to λ. Then pr(χ) =

∑n
i=1 pr(βλi )ai and

we choose N0 such that N0 · pr(β
λ
i ) ∈ Z for all λ ∈ Qχ and all i . The element

(βλi + pN0β
λ
i )i∈[1,n] in g∗ satisfies the properties of Definition 5.9 with respect

to λ hence Qχ ⊆ Qχ+pN0·pr(χ). Since pN0 · pr(χ) ∈ X, Lemma 5.10 says that
χ + pN0 · pr(χ)→ χ for all p ∈ N. Note also that

〈µi , pr(χ + pN0 · pr(χ))〉 = (1+ pN0)〈µi , pr(χ)〉> 0

for all i shows that pr(χ + pN0 · pr(χ)) ∈ C .

Claim 2. Fix δ =
∑n

i=1 ai ∈ X. There exists an integer N1� 0 such that

N1 · pr(χ)+ δ ∈ X∩C and χ + p(N1 · pr(χ)+ δ)→ χ

for all p ∈N. Moreover, for all λ∈Pχ , there exists βλ as before except that βλi 6= 0
for all i .

Choose N1 = pN0 such that

(17) (N1/d) · 〈µi , pr(χ)〉> |〈µi , a j 〉|

for all i ∈ [1, k] and j ∈ [1, n]. Let βλ ∈ ρ−1(χ + N1 · pr(χ)) satisfy Definition 5.9
with respect to λ for λ ∈ Qχ . By choosing a larger p if necessary we may assume
that βλi ∈ Z\{0} implies that |βλi |> 1. Then βλi +1< 0 if βλi ∈ Z<0 and βλi +1> 0
if βλi ∈ Z≥0. Moreover (βλi + 1)i∈[1,n] satisfies (16) with respect to λ,

n∑
i=1

(βλi + 1)ai = χ + (N1 · pr(χ)+ δ),

and hence χ + (N1 · pr(χ)+ δ)→ χ . The same holds for all χ + p(N1 · pr(χ)+ δ).
Finally (17) implies that pr(χ + q(N1 · pr(χ)+ δ)) ∈ C for all q ∈ Z≥0.
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Proof of the proposition. Note that (17) implies p(N1 · pr(χ)+ δ) ∈ C for all p as
well. Let

Iχ = {ε ∈ (−1, 1)n ⊂Qn
| −〈µi , (N1 · pr(χ)+ δ)〉< 〈µi , ε〉 for all i}.

Since C is d-dimensional, there exists some 0< c< 1 such that [−c, c]n ⊂ Iχ . Let
{v j | j ∈ [1, 2n

]} ⊂ [−c, c]n be the vertices of the box. Choose p ∈ N such that
p · v j ∈ Zn for all j . The same argument as in Claims 1 and 2 shows

χ← χ + q(p(N1 · pr(χ)+ δ+ A · v j )) for all q ∈ Z≥0.

We set u j = p(N1 ·pr(χ)+δ+A ·v j ). One can check as above χ←χ+
∑2n

i=1 ki ·ui

for all ki ∈ Z≥0. �

Remark 5.11. We conclude with a couple of remarks regarding Proposition 5.1.

(i) Note that in the proof of Proposition 5.1 we only used the fact that C is the
interior of some d-dimensional rational cone.

(ii) In general, the proposition is false when pr(χ) ∈ C is replaced by pr(χ) ∈ C .

(iii) It would be very interesting to directly relate the sets Qχ to the G.I.T. fan.

6. The rational Cherednik algebra associated to cyclic groups

6A. As explained in the introduction, the original motivation for this article was to
reproduce the results of [Kashiwara and Rouquier 2008] for the rational Cherednik
algebra Hh(Zm) associated to the cyclic group Zm . These rational Cherednik
algebras are parametrized3 by an m-tuple h= (hi )i∈[0,m−1] ∈Cm , where the indices
are taken modulo m. We fix a one-dimensional space h= C · y and h∗ = C · x such
that 〈x, y〉 = 1. The cyclic group Zm = 〈ε〉 acts on h and h∗ via ε · y = ζ−1 y and
ε · x = ζ x , where ζ is a fixed primitive m-th root of unity. The idempotents in C Zm

corresponding to the simple Zm-modules are

ei =
1
m

m−1∑
j=0

ζ−i jε j , i ∈ [0,m− 1],

so that ε ·ei = ζ
i ei . Then ei+1 · x = x ·ei and ei−1 · y = y ·ei . If we fix αεi =

√
2 · x

and α∨
εi = (−1/

√
2) · y then the commutation relations defining Hh(Zm), as stated

in [Rouquier 2008], become

ε · x = ζ x · ε, ε · y = ζ−1 y · ε, [y, x] = 1+m
m−1∑
i=0
(hi+1− hi )ei ,

where indices are taken modulo m.

3In this paper the parameters (hi ) and (χi ) are used. However the paper [Kuwabara 2010] uses the
parameters (κi ) and (ci ). The different parametrizations are related by hi ↔ κi and ci ↔ χi −χi+1.
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6B. The category O ⊂ Hh-mod is defined to be the subcategory of all finitely
generated Hh-modules such that the action of y ∈ C[h∗] is locally nilpotent. It is
a highest weight category. To each simple Zm-module C · ei , one can associate a
standard module in the category O defined by

1(ei ) := Hh⊗C[h∗]oZm C · ei ,

where y ∈ C[h∗] acts as zero on ei . Each 1(ei ) has a simple head L(ei ) and
L(ei ) 6' L(e j ) for i 6= j . The set of simple modules {L(ei )}i∈[0,m−1] is, up to
isomorphism, all simple modules in O. Fix i ∈ [0,m− 1] and let ci be the smallest
element in Z≥1 ∪ {∞} such that ci +mhi+ci −mhi = 0. The identity

[y, x j
] = x j−1

(
j +m

m−1∑
i=0

(hi+ j − hi )ei

)
, for all j ≥ 0,

shows that L(ei )= (C[x]/(xci ))⊗ei . Fix e := e0, the trivial idempotent. The algebra
eHhe is called the spherical subalgebra of Hh. Multiplication by e defines a functor
e : Hh-mod→ eHhe-mod with left adjoint Hhe⊗eHhe ( · ). Let C⊂Cm be the union
of the finitely many hyperplanes defined by the equations j +mhi+ j −mhi = 0,
where i ∈ [1,m− 1] and j ∈ [0,m− i].

Lemma 6.1. The functor e : Hh-mod→ eHhe-mod is an equivalence if and only if
h /∈ C. This implies that eHhe has finite global dimension when h /∈ C.

Proof. The functor e will be an equivalence if and only if HheHh = Hh. By
Ginzburg’s generalized Duflo theorem [Ginzburg 2003, Theorem 2.3], HheHh 6= Hh
implies that there is some simple module in the category O that is annihilated by e.
This happens if and only if h ∈ C. The second statement follows from the fact that
Hh has finite global dimension. �

6C. The minimal resolution of C2/Zm. In order to relate the spherical subalgebra
of Hh to a W-algebra on the resolution of the corresponding Kleinian singularity
C2/Zm , we must describe eHhe as a quantum Hamiltonian reduction. Such an
isomorphism is well known and is a particular case of a more general construction by
Holland [1999]. First we describe the minimal resolution of C2/Zm as a hypertoric
variety. Let Q be the cyclic quiver with vertices V = {v0, . . . , vm−1} and arrows
ui : vi−1→ vi for i ∈ [1,m] (where vm is identified with v0). Let ν be the dimension
vector with 1 at each vertex. Then the space of representations for Q with dimension
vector ν is the affine space

Rep(Q, ν)= {(ui )i∈[1,m] | ui ∈ C} ' Cm

and we write C[Rep(Q, ν)] = C[x1, . . . , xm]. There is an action of

Tm
= {(λi )i∈[1,m] | λi ∈ C×}
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on Rep(Q, ν) given by λ · ui = λiλ
−1
i−1ui , and hence λ · xi = λ

−1
i λi−1xi . The

one-dimensional torus T embedded diagonally in Tm acts trivially on Rep(Q, ν).
Therefore Tm−1

:= Tm/T acts on Rep(Q, ν). The lattice of characters X(Tm−1) is
the sublattice of X(Tm)=

⊕m
i=1 Z ·vi consisting of points φ =

∑m
i=1 φivi such that∑m

i=1 φi = 0. We fix the basis {wi = vi − vi+1 | i ∈ [0,m− 2]} of X(Tm−1) so that
φ = (φi )i∈[1,n] =

∑m−1
i=1 χiwi , where χi =

∑i
j=1 φi . Then the (m− 1)×m matrix

encoding the action of Tm−1 is given by

A = (a1, . . . , am)=


1 0 . . . 0 −1

0 1
... −1

...
. . . 0

...

0 . . . 0 1 −1

 .
The G.I.T walls in t∗, where t = Lie(Tm−1), are given by the hyperplanes

Hi = (χi = 0), i ∈ [1,m−1], and Hi j = (χi = χ j ), i 6= j ∈ [1,m−1]. Hence the m-
cones are the connected components of the complement to this union of hyperplanes.
As was shown originally in terms of hyperkähler manifolds by Kronheimer [1989]
and then by Cassens and Slodowy [1998] in the algebraic setting, we have:

Proposition 6.2. Let δ belong to the interior of an m-cone. Then the hypertoric
variety Y (A, δ) is isomorphic to the minimal resolution (C2/Zm)

∼ of the Kleinian
singularity C2/Zm .

As is well-known, the hypertoric variety Y (A, δ) is a toric variety. It is shown in
[Hausel and Sturmfels 2002, Theorem 10.1] that a hypertoric variety is toric if and
only if it is a product of varieties of the form (C2/Zm)

∼ for various m. Let us now
consider the corresponding quantum Hamiltonian reduction

Uχ = (D(Rep(Q, ν))
/

D(Rep(Q, ν))(µD −χ)(t))
Tm−1

.

The quantum moment map in this case is given by

µD : t−→D(Rep(Q, ν)), ti 7→ xi∂i − xm∂m for all i ∈ [1,m− 1].

Since
D(Rep(Q, ν))T

m−1
= 〈∂1 · · · ∂m, x1 · · · xm, x1∂1, . . . , xm∂m〉,

〈(µD −χ)(t)〉 = 〈xi∂i − xm∂m −χi | i ∈ [1,m− 1]〉,

where we set ∂i := ∂/∂xi , Uχ is generated by ∂1 · · · ∂m, x1 · · · xm and xm∂m .

6D. The Dunkl embedding. Let hreg := h\{0} and denote by D(hreg) the ring of
algebraic differential operators on hreg. In order to show that the spherical subalgebra
of Hh is isomorphic to a suitable quantum Hamiltonian reduction, we realize eHhe
as a subalgebra of D(hreg) using the Dunkl embedding. Similarly, using the “radial
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parts map”, we will also realize Uχ as the same subalgebra of D(hreg). The Dunkl
embedding is the map 2h : Hh→D(hreg)o Zm defined by

2h(y)=
d

dx
+

m
x

m−1∑
i=0

hi ei , 2h(x)= x and 2h(ε)= ε.

The algebra D(hreg) o Zm is filtered by order of differential operators, that is,
deg(d/dx)= 1 and deg(x)= deg(ε)= 0. If we define a filtration on Hh by setting
deg(y)=1 and deg(x)=deg(ε)=0, then the map2h is filter preserving. Localizing
Hh at the regular element x provides an isomorphism

2h : Hh[x−1
] −→∼ D(hreg)o Zm .

Therefore 2h is injective. Applying the trivial idempotent produces

2h : eHhe −→ eD(hreg)e 'D(hreg)
Zm .

Let us note that gr(Hh)'C[x, y]oZm and gr(eHhe)'C[x, y]Zm . Therefore eHhe
is generated by xme, xye and yme. Since 2h(yei )= (d/dx + (m/x)hi )ei we get

2h(yme)=
m∏

i=1

( d
dx
+

m
x

hi

)
and 2h(xye)= x d

dx
+mhm .

We note that

(18) 2h(yme)(xr )=

m∏
i=1

(r −m+ i +mhi )xr−m .

6E. The radial parts map. In this subsection we show that Uχ '2h(eHhe). The
isomorphism we describe is not new, it was first constructed by Holland [1999]
(see also [Kuwabara 2008]), but we give it in order to fix parameters. There
is a natural embedding h ↪→ Rep(Q, ν) given by x 7→ (x, . . . , x). This defines a
surjective morphism C[Rep(Q, ν)]→C[h], xi 7→ x , which descends to a “Chevalley
isomorphism”

ρ : C[Rep(Q, ν)]T
m−1
−→∼ C[h]Zm , x1 · · · xm 7→ xm .

Define a section

ρ−1
: C[h] −→ C[Rep(Q, ν)][x1/m

i | i ∈ [1,m]] by xr
7→ xr/m

1 · · · xr/m
m .

This can be extended to a twisted Harish-Chandra morphism

R̂h : D(Rep(Q, ν))T −→D(hreg)
Zm
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given by

R̂h(D)( f )= ρ(δ−1
h D(ρ−1( f )δh)) for all f ∈C[h], where δh=

m∏
i=1

x
hi+

i−m
m

i .

Calculating the action of R̂h(∂1 · · · ∂m) on xr and comparing with (18) shows that

R̂h(mm
· ∂1 · · · ∂m)=2h(yme).

Similarly,

R̂h(x1 · · · xm)=2h(xme) and R̂h(xi∂i )=
1
m

(
x d

dx
+mhi + i −m

)
.

This implies that R̂h defines a surjection D(Rep(Q, ν))T
m−1

�2h(eHhe). We fix

(19) χi = hi − hm +
i−m

m
, i ∈ [1,m− 1].

Then R̂h(xi∂i − xm∂m −χi )= 0 and R̂h descends to a surjective morphism

Rh : Uχ −→2h(eHhe).

As above, D(Rep(Q, ν)) is a filtered algebra by setting deg(∂i )= 1 and deg(xi )= 0
for i ∈ [1,m]. This induces a filtration on Uχ and we see from the definitions that
Rh is filter preserving. Therefore we get a morphism of associated graded algebras

gr Rh : gr(Uχ )−→ gr(eHhe).

Now [Holland 1999, Proposition 2.4] says that

gr(Uχ )= C[µ−1(0)]T
m−1
' C[x, y]Zm = gr(eHhe).

This isomorphism is realized by x1 · · · xm 7→ xm , mm
· y1 · · · ym 7→ ym and x1 y1 7→

(1/m) · xy. But we see from above that this is precisely what gr Rh does to
the principal symbols of the generators mm

· ∂1 · · · ∂m , x1 · · · xm and x1∂1 of Uχ .
Therefore gr Rh is an isomorphism and hence2−1

h ◦Rh :Uχ −→∼ eHhe is a filtration-
preserving isomorphism.

6F. Localization of Hh(Zm). As noted in Proposition 6.2, the hypertoric varieties
Y (A, δ) are all isomorphic provided δ does not belong to a wall in XQ. Therefore,
for any χ ∈ t∗, we may refer to the sheaf Aχ on the minimal resolution (C2/Zm)

∼,
but the reader should be aware that in doing so we have implicitly fixed an identifi-
cation (C2/Zm)

∼
= Y (A, δ). Recall the union of hyperplanes C⊂ Cm defined in

Lemma 6.1.
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Theorem 6.3. Choose h ∈Cm
\C and let χ be defined by (19). Write Ah :=Aχ for

the sheaf of W-algebras on (C2/Zm)
∼. Then the functor

HomModgood
F (Ah)

(Ah, · )

defines an equivalence of categories Modgood
F (Ah)−→∼ eHhe-mod with quasiinverse

Ah⊗eHhe ( · ). Moreover, the functor

Hhe⊗eHhe HomModgood
F (Ah)

(Ah, · )

defines an equivalence of categories Modgood
F (Ah)−→∼ Hh-mod with quasiinverse

Ah⊗eHhe eHh⊗Hh ( · ).

Proof. The condition χi 6= χ j for i 6= j ∈ [1,m − 1] translates, via (19), into
hi−h j+(i− j)/m 6= 0 for all i 6= j ∈ [1,m−1]. Similarly, the condition χi 6= 0 for
all i ∈ [1,m−1] translates into hi −hm+

i−m
m 6= 0 for all i ∈ [1,m−1]. Therefore

the linear map Cm
→ Cm−1 defined by (19) maps the union of hyperplanes C onto

{χ ∈ Cm−1
| χi = χ j for i 6= j ∈ [1,m− 1] or χi = 0 for i ∈ [1,m− 1])},

which is precisely the union of the G.I.T. walls in Cm−1. Therefore Lemma 6.1
implies that Uχ has finite global dimension when χ lies in the interior of some
G.I.T. cone C . Now the theorem follows from Corollary 5.3. �

Remark 6.4. In the above situation it is possible to explicitly calculate the sets
Qχ and hence describe the partial ordering on comparability classes as defined in
Section 5A. However the answer is not very illuminating.

Finally, we would just like to note the various forms in which the rational
Cherednik algebra Hh(Zm) appears in the literature. It is isomorphic to the deformed
preprojective algebra of type A as studied in [Crawley-Boevey and Holland 1998]. It
is well-known that its spherical subalgebra eHh(Zm)e coincides with a “generalized
U (sl2)-algebra”, as studied by Hodges [1993] and Smith [1990]. Combining this fact
with Premet’s results [2002] shows that eHh(Zm)e is also isomorphic to the finite
W-algebra associated to glm(C) at a subregular nilpotent element. Recently, Losev
[2012] has constructed explicit isomorphisms between the spherical subalgebra of
certain rational Cherednik algebras and their related finite W-algebras, which as a
special case gives the above mentioned isomorphism.

Musson [2005] and Boyarchenko [2007] have studied a certain localization of
eHh(Zm)e by using the formalism of directed algebras (or Z-algebras). Analogous
localizations for finite W-algebras were established by Ginzburg [2009]. Recently,
Dodd and Kremnizer [2009] described a localization theorem for finite W-algebras
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in the spirit of Kashiwara–Rouquier, and in particular for the finite W-algebra iso-
morphic to eHh(Zm)e. However, their result is via a different quantum Hamiltonian
reduction than the one used in Theorem 6.3.

In [Kuwabara 2010], the second author gives an explicit description of the
standard modules 1(ei ) and simple modules L(ei ) as sheaves of Ah-modules on
the minimal resolution.
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ALMOST FACTORIALITY OF INTEGRAL DOMAINS AND
KRULL-LIKE DOMAINS

GYU WHAN CHANG, HWANKOO KIM AND JUNG WOOK LIM

Let D be an integral domain, D be the integral closure of D, and 0 be a
numerical semigroup with 0 ( N0. Let t be the so-called t-operation on D.
We will say that D is an AK-domain (resp., AUF-domain) if for each nonzero
ideal ({aα}) of D, there exists a positive integer n= n({aα}) such that ({an

α})t

is t-invertible (resp., principal). In this paper, we study several properties
of AK-domains and AUF-domains. Among other things, we show that if
D ⊆ D is a bounded root extension, then D is an AK-domain (resp., AUF-
domain) if and only if D is a Krull domain (resp., Krull domain with torsion
t-class group) and D is t-linked under D. We also prove that if D is a Krull
domain (resp., UFD) with char(D) 6=0, then the (numerical) semigroup ring
D[0] is a nonintegrally closed AK-domain (resp., AUF-domain).

Introduction

Throughout this paper, D is an integral domain with quotient field K , D denotes the
integral closure of D in K , X is an indeterminate over D, D[X ] is the polynomial
ring over D, N0 (resp., Z) is the set of nonnegative integers (resp., integers), 0 is a
numerical semigroup with 0 ( N0 and D[0] means the numerical semigroup ring
of 0 over D.

We say that D is a GCD-domain if aD ∩ bD is principal for all 0 6= a, b ∈ D.
In [Zafrullah 1985], Zafrullah introduced the notion of an almost GCD-domain
(AGCD-domain). He called D an AGCD-domain if for each 0 6= a, b ∈ D, there
exists an integer n= n(a, b)≥ 1 such that an D∩bn D is principal. After Zafrullah’s
paper [1985], several types of almost divisibility of integral domains have been
studied, for example, AB-domains, AP-domains, APvMDs, API-domains and AD-
domains (see Section 1). Recall from [Kang 1989a] that D is a Krull domain
(resp., UFD) if and only if for every nonzero ideal I of D, It is t-invertible (resp.,

The second author was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(2010-0011996). The third author was supported by the Brain Korea 21 Project Team to Nurture the
Next Generation of First-class Mathematical Scientists by the Korean Government.
MSC2010: primary 13F05; secondary 13A15, 13B25, 13G05.
Keywords: AK-domain, AUF-domain, numerical semigroup, bounded root extension.
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principal). In this paper, we define D to be an AK-domain (resp., AUF-domain) if
for each nonzero ideal ({aα}) of D, there exists a positive integer n = n({aα}) such
that ({an

α})t is t-invertible (resp., principal). (For the sake of convenience, we will
use the notation {aα} instead of {aα}α∈3, where 3 is an indexed set. Also, for a
nonempty subset {aα} of D \ {0}, we mean by ({aα}D) the ideal of D generated by
the set {aα}.)

In Section 1, we review multifarious integral domains related to the theory of
almost divisibility and some results on them.

We devote Section 2 to the study of AK-domains. Precisely, we show that if
D ⊆ D is a bounded root extension, then D is an AK-domain if and only if D is
a Krull domain and D is t-linked under D, if and only if (i) t-dim(D) = 1, (ii)
DP is an API-domain for each P ∈ t-Max(D) and (iii) D =

⋂
P∈t-Max(D) DP and

this intersection has finite character. We prove that if D is a Krull domain, then
D[0] is an AK-domain if and only if char(D) 6= 0. This result can be used to
construct a simple example of nonintegrally closed AK-domains. We also prove
that the (numerical) semigroup ring D[0] is an AK-domain if and only if D[X ] is
an AK-domain and char(D) 6= 0.

In Section 3, we introduce the notions of an AUF-domain and an almost π-
domain. We show that D is an AUF-domain (resp., almost π-domain) if and only
if D is an AK-domain and Cl(D) is torsion (resp., G(D) is torsion). We prove that
D[0] is an AUF-domain if and only if D[X ] is an AUF-domain and char(D) 6= 0.
Also, we show that if D is a UFD (resp., π -domain), then D[0] is an AUF-domain
(resp., almost π-domain) if and only if char(D) 6= 0. Finally, we give an example
of an AUF-domain that is neither integrally closed nor an API-domain.

Now, we review some definitions and notation. Let F(D) be the set of nonzero
fractional ideals of D. For an I ∈ F(D), we denote by I−1 the fractional ideal
{x ∈ K | x I ⊆ D} of D. Recall that the v-operation on D is the mapping on F(D)
defined by I 7→ Iv = (I−1)−1, and the t-operation on D is the mapping on F(D)
defined by I 7→ It =

⋃
{Jv | J is a nonzero finitely generated fractional subideal

of I }. Clearly, if an I ∈ F(D) is finitely generated, then It = Iv. An I ∈ F(D) is
called a t-ideal (resp., v-ideal) if It = I (resp., Iv = I ). An I ∈ F(D) is said to be
v-finite type if Iv = Jv for some finitely generated ideal J of D. A t-ideal M of D is
called a maximal t-ideal if M is maximal among proper integral t-ideals of D. Let
t-Max(D) be the set of maximal t-ideals of D. It is known that t-Max(D) 6=∅ if
D is not a field; a prime ideal minimal over a t-ideal is a t-ideal; a maximal t-ideal
is a prime ideal; and each proper integral t-ideal is contained in a maximal t-ideal.
We say that D has t-dimension one, denoted by t-dim(D) = 1, if each maximal
t-ideal is of height one. An I ∈ F(D) is said to be t-invertible if (I I−1)t = D;
equivalently, I I−1 * M for all M ∈ t-Max(D). It was shown that an I ∈ F(D) is
t-invertible if and only if Iv = Jv for some finitely generated fractional ideal J of
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D and I DM is principal for each M ∈ t-Max(D) [Kang 1989b, Corollary 2.7]. We
say that D is a Prüfer v-multiplication domain (PvMD) if each nonzero finitely
generated ideal of D is t-invertible. A nonzero prime ideal Q of D[X ] is called an
upper to zero in D[X ] if Q∩ D = (0). As in [Houston and Zafrullah 1989], we say
that D is a UMT-domain if every upper to zero in D[X ] is t-invertible. It is known
that D is an integrally closed UMT-domain if and only if D is a PvMD [Houston
and Zafrullah 1989, Proposition 3.2]

Let T (D) be the abelian group of t-invertible fractional t-ideals of D under
the t-multiplication I ∗ J = (I J )t and Inv(D) (resp., Prin(D)) be the subgroup
of T (D) of invertible (resp., principal) fractional ideals of D. Then it is obvious
that Prin(D) ⊆ Inv(D) ⊆ T (D). The t-class group of D is an abelian group
Cl(D)= T (D)/Prin(D) and the Picard group Pic(D)= Inv(D)/Prin(D) of D is
a subgroup of Cl(D). The local t-class group G(D) of D is defined by G(D)=
Cl(D)/Pic(D).

Let D ⊆ E be an extension of integral domains. Then E is said to be a root
extension of D if for each z ∈ E , zn

∈ D for some n ≥ 1. We say that D ⊆ E is a
bounded root extension if there exists a fixed positive integer n such that zn

∈ D for
all z ∈ E . The domain D is said to be root closed if for z ∈ K , zn

∈ D for some
integer n ≥ 1 implies z ∈ D.

A numerical semigroup is a nonempty subset 0 of N0 that is closed under
addition, contains 0 and generates Z as a group. It is known that the set N0 \ 0

is finite, and 0 has a unique numerical system of generators. Also, there always
exists the largest nonnegative integer that is not contained in 0. Such an integer
is called the Frobenius number of 0 and is denoted by F(0). If 0 ( N0, then
D+ X F(0)+1 D[X ] ⊆ D[0]( D[X ].

Our general reference for results from multiplicative ideal theory will be [Gilmer
1992]. For any undefined terms, readers are referred to [Kaplansky 1994].

1. Almost divisibility of integral domains

In multiplicative ideal theory, one of the important topics during the past few
decades was the theory of factorizations in integral domains. Among various
kinds of integral domains, many mathematicians have studied Bézout domains,
Prüfer domains, principal ideal domains (PID) and Dedekind domains. As for
the t-operation analogues, they have also investigated GCD-domains, PvMDs,
generalized GCD-domains (GGCD-domain), unique factorization domains (UFD),
π -domains and Krull domains.

In [Storch 1967], almost factorial domains were studied as Krull domains with
torsion divisor class groups. Motivated by this, Zafrullah first began to study a
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general theory of almost factoriality. To do this, he first defined an almost GCD-
domain (AGCD-domain) that is an integral domain D in which for each 0 6=a, b∈D,
there exists an integer n = n(a, b)≥ 1 such that (an, bn)t , equivalently an D∩bn D,
is principal [Zafrullah 1985]. He also showed that D is an integrally closed AGCD-
domain if and only if D is a PvMD with torsion t-class group [Zafrullah 1985,
Corollary 3.8 and Theorem 3.9].

Anderson and Zafrullah continued the investigation of AGCD-domains and
introduced several closely related domains. They proved that D is an AGCD-domain
if and only if D is an AGCD-domain [Anderson and Zafrullah 1991, Section 4],
D ⊆ D is a root extension and D is t-linked under D [ibid., Theorem 5.9]. (See
the remark after Example 2.4 for the definition of “t-linked under”.) They also
defined AB-domains and AP-domains as follows: D is an almost Bézout domain
(AB-domain) (resp., almost Prüfer domain (AP-domain)) if for each 0 6= a, b ∈ D,
there exists a positive integer n = n(a, b) such that (an, bn) is principal (resp.,
invertible). They proved that D is an AB-domain if and only if D is an AP-domain
with torsion t-class group [ibid., Lemma 4.4]. They also showed that D is an
AP-domain (resp., AB-domain) if and only if D is a Prüfer domain (resp., with
torsion (t-)class group) and D ⊆ D is a root extension [ibid., Corollary 4.8].

Recently, Li introduced the concept of almost Prüfer v-multiplication domains.
She defined D to be an almost Prüfer v-multiplication domain (APvMD) if for
each 0 6= a, b ∈ D, there exists a positive integer n = n(a, b) such that (an, bn)v,
equivalently an D ∩ bn D, is t-invertible [Li 2012, Definition 2.1 and Theorem 2.3].
It was shown that D is an AGCD-domain if and only if D is an APvMD with
torsion t-class group [Li 2012, Theorem 3.1].

The notion of an almost generalized GCD-domain was first introduced by An-
derson and Zafrullah [1991, Section 3], and was also investigated by Lewin [1997].
(Recall that D is an almost generalized GCD-domain (AGGCD-domain) if for each
0 6= a, b ∈ D, there is an integer n= n(a, b)≥ 1 such that (an, bn)v is invertible.) In
[Chang et al. 2012], we studied AGGCD-domains further. We showed that D is an
AGGCD-domain if and only if D is an APvMD and G(D) is torsion [Chang et al.
2012, Theorem 2.11]. This result corrects an error in [Lewin 1997, Theorem 5.2],
which incorrectly states that D is an integrally closed AGGCD-domain if and only
if D is a PvMD and G(D)= 0. (See the review of [Lewin 1997] in Mathematical
Reviews database for more details.)

Assume that D is integrally closed. If D is an AB-domain or an AP-domain, then
D is a Prüfer domain [Anderson and Zafrullah 1991, Theorem 4.7]. Also, if D is
an APvMD, an AGCD-domain or an AGGCD-domain, then D is a PvMD [Li 2012,
Theorem 2.4; Lewin 1997, Theorem 5.2]. As mentioned above, Prüfer domains and
PvMDs have been much studied in the context of factorization theory, and there
are many well-known results about them. So, from this point of view, integrally
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closed domains are no longer of interest in the theory of almost factoriality. This is
why we need to investigate the almost divisibility of nonintegrally closed domains.
One of the requisites to study them is to find some examples of such domains.
Among several methods, in [Chang et al. 2012], the authors gave simple examples
of nonintegrally closed APvMDs, AGCD-domains, AGGCD-domains, AP-domains
and AB-domains via the D+Xn K [X ] constructions. In fact, they proved that for an
integer n≥ 2, D+Xn K [X ] is an APvMD (resp., AGCD-domain, AGGCD-domain,
AP-domain, AB-domain) if and only if D is an APvMD (resp., AGCD-domain,
AGGCD-domain, AP-domain, AB-domain) and char(D) 6= 0 [Chang et al. 2012,
Theorem 2.6 and Corollaries 2.10 and 2.13].

Anderson and Zafrullah [1991] defined an AD-domain (resp., almost principal
ideal domain (API-domain)) to be a domain D such that for any nonempty subset
{aα} ⊆ D \ {0} there exists a positive integer n = n({aα}) with ({an

α}) invertible
(resp., principal). They showed that D is an API-domain if and only if D is an
AD-domain with torsion t-class group [Anderson and Zafrullah 1991, Lemma 4.4].
Moreover, if D ⊆ D is a bounded root extension, then D is an AD-domain (resp.,
API-domain) if and only if D is a Dedekind domain (resp., D is a Dedekind domain
with torsion class group) [ibid., Corollary 4.13].

As “almost” versions of Krull domains and UFDs, we will define and investigate
AK-domains and AUF-domains in Sections 2 and 3, respectively. We also provide
an example of AK-domains (resp., AUF-domains) which is not a Krull domain
(resp., UFD).

2. AK-domains

Let D be an integral domain with quotient field K , D be the integral closure of D in
K , X1(D) be the set of height-one prime ideals of D, 0 be a numerical semigroup
with 0 ( N0, and D[0] be the (numerical) semigroup ring of 0 over D.

We say that D is an AK-domain if for each nonzero ideal ({aα}) of D, there exists
a positive integer n = n({aα}) such that ({an

α}), equivalently, ({an
α})t is t-invertible.

We have avoided using the terminology “almost Krull” for an AK-domain because
the term “almost Krull” is already used to mean an integral domain that is locally
Krull in the literature [Pirtle 1968]. Clearly, AK-domains are APvMDs; so if D
is an AK-domain, then D is a UMT-domain and D ⊆ D is a root extension [Li
2012, Theorem 3.8]. Also, a Krull domain is an AK-domain, but not vice versa.
For example, if m ≡ 5 (mod 8), then Z[

√
m] is a nonintegrally closed API-domain

[Anderson and Zafrullah 1991, Theorem 4.17]; so Z[
√

m] is an AK-domain that is
not a Krull domain. Note that if D is integrally closed, then ({an

α})t = (({aα})
n)t for

any integer n ≥ 1 and any nonempty subset {aα} of D \{0} [Anderson and Zafrullah
1991, Corollary 6.4]. Thus, an integrally closed AK-domain is a Krull domain.
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Our first result is the AK-domain analogue of the well-known fact that D is a
Dedekind domain if and only if D is a Krull domain and each maximal ideal is a
t-ideal.

Proposition 2.1. D is an AD-domain if and only if D is an AK-domain and each
maximal ideal of D is a t-ideal.

Proof. (⇒) Since an AD-domain is an AP-domain, by [Chang et al. 2012, Remark
before Theorem 2.6], each maximal ideal of D is a t-ideal. Clearly, D is an
AK-domain.

(⇐) Let ({aα}) be a nonzero ideal of D. Since D is an AK-domain, there is a posi-
tive integer m=m({aα}) such that ({am

α }) is t-invertible. So ({am
α })({a

m
α })
−1 * P for

all P ∈ t-Max(D), and since each maximal ideal is a t-ideal, ({am
α })({a

m
α })
−1 * M

for all maximal ideals M of D. Thus ({am
α })({a

m
α })
−1
= D. �

Let D be a Noetherian domain. It is known that D is a UMT-domain if and
only if t-dim(D) = 1 [Houston and Zafrullah 1989, Theorem 3.7]; so if D is an
AK-domain, then t-dim(D)= 1. But, we do not know whether an AK-domain is
generally of t-dimension one.

We next give a characterization of AK-domains under the “t-dimension one”
assumption, which turns out to be very similar to that of a Krull domain as described
in its definition: D is called a Krull domain if (i) D =

⋂
P∈X1(D) DP , (ii) DP is

a local PID for each P ∈ X1(D) and (iii) the intersection D =
⋂

P∈X1(D) DP has
finite character, i.e., each nonzero element d ∈ D is a unit in DP for all but a finite
number of P’s in X1(D).

Theorem 2.2. If t-dim(D)= 1, then D is an AK-domain if and only if

(1) DP is an API-domain for each P ∈ t-Max(D), and

(2) D =
⋂

P∈t- Max(D) DP and this intersection has finite character.

Proof. (⇒) (1) Let {aα} be a nonempty subset of D\{0}. Since D is an AK-domain,
there exists a positive integer n = n({aα}) such that ({an

α}) is t-invertible. Hence
({an

α})DP is principal for each P ∈ t-Max(D) [Kang 1989b, Corollary 2.7]. Thus
DP is an API-domain.

(2) Note that D =
⋂

P∈t- Max(D) DP [Kang 1989b, Proposition 2.9]. If P =
({aα}) ∈ t-Max(D), then there is an integer n = n(P) ≥ 1 such that ({an

α}) is
t-invertible, and hence ({an

α})t = (a1, . . . , ak)t for some a1, . . . , ak ∈ P . Clearly,
P =
√
(a1, . . . , ak)t . If 0 6= d ∈ D, then each maximal t-ideal of D containing d is

minimal over d D because t-dim(D)= 1. Thus D has a finite number of maximal
t-ideals that contain d [Sahandi 2010, Corollary 2.5], since each maximal t-ideal is
the radical of a finite type t-ideal.
(⇐) Let ({aα}) be a nonzero ideal of D. By (2), the number of maximal t-ideals

of D containing {aα} is finite, say P1, . . . , Pk . Since each DPi is an API-domain
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by (1), there exists a positive integer mi such that ({ami
α })DPi is principal for each

i = 1, . . . , k, say ({ami
α })DPi = (ai )DPi for some ai ∈ {ami

α }. Let m = m1 · · ·mk

and set m̂i = m/mi for each i = 1, . . . , k. Then ({am
α })DPi = (a

m̂i
i )DPi for all

i = 1, . . . , k [Gilmer 1992, Theorem 6.5(c)]; so ({am
α }) is t-locally principal and

({am
α }) is contained in only a finite number of maximal t-ideals of D. Choose

any nonzero element a ∈ ({am
α }). By (2), there exist only finitely many maximal

t-ideals M1, . . . ,Mn of D containing a. Let P be a maximal t-ideal of D which
is distinct from all Pi , i = 1, . . . , k. If P 6∈ {M1, . . . ,Mn}, then a 6∈ P , and hence
(a)DP = DP . Suppose that P ∈ {M1, . . . ,Mn}, say P = M j for some 1 ≤ j ≤ n.
Then, for some b j ∈ ({am

α }) \M j , we have (b j )DM j = DM j . Let I be the ideal of
D generated by a, am̂1

1 , . . . , am̂k
k and the b j ’s (if needed). Then I is contained in

({am
α }) and I is a finitely generated ideal of D, because the number of b j ’s cannot

exceed n. Let P be a maximal t-ideal such that P 6= Pi for all 1≤ i ≤ k. If a 6∈ P ,
then I DP = DP = ({am

α })DP . If a ∈ P , then P = M j for some 1 ≤ j ≤ n; so
I DP = DP = ({am

α })DP by the choice of a suitable b j . Note that I DPi = ({a
m
α })DPi

for each 1 ≤ i ≤ k. Thus I DM = ({am
α })DM for all maximal t-ideals M of D. It

follows from [Kang 1989b, Proposition 2.8(3)] that ({am
α })t = It , i.e., ({am

α })t is a
finite type t-ideal of D. Hence ({am

α }) is t-invertible [Kang 1989b, Corollary 2.7],
and thus D is an AK-domain. �

Recall that D is a weakly Krull domain if D=
⋂

P∈X1(D) DP and this intersection
has finite character. Note that if t-dim(D)= 1, then X1(D)= t-Max(D). Thus, by
Theorem 2.2, we have

Corollary 2.3. An AK-domain with t-dimension one is a weakly Krull domain.

However, the converse of Corollary 2.3 does not hold, and we provide such an
example.

Example 2.4. Let Q (resp., R) be the field of rational (resp., real) numbers, X be
an indeterminate over R, and D =Q+ XR[X ].

(1) Note that R[X ] is a Krull domain, and hence a weakly Krull domain. Thus D
is a weakly Krull domain [Anderson et al. 2006, Theorem 3.4], whence t-dim(D)=1
[Anderson et al. 1992, Lemma 2.1].

(2) Let F = {a ∈ R | a is integral over Q}. Clearly, F is an integral domain.
Let 0 6= a ∈ F . Then an

+ qn−1an−1
+ · · · + q0 = 0 for some integer n ≥ 1 and

q0, . . . , qn−1 ∈Q with q0 6= 0; so(1
a

)n
+

q1
q0

(1
a

)n−1
+ · · ·+

1
q0
= 0.

Hence 1
a is integral over Q; so F is a field. Also, it is easy to see that D= F+XR[X ],

because R[X ] is integrally closed and the quotient field of D contains R[X ]. It is
well known that e ∈ R \ F , where e = limn→∞(1+ 1

n )
n is the base of the natural
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logarithm. Hence D is not a PvMD [Anderson and El Abidine 2001, Lemma 2.1];
so D is not an APvMD [Li 2012, Theorem 3.6]. Thus D is not an AK-domain.

Let D ⊆ E be an extension of integral domains. Following [Dobbs et al. 1989],
we say that E is t-linked over D if I−1

= D for I a nonzero finitely generated
ideal of D implies (I E)−1

= E ; equivalently, if M is a maximal t-ideal of E with
M∩D 6= (0), then (M∩D)t ( D [Anderson et al. 1993, Proposition 2.1]. Anderson
and Zafrullah introduced the concept of “t-linked under” which is the opposite
notion of “t-linked over” [Anderson and Zafrullah 1991]. They defined that D is
t-linked under E if for each nonzero finitely generated ideal I of D, (I E)−1

= E
implies I−1

= D. Clearly, D is t-linked under E if and only if (J E)t = E implies
Jt = D for all nonzero ideals J of D.

In [Anderson and Zafrullah 1991, Theorem 4.11], the authors showed that if
D ⊆ E is a bounded extension with E ⊆ D, then D is an API-domain (resp.,
AD-domain) if and only if E is an API-domain (resp., AD-domain). Now, we give
the AK-domain version of this result.

Theorem 2.5. Let D ⊆ E be a bounded root extension with E ⊆ D. Assume that
E is t-linked over D. Then D is an AK-domain if and only if E is an AK-domain
and D is t-linked under E.

Proof. (⇒) Let {aα} be a nonempty subset of E \ {0}. Since D ⊆ E is a bounded
root extension, there exists a positive integer n such that zn

∈ D for all z ∈ E ; so
{an
α} ⊆ D. Since D is an AK-domain, there exists a positive integer m = m({an

α})

such that ({anm
α }) is t-invertible, and hence (({anm

α })J )t = D for some v-finite type
ideal J of D. Since E is a t-linked overring of D, ((({anm

α })J )E)t = E . Thus E is
an AK-domain.

Let I be a finitely generated ideal of D such that (I E)−1
= E . Suppose to

the contrary that Iv ( D. Then there exists a maximal t-ideal M of D such that
It ⊆ M . Since E ⊆ D, M = M0 ∩ D for some prime ideal M0 of E [Kaplansky
1994, Theorem 44]. Note that D is a UMT-domain [Li 2012, Theorem 3.8]. Hence
M0 is a t-ideal of E [Fontana et al. 1998, Proposition 1.4]. Therefore we have

E = (I E)t ⊆ (M E)t ⊆ (M0)t = M0,

which is impossible. Thus Iv = D (or equivalently, I−1
= D), which says that D is

t-linked under E .
(⇐) Assume that E is an AK-domain and let ({bβ}) be a nonzero ideal of D. Then

there exists a positive integer m = m({bβ}) such that ({bm
β }E) is t-invertible, and

hence (({bm
β }E)J )t = E for some v-finite ideal J of E . Let J = ({ j1, . . . , jl}E)t ,

where 0 6= j1, . . . , jl ∈ K . Then we have

({bm
β ji }E)t = (({bm

β }E)({ j1, . . . , jl}E))t = (({bm
β }E)J )t = E .
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Since D ⊆ E is a bounded root extension, there is an integer n ≥ 1 such that
bmn
β jn

i = (b
m
β ji )n ∈ D for all bm

β ji . Clearly, ({bmn
β jn

i }E)t = E ; so

(({bmn
β }D)({ j

n
i }D))t = ({b

mn
β jn

i }D)t = D,

because D is t-linked under E . Thus D is an AK-domain. �

Corollary 2.6. If D⊆ D is a bounded root extension, then the following statements
are equivalent.

(1) D is an AK-domain.

(2) D is a Krull domain and D is t-linked under D.

(3) (a) t-dim(D)= 1,
(b) DP is an API-domain for each P ∈ t-Max(D), and
(c) D =

⋂
P∈t- Max(D) DP and this intersection has finite character.

Proof. (1)⇔ (2) Note that D is t-linked over D [Anderson et al. 1993, Proposition
2.4], because D ⊆ D is a (bounded) root extension. Also, recall that an integrally
closed AK-domain is a Krull domain. Thus the result follows from Theorem 2.5.

(2)⇒ (3) By Theorem 2.2, it suffices to show that t-dim(D)=1. If t-dim(D)≥2,
then there are prime t-ideals P1, P2 of D with P1 ( P2. Let Q1, Q2 be prime ideals
of D such that Qi ∩ D = Pi for i = 1, 2. Note that D is t-linked under D; so Q2 is
a t-ideal, which means that t-dim(D)≥ 2, a contradiction. Thus t-dim(D)= 1.

(3)⇒ (1) Theorem 2.2. �

Lemma 2.7. D[0]( D[X ] is a (bounded) root extension if and only if char(D) 6= 0.

Proof. If D[0]( D[X ] is a root extension, then there is a positive integer n such
that (1+ X)n ∈ D[0]; so nX ∈ D[0]. Thus char(D) 6= 0. Conversely, assume that
char(D) = p 6= 0, and let m be a positive integer such that pm

≥ F(0)+ 1. If
a+ Xg ∈ D[X ], where a ∈ D and g ∈ D[X ], then (a+ Xg)pm

= a pm
+ X pm

g pm

lies in D[0]. Thus D[0]( D[X ] is a (bounded) root extension. �

Let t-Spec(A) be the set of prime t-ideals of an integral domain A. In [Chang et al.
2012, Theorem 1.5], we showed that the map ϕ : t-Spec(D[X ])→ t-Spec(D[0]),
given by Q 7→ Q ∩ D[0], is an order-preserving bijection. This shows that D[X ]
is t-linked over D[0], and at the same time D[0] is t-linked under D[X ].

Corollary 2.8. If D is a Krull domain, then char(D) 6= 0 if and only if D[0] is an
AK-domain.

Proof. (⇒) Note that D[0] = D[X ] = D[X ]; so D[0] is a Krull domain [Gilmer
1992, Corollary 43.11((3)] and D[0] is t-linked under D[0]. Thus D[0] is an
AK-domain by Corollary 2.6 and Lemma 2.7.
(⇐) Since an AK-domain is an APvMD, D[0] is an APvMD, and thus char(D) 6=

0 [Chang et al. 2012, Theorem 2.2]. �



138 GYU WHAN CHANG, HWANKOO KIM AND JUNG WOOK LIM

Corollary 2.9. If D[X ] ⊆ D[X ] is a bounded root extension, then D is an AK-
domain if and only if D[X ] is an AK-domain.

Proof. This follows from Corollary 2.6, because D is t-linked under D if and only
if D[X ] is t-linked under D[X ] [Anderson et al. 2004, Proposition 3.3]. �

Example 2.10. Let F ( L be a pair of finite fields, and let X, Y be indeterminates
over L . Then D = F + Y L[[Y ]] is an API-domain [Anderson et al. 1994, Example
3.8]; so D is an AK-domain. Since F[X ]( L[X ] is not a root extension, D[X ](
D[X ] is not a (bounded) root extension [Anderson et al. 1994, Proposition 2.4]; so
D[X ] is not an APvMD [Li 2012, Theorem 3.8]. Thus D[X ] is not an AK-domain.
This shows that the assumption “D[X ] ( D[X ] is a bounded root extension” is
essential in Corollary 2.9.

The next theorem characterizes when the numerical semigroup ring D[0] is an
AK-domain in terms of polynomial rings.

Theorem 2.11. D[0] is an AK-domain if and only if D[X ] is an AK-domain and
char(D) 6= 0.

Proof. (⇒) Assume that D[0] is an AK-domain. Since an AK-domain is an
APvMD, char(D) 6= 0 [Chang et al. 2012, Theorem 2.2]. Let ({ fα}) be a nonzero
ideal of D[X ]. Then there exists a positive integer m such that f m

α ∈ D[0] for all fα
by Lemma 2.7. Since D[0] is an AK-domain, (({ f rm

α })({ f rm
α }D[0])

−1)t = D[0]
for some integer r = r({ f m

α })≥ 1. Note that D[X ] is t-linked over D[0]; so

(({ f rm
α })({ f rm

α }D[0])
−1 D[X ])t = D[X ].

Thus D[X ] is an AK-domain.
(⇐) Let ({gα}) be a nonzero ideal of D[0]. Since D[X ] is an AK-domain, there

exists an integer n=n({gα})≥1 such that (({gn
α})J D[X ])t =D[X ] for some v-finite

type ideal J of D[X ]. Let J = (( f1, . . . , fm)D[X ])t , where 0 6= f1, . . . , fm ∈K (X),
the quotient field of D[X ]. Then we have

(({gn
α fi })D[X ])t = (({gn

α})( f1, . . . , fm)D[X ])t = D[X ].

Since char(D) 6= 0, D[0]( D[X ] is a bounded root extension by Lemma 2.7; so
there is an integer k ≥ 1 such that gkn

α f k
i ∈ D[0] for all gn

α fi . Also, it is obvious
that (({gkn

α f k
i })D[X ])t = D[X ], because (({gn

α fi })D[X ])t = D[X ]. Finally, since
D[0] is t-linked under D[X ], we obtain

(({gnk
α })({ f k

i })D[0])t = (({g
nk
α f k

i })D[0])t = D[0].

Thus D[0] is an AK-domain. �

It is known that D is a Krull domain if and only if each nonzero prime ideal of
D contains a t-invertible prime ideal [Kang 1989a, Theorem 3.6]. Also, we know
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that D is a Krull domain if and only if D is a Mori PvMD [Kang 1989a, Theorem
3.2]. So we have the following natural questions on AK-domains:

(1) Assume that each nonzero prime ideal of D contains a nonzero prime ideal
P = ({aα}) such that ({an

α}) is t-invertible for some integer n = n(P)≥ 1. Is
D an AK-domain?

(2) Is a Mori APvMD an AK-domain?

We end this section by giving negative answers to these two questions.

Example 2.12. (1) Let D be the integral domain as in Example 2.10. Then D is a
UMT-domain [Li 2012, Theorem 3.8], because an API-domain is an APvMD; so
t-dim(D[X ])= 1. Hence we have

t-Max(D[X ])= {Q | Q is an upper to zero in D[X ]} ∪ {P[X ] | P ∈ X1(D)}.

Note that if Q ∈ t-Max(D[X ]) with Q ∩ D = (0), then Q is t-invertible. Next,
if P = ({aα}) ∈ X1(D), then there exists a positive integer n = n(P) such that
({an

α})[X ] is principal, and hence t-invertible.
(2) Let p be a prime, F =

⋃
n≥1 G F(p2n

), L = F(G F(p3)), and let D =
F + X L[[X ]]. Then D is a one-dimensional quasilocal Noetherian AB-domain,
but not an API-domain [Anderson et al. 1994, Example 3.6]. Thus D is a Mori
APvMD, but not an AK-domain by Theorem 2.2.

3. AUF-domains

We say that D is an AUF-domain if for every nonzero ideal ({aα}) of D, there exists
a positive integer n = n({aα}) such that ({an

α})t is principal. (Here, an AUF-domain
stands for an almost unique factorization domain.)

We start this section with the AUF-domain analogue of the fact that D is a UFD
if and only if D is a Krull domain and Cl(D)= 0.

Theorem 3.1. D is an AUF-domain if and only if D is an AK-domain and Cl(D)
is torsion.

Proof. (⇒) Let I be a t-invertible t-ideal of D. Then I = (a1, . . . , ak)t for some
a1, . . . , ak ∈ D. Since D is an AUF-domain, (I n)t = (an

1 , . . . , an
k )t [Anderson and

Zafrullah 1991, Lemma 3.3] is principal for some integer n = n(a1, . . . , ak) ≥ 1.
Thus Cl(D) is torsion. Clearly, D is an AK-domain.

(⇐) Let ({bα}) be a nonzero ideal of D. Since D is an AK-domain, there exists
a positive integer n = n({bα}) such that ({bn

α})t is t-invertible. Also, since Cl(D)
is torsion, ({bnm

α })t = (({b
n
α})

m)t [Anderson and Zafrullah 1991, Lemma 3.3] is
principal for some integer m ≥ 1. Thus D is an AUF-domain. �
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Unlike the AK-domain case, an integrally closed AUF-domain need not be a
UFD. For example, Z[

√
−5] is an integrally closed AUF-domain [Anderson and

Zafrullah 1991, Theorem 4.17] which is not a UFD [Balcerzyk and Józefiak 1989,
Example 3.4.1]. We give a characterization of integrally closed AUF-domains,
which is also the analogue of the fact that D is an integrally closed API-domain
if and only if D is a Dedekind domain with torsion class group [Anderson and
Zafrullah 1991, Theorem 4.12].

Corollary 3.2. D is an integrally closed AUF-domain if and only if D is a Krull
domain and Cl(D) is torsion.

Proof. Recall that an integrally closed AK-domain is a Krull domain. Thus this
result comes directly from Theorem 3.1. �

The next corollary explains the relationship between API-domains and AUF-
domains.

Corollary 3.3. D is an API-domain if and only if D is an AUF-domain and each
maximal ideal is a t-ideal.

Proof. (⇒) Since an API-domain is an AD-domain, by Proposition 2.1, each
maximal ideal of D is a t-ideal. Clearly, D is an AUF-domain.

(⇐) Recall that D is an API-domain if and only if D is an AD-domain with
torsion t-class group [Anderson and Zafrullah 1991, Lemma 4.4]. Thus the result
is an immediate consequence of Proposition 2.1 and Theorem 3.1. �

As in [Anderson et al. 1992], we say that D is an almost weakly factorial domain
(AWFD) if for each nonzero nonunit d ∈ D, there exists a positive integer n = n(d)
such that dn is a product of primary elements of D. It is known that D is an AWFD
if and only if D is a weakly Krull domain with Cl(D) torsion [Anderson et al. 1992,
Theorem 3.4]. Thus by Corollary 2.3 and Theorem 3.1, we have

Corollary 3.4. An AUF-domain with t-dimension one is an AWFD.

Remark 3.5. Let D =Q+ XR[X ]. Then D is an AWFD [Anderson et al. 2006,
Theorem 3.5], so t-dim(D)= 1. Note that D is not an AK-domain by Example 2.4.
Hence by Theorem 3.1, D is not an AUF-domain. Thus the converse of Corollary 3.4
is also not true.

The next two corollaries are analogues of Theorem 2.11 and Corollary 2.8,
respectively.

Corollary 3.6. D[0] is an AUF-domain if and only if D[X ] is an AUF-domain and
char(D) 6= 0.

Proof. Recall that Pic(K [0]) is torsion if and only if char(D) 6= 0 [Chang et al.
2012, Lemma 2.7]. Since Cl(D[0]) = Cl(D[X ]) ⊕ Pic(K [0]) [Anderson and
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Chang 2004, Theorem 5], Cl(D[0]) is torsion if and only if Cl(D[X ]) is torsion
and char(D) 6= 0. Thus this equivalence follows from Theorems 2.11 and 3.1. �

Corollary 3.7. If D is a UFD, then char(D) 6= 0 if and only if D[0] is an AUF-
domain.

Proof. The assertion follows from Corollary 3.6, because D is a UFD if and only if
D[X ] is a UFD [Zariski and Samuel 1975, Theorem 10, §17, Chapter 1]. �

The AUF-domain version of Theorem 2.5 also carries over.

Theorem 3.8. Let D ⊆ E be a bounded root extension with E ⊆ D. Assume that
E is t-linked over D. Then D is an AUF-domain if and only if E is an AUF-domain
and D is t-linked under E.

Proof. (⇒) Let {aα} be a nonempty subset of E\{0}. By the assumption, there exists
a positive integer n such that {an

α} ⊆ D. Since D is an AUF-domain, there exists
a positive integer m = m({an

α}) such that ({anm
α })t is principal, say ({anm

α })t = (d)
for some d ∈ D. Hence

(
(1/d) ({anm

α })D
)

t = D. Since E is t-linked over D,(
(1/d) ({anm

α })E
)

t = E [Anderson et al. 1993, Proposition 2.1]; so ({anm
α }E)t = d E .

Thus E is an AUF-domain. Since an AUF-domain is an AK-domain, by Theorem 2.5,
D is t-linked under E .

(⇐) Assume that E is an AUF-domain and let ({bβ}) be a nonzero ideal of
D. Then there exists a positive integer m = m({bβ}) such that ({bm

β }E)t = x E
for some x ∈ E ; so

(
{bm
β /x}E

)
t = E . Since D ⊆ E is a bounded root extension,

there is an integer n ≥ 1 such that bmn
β /xn

=
(
bm
β /x

)n
∈ D for all bm

β /x . Clearly,(
{bmn
β /xn

}E
)

t = E , and since D is t-linked under E ,
(
{bmn
β /xn

}D
)

t = D. Therefore
({bmn

β })t = xn D, and thus D is an AUF-domain. �

By combining Theorem 3.8 with Corollary 3.2, we have

Corollary 3.9. If D ⊆ D is a bounded root extension, then D is an AUF-domain if
and only if D is a Krull domain, Cl(D) is torsion and D is t-linked under D.

Corollary 3.10. If D[X ] ⊆ D[X ] is a bounded root extension, then D is an AUF-
domain if and only if D[X ] is an AUF-domain.

Proof. Note that Cl(D[X ])=Cl(D) [Gabelli 1987, Theorem 3.6] (or [El Baghdadi
et al. 2002, Corollary 2.13]), D and D[X ] are Krull domains simultaneously [Gilmer
1992, Corollary 43.11(3)], and D is t-linked under D if and only if D[X ] is t-linked
under D[X ] [Anderson et al. 2004, Proposition 3.3]. Thus the result is an immediate
consequence of Corollary 3.9. �

Remark 3.11. Example 2.10 also shows that the assumption “D[X ]( D[X ] is a
bounded root extension” is essential in Corollary 3.10.
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As an application of Corollary 3.10, we give an example of AUF-domains that is
not an API-domain.

Corollary 3.12. Let F ( L be a field extension, 0 6= p = char(F), X, Y be indeter-
minates over L and let D = F + Y L[Y ] or F + Y L[[Y ]]. Assume that L pn

⊆ F for
some positive integer n. Then

(1) D is an API-domain.

(2) D[X ] is an AUF-domain that is not an API-domain.

Proof. (1) This appears in [Anderson et al. 1994, Corollary 2.2 and Theorem 3.5(3)].
(2) We do the case where D = F + Y L[Y ]. Note that if f ∈ D, then f pn

∈

F[Y ]. Also, we note that D = L[Y ]. Let f = a + g ∈ D[X ], where a ∈ L and
g ∈ (X, Y )L[Y ][X ]. Then a pn

∈ F ; so f pn
belongs to F + (X, Y )L[Y ][X ]. Say

f pn
= h0+h1 X+· · ·+hm Xm

+g1Y+· · ·+gkY k , where h0 ∈ F, hi ∈ L (1≤ i ≤m)
and g j ∈ L[X ] (1≤ j ≤ k). Since L pn

⊆ F and char(F)= p, we have

f p2n
= ( f pn

)pn

= h pn

0 + h pn

1 X pn
+ · · ·+ h pn

m X pn
+
∑
j≥1
(g j Y j )pn

∈ F[X ] + Y L[X ][Y ] = D[X ].

Hence D[X ]⊆ D[X ] is a bounded root extension, and thus D[X ] is an AUF-domain
by Corollary 3.10 and (1). For the sake of contradiction, assume that D[X ] is an
API-domain. Then D[X ] = D[X ] is a Prüfer domain [Anderson and Zafrullah
1991, Corollary 4.8]. Therefore D, and hence D is a field [Gilmer 1992, Exercise
15, Section 22], a contradiction. Thus D[X ] is not an API-domain.

A similar proof holds for the case where D = F + Y L[[Y ]]. (Note that if
D = F + Y L[[Y ]], then D = L[[Y ]].) �

Example 3.13. (1) Let F be a field with char(F)= p > 0, X be an indeterminate
over F and n be a positive integer. Then F(X pn

)( F(X) is a field extension such
that F(X)pn

⊆ F(X pn
).

(2) Let D be an integral domain as in Corollary 3.12. Note that char(D) 6= 0 and
D[X ] is an AUF-domain. Hence by Corollary 3.6, D[0] is a nonintegrally closed
AUF-domain. This gives another example of an AUF-domain that is not a UFD.

Recall that a nonzero nonunit p ∈ D is a prime block if for all x, y ∈ D with
(x, p)v ( D and (y, p)v ( D, there exist an integer n ≥ 1 and an element d ∈ D
such that (xn, yn) ⊆ d D with (xn/d, p)v = D or (yn/d, p)v = D. Following
[Zafrullah 1985, Definition 1.10 and Remark 1.11], we say that D is an almost
unique factorization domain (AUFD) if for every nonzero nonunit d ∈ D, there
is a positive integer n = n(d) such that dn is expressible as a product of finitely
many mutually v-coprime prime blocks; equivalently, every nonzero nonunit of D
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is expressible as a product of finitely many prime blocks. (This explains why we use
the name “AUF-domain” instead of AUFD.) It is obvious that each nonzero nonunit
of a valuation domain V is a prime block. Hence a valuation domain is an AUFD,
but if V has Krull dimension at least 2 or V is a rank one nondiscrete valuation
domain, then V is not an AUF-domain since an integrally closed AUF-domain is a
Krull domain by Corollary 3.2. This shows that the converse of the next theorem
does not hold.

Theorem 3.14. An AUF-domain with t-dimension one is an AUFD.

Proof. Let D be an AUF-domain of t-dimension one. If P = ({aα}) ∈ X1(D),
then there exists an integer m ≥ 1 such that ({am

α })t = pD for some p ∈ D. We
claim that p is a prime block. For x, y ∈ D with (x, p)v ( D and (y, p)v ( D,
there exists an integer n ≥ 1 such that (xn, yn) ⊆ (xn, yn)v = d D for some d ∈
D. So (xn/d, yn/d)v = D. Suppose to the contrary that (xn/d, p)v ( D and
(yn/d, p)v ( D. Since t-dim(D) = 1 and P =

√
pD ∈ X1(D), we have that

(xn/d, yn/d)v ⊆ P ( D, a contradiction. Thus (xn/d, p)v = D or (yn/d, p)v = D,
which indicates that p is a prime block. Again, since t-dim(D)= 1, each nonzero
prime ideal of D contains a prime block. Thus D is an AUFD [Zafrullah 1985,
Theorem 2.2]. �

We say that D is an almost π-domain if for every nonzero ideal ({aα}) of D,
there exists a positive integer n = n({aα}) such that ({an

α})t is invertible. (To
prevent the reader’s confusion, we should point out that our almost π-domain is
different from Anderson’s almost π-domain. He called D an almost π-domain if
D is a Krull domain with torsion local t-class group [Anderson 1978, page 202].
Therefore, Anderson’s almost π -domain is a special case of our almost π -domain.
(See Theorem 3.15 or Corollary 3.16.)) It is clear that API-domain⇒ AUF-domain
⇒ almost π -domain⇒ AK-domain.

The next theorem is the almost π-domain analogue of the result that D is a π-
domain if and only if D is a Krull domain with trivial local t-class group [Anderson
1978, Theorem 1].

Theorem 3.15. D is an almost π-domain if and only if D is an AK-domain and
G(D) is torsion.

Proof. (⇒) Let I be a t-invertible t-ideal of D. Then I = (a1, . . . , am)t for
some a1, . . . , am ∈ D. Since D is an almost π-domain, there exists an integer
n = n(a1, . . . , am) ≥ 1 such that (I n)t = (an

1 , . . . , an
m)t [Anderson and Zafrullah

1991, Lemma 3.3] is invertible. Thus G(D) is torsion. Clearly, D is an AK-domain.
(⇐) If ({aα}) is a nonzero ideal of an AK-domain D, then there exists a positive

integer n = n({aα}) such that ({an
α})t is t-invertible. Since G(D) is torsion, there

is an integer m = m(({an
α})t) ≥ 1 such that ({anm

α })t = (({a
n
α})

m)t [Anderson and
Zafrullah 1991, Lemma 3.3] is invertible. Thus D is an almost π -domain. �
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Our remaining corollaries are the almost π -domain analogues of Corollaries 3.2
and 3.7, respectively.

Corollary 3.16. D is an integrally closed almost π-domain if and only if D is a
Krull domain and G(D) is torsion.

Proof. Recall again that an integrally closed AK-domain is a Krull domain. Thus
the result comes directly from Theorem 3.15. �

Example 3.17. Let X, Y be analytic indeterminates over Z[
√
−5] and consider

D = Z[
√
−5][X2, XY, Y 2

]. Then D is a Krull domain with Pic(D) = Z/2Z (
Z/2Z⊕Z/2Z= Cl(D) [Anderson and Ryckaert 1988, Example 4.7(1)]; so G(D)
is torsion. Hence by Corollary 3.16, D is an integrally closed almost π-domain.
Note that D is not a π-domain. Thus, an integrally closed almost π-domain need
not be a π -domain.

Corollary 3.18. If D is a π-domain, then char(D) 6= 0 if and only if D[0] is an
almost π -domain.

Proof. Recall that a π -domain D is a Krull domain with Cl(D)=Pic(D). Therefore

Cl(D[0])= Cl(D[X ])⊕Pic(K [0])

= Cl(D)⊕Pic(K [0])

⊇ Pic(D[0])

⊇ Cl(D)⊕{0},

where the first equality comes from [Anderson and Chang 2004, Theorem 5] and the
second equality follows from [Gabelli 1987, Theorem 3.6] (or [El Baghdadi et al.
2002, Corollary 2.13]). We also note that char(D) 6= 0 if and only if Pic(K [0]) is
torsion [Chang et al. 2012, Lemma 2.7]. Hence if D is a π-domain with nonzero
characteristic, then G(D[0]) is torsion. Thus the result is an immediate consequence
of Corollary 2.8 and Theorem 3.15. �

It is worth remarking at this point that the assumption “bounded root extension”
has a significant role in proving many results in our paper (for example, Theorems
2.5 and 3.8). In [Anderson and Zafrullah 1991], Anderson and Zafrullah also
utilized this hypothesis to show some theorems about AB-domains, AP-domains,
API-domains and AD-domains. Unfortunately, we are unable to prove Corollary 2.6
without this assumption, i.e., we do not know whether the t-dimension of an AK-
domain is generally 1. (Note that the t-dimension of a Krull domain is always 1.)
We are closing this article with a couple of questions.

Question 3.19. Let D be an AK-domain or AUF-domain.

(1) What is the t-dimension of D? Is it true that t-dim(D)= 1?

(2) Is D necessarily a Krull domain?
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Appendix

In this appendix, we give three diagrams of various integral domains related to
(almost) factorization theory in order to help the readers better understand the
correlation between the theory of almost factoriality and factorization theory. Each
of the corresponding vertices in Figures 1 and 2 represent the correlation of integral
domains in the relationship of the theory of almost factoriality and factorization
theory. (For example, an AK-domain in the theory of almost factoriality is the
corresponding notion to Krull domains in factorization theory.) In Figure 3, each
vertex represents the integrally closed domain version of corresponding vertex in
Figure 1. (For instance, an integrally closed API-domain is a Dedekind domain with
torsion class group.) We also cite some well-known results about these domains.

For more on integral domains and almost factoriality see [Anderson et al. 1994;
Anderson and Zafrullah 1991; Lewin 1997; Li 2012; Zafrullah 1985]. For more on
integral domains in factorization theory, see [Anderson and Anderson 1980; Gilmer
1992; Kaplansky 1994; Mott and Zafrullah 1981].

Remark 1. Let D be one of domains in Figure 1.

(1) In general, D is not integrally closed.

(2) The arrows always hold, but none of the converse is true.

(3) Each implication of type ← holds (for example, an AK-domain is an AD-
domain) if and only if Max(D)= t-Max(D).

(4) Each implication of type → holds (for example, an AK-domain is an AUF-
domain) if and only if Cl(D) is torsion.

(5) Each implication of type → holds (for example, an AK-domain is an almost
π -domain) if and only if G(D) is torsion.

Figure 1. Nonintegrally closed domains in the theory of almost factoriality.
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Figure 2. Integrally closed domains in factorization theory.

Figure 3. Integrally closed domain version of domains in the the-
ory of almost factoriality.

Remark 2. Let D denote one of domains in Figure 2.

(1) D is integrally closed.

(2) The arrows always hold, but none of the converse holds.

(3) Each implication of type← holds (for instance, a Krull domain is a Dedekind
domain) if and only if Max(D)= t-Max(D).

(4) Each implication of type → holds (for instance, a Krull domain is a UFD) if
and only if Cl(D)= 0.

(5) Each implication of type → holds (for instance, a Krull domain is a π -domain)
if and only if G(D)= 0.
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SINGULARITIES OF FREE GROUP CHARACTER VARIETIES

CARLOS FLORENTINO AND SEAN LAWTON

Let Xr be the moduli space of SLn, SUn, GLn, or Un-valued representations
of a rank r free group. We classify the algebraic singular stratification of
Xr . This comes down to showing that the singular locus corresponds exactly
to reducible representations if there exist singularities at all. Then by relat-
ing algebraic singularities to topological singularities, we show the moduli
spaces Xr generally are not topological manifolds, except for a few examples
we explicitly describe.

1. Introduction

During the last few decades, character varieties have played important roles in
knot theory, hyperbolic geometry, Higgs and vector bundle theory, and quantum
field theory. However, many of their fundamental properties and structure are not
completely understood.

In this article, we first classify the (algebraic) singular locus of SLn and GLn-
character varieties of free groups by relating the existence of a singularity with
the reducibility of the corresponding representation. We then classify all such
character varieties that arise as manifolds by explicitly describing the topological
neighborhoods of generic singularities. The results we obtain do not necessarily
extend to general G-character varieties of finitely generated groups 0, if G is not
one of SLn , SUn , GLn , or Un and 0 is not free; explicit counterexamples can be
obtained via methods different from those considered in this paper (see Section 3I).
Our first main theorem generalizes results in [Heusener and Porti 2004], and our
second main theorem generalizes results in [Bratholdt and Cooper 2001]. They
may be described more precisely as follows.

Let Fr be a rank r free group and let G be a reductive complex algebraic group
with K a maximal compact subgroup (see Section 2). Let Rr (G)= Hom(Fr ,G)
and Rr (K )= Hom(Fr , K ) be varieties of representations, and let G, respectively

This work was partially supported by the Center for Mathematical Analysis, Geometry and Dynamical
Systems at I.S.T., and by the Fundação para a Ciência e a Tecnologia through the programs Praxis
XXI, POCI/ MAT/ 58549/ 2004 and FEDER..
MSC2010: primary 14B05, 32S05; secondary 14L30, 20CXX, 14P10.
Keywords: character variety, singularities, local topology.
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K , act by conjugation on these representation spaces.
Consider the space Xr (K ) :=Rr (K )/K which is the conjugation orbit space of

Rr (K ) where ρ ∼ψ if and only if there exists k ∈ K so ρ = kψk−1. Let C[Rr (G)]
be the affine coordinate ring of Rr (G) and let C[Rr (G)]G be the subring of G-
conjugation invariants. Then define

Xr (G) := Specmax
(
C[Rr (G)]G

)
,

which parametrizes unions of conjugation orbits where two orbits are in the same
union if and only if their closures have a nonempty intersection.

The space Xr (G), called the G-character variety of Fr , is a complex affine variety
and so has a well-defined (algebraic) singular locus (a proper subvariety) which
we denote by Xr (G)sing. Similarly, Xr (K ) is a semialgebraic set and so has a real
algebraic coordinate ring which likewise determines an algebraic singular locus
Xr (K )sing. For simplicity, despite the fact it is generally not an algebraic set, we
will also refer to Xr (K ) as a character variety.

We will be mainly concerned with the cases when G is the general linear group
GLn or the special linear group SLn (over C), for which K is the unitary group Un

or the special unitary group SUn , respectively. In these cases a representation ρ
is called irreducible if with respect to the standard action of G, respectively K ,
on Cn the induced action of ρ(Fr ) does not have any nontrivial proper invariant
subspaces. Otherwise ρ is called reducible. This allows one to define the sets
Xr (G)red and Xr (K )red which correspond to the spaces of equivalence classes in
Xr (G), respectively Xr (K ), that have a representative which is reducible.

In Section 2, we show that the (algebraic) singular locus of Xr (SLn) and Xr (GLn)

respectively determines the (algebraic) singular locus of Xr (SUn) and Xr (Un). We
then show Xr (SLn) ⊂ Xr (GLn) has its singular locus determined by the singular
locus of Xr (GLn). This reduces the classification of the singular loci of these four
families of moduli spaces to Xr (GLn) alone. We end Section 2 with examples
of Xr (G) that are homeomorphic to manifolds with boundary; we conjectured in
[Florentino and Lawton 2009] that these were the only examples.

It is straightforward to establish that X1(SLn) ∼= Cn−1 and X2(SL2) ∼= C3 are
affine spaces and so smooth, and X1(SLn)

red
= X1(SLn). In [Heusener and Porti

2004], it is shown that Xr (SL2)
sing
= Xr (SL2)

red for r ≥ 3. More generally, one
can establish that all irreducible representations in SLn-character varieties of free
groups are in fact smooth; that is Xr (SLn)

sing
⊂ Xr (SLn)

red. In [Lawton 2007]
it is shown that the singular locus of X2(SL3) corresponds exactly to the set of
equivalence classes of reducible representations; that is, X2(SL3)

red
= X2(SL3)

sing.
These examples generalize to our first main result:

Theorem 1.1. Let r, n ≥ 2. Let G be SLn or GLn and K be SUn or Un . Then
Xr (G)red

= Xr (G)sing and Xr (K )red
= Xr (K )sing if and only if (r, n) 6= (2, 2).
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In fact we are able to use an induction argument to completely classify the
singular stratification of these semialgebraic spaces. The proof and development of
this result constitutes Section 3, including a brief review of a weak version of the
celebrated Luna slice theorem.

Theorem 1.1 is sharper than it might appear at first. Replacing Fr by a general
finitely presented group 0 one can find examples where irreducibles are singular
and examples where reducibles are smooth. On the other hand, changing G to
a general reductive complex algebraic group, we find there are examples where
irreducibles are singular. In Section 3I, we discuss this in further detail.

A locally Euclidean Hausdorff space M with a countable basis is called a topolog-
ical manifold. More generally, if the neighborhoods are permitted to be Euclidean
half-spaces then M is said to be a topological manifold with boundary. In [Florentino
and Lawton 2009] we determined the homeomorphism type of Xr (SUn) in the cases
(r, n)= (r, 1), (1, n), (2, 2), (2, 3), and (3, 2)where we showed all were topological
manifolds with boundary; this is reviewed in Section 2B. In [Bratholdt and Cooper
2001] it is established that the Xr (SU2) are not topological manifolds when r ≥ 4.

Motivated by this we conjectured in [Florentino and Lawton 2009] that the
examples computed there are the only cases where a topological manifold with
boundary arise. Our second main theorem in this paper establishes that conjecture:

Theorem 1.2. Let r, n ≥ 2. Let G be SLn or GLn and K be SUn or Un . Xr (G)
is a topological manifold with boundary if and only if (r, n) = (2, 2). Xr (K ) is a
topological manifold with boundary if and only if (r, n)= (2, 2), (2, 3), or (3, 2).

Theorem 1.1 and the observation that the reducible locus is nonempty for n ≥ 2,
does not immediately imply Theorem 1.2 since algebraic singularities may or may
not be an obstruction to the existence of a Euclidean neighborhood (topological
singularities). For example, both the varieties given by xy = 0 and y2

= x3 in
C2 (or R2) are (algebraically) singular at the point (0, 0) but only the latter has a
Euclidean neighborhood at the origin. So, only the former is topologically singular.
The variety xy = 0 is reducible; an example of an irreducible variety that has an
algebraic singularity that is also a topological singularity is the affine cone over
CP1
×CP1 discussed in Section 3E.

The proof of Theorem 1.2 constitutes Section 4. To prove our main theorems we
use slice theorems and explicitly describe the homeomorphism type of neighbor-
hoods (showing them to be non-Euclidean) for a family of examples. It is interesting
to note that since Xr (SLn) deformation retracts to Xr (SUn), by [Florentino and
Lawton 2009], it must be the case that for (r, n)= (2, 3) and (3, 2) the non-Euclidean
neighborhoods deformation retract to Euclidean neighborhoods. Curiously, these
are the only cases (n ≥ 2) where Xr (SUn) is a topological manifold, and both are
homeomorphic to spheres (see [Florentino and Lawton 2009] or Section 2B).
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2. Character varieties

Let G be a complex affine reductive algebraic group and let K be a maximal
compact subgroup. Then, G = KC is the complexification of K (the set complex
zeros of K as a real algebraic set). For instance, KC = SLn is the complexification
of K = SUn , and KC = GLn is the complexification of K = Un .

Let 0 be a finitely generated group and let R0(G)=Hom(0,G) be the G-valued
representations of 0. We call R0(G) the G-representation variety of 0, although it
is generally only an affine algebraic set.

In the category of affine varieties, R0(G) has a quotient by the conjugation action
of G, a regular action, given by ρ 7→ gρg−1. This quotient is realized as X0(G)=
Specmax(C[R0(G)]G), where C[R0(G)]G is the subring of invariant polynomials
in the affine coordinate ring C[R0(G)]. We call X0(G) the G-character variety of
0. Concretely, it parametrizes unions of conjugation orbits where two orbits are
in the same union if and only if their closures intersect nontrivially. Within each
union of orbits, denoted [ρ] and called an extended orbit equivalence class, there is
a unique closed orbit (having minimal dimension). Any representative from this
closed orbit is called a polystable point. For SLn and GLn the polystable points will
have the property that with respect to the action of ρ(0) on Cn , they are completely
reducible; that is, each decomposes into a finite direct sum of irreducible subactions
(on nonzero subspaces).

Let Fr = 〈x1, . . . , xr 〉 be a rank r free group. The G-representation variety
of Fr , and the G-character variety of Fr will simply be denoted by Rr (G) and
Xr (G), respectively. The evaluation mapping Rr (G)→ Gr defined by sending
ρ 7→ (ρ(x1), . . . , ρ(xr )) is a bijection and since G is a smooth affine variety, Rr (G)
naturally inherits the structure of a smooth affine variety as well. Note that we are
not assuming that an algebraic variety is irreducible. Whenever G is an irreducible
algebraic set however, Rr (G) is irreducible, and consequently Xr (G) is irreducible
as well.

Since an algebraic reductive group over C is always linear, we can assume that G
is a subgroup of GLN , for some N , and hence Rr (G)⊂ Cr N 2

. So, Rr (G) inherits
the ball topology. Given a set of generators f1, . . . , fk of the ring of invariants
C[Rr (G)]G , Xr (G) also inherits the ball topology from the embedding of Xr (G)
into Ck given by [ρ] 7→ ( f1(ρ), . . . , fk(ρ)). In this topology Xr (G) is Hausdorff
and has a countable basis. Although the ball topology is dependent on an embedding
a priori, an affine embedding corresponds exactly to a set of generators for the
associated ring, but all choices result in the same homeomorphism type, so the ball
topology is intrinsic. Also, in the ball topology, at each point in Xr (G) there is a
neighborhood homeomorphic to a real cone over a space with Euler characteristic 0
[Sullivan 1971].
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Given a compact Lie group K , for brevity we also call the orbit space Xr (K )=
Rr (K )/K a K -character variety of Fr . Note however that Xr (K ) is generally
only a semialgebraic set, and does not equal, in general, the set of real points of a
complex variety. In this case, the topology, also Hausdorff with a countable basis,
is the quotient topology. Xr (K ) is compact since K is compact. Likewise, it is
path-connected whenever K is path-connected.

Definition 2.1. Let ρ :0→G be a representation into a reductive complex algebraic
group. If the image of ρ does not lie in a parabolic subgroup of G, then ρ is called
irreducible. If, for every parabolic P containing ρ(0) there is a Levi factor L ⊂ P
such that ρ(0)⊂ L , then ρ is called completely reducible.

For SLn and GLn the irreducible representations are exactly those that, with respect
to their actions on Cn , do not admit any proper (nontrivial) invariant subspaces.
Any representation that is not irreducible is called reducible. Denote the set of
reducible representations by R0(G)red. A point is called stable if the stabilizer is
finite and if the orbit is closed.

The following theorem can be found in [Sikora 2012], building on earlier work
in [Johnson and Millson 1987, pp. 54–57]. Let PG = G/Z(G) where Z(G) is the
center. Note that the action of PG and G define the same GIT quotients and the
same orbit spaces and thus, since the PG action is effective, we will sometimes
consider this action.

Theorem 2.2 [Johnson and Millson 1987; Sikora 2012]. Let G be reductive. The
irreducibles are exactly the stable points under the action of PG on R0(G). The
completely reducibles are the polystable points.

Definition 2.3. The reducibles X0(G)red are the image of the projection

R0(G)red
⊂R0(G)−→ X0(G).

Since Rr (G)∼= Gr all points are smooth, and since Xr (G) is an affine quotient
of a reductive group, there exists ρss

∈ [ρ] which has a closed orbit and corresponds
to a completely reducible representation. Thus, for G either SLn or GLn we can
assume it is in block diagonal form. In other words, ρss

↔ (X1, . . . , Xr ) where
X i all have the same block diagonal form (if they are irreducible then there would
be only one block). These representations induce a semisimple module structure
on Cn . We denote the set of semisimple representations by Rr (G)ss. We note that
Rr (G)ss/G∼=Xr (G) since all extended orbits have a semisimple representative, and
that the semisimple representations are also the completely reducible representations
which are also the polystable representations. Likewise, we denote the irreducible
representations (those giving simple actions on Cn) by Rr (G)s and their quotient
by Xr (G)s.
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2A. The determinant fibration. In order to compare SLn-character varieties to GLn-
character varieties, the following setup will be useful. The usual exact sequence of
groups given by the determinant of an invertible matrix

(1) SLn→ GLn
det
→ C∗

induces (by fixing generators of Fr , as before) what we will call the determinant
map:

det : Xr (GLn)→ Hom(Fr ,C∗)∼=
(
C∗
)r
, [ρ] 7→ det(ρ),

where det(ρ)= (det(X1), . . . , det(Xr )), for ρ= (X1, . . . , Xr )∈Rr (GLn). Note that
the map is clearly well-defined on conjugation classes. Considering the algebraic
torus (C∗)r = Hom(Fr ,C∗) = Xr (C

∗) as an algebraic group (with identity 1 =
(1, . . . , 1) and componentwise multiplication) it is immediate that the SLn-character
variety is the “kernel” of the determinant map, Xr (SLn)= det−1(1). Therefore, the
sequence (1) induces another exact sequence

(2) Xr (SLn)→ Xr (GLn)
det
→
(
C∗
)r
.

In this way, SLn-character varieties appear naturally as subvarieties of GLn-character
varieties.

Note also that Xr (GLn) can be viewed as a Xr (C
∗)-space, as it admits a well-

defined action of this torus. That is, we can naturally define ρ · λ ∈ Xr (GLn), given
ρ ∈Xr (GLn) and λ ∈Xr (C

∗). Given that PSLn = GLn//C
∗, it is easy to see that the

corresponding quotient is the PSLn-character variety:

Xr (PSLn)= Xr (GLn)//Xr (C
∗).

Also, GLr
n is a quasiaffine subvariety of gl(n,C)r . In fact, it is the principal

open set defined by the product of the determinants of generic matrices. Since the
determinant is an invariant function and taking invariants commutes with localizing
at those invariants, we have

C[GLr
n]

GLn ≈ C[gl(n,C)r//GLn]

[
1

det(X1) · · · det(Xr )

]
,

where the expression on the right is the localization at the product of determinants.
We now prove how the fixed determinant character varieties, complex and com-

pact, relate to the nonfixed determinant character varieties. Identify the cyclic group
of order n, Zn := Z/nZ, with Z(SLn)∼= Z(SUn).

Theorem 2.4. The following are isomorphisms of semialgebraic sets:

(i) Xr (GLn)∼= Xr (SLn)×Xr (Zn) Xr (GL1).

(ii) Xr (Un)∼= Xr (SUn)×Xr (Zn) Xr (U1).
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Proof. We first note that Xr (U1)∼= (S1)r and Xr (GL1)∼= (C
∗)r , and thus Xr (Zn)∼=

Zr
n , as the groups involved are abelian.
The determinant map (1) defines a principal SLn-bundle SLn ↪→ GLn → C∗,

which also expresses GLn ∼= SLn o C∗ as a semidirect product since there exists a
homomorphic section (SLn is a normal subgroup).

Let Zn correspond to n-th roots of unityωk=e
2π ik

n . As algebraic sets one can show
directly, by the mapping (A, λ) 7→ λA, that GLn ∼= (SLn ×C∗)//Zn := SLn ×Zn C∗

where Zn acts by ωk · (g, λ) = (gωk, ω
−1
k λ) and C∗ is the center of GLn . This

implies that, as algebraic sets,

(3) Xr (GLn)∼= ((SLn ×C∗)//Zn)
r//SLn

∼=
(
(SLr

n × (C
∗)r )//Zr

n
)
//SLn

∼=
(
(SLr

n × (C
∗)r )//SLn

)
//Zr

n
∼= Xr (SLn)×Zr

n
(C∗)r ,

since the action of Zr
n commutes with the action of SLn which is trivial on (C∗)r .

In the same way we obtain the other “twisted product” isomorphism Xr (Un)∼=

Xr (SUn)×Zr
n
(S1)r . �

This result provides an explicit way to write Xr (GLn) as a Xr (SLn)-bundle over
the algebraic r-torus (C∗)r and Xr (Un) as a Xr (SUn)-bundle over the geometric
r -torus (S1)r .

There are a number of consequences to Theorem 2.4.

Corollary 2.5. Xr (Un), respectively Xr (GLn), is a manifold whenever Xr (SUn),
respectively Xr (SLn), is a manifold.

Proof. The action of Zr
n is free and proper. �

Corollary 2.6. Xr (GLn) and Xr (SLn)× (C
∗)r are étale equivalent.

Proof. First note that SLr
n × (C

∗)r is smooth and hence a normal variety. This
implies (see [Drézet 2004]) that (SLr

n × (C
∗)r )//SLn = Xr (SLn)× (C

∗)r is also
normal. However, the GIT projection

Xr (SLn)× (C
∗)r → Xr (SLn)×Zr

n
(C∗)r

is then étale because Zr
n is finite and acts freely [ibid.]. Then by Theorem 2.4

Xr (GLn)∼= Xr (SLn)×Zr
n
(C∗)r which establishes the result. �

Corollary 2.7. Let [ρ] ∈ Xr (SLn) and let [ψ] ∈ Xr (SUn). Then:

(i) [ρ] ∈ Xr (SLn)
sing if and only if [ρ] ∈ Xr (GLn)

sing.

(ii) [ρ] ∈ Xr (SLn)
sm if and only if [ρ] ∈ Xr (GLn)

sm.

(iii) [ψ] ∈ Xr (SUn)
sing if and only if [ψ] ∈ Xr (Un)

sing.

(iv) [ψ] ∈ Xr (SUn)
sm if and only if [ψ] ∈ Xr (Un)

sm.
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Proof. First let [ρ] ∈Xr (SLn). Corollary 2.6 tells that Xr (SLn)× (C
∗)r→Xr (GLn)

is an étale equivalence and such mappings preserve tangent spaces, we conclude

T[ρ](Xr (GLn))∼= T[ρ](Xr (SLn)× (C
∗)r )∼= T[ρ](Xr (SLn))⊕Cr .

By counting dimensions and noticing that

dimC(Xr (GLn))= dimC(Xr (SLn))+ r,

results (i) and (ii) follow.
Results (iii) and (iv) follow from (i) and (ii) and the additional observations that

dimC(Xr (KC))= dimR(Xr (K )) and dimC

(
T[ψ](Xr (KC))

)
= dimR

(
T[ψ](Xr (K ))

)
.

�

Corollary 2.8. We have the following isomorphisms of character varieties:

(i) Xr (PSLn)∼= Xr (SLn)//Z
r
n in the category of algebraic varieties.

(ii) Xr (PUn)∼= Xr (SUn)/Z
r
n in the category of semialgebraic sets.

Proof. From the previous theorem we have

Xr (GLn)∼= Xr (SLn)×Zr
n
(C∗)r .

Taking the quotient of both sides by (C∗)r we can conclude Xr (PSLn)∼=Xr (SLn)//Z
r
n .

More precisely letting µ= (µ1, . . . , µr ) ∈ (C
∗)r act only on the second factor of

Xr (SLn)× (C
∗)r ,

µ ·
(
[(A1, . . . , Ar )], (λ1, . . . , λr )

)
=
(
[(A1, . . . , Ar )], (µ1λ1, . . . , µrλr )

)
,

and going through the isomorphisms in (3), one gets that the action on Xr (GLn)

corresponds to scalar multiplication of each entry, so we obtain

Xr (PSLn) ∼= Xr (GLn)//(C
∗)r ∼=

(
Xr (SLn)×Zr

n
(C∗)r

)
//(C∗)r

∼=
(
(Xr (SLn)×(C

∗)r )//Zr
n
)
//(C∗)r

∼=
(
(Xr (SLn)×(C

∗)r )//(C∗)r
)
//Zr

n
∼= Xr (SLn)//Z

r
n,

as wanted. The other statement is analogous. �

2B. Examples. We use the results in Section 2A and the theorems from [Florentino
and Lawton 2009] to describe the homeomorphism types of the examples of G-
character varieties of Fr known to be manifolds with boundary. Let Bn denote a
closed real ball of indicated dimension, and let {∗} denote the space consisting of
one point.

One can show that whenever φ : Xr (SLn)→ M is an isomorphism (as affine
varieties), then Xr (SUn)∼= φ(Xr (SUn))⊂ M (as semialgebraic sets) by restricting
φ to Xr (SUn)⊂ Xr (SLn) [Procesi and Schwarz 1985].

We first consider the trivial case (r, n)= (r, 1). In this case the conjugation action
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is trivial, and thus we deduce the following table of moduli of (r, 1)-representations:

fixed determinant nonfixed determinant

complex Xr (SL1) ∼= {∗} Xr (GL1)∼= (C
∗)r

compact Xr (SU1)∼= {∗} Xr (U1) ∼= (S1)r

We next consider the case r = 1. The coefficients of the characteristic polynomial
of a matrix X , {c1(X), . . . , cn−1(X), det(X)}, define conjugate invariant regular
mappings X1(SLn)→ Cn−1 and X1(GLn)→ Cn−1

×C∗ which are isomorphisms.
Thus we get this table of moduli of (1, n)-representations:

fixed determinant nonfixed determinant

complex X1(SLn) ∼= Cn−1 X1(GLn)∼= Cn−1
×C∗

compact X1(SUn)∼= Bn−1 X1(Un) ∼= Bn−1× S1

Remark 2.9. With respect to the second table, each of the four families of moduli
spaces contains no irreducible representations, yet each space is smooth. For this
reason these moduli spaces should perhaps be regarded as everywhere singular,
since we will see that irreducibles will generally be smooth points for r ≥ 2.

In the r = 2 case we have a well-known isomorphism X2(SL2)→ C3 given
by [(A, B)] 7→ (tr(A), tr(B), tr(AB)); see [Goldman 2009; Vogt 1889; Fricke and
Klein 1912]. More generally there is an isomorphism gl(2,C)2//PGL2→ C5 given
by

[(A, B)] 7→ (tr(A), tr(B), tr(AB), det(A), det(B)).

Therefore we get the following moduli of (2, 2)-representations:

fixed determinant nonfixed determinant

complex X2(SL2) ∼= C3 X2(GL2)∼= C3
× (C∗×C∗)

compact X2(SU2)∼= B3 X2(U2) ∼= B3× (S1
× S1)

In [Florentino and Lawton 2009] the following fixed determinant cases are
established:

fixed determinant nonfixed determinant

compact (3, 2) X3(SU2)∼= S6 X3(U2)∼= S6
×Z3

2
(S1
×S1
×S1)

compact (2, 3) X2(SU3)∼= S8 X2(U3)∼= S8
×Z2

3
(S1
×S1)

Remark 2.10. The complex (3, 2) and (2, 3) cases are left out in this last table
since we will show they are not manifolds. In each of these cases, the complex
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moduli space of fixed determinant is a branched double cover of complex affine
space which deformation retract to a sphere. The explicit scheme structures are
known as well. See [Florentino and Lawton 2009; Lawton 2007].

We conjectured in [Florentino and Lawton 2009] that this covers all the cases
where a topological manifold with boundary can arise. We will prove this conjecture
in Section 4.

3. Singularities

3A. Algebro-geometric singularities. There are a number of equivalent ways to
describe smoothness for affine varieties.

Let X = V ( f1, . . . , fk)⊂ Cn be an affine variety. Then its tangent space at the
point p= (p1, . . . , pn) ∈ X is the vector space

Tp(X)=
{
(v1, . . . , vn) ∈ Cn

∣∣∣∣ n∑
j=1

∂ fi

∂x j

∣∣∣
p
(v j − p j )= 0 for all i

}
.

This coincides with the more general definition Tp(X)= (m p/m
2
p)
∗, which is

the dual to the cotangent space m p/m
2
p, where m p is a maximal ideal in C[X ]

corresponding to p by Hilbert’s Nullstellensatz.

Definition 3.1. The singular locus of X is defined to be

X sing
= { p ∈ X | dimCTp(X) > dimKrull X}.

The complement of this set, X−X sing, is a complex manifold. If X is irreducible,
then X is path-connected and furthermore X − X sing is likewise path-connected.
See [Shafarevich 1994].

Let c=n−dimKrull X . And let J be the k×n Jacobian matrix of partial derivatives
of the k relations defining X ⊂ Cn . We can assume n is minimal. Then X sing is
concretely realized as the affine variety determined by the determinant of the c× c
minors of J . This ideal is referred to as the Jacobian ideal. In this way, X sing is
seen to be a proper subvariety of X .

For example, in [Heusener and Porti 2004] it is shown (for r ≥ 3) that

Xr (SL2)
sing
= Xr (SL2)

red.

In [Lawton 2007], explicitly computing the Jacobian ideal, a similar result is also
shown: X2(SL3)

red
= X2(SL3)

sing.

3B. Tangent spaces. Let g be the Lie algebra of G. Having addressed the r = 1
and n = 1 cases, we now assume that r, n ≥ 2.

The following two lemmas are classical, and in fact are true for any algebraic
Lie group over R or C. See [Weil 1964]. For a representation ρ : Fr → G, let us
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denote by gAdρ the Fr -module g with the adjoint action via ρ. That is, any word
w ∈ Fr acts as w ·X =Adρ(w) X =ρ(w)Xρ(w)−1, for X ∈ g. Consider the cocycles,
coboundaries and cohomology of Fr with coefficients in this module. Explicitly:

Z1(Fr ; gAdρ ) := {u : Fr → g | u(xy)= u(x)+Adρ(x) u(y)},

B1(Fr ; gAdρ ) := {u : Fr → g | u(x)= Adρ(x) X − X for some X ∈ g},

H 1(Fr ; gAdρ ) := Z1(Fr ; gAdρ )/B1(Fr ; gAdρ ).

Lemma 3.2. Let G be any algebraic Lie group over R or C.

Tρ (Rr (G))∼= gr ∼= Z1(Fr ; gAdρ ).

Let Orbρ={gρg−1
| g∈G} be the G-orbit of ρ, and let Stabρ={g∈G | gρg−1

=

ρ} be the G-stabilizer (or isotropy subgroup).

Lemma 3.3. Let G be any algebraic Lie group over R or C.

Tρ(Orbρ)∼= g/{X ∈ g | Adρ(x) X = X} ∼= B1(Fr ; gAdρ ).

It is not always the case that the tangent space to the quotient is the quotient of
tangent spaces. Consider representations from the free group of rank 1 into SL3.
The ring of invariants is two dimensional and the ring is generated by tr(X) and
tr(X−1). So the ideal is zero and the ring is free. Consequently it is smooth and
the representation sending everything to the identity (having maximal stabilizer)
is a nonsingular point. This illustrates that there can be smooth points in the
quotient that have positive-dimensional stabilizer. At these points, Tρ(Rr (G)//G) 6∼=
Tρ(Rr (G))/Tρ(Orbρ), seen by simply comparing dimensions.

We also note that if we replace free groups by finitely generated groups 0 then the
above isomorphisms require a more careful treatment due to the possible existence
of nilpotents in the coordinate ring of the scheme associated to R0(G) [Sikora
2012].

Recall that Rr (G)s is the set of irreducible representations, and Xr (G)s =
Rr (G)s/G. An action is called locally free if the stabilizer is finite, and is called
proper if the action G× X→ X × X is a proper mapping. In general, the quotient
by a proper locally free action of a reductive group on a smooth manifold is an
orbifold (a space locally modeled on finite quotients of Rn).

The following lemma can be found in [Johnson and Millson 1987, pp. 54–57].
See also [Goldman 1990; 1984].

Lemma 3.4. Let G be reductive and r, n ≥ 2. The PG action on Rr (G)s is locally
free and proper.

Therefore, Rr (G)s/G =Rr (G)s/PG are orbifolds.
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Lemma 3.5. For G equal to SLn,GLn, SUn , or Un and r, n ≥ 2, the associated
PG action on Rr (G)s is free. Therefore, in these cases Rr (G)s/G is a smooth
manifold.

Proof. Let ρ = (X1, . . . , Xr ) ∈Rr (G)s . Then by Burnside’s theorem [Lang 2002]
the collection {X1, . . . , Xr } generates all of n × n matrices Mn×n as an algebra,
since r > 1 and they form an irreducible set of matrices. Suppose there exists g ∈G
so that for all 1≤ k ≤ r we have gXk g−1

= Xk . Then g stabilizes all of Mn×n .
Consider M = Cn as a module over R = Mn×n . Clearly, M is a simple module

since no nontrivial proper subspaces are left invariant by all matrices. Let fg be the
automorphism of Cn defined by mapping v 7→ gv. Then fg defines an R-module
automorphism of M since g stabilizes all of R. Thus by Schur’s lemma the action
of g is equal to the action of a scalar; that is, g is central. �

Lemma 3.5 and Lemma 3.16 (see Section 3D) together immediately imply the
following corollary.

Corollary 3.6. Let G = SLn,GLn, SUn , or Un . If [ρ] ∈ Xr (G)s and r, n ≥ 2, then

T[ρ](Xr (G))∼= H 1(Fr ; gAdρ ).

For G = SLn we can calculate that dimC Xr (G)s = (n2
− 1)(r − 1) and for

K = SUn , we have dimR Xr (K )s = (n2
− 1)(r − 1). Likewise, for G = GLn we

calculate dimC Xr (G)s=n2(r−1)+1 and for K =Un , dimR Xr (K )s=n2(r−1)+1.
Let Xr (G)sm

= Xr (G)−Xr (G)sing be the smooth stratum, which is a complex
manifold, open and dense as a subspace of Xr (G). The calculation of dimensions
above and Corollary 3.6 imply the following lemma which expresses the fact that
the irreducibles not only form a smooth manifold but are naturally contained in the
smooth stratum of the variety.

Lemma 3.7. Let r, n≥2 and G be one of SLn or GLn . Then the following equivalent
statements hold:

(i) Xr (G)s ⊂ Xr (G)sm.

(ii) Xr (G)sing
⊂ Xr (G)red.

The next lemmas address important technical points that we will need in our
proofs.

Lemma 3.8. Xr (G)red is an algebraic set; that is, a subvariety of Xr (G).

Proof. The irreducibles are exactly the GIT stable points (zero dimensional stabi-
lizer and closed orbits) and in general these are Zariski open, which implies the
complement is an algebraic set [Dolgachev 2003]. �

Lemma 3.9. Suppose there exists a set O⊂Xr (G)sing
∩Xr (G)red that is dense with

respect to the ball topology in Xr (G)red. Then Xr (G)sing
= Xr (G)red.
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Proof. Since both Xr (G)sing
⊂ Xr (G)red are subvarieties (by Lemmas 3.7 and 3.8),

O is dense in both with respect to the ball topology. This follows since O is dense
in Xr (G)red with respect to the ball topology and O⊂ Xr (G)sing

∩Xr (G)red. Thus
Xr (G)sing

= O = Xr (G)red, where O is the closure of O in Xr (G) with respect to
the (metric) ball topology. �

A set as in Lemma 3.9 was called an adherence set in [Heusener and Porti 2004].

3C. Denseness of reducibles with minimal stabilizer. Now consider the following
subvarieties of reducibles. Recall that the 0 vector space is not considered to be an
irreducible subrepresentation.

Definition 3.10. Define Ur,n ⊂ Xr (GLn)
red and Wr,n ⊂ Xr (SLn)

red by:

Ur,n =
{
[ρ1⊕ ρ2] ∈ Xr (GLn) : ρi : Fr → GLni are irreducible

}
Wr,n =

{
[ρ1⊕ ρ2] ∈ Xr (SLn) : ρi : Fr → GLni are irreducible

}
,

where we consider all possible decompositions n = n1+ n2, with ni > 0.

Note that a given ρ ∈ Ur,n uniquely determines the integers n1 and n2, up to
permutation. We will refer to this situation by saying that ρ is of reduced type
[n1, n2]. Similar remarks and terminology apply to Wr,n .

It is clear that

(4) Xr (SLn)
red
= Xr (GLn)

red
∩Xr (SLn)

and that
Wr,n =Ur,n ∩Xr (SLn).

The following lemma is likewise clear by the proof of Lemma 3.5.

Lemma 3.11. A representation ρ is in Ur,n if and only if Stabρ ∼= (C
∗)2. Also,

ρ ∈Wr,n if and only if Stabρ ∼= C∗.

The strategy is now to show that Ur,n and Wr,n contain only singularities. How-
ever, we must first establish the following lemma.

Lemma 3.12. Let r, n ≥ 2. Ur,n is dense in Xr (GLn)
red with respect to the ball

topology.

Proof. When n= 2, Ur,n coincides with Xr (GLn)
red, since any completely reducible

representation is of reduced type [1, 1]. So we assume n ≥ 3. Let ρ ∈ [ρ] ∈
Xr (GLn)

red have at least three irreducible blocks; that is, ρ = ρ1⊕ρ2⊕ρ3 where ρ1

and ρ2 are irreducible and ρ3 is semisimple. In other words, [ρ] ∈Xr (GLn)
red
−Ur,n .

Then ρ2 ⊕ ρ3 is a semisimple representation into GLk for some k. Since the
irreducible representations Fr → GLk are dense (here we use r > 1), there exists an
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irreducible sequence σ j ∈ Hom(Fr ,GLk) satisfying

lim
j→∞

σ j = ρ2⊕ ρ3,

which in turn implies

lim
j→∞

ρ1⊕ σ j = ρ1⊕ ρ2⊕ ρ3 = ρ,

where ρ1⊕ σ j is in Ur,n . Thus we have a sequence [ρ1⊕ σ j ] ∈Ur,n ⊂ Xr (GLn)
red

whose limit is [ρ1 ⊕ ρ2 ⊕ ρ3]. This shows that Ur,n is dense in Xr (GLn)
red and

proves the lemma. �

Corollary 3.13. Let r, n ≥ 2. Then Wr,n is dense in Xr (SLn)
red with respect to the

ball topology.

Proof. First we show that Xr (SLn)
red
⊂ Wr,n . Using the previous lemma and

Equation (4), let

[ρ] ∈ Xr (SLn)
red
= Xr (SLn)∩Xr (GLn)

red

= Xr (SLn)∩Ur,n.

Then, we can write ρ = lim σ j , where σ j = ρ
( j)
1 ⊕ ρ

( j)
2 ∈ Ur,n is of reduced type

[n1, n2]. Let us write λ j := det ρ( j)
1 det ρ( j)

2 . Since the limit is a well-defined point
[ρ] ∈Xr (SLn)

red, we can arrange for the sequence to be in Wr,n as follows. Letting
α j = (1/λ j )

1/n1 (for any choice of branch cut), we can also write ρ = lim η j where
η j = (ρ

( j)
1 α j )⊕ ρ

( j)
2 ∈Wr,n , (since now η j has unit determinant), from which one

sees that ρ ∈Wr,n , as wanted. Finally, we get:

Xr (SLn)
red
⊂Wr,n = Xr (SLn)∩Ur,n

⊂ Xr (SLn)∩Ur,n

= Xr (SLn)
red,

which implies all these sets coincide, finishing the proof. Here, we used the standard
fact that the closure of an intersection is contained in the intersection of the closures,
and that Xr (SLn) is closed in Xr (GLn). �

3D. The Luna slice theorem and the Zariski tangent space. We now prove a
strong lemma, first proved in [Heusener and Porti 2004] and later in more generality
in [Sikora 2012], which tells exactly how to understand the Zariski tangent space
at a general free group representation. For a similar result see also [Drézet 2004,
p. 45]. To that end, we review the Luna slice theorem [1973]. We recommend
[Drézet 2004] for a good exposition.

Following [Schwarz 2004], we define an étale map between complex affine
varieties as a local analytic isomorphism in the ball topology.
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Theorem 3.14 (weak Luna slice theorem at smooth points). Let G be a reductive
algebraic group acting on an affine variety X. Let x ∈ X be a smooth point with
Orbx closed. Then there exists a subvariety x ∈ V ⊂ X , and Stabx -invariant étale
morphism φ : V → Tx V satisfying:

(i) V is locally closed, affine, smooth, and Stabx -stable.

(ii) V ↪→ X→ X//G induces T[x](V//Stabx)∼= T[x](X//G).

(iii) φ(x)= 0 and dφx = Id.

(iv) Tx X = Tx(Orbx)⊕ Tx V with respect to the Stabx -action.

(v) φ induces T[x](V//Stabx)∼= T0(Tx V//Stabx).

Remark 3.15. The reader familiar with Luna’s slice theorem may be wondering
how Theorem 3.14 is implied. Firstly, note that ψ is an étale mapping if and only
if the completion of the local rings satisfy Ôx ∼= Ôψ(x) which implies the subset
of derivations are isomorphic, the latter being isomorphic to the Zariski tangent
spaces. The usual Luna slice theorem implies φ : V//Stabx→ φ(V )//Stabx is étale,
(G × V )//Stabx ∼= U ⊂ X is saturated and open, and V//Stabx → U//G is étale.
We thus respectively conclude lines (v), (iv), and (ii) in the above theorem.

Lemma 3.16. Let G be a complex algebraic reductive Lie group. For any [ρ] ∈
Xr (G),

T[ρ]Xr (G)∼= T0
(
H 1(Fr ; gAdρss )//Stabρss

)
,

where ρss is a polystable representative from the extended orbit [ρ].

Proof. Any ρss
∈ [ρ] has a closed orbit and is a smooth point of Rr (G), and every

point [ρ] ∈ Xr (G) contains such a ρss.
By the Luna slice theorem, there exists an algebraic set ρss

∈ Vρss ⊂Rr (G) such
that:

(i) Stabρss(Vρss)⊂ Vρss

(ii) With respect to the reductive action of Stabρss ,

Z1(Fr ; gAdρss )∼= Tρss(Rr (G))∼= Tρss(Orbρss)⊕ Tρss(Vρss)

∼= B1(Fr ; gAdρss )⊕ Tρss(Vρss),

since ρss is smooth.

(iii) Thus, H 1(Fr ; gAdρss )∼= Tρss(Vρss), as Stabρss-spaces.

(iv) Vρss ↪→Rr (G)→ Xr (G) induces T[ρss](Vρss//Stabρss)∼= T[ρ]Xr (G).

(v) T[ρss](Vρss//Stabρss)∼= T0
(
Tρss(Vρss)//Stabρss

)
, since ρss is smooth.

Putting these steps together we conclude

T[ρ]Xr (G)∼= T0
(
Tρss(Vρss)//Stabρss

)
∼= T0

(
H 1(Fr ; gAdρss )//Stabρss

)
. �
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Remark 3.17. Upon closer examination we find H 1(Fr ; gAdρss )//Stabρss to be an
étale neighborhood; that is, an algebraic set that maps, via an étale mapping, to an
open set (in the ball topology) of Xr (G) [Schwarz 2004, p. 223].

3E. The C∗-action on cohomology. As we saw in Corollary 3.13, the generic
singularity will occur when Stabρ is the smallest possible torus group, namely C∗

or C∗×C∗, for the cases G = SLn or G = GLn , respectively.
To study the C∗-action on cohomology, the following setup will be relevant.
Fix two integers n, k≥ 1. Consider the vector space C2n

=Cn
×Cn with variables

(z,w)= (z1, . . . , zn, w1, . . . , wn) and the action of C∗ given by

(5) λ · (z,w)= (λk z, λ−kw).

Let us denote by C2n//kC∗ the corresponding affine GIT quotient. It is the spectrum
of the ring C [z,w]C∗of polynomial invariants under this action. To describe this
ring, let

p(z,w)= za1
1 · · · z

an
n w

b1
1 · · ·w

bn
n

be a monomial, with ai , bi ∈ N, and define

∂p :=
n∑

j=1

a j − b j .

Any polynomial invariant under the action is a sum of monomials p such that
∂p = 0. Considering the monomials with smallest degree, we are led to conclude
that

C [z,w]C∗
= C [z1w1, . . . , z1wn, . . . , znw1, . . . , znwn] .

Note that this shows that the quotient is independent of k. By viewing these n2

generators as elements of an n×n matrix X = (xi j ), xi j = ziw j , which necessarily
has rank at most one, we conclude that this is the ring of polynomial functions on
the variety V ⊂ Mn×n (C) of matrices of rank ≤ 1:

C [z,w]C∗
= C [V ] .

The variety V is called a determinantal variety [Harris 1992] and one can show
that C [V ] = C

[
xi j
]
/I where I is the ideal of 2 × 2 minors of X . By simple

computations, V has a unique singularity, the zero matrix, which corresponds to
the orbit of zero in C2n .

Now, observe that all orbits of the action (5) are closed except those contained in

Z := {0}×Cn
∪Cn
×{0} ,
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and moreover there is only one closed orbit in Z , which is easily seen to be the
only singular point of C2n//kC∗. Therefore, by GIT, the quotient

(C2n
\ Z)/C∗

is a geometric quotient. We summarize these results as follows.

Lemma 3.18. Let n ≥ 2.

(i) C2n//kC∗ is isomorphic to the determinantal variety of n× n square matrices
of rank ≤ 1. Its unique singularity is the orbit of the origin.

(ii) (C2n
\ Z)/C∗ is isomorphic to C∗×CPn−1

×CPn−1.

Because of the fact that the GIT quotient is obtained from (C2n
\Z)/C∗ by adding

just one point, the singular point, and because of (ii) above, we will refer to C2n//kC∗

as an affine cone over CPn−1
×CPn−1, and denote it by CC(CPn−1

×CPn−1). It is
called the affine cone over the Segre variety in [Mukai 2003].

Now consider the following antiholomorphic involution of C2n
= Cn

×Cn:

j : (z,w) 7→ −(w̄, z̄),

and consider the same action as above, but restrict it to S1
⊂ C∗. This will be

relevant in the study of the compact quotients. The fixed point set of the involution
j is the set

F := {(z,− z̄) : z ∈ C} ⊂ Cn
×Cn,

which is canonically identified with the first copy of Cn (as real vector spaces).

Lemma 3.19. (i) The S1-action on C2n commutes with j .

(ii) The quotient F/S1 of its restriction to F is homeomorphic to a real open cone
over CPn−1 denoted by C(CPn−1).

Proof. Proving (i) is straightforward, and we leave it to the reader.
To prove (ii) first observe that on the fixed point set, the S1-action just gives

λ · (z,− z̄)= (λz,−λ̄ z̄), λ ∈ S1

so we can describe it as an action of S1 on the first copy of Cn . Since the action
is free except for the origin, all orbits are circles and the quotient Cn/S1 is the
union of Cn

\ {0} /S1 with a single point. Since Cn
\ {0} /S1 is homeomorphic to(

S2n−1/S1
)
× R, we obtain that F/S1 is the real cone over S2n−1/S1, the latter

being well known to be CPn−1. �

These singularity types will be encountered in SLn and SUn- character varieties.
In fact, the same singularities will also appear in GLn and Un-character varieties,
because the actions in these cases are very similar.

Indeed one can easily show the following:
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Proposition 3.20. Let n ≥ 2. Let T = C∗×C∗ act on a vector space V = C2n
=

Cn
×Cn as follows:

(λ, µ) · (z,w)= (λµ−1z, µλ−1w).

Then, C2n//T is isomorphic to C2n//2C∗. In particular, as before, this quotient is
the determinantal variety of n×n square matrices of rank≤ 1, which has dimension
2n− 1. Its unique singularity is the orbit of the origin.

Proof. We just need to argue, as before, that the invariant polynomials are generated
by the same monomials, those of the form z jwk , for any indices j, k ∈ {1, . . . , n},
so they form an n× n matrix with rank one. �

Finally, note that for n = 1 we get a smooth variety: C2//2C∗ ∼= C.

3F. Proof of Theorem 1.1, Case 1: GLn or SLn.

Theorem 3.21. Let r, n ≥ 2 and G = GLn or SLn . Then Xr (G)sing
= Xr (G)red if

and only if (r, n) 6= (2, 2).

Remark 3.22. If n = 1 the statement is vacuously true since in these cases there
are no reducibles, nor are there singularities. We have already seen that there are
smooth reducibles in the cases r = 1, n ≥ 2, and (r, n)= (2, 2) since there always
exist reducibles in these cases and the entire moduli spaces are smooth.

Proof. Let G = GLn . By Lemma 3.7 it is enough to show Xr (G)red
⊂ Xr (G)sing.

Let ρ ∈ Ur,n ⊂ Rr (G)red be of reduced type [n1, n2] with n1, n2 > 0 and n =
n1+ n2 (see Definition 3.10) and write it in the form

ρ = ρ1⊕ ρ2 =

(
EX E0n1×n2

E0n2×n1
EY

)
,

where EX = (X1, . . . , Xr ) ∈ Mr
n1×n1

and EY = (Y1, . . . , Yr ) ∈ Mr
n2×n2

and E0k×l =

(0k×l, . . . , 0k×l) where 0k×l is the k by l matrix of zeros and the vector has r entries.
Recall that these representations form a dense set in Xr (G)red, by Lemma 3.12.

Let diag(a1, . . . , an) be an n× n matrix whose (i, j)-entry is 0 if i 6= j and is
equal to ai otherwise. Then Stabρ = C∗×C∗ is given by

diag(λ, . . . , λ,︸ ︷︷ ︸
n1

n2︷ ︸︸ ︷
µ, . . . , µ).

We note that the action of the center is trivial so we often consider the stabilizer
with respect to the action of G modulo its center.
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Then the cocycles satisfy

Z1(Fr ;Adρ)∼= gr

=

{(
EA EB
EC ED

) ∣∣∣∣ EA∈Mr
n1×n1

, EB ∈Mr
n1×n2

, EC ∈Mr
n2×n1

, ED ∈Mr
n2×n2

}
,

which has dimension n2r since it is the tangent space to a representation and the
representation variety is smooth. The coboundaries are given by

B1(Fr ;Adρ)∼=
{(

A B
C D

)
−

(
EX E0n1×n2

E0n2×n1
EY

)(
A B
C D

)(
EX−1 E0n1×n2

E0n2×n1
EY−1

)}
∼=

{(
A B
C D

)
−

(
EX A EX−1 EX B EY−1

EY C EX−1 EY D EY−1

)}
,

for a fixed element
( A

C
B
D

)
∈ g. This has dimension n2

− 2 since it is the tangent
space to the G-orbit of ρ which has dimension equal to that of the group minus its
stabilizer.

Thus with respect to the torus action,

(6) H 1(Fr ;Adρ)∼= H 1(Fr ;Adρ1)⊕ H 1(Fr ;Adρ2)⊕W,

where W exists since the torus action is reductive. By considering the Euler
characteristic, one has that

dimC H 0(Fr ;Adρ)− dimC H 1(Fr ;Adρ)= (1− r) dimC gl(n,C).

Then since H 0(Fr ;Adρ) = Z0(Fr ;Adρ) is the centralizer in g of the image of ρ,
we calculate

dimC H 1(Fr ;Adρ)= n2(r − 1)+ 2,

dimC H 1(Fr ;Adρi )= n2
i (r − 1)+ 1, i = 1, 2.

This then implies dimC H 1(Fr ;Adρ)//(C∗ ×C∗) = n2(r − 1)+ 1 = dimC Xr (G),
since the diagonal of the C∗ × C∗-action is the center which acts trivially. We
conclude that

dimC W = (n2
− n2

1− n2
2)(r − 1)= 2n1n2(r − 1).

Explicitly, the Stabρ action on H 1(Fr ;Adρ) is given by

diag(λ, . . . , λ,︸ ︷︷ ︸
n1

n2︷ ︸︸ ︷
µ, . . . , µ) ·

[(
EA EB
EC ED

)]
7→

[(
EA λ EBµ−1

µ ECλ−1 ED

)]
which respects representatives up to coboundary.
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So, the action on H 1(Fr ;Adρ1)⊕ H 1(Fr ;Adρ2) is trivial (but not so on W ) and
we conclude

H 1(Fr ;Adρ)//(C∗×C∗)∼= H 1(Fr ;Adρ1)⊕ H 1(Fr ;Adρ2)⊕
(
W//(C∗×C∗)

)
.

Therefore, by Proposition 3.20, we have established that 0 is a singularity (solu-
tion to the generators of the singular locus) of W//(C∗×C∗) which then implies it
is a singularity to H 1(Fr ;Adρ)//(C∗×C∗) (whenever dimC W > 2) which then in
turn implies any ρ ∈Ur,n is a singularity in Xr (G) by Lemma 3.16 (note ρ = ρss

here). Ur,n is dense in Xr (GLn)
red by Lemma 3.12. Then Lemma 3.9 applies to

show that Xr (GLn)
sing
= Xr (GLn)

red whenever dimC W = 2n1n2(r − 1) > 2; that
is, whenever (r, n) 6= (2, 2).

Now let [ρ] ∈Xr (SLn). Then it is easy to see that [ρ] ∈Xr (SLn)
red if and only if

[ρ] ∈ Xr (GLn)
red. Then Corollary 2.7 and the previously established case together

imply Xr (SLn)
red
= Xr (SLn)

sing.
This finishes the proof of Theorem 1.1 for the groups SLn and GLn . �

Remark 3.23. We note that the cohomology decomposition used in the proof
depends on the decomposition of ρ. For instance, in the 2× 2 determinant 1 case,
the reducible representation takes values in SL1×GL1 = C0

×C∗, where C0 is a
point. Then by Lemma 3.18:

H 1(Fr ,Adρ)//C∗ ∼= H 1(Fr ,Adρ1)⊕ H 1(Fr ,Adρ2)⊕ (W//C
∗)

∼= C0
×Cr
×
(
(C2r/C2)//C∗

)
∼= Cr

×C2r−2//2C∗

∼= Cr
×CC(CPr−2

×CPr−2).

Remark 3.24. The proof above works directly, with suitable modifications for the
case G = SLn . For instance the action of the stabilizer in this case is Stabρ = C∗

given by

diag(λ, . . . , λ,︸ ︷︷ ︸
n1

n2︷ ︸︸ ︷
µ, . . . , µ),

where λn1µn2 = 1 which is equivalent to µ= λ
−n1
n2 . The cocycles satisfy

Z1(Fr ;Adρ)

∼= gr
=

{(
EA EB
EC ED

) ∣∣∣∣ EA ∈ Mr
n1×n1

, EB ∈ Mr
n1×n2

, EC ∈ Mr
n2×n1

, ED ∈ Mr
n2×n2

,

tr(Ai )=−tr(Di ), 1≤ i ≤ r
}
,

which has dimension (n2
− 1)r . The rest carries over without significant change.
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Remark 3.25. Similar results for the moduli of tuples of generic matrices have
been obtained in [Le Bruyn and Procesi 1987], and with respect to the moduli of
vector bundles similar results have been obtained in [Laszlo 1996].

3G. Proof of Theorem 1.1, Case 2: SUn or Un. Let K = SUn or Un and let k be
its Lie algebra in either case.

The tangent space at a point [ρ] ∈ Xr (K ) is defined from the semialgebraic
structure; that is, any real semialgebraic set has a well-defined coordinate ring
which allows one to define the Zariski tangent space as we did at the start of this
section [Bochnak et al. 1998]. At smooth points this corresponds to the usual
tangent space defined by differentials. It is not hard to see that the semialgebraic
set Xr (K ) is a subset of the real points of Xr (KC). Then, the Zariski tangent space
of Xr (K ) at [ρ], T[ρ](Xr (K )), consists of the real points of the complex Zariski
tangent space T[ρ](Xr (KC)).

As is true for KC-representations, we define a K -representation to be irreducible
if it does not admit any proper (nontrivial) invariant subspaces with respect to the
standard action on Cn . As with KC-valued representations, we call a K -valued
representation reducible if it is not irreducible.

Lemma 3.26. Xr (KC)
red
∩Xr (K )= Xr (K )red.

Proof. First note that Xr (K )⊂ Xr (KC) (see [Florentino and Lawton 2009]). So it
suffices to prove that every K -valued representation is K -conjugate to a reducible
representation if and only if it is KC-conjugate to a reducible representation.

Let ρ be a K -representation and suppose that it is K -conjugate to a representation
that admits a nontrivial proper invariant subspace of Cn , then since K ⊂ KC it
is true that ρ is KC-conjugate to a reducible representation. Conversely, suppose
that a K -representation ρ is KC-conjugate to a reducible representation. However,
conjugating by KC is simply a change-of-basis, and such a change-of-basis is always
possible by conjugating by K by using the Gram–Schmidt algorithm. �

Lemma 3.27. Xr (KC)
sing
∩Xr (K )= Xr (K )sing

Proof. Let
[ρ] ∈ Xr (K )⊂ Xr (KC).

Then [ρ] ∈ Xr (K )sing if and only if dimR T[ρ]Xr (K ) = dimC T[ρ]Xr (KC) exceeds
dimR Xr (K )= dimC Xr (KC), the latter occurring if and only if [ρ] ∈ Xr (KC)

sing.
�

The last case to consider to finish the proof of Theorem 1.1 is Xr (K ) in terms of
SUn and Un .

Theorem 3.28. Let K be either Un or SUn . Then Xr (K )red
= Xr (K )sing if

Xr (KC)
red
= Xr (KC)

sing.
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Proof. This follows directly by Lemmas 3.26 and 3.27. �

Since we have already established in Theorem 3.21 that, for r, n ≥ 2 and
K ∈ {Un, SUn}, we have Xr (KC)

red
= Xr (KC)

sing if and only if (r, n) 6= (2, 2),
Theorem 3.28 is enough to finish the proof of Theorem 1.1.

3H. Iterative reducibles and the singular stratification. As above let K be either
Un or SUn and G = KC, and let the N -th singular stratum be defined by

SingN (Xr (G))= (· · · ((Xr (G))sing)sing···)sing,

which is well-defined since each singular locus is a variety and as such has a singular
locus itself.

The N -th level reducibles

RedN (Xr (G))= (· · · ((Xr (G))red)red···)red

is defined inductively in the following way.
Let Red1(Xr (G)) = Xr (G)red. For k ≥ 1 define Redk(Xr (G))(k+1) to be the

set of ρ ∈ Redk(Xr (G)) which is minimally reducible, that is has a decompo-
sition into irreducible subrepresentations that has minimal summands. We de-
fine Redk+1(Xr (G))= Redk(Xr (G))−Redk(Xr (G))(k+1) to be the complement of
Redk(Xr (G))(k+1) in Redk(Xr (G)). Thus, Red1(Xr (G))(2) is always the reducibles
that have exactly 2 irreducible subrepresentations — these are exactly the ones we
considered in the proof of Theorem 3.21. More generally, Redk(Xr (G))(k+1) are the
representations which decompose into exactly k+ 1 irreducible subrepresentations.
For example, Red2(Xr (SL3)) are the representations conjugate to a representation
that has its semisimplification diagonal, and Red3(Xr (SL3))=∅.

Likewise we have RedN (Xr (K )) and SingN (Xr (K )).

Theorem 3.29. Let r, n ≥ 2 and (r, n) 6= (2, 2). If N ≥ 1, then

SingN (Xr (G))∼= RedN (Xr (G)) and SingN (Xr (K ))∼= RedN (Xr (K )).

The result follows by induction on the irreducible block forms and observing
that each block form now corresponds to GLk , or Uk in the compact cases.

3I. Remarks about other groups.

3I.1. General reductive groups. Let G be a reductive complex algebraic group.
It can be shown [Sikora 2012] that the definition given before of an irreducible
representation ρ : 0→ G corresponds exactly to the quotient group Stabρ/Z(G)
being finite.

Proposition 3.30. If the adjoint action of ρ is irreducible on g, then [ρ] is smooth
in Xr (G).
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Proof. If Adρ is irreducible, then Stabρss is central and so Stabρss acts trivially on
H 1(Fr ; gAdρss ). Hence 0 is not in the Jacobian ideal of H 1(Fr ; gAdρss )//Stabρss . So,
by Lemma 3.16, [ρ] is smooth in Xr (G). �

From the proof of Proposition 3.30, we obtain:

Corollary 3.31. Let G be a complex reductive algebraic group and ρ ∈Rr (G) is
irreducible with central stabilizer. Then [ρ] is smooth in Xr (G).

A representation satisfying the conditions of this corollary is called good. In
other words, ρ ∈ Rr (G)s is good if and only if Stabρ/Z(G) is trivial. Letting
Rr (G)good be the open subset of good representations, it easily follows that

Xr (G)good
:=Rr (G)good/G ⊂ Xr (G)s ⊂ Xr (G)

is always a smooth manifold.
[Heusener and Porti 2004] shows that our main theorem, i.e.,

Xr (G)red
= Xr (G)sing,

is not true for all reductive Lie groups G and free groups Fr since for PSL2 there
are irreducible representations which are singular. The issue is that the stabilizer of
an irreducible representation, modulo the center of G, may not be trivial in general.
This is not an issue for GLn or SLn since Lemma 3.5 shows the action is free on the
set of irreducibles; that is, in these cases a representation is good if and only if it is
irreducible.

Let On be the group of n× n complex orthogonal matrices, and let Sp2n be the
group of 2n× 2n complex symplectic matrices.

Proposition 3.32. There exists irreducible representations ρ : Fr → G for G any
of On , PSLn , and Sp2n such that ρ is not good.

Proof. It is sufficient in each case to find, for some n, a nonparabolic subgroup of
G whose centralizer contains a noncentral element.

First consider a SL2-representation ρ contained in the subgroup of diagonal
and antidiagonal matrices (containing at least one nondiagonal element and one
noncentral element). Then Stabρ/Z(SL2) is trivial, and so such a representation is
irreducible. However ρ also determines an irreducible PSL2-valued representation
consisting of diagonal and antidiagonal matrices. However, its stabilizer now
contains

( i
0

0
−i

)
, since this element acts as scalar multiplication by −1 on the

antidiagonal components and trivially on the diagonal components, so the action is
trivial for PSL2-representations but nontrivial for SL2-representations. This element
is not central in SL2. Thus ρ defines an irreducible representation into PSL2 that
has finite noncentral stabilizer, and thus is not good.

For On representations consider any representation whose image consists of all
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matrices of the form 

±1 0 0 0
0 ±1 0 0

0 0
. . . 0

0 0 0 ±1


 .

One easily computes that the stabilizer is finite and not trivial and thus they are
irreducible with Stabρ/Z(On) not trivial and thus are not good.

For Sp2n representations we can likewise find examples like the following for
n = 2. Let the representation have its image generated by±


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , ±


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 , ±


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 .

We get a subgroup of order 16 with finite stabilizer; as such, this group is an
irreducible with finite noncentral stabilizer. Again we see that Stabρ/Z(Sp2n) is
not trivial and thus this representation is not good. �

Remark 3.33. In the case of PSL2 representations (and consequently for SL2-
valued representations) there are irreducible representations that act reducibly on g.
However, for PSL2 these are singular points, but for SL2 they are smooth. This shows
that Ad-reducibility does not imply nonsmoothness in general. In fact, in X2(PSL2)

there are simultaneously reducibles that are smooth points and irreducibles that are
singular. See [Heusener and Porti 2004].

Conjecture 3.34. Let G be a complex reductive algebraic group, and suppose r ≥ 3.
Then Xr (G)red

⊂ Xr (G)sing, and if G is semisimple equality holds if and only if G
is a Cartesian product of SLn’s.

We leave the exploration of this interesting conjecture and the description of
singular irreducibles to future work.

3I.2. What if 0 is not free? One may wonder what the relationships exist, if any,
between reducible representations and singular points in X0(G) for a general finitely
generated group 0.

With a given presentation of 0 as 0 = 〈x1, . . . , xr | r1, . . . , rk〉 we can naturally
associate the canonical epimorphism Fr → 0 = Fr/〈r1, . . . , rk〉 which induces
the inclusion X0(G) ⊂ XFr (G) providing X0(G) with the structure of an affine
subvariety. As such, ρ is irreducible (resp. completely reducible) in X0(G) if and
only if ρ is irreducible (resp. completely reducible) in XFr (G).

However, the notion of singularity is very far from being well behaved:
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(i) If 0 is free abelian then all representations are reducible and thus the singular-
ities cannot equal the reducibles since the singularities are a proper subset. So
reducibles can be smooth; in fact this example shows all smooth points can be
reducible.

(ii) The irreducibles are not generally all smooth in the representation variety
let alone in the quotient variety; see [Sikora 2012, Example 38]. Such
representations can project to singular points in the quotient (as one might
hope is the general situation). Therefore, there can be representations in
X0(G)sing

⊂ X0(G)⊂ XFr (G) which are smooth in XFr (G).

(iii) Singularities in the quotient do not necessarily arise from singularities in the
representation space. For example, if 0 is the fundamental group of a genus 2
surface there exist representations in R0(SU2) that are singular but the quotient
X0(SU2)≈ CP3 is smooth. See [Narasimhan and Seshadri 1965; Narasimhan
and Ramanan 1969].

(iv) Lemma 3.16 and its generalizations [Sikora 2012] do not necessarily apply in
general.

Therefore, when 0 is not free there is little one can say in general.

4. Local structure and classification of manifold cases

Having completed the proof of Theorem 1.1, we now move on to prove Theorem 1.2.
As stated earlier, in [Bratholdt and Cooper 2001] it is established that Xr (SU2) are
not topological manifolds when r ≥ 4. They compute explicit examples where the
representations (abelian, nontrivial) are contained in a neighborhood homeomorphic
to C(CPr−2)× Rr , where C(X) = (X × [0, 1))/(X × {0}) is the real open cone
over a topological space X . From this characterization, simple arguments imply
that Xr (SU2) is not a manifold for r ≥ 4. It is also a consequence of the following
criterion, which will be useful later.

Lemma 4.1. Let X be a manifold of dimension n and let d ≥ 0. If C(X)×Rd is
Euclidean (i.e, homeomorphic to Rd+n+1) then X is homotopically equivalent to Sn

(a sphere of dimension n). Also, if C(X)×Rd is half-Euclidean (i.e, homeomorphic
to a closed half-space in Rd+n+1) then X is homotopically equivalent to either a
point or Sn .

Proof. Let p be the cone point of C(X). Using the natural deformation retraction
from C(X)−{p} to X , we see that

C(X)×Rd
− ({p}×Rd)= X × (0, 1)×Rd

' X,

where Y ' X symbolizes Y being homotopic to X . On the other hand, if C(X)×Rd
=

Rn+d+1 then C(X)×Rd
− ({p}×Rd)= Rn+d+1

−Rd
' Sn .
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The other statement follows in a similar fashion if the cone point is not on the
boundary of the half-space. Otherwise, {p}×Rd is contained in the boundary so
extracting it results in a contractible space. �

4A. Xr(SUn) and Xr(Un). In this subsection we establish the compact cases of
Theorem 1.2.

Let K = SUn and let k be its Lie algebra. Let dr,n = (n2
− 1)(r − 1) =

dimC Xr (G)= dimR Xr (K ). Whenever Xr (K ) is not a topological manifold, there
exists a point [ρ] ∈ Xr (K ) and a neighborhood N containing [ρ] that is not locally
homeomorphic to Rdr,n , or R

dr,n
+ in the case of a boundary point.

We need a smooth version of Mostow’s slice theorem [Mostow 1957; Bredon
1972]. Let Nx denote a neighborhood at x .

Lemma 4.2. For any [ρ] ∈ Xr (K ), there is a neighborhood N[ρ] homeomorphic to
H 1(Fr ; kAdρ )/Stabρ . Moreover,

T[ρ]Xr (K )∼= T0
(
H 1(Fr ; kAdρ )/Stabρ

)
.

Proof. Let Rr (K )=Hom(Fr , K ). Since ρ ∈Rr (K ) is a smooth point, TρRr (K )∼=
Z1(Fr ; kAdρ ). Moreover, TρOrbρ ∼= B1(Fr ; kAdρ ) ⊂ Z1(Fr ; kAdρ ). Since Stabρ is
compact and acts on B1(Fr ; kAdρ ), there exists a Stabρ-invariant complement W .
Thus Z1(Fr ; kAdρ )

∼= TρRr (K ) ∼= B1(Fr ; kAdρ ) ⊕ W , which respects the action
of the stabilizer. Since Rr (K ) is a smooth compact Riemannian manifold we
can invariantly exponentiate W to obtain a slice exp(W )= S ⊂Rr (K ) such that
TρS =W . Therefore, TρS ∼= H 1(Fr ; kAdρ ) as Stabρ-spaces.

Saturating S by K we obtain an open K -invariant space, which contains the orbit
of ρ since ρ ∈ S; namely U = K (S). Since U is open TρU = TρRr (K ), and since
it is saturated U/K ∼= S/Stabρ is an open subset of Xr (K ).

Putting these observations together we conclude S is locally diffeomorphic to TρS
which implies the neighborhood U/K ∼= H 1(Fr ; kAdρ )/Stabρ , which establishes
our first claim.

Then S/Stabρ is locally homeomorphic to TρS/Stabρ , which then implies

(7) T[ρ](S/Stabρ)∼= T0(TρS/Stabρ).

But

(8) T[ρ]Xr (K )= T[ρ](U/K )∼= T[ρ](S/Stabρ)

and

(9) T0(TρS/Stabρ)∼= T0(H 1(Fr ; kAdρ )/Stabρ).

Equations (7), (8), and (9) together complete the proof. �
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Remark 4.3. The above lemma holds for all compact Lie groups K .

Theorem 4.4. Let r, n ≥ 2 and let ρ ∈Rr (SUn) be of reduced type [n1, n2]. Then,
there exists a neighborhood [ρ] ∈ N⊂ Xr (SUn) that is homeomorphic to RdSUn ×

C
(
CP(r−1)n1n2−1

)
, where dSUn = (r − 1)(n2

1 + n2
2 − 1)+ 1. Also, if ρ ∈ Rr (Un)

is of reduced type [n1, n2], there exists a neighborhood [ρ] ∈ N ⊂ Xr (Un) that is
homeomorphic to RdUn ×C

(
CP(r−1)n1n2−1

)
, where dUn = (r − 1)(n2

1+ n2
2)+ 2.

Corollary 4.5. If K = Un or K = SUn , both r, n ≥ 2, and (r, n) 6= (2, 2), (2, 3), or
(3, 2), then Xr (K ) is not a manifold with boundary.

Proof. Theorem 4.4 implies that Xr (Un) and Xr (SUn) are manifolds only if RdUn ×

C(CP(r−1)n1n2−1) and RdSUn ×C(CP(r−1)n1n2−1), respectively, are locally Euclidean.
By Lemma 4.1, this can only be the case if n1n2(r−1)−1∈ {0, 1}, with n= n1+n2

and n1, n2>0. In the first case, n1n2(r−1)=1, which implies n1=n2=1 and r=2,
so (r, n)= (2, 2). From Section 2B we know X2(U2) and X2(SU2) are manifolds
with boundary, and we conclude the neighborhood in this case is half-Euclidean
since N= Rd

×[0, 1), for appropriate d.
The other possibility is n1n2(r−1)= 2 so that n1 = 2 and n2 = 1, or n1 = 1 and

n2= 2, and r = 2. This is the case (r, n)= (2, 3). Otherwise, r = 3 and n1= n2= 1,
which is the case (r, n)= (3, 2). Moreover, from Section 2B these two are the only
cases which are manifolds.

Having exhausted all possibilities, the proof is complete. �

We now prove Theorem 4.4.

Proof of Theorem 4.4. Similar to Theorem 3.21, there is a direct computational
proof of Theorem 4.4. However, using Theorem 3.21, Lemma 3.19 and the relation
between K and its complexification, we can provide a shorter argument.

Let τ be the Cartan involution on g = gl(n,C), the Lie algebra of GLn , which
is just the linear map A 7→ −AT , acting on a matrix A ∈ gl(n,C). By defini-
tion, the fixed point subspace of τ is k, the Lie algebra un of Un . One easily
checks that τ induces an involution on Z1(Fr ; gAdρ )

∼= gr , whose fixed subspace
is Z1(Fr ; kAdρ )

∼= kr , and similarly B1(Fr ; gAdρ )
τ
= B1(Fr ; kAdρ ). This implies

that τ induces an involution, also denoted τ , on the first cohomology, and that
H 1(Fr ; kAdρ ) is naturally isomorphic to H 1(Fr ; gAdρ )

τ .
Now, assume that ρ = ρ1 ⊕ ρ2 ∈ Ur,n ∩Rr (Un), is of reduced type [n1, n2]

(n1, n2 > 0, n1+ n2 = n). Note that ρ1 and ρ2 are irreducible representations in
Rr (Un1) and Rr (Un2), respectively, and with respect to the PUn conjugation action
Stabρ ∼= S1. Then a cocycle φ ∈ Z1(Fr ; kAdρ )

∼= kr has the form

φ =

(
φ1 A
−AT φ2

)
,
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where φi ∈ Z1(Fr ; kAdρi
), and as in Theorem 3.21, A is now an arbitrary r -tuple of

n1×n2 matrices. This shows that τ respects the decomposition in Equation (6) , so
we get

H 1(Fr ; kAdρ )= H 1(Fr ; gAdρ )
τ
= H 1(Fr ; gAdρ1

)τ ⊕ H 1(Fr ; gAdρ2
)τ ⊕W τ

= H 1(Fr ; kAdρ1
)⊕ H 1(Fr ; kAdρ2

)⊕ F

where, by the form of the cocycles above, we can write

F :=W τ
= {(z,− z̄) : z ∈ Cn1n2(r−1)

};

using also dimC W = 2n1n2(r − 1).
It follows from Lemma 4.2 that a neighborhood of ρ is locally homeomorphic

to H 1(Fr ; kAdρ )/Stabρ . As in the proof of Theorem 3.21, the action of Stabρ = S1

does not affect H 1(Fr ; kAdρi
), i = 1, 2, and we conclude that

H 1(Fr ; kAdρ )/Stabρ = H 1(Fr ; kAdρ1
)⊕ H 1(Fr ; kAdρ2

)⊕ F/S1

∼= RdUn ⊕C(CPn1n2(r−1)−1),

by using Lemma 3.19. The dimension dUn is computed by:

dUn =

2∑
i=1

dimR H 1(Fr ; kAdρi
)= (n2

1+ n2
2)(r − 1)+ 2.

The case of K = SUn is similar. �

Remark 4.6. In [Le Bruyn and Teranishi 1990] it is shown that the cases (2, 2),
(2, 3), and (3, 2) are also the only examples which are complete intersections.

Remark 4.7. Note that using the identity representation (maximal stabilizer) results
in H 1(Fr ; kAdid)/Stabid = kr/SUn since the coboundaries are trivial. Removing a
point results in a homological sphere quotient S(n

2
−1)(r−1)−1/SUn . If there was

a Euclidean neighborhood about the identity, then this sphere quotient would be
a homology sphere S(n

2
−1)(r−2)−1. We find this quite likely to give a different

obstruction. At the other extreme (central stabilizer) the points are smooth and thus
admit Euclidean neighborhoods.

Conjecture 4.8. If K is equal to SUn or Un , [ρ] ∈Xr (K )red, r, n ≥ 2, and (r, n) 6=
(2, 2), (2, 3) or (3, 2), then there does not exists a neighborhood of [ρ] that is
Euclidean.

We proved this conjecture for representations of reduced type [n1, n2] above. In
fact, it seems likely that the neighborhoods around most singularities do not even
admit an orbifold structure (not homeomorphic to a finite quotient of a Euclidean
ball).
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4B. Xr(SLn) and Xr(GLn). In this last subsection, we complete the proof of
Theorem 1.2 by proving the following result.

Theorem 4.9. Let r, n ≥ 2 and let G be SLn or GLn . Xr (G) is a topological
manifold with boundary if and only if (r, n)= (2, 2).

Proof. By Remark 3.17, H 1(Fr ; gAdρss )//Stabρss is an étale neighborhood; that is, an
algebraic set that maps, via an étale mapping, to an open set (in the ball topology)
of Xr (G). Thus we see that at a reducible representation with minimal stabilizer
(C∗ for SLn and C∗ × C∗ for GLn), that this neighborhood is étale equivalent to
C(n

2
1+n2

2)(r−1)+2
× C(CP(r−1)n1n2−1

× CP(r−1)n1n2−1) in Xr (GLn), where the cone
here is the affine cone defined over C∗. In Xr (SLn) we have a similar neighborhood.
Either way, these spaces are not locally Euclidean neighborhoods for r, n≥ 2 unless
n = 2= r which implies that n1 = 1= n2. This is seen by similar arguments given
above in the compact cases. �
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ENERGY IDENTITY FOR THE MAPS FROM A SURFACE
WITH TENSION FIELD BOUNDED IN Lp

LI JIAYU AND ZHU XIANGRONG

Let M be a closed Riemannian surface and un a sequence of maps from M

to Riemannian manifold N satisfying

sup
n

�
krunkL2.M /Ck�.un/kLp .M /

�
�ƒ

for some p > 1, where �.un/ is the tension field of the mapping un.
For a general target manifold N , if p � 6

5
, we prove the energy identity

and the neckless property during blowing up.

1. Introduction

Let .M;g/ be a closed Riemannian manifold and .N; h/ be a Riemannian manifold
without boundary. For a mapping u from M to N in W 1;2.M;N /, the energy
density of u is defined by

e.u/D 1
2
jduj2 D Tracegu�h;

where u�h is the pull-back of the metric tensor h.
The energy of the mapping u is defined as

E.u/D

Z
M

e.u/ dV;

where dV is the volume element of .M;g/.
A map u2C 1.M;N / is called harmonic if it is a critical point of the energy E.
By the Nash embedding theorem we know that .N; h/ can be isometrically into a

Euclidean space RK with some positive integer K. Then .N; h/may be considered
as a submanifold of RK with the metric induced from the Euclidean metric. Thus
a map u 2 C 1.M;N / can be considered as a map of C 1.M;RK / whose image
lies in N . In this sense we can get the Euler–Lagrange equation

4uDA.u/.du; du/:

The research was supported by NSFC grants number 11071236, 11131007 and 11101372 and by
PCSIRT.
MSC2010: 58E20.
Keywords: energy identity, tension field, neckless.
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The tension field �.u/ is defined by

�.u/D4M u�A.u/.du; du/;

where A.u/.du; du/ is the second fundamental form of N in RK . So u being
harmonic means that �.u/D 0.

The harmonic mappings are of special interest when M is a Riemann surface.
Consider a sequence of mappings un from Riemann surface M to N with bounded
energies. It is clear that un converges weakly to u in W 1;2.M;N / for some u in
W 1;2.M;N /. But in general, it may not converge strongly in W 1;2.M;N /. When
�.un/ D 0, that is, when un are all harmonic, Parker [1996] proved that the lost
energy is exactly the sum of some harmonic spheres, which are defined as harmonic
mappings from S2 to N . This result is called the energy identity. Also he proved
that the images of these harmonic spheres and u.M / are connected, that is, there
is no neck during blowing up.

When �.un/ is bounded in L2, the energy identity was proved in [Qing 1995]
for the sphere, and in [Ding and Tian 1995] and [Wang 1996] for a general target
manifold. Qing and Tian [1997] proved there is no neck during blowing up. For the
heat flow of harmonic mappings, the results can also be found in [Topping 2004a;
2004b]. When the target manifold is a sphere, we proved the energy identity in [Li
and Zhu 2011] for a sequence of mappings with tension fields bounded in L lnCL,
using good observations from [Lin and Wang 2002]. On the other hand, in the
same paper we constructed a sequence of mappings with tension fields bounded in
L lnCL such that there is a positive neck during blowing up. In [Zhu 2012] the
neckless property during blowing up was proved for a sequence of maps un with

lim
ı!0

sup
n

sup
B.x;ı/�D1

k�.un/kL lnCL.B.x;ı// D 0:

In this paper we prove the energy identity and neckless property during blowing
up of a sequence of maps un with �.un/ bounded in Lp for some p � 6

5
, for a

general target manifold.
When �.un/ is bounded in Lp for some p>1, the small energy regularity proved

in [Ding and Tian 1995] implies that un converges strongly in W 1;2.M;N / outside
a finite set of points. For simplicity of exposition, it is no matter to assume that M

is the unit disk D1 DD.0; 1/ and there is only one singular point at 0.
In this paper we prove the following theorem.

Theorem 1. Let fung be a sequence of mappings from D1 to N in W 1;2.D1;N /

with tension field �.un/. If

(a) kunkW 1;2.D1/
Ck�.un/kLp.D1/ �ƒ for some p � 6

5
,

(b) un! u strongly in W 1;2.D1 n f0g;R
K / as n!1,
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then there exists a subsequence of fung (we still denote it by fung) and some non-
negative integer k so that for any i D 1; : : : ; k, there exist points xi

n, positive
numbers r i

n and a nonconstant harmonic sphere wi (which we view as a map from
R2[f1g!N ) such that:

(1) xi
n! 0; r i

n! 0 as n!1.

(2) lim
n!1

�
r i
n

r
j
n

C
r

j
n

r i
n

C
jxi

n�x
j
n j

r i
nC r

j
n

�
D1 for any i ¤ j .

(3) wi is the weak limit or strong limit of un.x
i
nC r i

nx/ in W
1;2

Loc
.R2;N /.

(4) Energy identity: We have

(1-1) lim
n!1

E.un;D1/DE.u;D1/C

kX
iD1

E.wi/:

(5) Neckless property: The image u.D1/[
Sk

iD1w
i.R2/ is a connected set.

This paper is organized as follows. In Section 2 we state some basic lemmas
and some standard arguments in the blow-up analysis.

In Section 3 and Section 4 we prove Theorem 1. In the proof, we use delicate
analysis on the difference between normal energy and tangential energy. The en-
ergy identity is proved in Section 3 and the neckless property is proved in Section 4.

Throughout this paper, the letter C denotes a positive constant that depends only
on p, ƒ and the target manifold N and may vary in different places. We also don’t
distinguish between a sequence and one of its subsequences.

2. Some basic lemmas and standard arguments

We recall the regular theory for a mapping with small energy on the unit disk and
tension field in Lp .p > 1/.

Lemma 2. Let Nu be the mean value of u on the disk D1=2. There exists a positive
constant �N that depends only on the target manifold such that if E.u;D1/ � �

2
N

then

(2-1) ku� NukW 2;p.D1=2/
� C

�
krukL2.D1/

Ck�.u/kp
�
;

where p > 1.
As a consequence of (2-1) and the Sobolev embedding W 2;p.R2/�C 0.R2/, we

have

(2-2) kukOsc.D1=2/ D sup
x;y2D1=2

ju.x/�u.y/j � C
�
krukL2.D1/

Ck�.u/kp
�
:
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Remarks. � In [Ding and Tian 1995] this lemma is proved for the mean value
of u on the unit disk. Note thatˇ̌̌̌

ˇ
R

D1
u.x/ dx

jD1j
�

R
D1=2

u.x/ dx

jD1=2j

ˇ̌̌̌
ˇ� CkrukL2.D1/

:

So we can use the mean value of u on D1=2 in this lemma.

� Suppose we have a sequence of mappings un from the unit disk D1 to N with
kunkW 1;2.D1/

Ck�.un/kLp.D1/ �ƒ for some p > 1.
A point x 2D1 is called an energy concentration point (blow-up point) if

for any r such that D.x; r/�D1, we have

sup
n

E.un;D.x; r// > �
2
N ;

where �N is given in this lemma. If x 2 D1 isn’t an energy concentration
point, we can find a positive number ı such that

E.un;D.x; ı//� �
2
N for all n:

Then it follows from Lemma 2 that we have a uniformly W 2;p.D.x; ı=2//-
bound for un. Because W 2;p is compactly embedded in W 1;2, there is a
subsequence of un (still denoted by un) and u 2W 2;p.D.x; ı=2// such that

lim
n!1

un D u in W 1;2.D.x; ı=2//:

So un converges to u strongly in W 1;2.D1/ outside a finite set of points.

Under the assumptions of our theorem, by the standard blow-up argument, that
is by repeatedly rescaling un in a suitable way, we can obtain some nonnegative
integer k so that for any i D 1; : : : ; k, there exist a point xi

n, a positive number r i
n

and a nonconstant harmonic sphere wi satisfying (1), (2) and (3) of Theorem 1. By
the standard induction argument in [Ding and Tian 1995] we only need to prove
the theorem in the case where there is only one bubble.

In that case we can assume thatw is the strong limit of the sequence un.xnCrnx/

in W
1;2

Loc
.R2/. We may assume that xn D 0. Set wn.x/D un.rnx/.

As
lim
ı!0

lim
n!1

E.un;D1 nDı/DE.u;D1/;

the energy identity is equivalent to

(2-3) lim
ı!0

lim
n!1

lim
R!1

E.un;Dı nDrnR/D 0:

To prove the sets u.D1/ and w.R2 [1/ are connected, it is enough to show
that

(2-4) lim
ı!0

lim
n!1

lim
R!1

sup
x;y2DınDrnR

jun.x/�un.y/j D 0:
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3. Energy identity

In this section, we prove the energy identity for a general target manifold when
p � 6

5
.

Assume that there is only one bubble w which is the strong limit of un.rn�/

in W
1;2

Loc
.R2/. Let �N be the constant in Lemma 2. By the standard argument of

blow-up analysis we can assume that, for any n,

(3-1) E.un;Drn
/D sup

r�rn

D.x;r/�D1

E.un;D.x; r//D
1
4
�2

N :

Lemma 3 [Ding and Tian 1995]. If �.un/ is bounded in Lp for some p > 1, then
the tangential energy on the neck domain is zero, that is,

(3-2) lim
ı!0

lim
R!1

lim
n!1

Z
DınDrnR

jxj�2
j@�uj2 dx D 0:

Proof. The proof is the same as in [Ding and Tian 1995], so we only sketch it.
For any � > 0, take ı;R such that, for any n,

E.u;D4ı/CE.w;R2
nDR/C ı

4.p�1/=p < �2:

We may suppose that rnRD 2�jn ; ı D 2�j0 . When n is big enough we have, for
any j0 � j � jn,

E.un;D21�j nD2�j / < �
2:

For any j , set

hn.2
�j /D

1

2�

Z
S1

un.2
�j ; �/ d�

and

hn.t/D hn.2
�j /C

�
hn.2

1�j /� hn.2
�j /

� ln.2j t/

ln 2
; t 2 Œ2�j ; 21�j �:

It is easy to check that

d2hn.t/

dt2
C

1

t

dhn.t/

dt
D 0; t 2 Œ2�j ; 21�j �:

Consider hn.x/Dhn.jxj/ as a map from R2 to RK , then4hnD0 in R2. Setting
Pj DD21�j nD2�j we have

(3-3) 4.un� hn/D4un�4hn D4un DA.un/C �.un/; x 2 Pj :

Taking the inner product of this equation with un�hn and integrating over Pj ,
we get thatZ

Pj

jr.un�hn/j
2dxD�

Z
Pj

.un�hn/.A.un/C�.un//dxC

Z
@Pj

.un�hn/.un�hn/r ds:
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Note that by definition, hn.2
�j / is the mean value of f2�j g � S1 and .hn/r is

independent of � . So the integral of .un� hn/.hn/r on @Pj vanishes.
When j0 < j < jn, by Lemma 2 we have

kun� hnkC 0.Pj /
� kun� hn.2

�j /kC 0.Pj /
Ckun� hn.2

1�j /kC 0.Pj /

� 2kunkOsc.Pj /

� C
�
krunkL2.Pj�1[Pj[PjC1/

C 22.1�p/j=p
k�.un/kp

�
� C

�
�C 2�2.p�1/j=p

�
� C

�
�C ı2.p�1/=p

�
� C�:

Summing over j for j0 < j < jn gives

(3-4)
Z

DınD2rnR

jr.un� hn/j
2dx

D

X
j0<j<jn

Z
Pj

jr.un� hn/j
2 dx

�

X
j0<j<jn

Z
Pj

jun� hnj
�
jA.un/jC j�.un/j

�
dx

C

X
j0<j<jn

Z
@Pj

.un� hn/.un� hn/r ds

�C�

�Z
D2ınD2rnR

�
jrunj

2
Cj�.un/j

�
dxC

Z
@D2ı[@D2rnR

jrunj ds

�
� C�

�Z
D2ınD2rnR

jrunj
2 dxC ı2.p�1/=p

C �

�
� C�:

Here we use the inequalityZ
@D2ı[@D2rnR

jrunj ds � C�;

which can be derived from the Sobolev trace embedding theorem.
As hn.x/ is independent of � , it can be shown thatZ

D2ınD2rnR

jxj�2
j@�unj

2 dx �

Z
D2ınD2rnR

jr.un� hn/j
2 dx � C�;

so this lemma is proved. �
It is left to show that the normal energy on the neck domain also equals to zero.

We need the following equality.

Lemma 4 (Pohozaev equality [Lin and Wang 1998, Lemma 2.4, page 374]). Let
u be a solution to

4uCA.u/.du; du/D �.u/:
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Then

(3-5)
Z
@Dt

�
j@r uj2� r�2

j@�uj2
�

ds D
2

t

Z
Dt

� � .xru/ dx:

As a direct corollary, by integrating over Œ0; ı�, we have

(3-6)
Z

Dı

�
j@r uj2� r�2

j@�uj2
�

dx D

Z ı

0

2

t

Z
Dt

� � .xru/ dxdt:

Proof. Multiplying both sides of the equation by xru and integrating over Dt , we
getZ

Dt

jruj2 dx� t

Z
@Dt

j@r uj2 dsC
1

2

Z
Dt

xrjruj2 dx D�

Z
Dt

� � .xru/ dx:

Note that

1

2

Z
Dt

xrjruj2 dx D�

Z
Dt

jruj2 dxC
t

2

Z
@Dt

jruj2 ds:

Hence, Z
@Dt

�
j@r uj2� 1

2
jruj2

�
ds D

1

t

Z
Dt

� � .xru/ dx:

As jruj2 D j@r uj2C r�2j@�uj2, we have proved this lemma. �

Now we use this equality to estimate the normal energy on the neck domain.
We prove the following lemma.

Lemma 5. If �.un/ is bounded in Lp for some p � 6
5

, then for ı small enough we
have ˇ̌̌̌Z

Dı

�
j@r unj

2
� jxj�2

j@�uj2
�

dx

ˇ̌̌̌
� Cı.p�1/=p;

where C depends on p, ƒ, the target manifold N and the bubble w.

Proof. Take  2 C1
0
.D2/ satisfying  D 1 in D1, then

4. un/D  A.un/.dun; dun/C �nC 2r runCun4 :

Set gn D  A.un/.dun; dun/C �nC 2r runCun4 . When jxj< 1,

@iun.x/DRi �gn.x/D

Z
xi�yi

jx�yj2
gn.y/ dy:

Letˆn be the Newtonian potential of �n, then4ˆnD �n. The corresponding
Pohozaev equality is

(3-7)
Z

Dı

�
j@rˆnj

2
� r�2

j@�ˆnj
2
�

dx D

Z ı

0

2

t

Z
Dt

 �n � .xrˆn/ dxdt:
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Here

@iˆn.x/DRi � . �n/.x/D

Z
xi �yi

jx�yj2
. �n/.y/ dy:

As �n is bounded in Lp .p > 1/, we haveZ
Dı

jrˆnj
2 dx�Cı4.p�1/=p

krˆnk
2
2p=.2�p/�Cı4.p�1/=p

k�nk
2
p �Cı4.p�1/=p:

By (3-7), it can be shown that for any ı > 0,

(3-8)
ˇ̌̌̌Z ı

0

1

t

Z
Dt

 �n � .xrˆn/ dxdt

ˇ̌̌̌
�

Z
Dı

jrˆnj
2 dx � Cı4.p�1/=p:

For ı small enough, we have

(3-9)
ˇ̌̌̌Z

Dı

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
D

ˇ̌̌̌Z ı

0

2

t

Z
Dt

�n � .xrun/ dxdt

ˇ̌̌̌
�2

ˇ̌̌̌Z ı

0

1

t

Z
Dt

�n�.xrˆn/ dxdt

ˇ̌̌̌
C2

Z ı

0

1

t

Z
Dt

jx�nj jr.un�ˆn/.x/j dxdt

� Cı4.p�1/=p
C 2

Z
Dı

ˇ̌
x�n

ˇ̌ˇ̌
r.un�ˆn/.x/

ˇ̌�Z ı

jxj

1

t
dt

�
dx

� Cı4.p�1/=p
C 2

Z
Dı

j�nj jr.un�ˆn/.x/j jxj ln
1

jxj
dx:

For any j > 0, set 'j .x/D 
�

x
22�j ı

�
� 

�
x

2�2�j ı

�
. When 2�jı � jxj< 21�jı,

we obtain

(3-10) j@i.un�ˆn/.x/j D

ˇ̌̌̌Z
xi�yi

jx�yj2
.gn.y/� �n.y// dy

ˇ̌̌̌
�

Z
j A.un/.dun; dun/C 2r runCun4 j.y/

jx�yj
dy

�

Z
j A.un/.y/j

jx�yj
dyCC

Z
1<jyj<2

.jrunjCjunj/.y/ dy

�

Z
j'j A.un/.y/j

jx�yj
dyC

Z
j. �'j /A.un/.y/j

jx�yj
dyCC

�

Z
j'j A.un/.y/j

jx�yj
dyC

R
jA.un/.y/j dy

jxj
CC

�

Z
j'j A.un/.y/j

jx�yj
dyC

C

jxj
:
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When ı > 0 is small enough and n is big enough, for any j > 0, we claim that

(3-11) k'j A.un/kp=.2�p/ � C.2�jı/�4.p�1/=p;

where the constant C depends only on p, ƒ, the bubble w and the target manifold
N .

Take ı > 0 and R.w/ that depends on w such that

E.u;D8ı/�
1
8
�2

N and E.w;R2
nDR.w//�

1
8
�2

N :

The standard blow-up analysis (see [Ding and Tian 1995]) shows that for any j

with 8rnR.w/� 2�jı and n big enough, we have

E.un;D24�j ı nD2�3�j ı/�
1
3
�2

N :

By (3-1), when 2�jı < rn=16, we get

E.un;D24�j ı nD2�3�j ı/�
1
4
�2

N :

So when 2�jı < rn=16 or 2�jı � 8rnR.w/, by Lemma 2, we see that

k'j A.un/kp=.2�p/ � Ckrunk
2
L2p=.2�p/.D

23�j ı
nD

2�2�j ı
/

� Ckun�un;jk
2
W 2;p.D

23�j ı
nD

2�2�j ı
/

� C
�
.2�jı/�4 p�1

p krunk
2
L2.D

24�j ı
nD

2�4�j ı
/
Ck�.un/k

2
p

�
� C.2�jı/�4 p�1

p ;

where un;j is the mean of un on D23�j ı nD2�2�j ı.
On the other hand, when rn=16 � 2�jı � 8rnR.w/, we can find no more than

CR.w/2 balls with radius rn=2 to cover D23�j ı nD2�2�j ı, that is,

D23�j ı nD2�2�j ı �

m[
iD1

D.yi ;
1
2
rn/:

Set Bi DD.yi ;
1
2
rn/ and 2Bi DD.yi ; rn/. By (3-1), for any i with i �m we have

E.un; 2Bi/�
1
4
�2

N :

Using Lemma 2 we obtain

k'j A.un/kp=.2�p/ � Ckrunk
2
L2p=.2�p/.D

23�j ı
nD

2�2�j ı
/

� C

� mX
iD1

krunk
2p=.2�p/

L2p=.2�p/.Bi /

�.2�p/=p

� C

mX
iD1

krunk
2
L2p=.2�p/.Bi /
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� C

mX
iD1

kun�un;ik
2
W 2;p.Bi /

� C

mX
iD1

�
.rn/
�4.p�1/=p

krunk
2
L2.2Bi /

Ck�.un/k
2
p

�
� C m

�
.2�jı/�4.p�1/=p

C 1
�

� C.2�jı/�4.p�1/=p;

where un;i is the mean of un over Bi and the constant C depends only on p, ƒ,
the bubble w and the target manifold N . So we have proved (3-11).

By (3-10) and (3-11), when p > 1 we get

(3-12)
Z

Dı

j�nj jr.un�ˆn/.x/j jxj ln
1

jxj
dx

�

1X
jD1

Z
2�j ı<jxj<21�j ı

j�nj jr.un�ˆn/.x/j jxj ln
1

jxj
dx

� C

1X
jD1

Z
2�j ı<jxj<21�j ı

j�nj

�
1

jxj
C

Z
j'j A.un/.y/j

jx�yj
dy

�
jxj ln 1

jxj
dx

� C

�Z
Dı

j�nj ln
1

jxj
dx

C

1X
jD1

Z
2�j ı<jxj<21�j ı

j�nj

�Z
j'j A.un/.y/j

jx�yj
dy

�
jxj ln 1

jxj
dx

�

�C

�


ln 1

j � j





Lp=.p�1/.Dı/

C

1X
jD1

2�jı ln 2j

ı





Z j'j A.un/.y/j

j � �yj
dy






p

p�1

�
�k�nkp

� C

�
ı2
�

ln 1

ı

�1=.p�1/
C

1X
jD1

2�jı ln 2j

ı
k'j A.un/k2p=.3p�2/

�
:

Here we use the fact that the fraction integral operator I.f /D 1
j � j
� f is bounded

from Lq.R2/ to L2q=.2�q/.R2/ for 1< q < 2.
When p � 6

5
, that is, when 2p=.3p� 2/� p=.2�p/, by (3-11) we have

(3-13) k'j A.un/k 2p
3p�2

� C.2�jı/
5p�6

p k'j A.un/k p
2�p

� C.2�jı/
5p�6

p
�

4.p�1/
p � C.2�jı/�

2�p
p :
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From (3-12) and (3-13) we get

(3-14)
Z

Dı

j�nj jr.un�ˆn/.x/j jxj ln
1

jxj
dx

� C

�
ı2
�

ln 1

ı

� 1
p�1
C

1X
jD1

2�jı ln 2j

ı
k'j A.un/k 2p

3p�2

�
� C

�
ıC

1X
jD1

2�jı ln 2j

ı
.2�jı/�

2�p
p

�
� C

�
ıC ı

2.p�1/
p ln 1

ı

�
� Cı

p�1
p :

It is clear that (3-9) and (3-14) imply that

(3-15)
ˇ̌̌̌Z

Dı

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
� Cı.p�1/=p:

This concludes the proof. �

Now we use these lemmas to prove the energy identity. Note thatw is harmonic.
From Lemma 4 we see that

R
DR
.j@rwj

2� r�2j@�wj
2/dx D 0 for any R> 0. It is

easy to see that

lim
R!1

lim
n!1

ˇ̌̌̌Z
DrnR

�
j@r unj

2
�r�2

j@�unj
2
�
dx

ˇ̌̌̌
D lim

R!1

ˇ̌̌̌Z
DR

�
j@rwj

2
�r�2

j@�wj
2
�
dx

ˇ̌̌̌
D 0:

Letting ı! 0 in (3-15), we obtain

(3-16) lim
ı!0

lim
R!1

lim
n!1

ˇ̌̌̌Z
DınDrnR

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
� lim
ı!0

lim
n!1

ˇ̌̌̌Z
Dı

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
C lim

R!1
lim

n!1

ˇ̌̌̌Z
DrnR

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
D 0:

Using Lemma 3 we obtain that the normal energy also vanishes on the neck domain,
so the energy identity is proved.

4. Neckless property

In this section we use the method in [Qing and Tian 1997] to prove the neckless
property during blowing up.
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For any � > 0, take ı;R such that

E.u;D4ı/CE.w;R2
nDR/C ı

4.p�1/=p < �2:

Suppose rnR D 2�jn ; ı D 2�j0 . When n is big enough, the standard blow-up
analysis shows that for any j0 � j � jn,

E.un;D21�j nD2�j / < �
2:

For any j0 < j < jn, set Lj Dminfj � j0; jn� j g. Now we estimate the norm
krunkL2.Pj /

. Set Pj ;t DD2t�j nD2�t�j and take hn;j ;t similar to hn in the last
section, but

hn;j ;t .2
˙t�j /D

1

2�

Z
S1

un.2
˙t�j ; �/ d�:

By an argument similar to the one used in deriving (3-4), we have, for 0< t �Lj ,

(4-1)
Z

Pj ;t

r�2
j@�unj

2 dx

� C�

�Z
Pj ;t

jrunj
2 dxC .2t�j /

2.p�1/
p

�
C

Z
@Pj ;t

jun� hn;j ;t j jrunj ds:

Set fj .t/D
R

Pj ;t
jrunj

2dx, a simple computation shows that

f 0j .t/D ln 2

�
2t�j

Z
f2t�j g�S1

jrunj
2 dsC 2�t�j

Z
f2�t�j g�S1

jrunj
2 ds

�
:

Combining that hn;j ;t is independent of � and hn;j ;t is the mean value of un at
the two components of @Pj ;t with the Poincaré inequality yields thatZ
@Pj ;t

jun� hn;j ;t j jrunj ds

D

Z
f2t�j g�S1

jun�hn;j ;t j jrunj dsC

Z
f2�t�j g�S1

jun�hn;j ;t j jrunj ds

�

�Z
f2t�j g�S1

jun� hn;j ;t j
2 ds

� 1
2
�Z
f2t�j g�S1

jrunj
2 ds

� 1
2

C

�Z
f2�t�j g�S1

jun� hn;j ;t j
2 ds

� 1
2
�Z
f2�t�j g�S1

jrunj
2 ds

� 1
2

� C

�
2t�j

Z
f2t�j g�S1

jrunj
2 dsC 2�t�j

Z
f2�t�j g�S1

jrunj
2 ds

�
� Cf 0j .t/:

On the other hand, by a similar argument as we made to obtain (3-15), we get
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(4-2)
ˇ̌̌̌Z

Pj ;t

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
� C

�
.2t�j /

p�1
p C .2�t�j /

p�1
p

�
� C.2t�j /

p�1
p :

Since jruj2 D j@r uj2C r�2j@�uj2 D 2r�2j@�uj2C .j@r uj2 � r�2j@�uj2/, by
(4-1) and (4-2) we have

fj .t/� 2

Z
Pj ;t

r�2
j@�unj dxC

ˇ̌̌̌Z
Pj ;t

.j@r unj
2
� r�2

j@�unj
2/ dx

ˇ̌̌̌
� C�

�
fj .t/C .2

t�j /
2.p�1/

p

�
CCf 0j .t/CC.2t�j /

p�1
p

� C
�
�fj .t/C 2�

.p�1/j
p 2

.p�1/t
p Cf 0j .t/

�
:

Take � small enough and set �p D
p�1

p
ln 2, then for some positive constant C big

enough we get

f 0j .t/�
1

C
fj .t/CCe��pj e�pt

� 0:

We may assume that �p > 1=C , then we have

.e�t=Cfj .t//
0
CCe��pj e.�p�1=C /t

� 0:

Integrating this inequality over Œ2;Lj � gives

fj .2/� C

�
e�Lj =Cfj .Lj /C e��pj

Z Lj

1

e.�p�1=C /t dt

�
� C

�
e�Lj =Cfj .Lj /C e��pj e.�p�1=C /Lj

�
:

Note that j �Lj , so

fj .2/� C.e�Lj =Cfj .Lj /C e�j=C /:

Since the energy identity was proved in the last section, we can take ı small such
that the energy on the neck domain is less than �2, which implies that fj .Lj /< �

2.
So we get

fj .2/� C
�
e�Lj =C �2

C e�j=C
�
:

Using Lemma 2 on the domain Pj DD21�j nD2�j when j < jn, we obtain

kunkOsc.Pj / � C
�
krunkL2.Pj�1[Pj[PjC1/

C 2
2.1�p/j

p k�.un/kp
�

� C
�
fj .2/C e�2�pj

�
:
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Summing over j from j0 to jn yields

kunkOsc.DınD2rnR/ �

jnX
jDj0

kunkOsc.Pj /

� C

jnX
jDj0

�
fj .2/C e�2�pj

�
� C

jnX
jDj0

�
e�Lj =C �2

C e�j=C
C e�2�pj

�
� C

� 1X
iD0

e�i=C �2
C

1X
jDj0

e�j=C

�
� C

�
�2
C e�j0=C

�
� C

�
�2
C ı1=C

�
:

Here we used the assumption that �p > 1=C . So we have proved that there is no
neck during the blowing up.
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REMARKS ON SOME ISOPERIMETRIC PROPERTIES
OF THE k− 1 FLOW

YU-CHU LIN AND DONG-HO TSAI

We consider the evolution of a convex closed plane curve γ0 along its inward
normal direction with speed k− 1, where k is the curvature. This flow has
the feature that it is the gradient flow of the (length− area) functional and
has been previously studied by Chou and Zhu, and Yagisita. We revisit the
flow and point out some interesting isoperimetric properties not discussed
before.

We first prove that if the curve γt converges to the unit circle S1 (without
rescaling), its length L(t) and area A(t) must satisfy certain monotonicity
properties and inequalities.

On the other hand, if the curve γt (assume γ0 is not a circle) expands
to infinity as t → ∞ and we interpret Yagisita’s result in the right way,
the isoperimetric difference L2(t)− 4π A(t) of γt will decrease to a positive
constant as t →∞. Hence, without rescaling, the expanding curve γt will
not become circular. It is asymptotically close to some expanding curve Ct ,
where C0 is not a circle and each Ct is parallel to C0. The asymptotic speed
of Ct is given by the constant 1.

1. Introduction

Let γ0 be a smooth embedded convex closed curve in R2 (with positive curvature
everywhere) parametrized by X0 := X0(ϕ) : S1

→ R2, where S1 is the unit circle.
We study the geometric behavior of γ0 driven by the equation

(1) ∂X
∂t
(ϕ, t)= (k(ϕ, t)− 1)Nin(ϕ, t), X (ϕ, 0)= X0(ϕ), ϕ ∈ S1

where k(ϕ, t) is the curvature of the curve γt (parametrized by X (ϕ, t)), Nin(ϕ, t)
is the unit inward normal vector of γt .

Without the constant term, (1) is the well-known curve shortening flow. See
[Gage and Hamilton 1986] for the case when γ0 is convex and [Grayson 1987]
for the case when γ0 is a simple closed curve. Also see [Andrews 1998] for more

Both authors are supported by NSC and NCTS of Taiwan.
MSC2010: 51K05, 52A40.
Keywords: curve shortening flow, isoperimetric inequality, plane curve evolution.
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general types of curvature flows. Unlike the situation in [Grayson 1987], a simple
closed curve γ0 may develop self-intersections under the flow (1) due to the constant
term −1. This will make the problem hard to manage. Thus we focus only on the
case when γ0 is convex.

According to [Gage and Hamilton 1986], (1) is a parabolic flow and there exists
a unique smooth solution X (ϕ, t) : S1

× [0, T )→ R2 to the flow for a short time
T > 0, T <∞. We want to study its long-time convergence behavior. The flow (1)
has the interesting property that it is the gradient flow of the functional

(2) E(γ )= length− area=
∫
γ

ds− 1
2

∫
γ

(x dy− y dx)

with respect to the L2 inner product 〈u, v〉 =
∫
γ

uv ds on the space of all normal
variations of γ . One can also view it as a competition between the curve shortening
flow ∂X/∂t = k Nin (contraction) and the unit-speed outward normal flow ∂X/∂t =
−Nin = Nout (expansion). See [Gage and Hamilton 1986; Green and Osher 1999].

It is expected intuitively that, depending on the convex initial curve, the flow (1)
will either converge to a point, converge to a round circle S1, or expand to infinity,
with each γt remaining smooth and convex. This is indeed true due to Theorem 3.12
(see also Remark 3.14) of [Chou and Zhu 2001]. Moreover, for given initial data
X0(ϕ) : S1

→ R2, if we consider its homothetic class

(3) H(X0)= {λX0(ϕ) : λ > 0, ϕ ∈ S1
},

there exists a unique number 3> 0 (for convenience we call it the critical number
of X0) such that under the flow (1) with initial data λX0(ϕ), λ=3, γt will converge
to the unit circle S1 (without rescaling) smoothly as t→∞. For 0< λ < 3, the
flow exists on a maximal finite time interval [0, Tmax), Tmax <∞, and γt converges
to a point p ∈ R2 as t → Tmax; and for λ > 3, the flow expands to infinity as
t→∞. Thus the generic behavior of the k− 1 flow is either converging to a point
or expanding to infinity.

The asymptotic behavior of γt as t→ Tmax (or t→∞) in the above three cases
are known due to [Chou and Zhu 2001, Theorem 3.12; Gage 1984; Gage and
Hamilton 1986; Chow and Tsai 1996]. Also see [Yagisita 2005] for a more refined
estimate in the expanding case.

Our purpose is to give an estimate of the number 3 and to point out some
monotonicity properties of length L(t) and area A(t) not observed before. See
Theorem 2.1. We also reinterpret Yagisita’s estimate in terms of the asymptotic
behavior of the isoperimetric difference D(t) := L2(t)− 4π A(t). See Lemmas 3.7
and 3.9.

Remark 1.1. This is to explain how to convert Chou and Zhu’s results for k− λ
flow into results for k− 1 flow. Chou and Zhu [2001, Theorem 3.12] considered a
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general flow which includes the following as a special case:

(4) ∂X
∂t
(ϕ, t)= (k(ϕ, t)− λ)Nin(ϕ, t), X (ϕ, 0)= X0(ϕ), ϕ ∈ S1.

Here λ∈R is a number serving as a parameter. For a given initial curve γ0 := X0(ϕ),
there exists a unique number 3 such that the flow (4) with λ=3 will evolve γ0

smoothly into a circle with radius 1/3 as t→∞, t ∈ [0,∞). We assert that if we
replace γ0 by γ̃0 :=3γ0 and rescale time (denote the new time as τ ), then, under
the k−1 flow (1), γ̃0 will converge to the unit circle S1 as τ→∞. More precisely,
let X (ϕ, t) be the solution to the k−3 flow with initial condition X0(ϕ) and set

X̃(ϕ, τ )=3X (ϕ, t), τ =32t ∈ [0,∞).

Then by k̃(ϕ, τ )= (1/3)k(ϕ, t), Ñin(ϕ, τ )= Nin(ϕ, t), we have

X̃(ϕ, 0)=3X0(ϕ)= γ̃0,

∂ X̃
∂τ
(ϕ, τ )=3

dt
dτ
∂X
∂t
(ϕ, t)= 1

3
(k(ϕ, t)−3)Nin(ϕ, t)= (k̃(ϕ, τ )− 1)Ñin(ϕ, τ )

for all (ϕ, τ ) ∈ S1
× [0,∞). That is, X̃(ϕ, τ ) satisfies the k− 1 flow (with initial

condition γ̃0 =3γ0) and converges to the unit circle S1 as τ →∞.

2. Estimate of the critical number 3

According to [Chou and Zhu 2001], the critical number 3 is obtained via a contra-
diction argument and for a given curve X0(ϕ) we do not know what it is. However,
we can use the following theorem to give an estimate of 3 (see Corollary 2.7).

Theorem 2.1. Let γ0 be a convex closed curve (which is not a unit circle) and
consider (1) with initial data γ0. If the flow is defined on time interval [0,∞) and
γt converges (without rescaling) to the unit circle S1 as t→∞, its length L(t) and
enclosed area A(t) must satisfy the estimate

(5) L(t) > 2π, A(t) < π, L(t)− 2π > π − A(t)

for all t ∈ [0,∞). Moreover, L(t) is strictly decreasing, A(t) is strictly increasing,
and (L(t)− 2π)− (π − A(t)) is strictly decreasing on [0,∞).

The proof consists of several simple lemmas. Recall that for a family of time-
dependent simple closed curves γt = γ (·, t) in the plane its length L(t) and enclosed
area A(t) satisfy the equations

(6) dL
dt
(t)=−

∫
γ (·,t)

〈
∂γ

∂t
, k Nin

〉
ds, dA

dt
(t)=−

∫
γ (·,t)

〈
∂γ

∂t
, Nin

〉
ds,
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where Nin is the unit inward normal of γt and k is its signed curvature with respect
to Nin. Therefore

(7) d
dt
(L(t)− A(t))=−

∫
γ (·,t)

〈
∂γ

∂t
, (k− 1)Nin

〉
ds,

which explains why (1) is the gradient flow of the functional E(γ ) in (2). In
particular, under the flow (1), we have

(8) dL
dt
(t)=−

∫
γ (·,t)

k2ds+ 2π, dA
dt
(t)= L(t)− 2π.

As γ0 is strictly convex, γt will remain so for a short time (we may assume γt

is convex on [0, T ) for some T > 0). Thus one can use the outward normal angle
θ ∈ S1 of γt as a parametrization variable. In terms of (θ, t) ∈ S1

×[0, T ) we have

(9) ∂k
∂t
(θ, t)= k2(θ, t)[kθθ (θ, t)+ k(θ, t)] − k2(θ, t)

and

(10) ∂u
∂t
(θ, t)= 1− k(θ, t)= 1− 1

uθθ (θ, t)+u(θ, t)
,

where u(θ, t) is the support function of γt . We also have

(11) L(t)=
∫ 2π

0
u(θ, t) dθ, A(t)= 1

2

∫ 2π

0
[u2(θ, t)− u2

θ (θ, t)] dθ.

Let w(θ, t)= k(θ, t)et/4 and compute

∂w

∂t
(θ, t)= k2(θ, t)wθθ (θ, t)+

(
k(θ, t)− 1

2

)2
w(θ, t).

By the maximum principle we can obtain a lower bound of the curvature:

(12) k(θ, t)≥ kmin(0)e−t/4 > 0

for all (θ, t) ∈ S1
×[0, T ), where kmin(0)=minθ∈[0,2π ] k(θ, 0). By Theorem 3.12

of [Chou and Zhu 2001], the flow γt (each γt remains smooth and convex) is either
defined on a finite maximal time interval [0, Tmax) with limt→Tmax kmax(t)=∞ or
on an infinite time interval [0,∞) with limt→∞ k(θ, t)= 1 or limt→∞ k(θ, t)= 0
uniformly on S1.

Note that for any simple closed curve γ in the plane, we have
∫
γ

k ds = 2π and

(13)
∫
γ

k2 ds ≥ 4π2

L
(Hölder inequality),
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and, by Gage’s isoperimetric inequality [1983], we have

(14)
∫
γ

k2 ds ≥ πL
A

for any convex closed curve γ in R2. We also need the fact that the equality holds
in (13) or (14) if and only if γ is a circle.

As a consequence of (14), the isoperimetric difference and ratio of γt , under
the k− 1 flow, are both decreasing (strictly decreasing if γ0 is not a circle) in time
due to

(15) d
dt
(L2
− 4π A)≤−2π

A
(L2
− 4π A)≤ 0

and

(16) d
dt

( L2

4π A
− 1

)
≤
−L
A

( L2

4π A
− 1

)
≤ 0.

Thus, in any case of convergence, γt is getting more and more circular.
Let L(0) and A(0) be the length and area of γ0 (γ0 is not a unit circle).

Lemma 2.2. If L(0) ≤ 2π , the flow (1) strictly decreases L(t) and A(t), and γt

converges to a point p ∈ R2 in finite time Tmax.

Remark 2.3. If L(0) ≤ 2π , γ0 may not be enclosed by a circle with radius less
than 1. Otherwise the result is trivial due to the maximum principle.

Proof. Since γ0 is not a unit circle, if L(0)≤ 2π , we must have A(0) < π due to
L2(0) > 4π A(0). We also have strict inequality in (13). By (8), we have

dL
dt
=−

∫
γ (·,t)

k2 ds+ 2π ≤ 2π
L(t)

(L(t)− 2π),

and at t = 0 we have (dL/dt)(0) < 0. Thus the flow (1) strictly decreases L(t).
By dA/dt = L(t) − 2π , it also strictly decreases A(t). As a consequence of
Theorem 3.12 of [Chou and Zhu 2001], γt will converge to a point p ∈ R2 in finite
time Tmax. �

Lemma 2.4. If A(0) ≥ π , the flow (1) strictly increases A(t), and γt expands to
infinity as t→∞.

Remark 2.5. If A(0) ≥ π , γ0 may not enclose a circle with radius larger than 1.
Otherwise the result is trivial due to the maximum principle.

Proof. We now have L(0) > 2π and (dA/dt)(0)= L(0)− 2π > 0. By continuity
L(t) remains L(t) > 2π for a short time [0, T ) and A(t) is strictly increasing with
A(t) > π on (0, T ). As time proceeds, the inequality L2

≥ 4π A forces L(t) to
remain L(t) > 2π and A(t) keeps strictly increasing. Again by Theorem 3.12 of
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[Chou and Zhu 2001], the flow is defined on [0,∞) and γt expands to infinity
as t→∞. �

Lemma 2.6. If L(0) > 2π , A(0) < π , and L(0)− 2π ≤ π − A(0), γt converges to
a point p ∈ R2 in finite time Tmax.

Proof. By continuity L(t) > 2π and A(t) < π for a short time [0, T ), and during
this time interval we have

(17) d
dt
(L(t)− 2π)=−

∫
γ (·,t)

k2 ds+ 2π

<−
πL(t)
A(t)

+ 2π <−(L(t)− 2π)= d
dt
(π − A(t)) < 0.

Thus L(t) is strictly decreasing and A(t) is strictly increasing.
Equation (17) says that L(t)−2π decreases more rapidly than π− A(t) (as long

as L(t) > 2π and A(t) < π). Since L(0)− 2π is closer to 0 than π − A(0), L(t)
must touch 2π earlier than A(t) touches π . More precisely, let t∗ > 0 be the first
time at which L(t) > 2π and A(t) < π on [0, t∗) and L(t∗)= 2π . Such a t∗ must
exist and is finite. Otherwise we would have L(t) > 2π and A(t) < π on [0,∞),
and, by [Chou and Zhu 2001, Theorem 3.12], the flow would have to converge to
the unit circle S1 (without rescaling), which is impossible due to the inequality

(L(t)− 2π)− (π − A(t)) < (L(t1)− 2π)− (π − A(t1))

< [(L(0)− 2π)− (π − A(0))] ≤ 0

for all t > t1 > 0 in [0,∞). (Note that now we have L(t)→ 2π and A(t)→ π

as t →∞.) Therefore t∗ > 0 is finite and L(t∗) = 2π . By Lemma 2.2, γt must
converge to a point p ∈ R2 in finite time Tmax. �

Proof of Theorem 2.1. Combining these three lemmas, the proof of Theorem 2.1 is
now clear. Since we assume that γt converges to the unit circle S1 (without rescaling)
as t→∞, if at some time t0 ∈ [0,∞) we have L(t0)≤ 2π or A(t0)≥ π , the curve
will either converge to a point or expand to infinity. Hence we must have L(t) > 2π
and A(t) < π for all time. By Lemma 2.6 we also have L(t)− 2π > π − A(t) for
all time. The monotonicity of L(t), A(t), and (L(t)− 2π)− (π − A(t)) can all be
seen from (17). �

As a consequence of Theorem 2.1, we can give an estimate of the number 3 in
Theorem 3.12 of [Chou and Zhu 2001].

Corollary 2.7. Let γ0 be a convex closed curve (which is not a unit circle) with
length L(0) and area A(0). Then its critical number 3 satisfies

(18) 3L(0) > 2π, 32 A(0) < π, 3L(0)− 2π > π −32 A(0),
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which implies

(19) max
{

2π
L(0)

,
−L(0)+

√
L2(0)+ 12π A(0)
2A(0)

}
<3<

√
π

A(0)
.

Remark 2.8. Let k0(θ) be the curvature of γ0. As 3γ0 converges to the unit circle
S1 as t→∞, its curvature (1/3)k0(θ) must satisfy (1/3)maxθ∈S1 k0(θ) > 1 and
(1/3)minθ∈S1 k0(θ)< 1. This gives a rough estimate of3 in terms of the curvature
of γ0, that is,

(20) min
θ∈S1

k0(θ) < 3 <max
θ∈S1

k0(θ).

We explain that (19) is better than (20). To see this, by the identity

L(0)=
∫ 2π

0

1
k0(θ)

dθ

and Gage’s inequality (14), we have

min
θ∈S1

k0(θ) <
2π

L(0)
and L(0)

2A(0)
<max

θ∈S1
k0(θ).

Combined with the classical isoperimetric inequality

2π
L(0)

<

√
π

A(0)
<

L(0)
2A(0)

,

we conclude

(21) min
θ∈S1

k0(θ) <
2π

L(0)
<

√
π

A(0)
<

L(0)
2A(0)

<max
θ∈S1

k0(θ).

Hence (19) is better than the curvature estimate (20).

Remark 2.9. Under the assumption of Theorem 2.1, the curvature k(θ, t)→ 1
uniformly as t→∞. One can follow a similar proof to that of [Gage and Hamilton
1986, Theorem 5.7.1] to conclude the following curvature estimate: for any m ∈N

and any α ∈ (0, 1), there exists a constant C depending only on m and γ0 such that

(22)
∥∥∥∂mk
∂θm (θ, t)

∥∥∥
L∞(S1)

≤ C(m)e−2αt

for time t large enough.

Given initial curve γ0, if we replace the k− 1 flow by ck− d flow, the critical
number 3̃ for the ck − d flow and the critical number 3 for the k − 1 flow are
related by the following.
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Corollary 2.10. Let c, d be two positive constants and let γ0 be a convex closed
curve parametrized by X0(ϕ), ϕ ∈ S1. Then the critical number 3 in the k− 1 flow
and the critical number 3̃ in the ck− d flow are related by

(23) 3̃=
c
d
3.

Proof. This is a consequence of scaling. By definition, the solution X̃(ϕ, t) to the
initial value problem

∂ X̃
∂t
(ϕ, t)= (ck̃(ϕ, t)− d)Ñin(ϕ, t), X̃(ϕ, 0)= 3̃X0(ϕ)

will converge to the circle with radius R = c/d as t→∞. Let

Y (ϕ, t)= d
c

X̃
(
ϕ,

c
d2 t

)
.

Then it satisfies

∂Y
∂t
(ϕ, t)= (k(Y )(ϕ, t)− 1)N (Y )

in (ϕ, t), Y (ϕ, 0)= d
c
3̃X0(ϕ),

where k(Y )(ϕ, t) and N (Y )
in (ϕ, t) are the curvature and normal at Y (ϕ, t), respectively.

Since Y (ϕ, t) will converge to the unit circle, we have (d/c)3̃=3. �

3. The asymptotic behavior of L2− 4π A in the expanding case

There is another interesting property of the flow (1) not discussed before when,
given an initial curve γ0, it expands to infinity. It is about the value of D(t) :=
L2(t)−4π A(t) as t→∞. From (8) it is easy to see that L(t) has scale t and A(t)
has scale t2 as t →∞ (since k(θ, t)→ 0 uniformly on S1). If we integrate (16)
with respect to time, we get

0≤ L2(t)
4π A(t)

− 1≤
( L2(0)

4π A(0)
− 1

)
e−

∫ t
0 (L(z)/A(z)) dz, lim

t→∞

∫ t

0

L(z)
A(z)

dz =∞.

This implies L2(t)/(4π A(t))→ 1 exponentially as t →∞. But if we integrate
(15), we only get

0≤ D(t)≤ D(0)e−
∫ t

0 (2π/A(z)) dz, lim
t→∞

∫ t

0

2π
A(z)

dz <∞,

which implies that L2(t)− 4π A(t) decreases to some number bounded above by

D(0)e−
∫
∞

0 (2π/A(z)) dz.

We shall see that, unless γ0 is a circle, D(t) will not decrease to zero as t→∞.
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Remark 3.1. Note that if we have a family of curves γt , t ∈ [0, T ), T ≤ ∞, so
that A(t) has uniform positive upper and lower bounds, then limt→T D(t)= 0 is
equivalent to limt→T L2(t)/(4π A(t))= 1. But if limt→T A(t)= 0 or∞, then they
may not be equivalent.

Recall that if we evolve a convex closed curve γ0 by the unit-speed (that is, the
constant 1) outward normal flow, we get a family of parallel curves γt expanding to
infinity. We get a similar result if we replace the speed constant 1 by a positive time
function a(t), where limt→∞ a(t)=∞. Moreover, any two parallel convex closed
curves (or simple closed curves) γt1 and γt2 have the same isoperimetric difference.

The intuitive observation is that when γ0 expands to infinity under the k−1 flow,
its asymptotic behavior is given by the unit-speed outward normal flow. As the
unit-speed outward normal flow preserves the isoperimetric difference, we expect
that D(t) will not decrease to zero as t →∞. This is indeed the case based on
results in [Yagisita 2005], which are explained below.

From now on we use θ ∈ S1 to denote the outward normal angle of γt (γt is
convex) and use σ ∈ S1 to denote the polar angle of γt (we may assume that γt

encloses the origin of R2). In Theorem 2 of [Yagisita 2005], he looked at the radial
function r(σ, t) of γt and proved that there exists a smooth function `(σ ) defined
on S1 such that

(24) lim
t→∞
‖r(σ, t)− (R(t)+ `(σ ))‖Ck(S1) = 0

for any k ∈ N, where R(t) is the solution to the ODE

(25)
dR
dt
(t)= 1− 1

R(t)
, R(0)= 2.

Note that R(t) is strictly increasing on [0,∞) with limt→∞ R′(t)= 1.
To see that D(t) decreases to a positive constant asymptotically, we need to see

what (24) implies in terms of the support function u(θ, t) of γt . By (11), it suffices
to look at the asymptotic behavior of u(θ, t) and uθ (θ, t).

Remark 3.2. Yagisita [2005] used the radial function r(σ, t) to study the flow
(1) instead of the support function u(θ, t). The advantage is that one can get a
quasilinear uniformly parabolic equation for the difference A(σ, τ ) :=r(σ, t)−R(t)
(see pages 227–230 of [Yagisita 2005]) if we also rescale time. More precisely, let

τ(t)= log
(

1− 1
R(t)

)
: [0,∞)→ [− log 2, 0), dτ

dt
=

1
R2(t)

.

Then we have

(26) ∂A
∂τ
(σ, τ )

=
R2(t (τ ))

[A(σ, τ )+ R(t (τ ))]2+ A2
σ (σ, τ )

Aσσ (σ, τ )+ lower order terms
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for all (σ, τ ) ∈ S1
×[− log 2, 0), where R(t (τ ))= 1/(1− eτ ). On the other hand,

the evolution equation for B(θ, τ ) := u(θ, t)− R(t) is also uniformly parabolic but
fully nonlinear, that is,

(27) ∂B
∂τ
(θ, τ )=

R(t (τ ))
Bθθ (θ, τ )+B(θ, τ )+R(t (τ ))

(Bθθ (θ, τ )+ B(θ, τ ))

for all (θ, τ ) ∈ S1
× [− log 2, 0). Equation (26) is easier to handle than (27).

However, the disadvantage is that it is very awkward to use r(σ, t) to study the
isoperimetric difference D(t).

Lemma 3.3. Let γ0 be a convex closed curve and consider the flow (1) with initial
data γ0. Then (24) implies

(28) lim
t→∞
‖u(θ, t)− (R(t)+ `(θ))‖C1(S1) = 0.

In particular, we have

(29) lim
t→∞

D(t)=
(∫ 2π

0
`(θ) dθ

)2

− 2π
∫ 2π

0

(
`2(θ)− (`′(θ))2

)
dθ ≥ 0.

Remark 3.4. We may get higher order convergence of u(θ, t). But (28) is sufficient.

Proof. For a point p ∈ γt with position vector P , its support function u(θ, t) and
radial function r(σ, t) are related by

(30) P = u(θ, t)(cos θ, sin θ)+ uθ (θ, t)(− sin θ, cos θ)= r(σ, t)(cos σ, sin σ).

From this we get

(31) u(θ, t)= r(σ, t) cos(σ − θ), uθ (θ, t)= r(σ, t) sin(σ − θ),

and

(32) σ = σ(θ, t)= tan−1
(

u(θ, t) sin θ + uθ (θ, t) cos θ
u(θ, t) cos θ − uθ (θ, t) sin θ

)
, θ ∈ S1.

In particular, at any point p where θ = σ , we have u(θ, t)= r(σ, t) and uθ (θ, t)= 0.
Since we know that |uθ (θ, t)| and |uθθ (θ, t)| are both uniformly bounded on

S1
× [0,∞) (see [Chow and Tsai 1996]) and u(θ, t)→∞ uniformly, we have

limt→∞ σ(θ, t)= θ uniformly on S1 and

(33) lim
t→∞

∂σ

∂θ
(θ, t)= lim

t→∞

u(θ, t)(uθθ (θ, t)+ u(θ, t))
u2(θ, t)+ u2

θ (θ, t)
= 1

uniformly on S1. Since uθ (θ, t)= r(σ, t) sin(σ − θ), we have
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(34) R(t) sin(σ − θ)
= uθ (θ, t)− (r(σ, t)− R(t)− `(σ )) sin(σ − θ)− `(σ ) sin(σ − θ).

This implies that |R(t) sin(σ− θ)| is also uniformly bounded on S1
×[0,∞). Now,

by (24), we conclude

(35) lim
t→∞

(u(θ, t)− R(t))

= lim
t→∞

(
(r(σ, t)−R(t)−`(σ )) cos(σ−θ)+(R(t)+`(σ )) cos(σ−θ)−R(t)

)
= lim

t→∞

(
(R(t) sin(σ−θ)) σ−θ

sin(σ−θ)
cos(σ−θ)−1

σ−θ

)
+`(θ)

= `(θ),

uniformly on S1. We next claim that uθ (θ, t)→ `′(θ) uniformly on S1 as t→∞.
Apply ∂/∂θ to u(θ, t) and use the chain rule to get

uθ (θ, t)=rσ (σ, t)∂σ
∂θ

cos(σ−θ)−r(σ, t)
(
∂σ

∂θ
(θ, t)−1

)
sin(σ−θ), σ =σ(θ, t),

and hence

(36) lim
t→∞

uθ (θ, t)= `′(θ)

uniformly on S1 due to (33) and (24). Since

‖u(θ, t)− r(σ, t)‖C1(S1) ≤ ‖u(θ, t)− (R(t)+ `(θ))‖C1(S1)+‖`(θ)− `(σ )‖C1(S1)

+‖(`(σ )+ R(t))− r(σ, t)‖C1(S1)

we have

(37) lim
t→∞
‖u(θ, t)− r(σ, t)‖C1(S1) = 0, σ = σ(θ, t),

where the C1 norm is taken with respect to θ ∈ S1. By (36) and (34), we also have

(38) lim
t→∞

R(t)(σ − θ)= lim
t→∞

R(t) sin(σ − θ)

= `′(θ)

uniformly on S1.
As a consequence of (11) we have

(39) lim
t→∞

D(t)

= lim
t→∞

[(∫ 2π

0
u(θ, t) dθ

)2

− 2π
∫ 2π

0
u2(θ, t) dθ

]
+ 2π

∫ 2π

0
(`′(θ))2 dθ.
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Since we have the identity

(40)
(∫ 2π

0
u(θ, t) dθ

)2

− 2π
∫ 2π

0
u2(θ, t) dθ

=

(∫ 2π

0
(u(θ, t)− R(t)) dθ

)2

− 2π
∫ 2π

0
(u(θ, t)− R(t))2 dθ,

which is due to the fact that any two parallel convex closed curves have the same
isoperimetric difference, we conclude

(41) lim
t→∞

D(t)=
(∫ 2π

0
`(θ) dθ

)2

− 2π
∫ 2π

0

(
`2(θ)− (`′(θ))2

)
dθ ≥ 0. �

Remark 3.5. By (30) and (28) the position vector P(θ, t) of γt satisfies

lim
t→∞
|P(θ, t)− Q(θ, t)| = 0

uniformly on S1, where

(42) Q(θ, t)= R(t)(cos θ, sin θ)+ `(θ)(cos θ, sin θ)+ `θ (θ)(− sin θ, cos θ)

and it represents a family of expanding circles centered at (a, b) ∈ R2 if and only if
`(θ) is given by

(43) `(θ)= c+ a cos θ + b sin θ, θ ∈ S1

for some constants a, b, c. Also note that by the classical Minkowski inequality the
right side of (41) is zero if and only if `(θ) has the form (43). So limt→∞ D(t)= 0 if
and only if P(θ, t) is asymptotically close to a family of expanding circles centered
at some (a, b) ∈ R2, which can be evaluated by the integral

(44) (a, b)= lim
t→∞

1
2π

∫ 2π

0
P(θ, t) dθ = 1

π

∫ 2π

0
`(θ)(cos θ, sin θ) dθ.

On the other hand, limt→∞ D(t)= d > 0 if and only if P(θ, t) is asymptotically
close to a family of noncircular parallel curves (described by Q(θ, t)) expanding
to infinity. This family of parallel curves have the same fixed center (now “center”
means “average position vector”) given by (44). The speed of this family of parallel
curves is

dR
dt
(t)= 1− 1

R(t)
→ 1

as t→∞. Therefore, asymptotically, it is the unit-speed outward normal flow.

To go further, we need the following ODE result.
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Lemma 3.6. For any constant c ∈R there exists a positive solution s(t) to the ODE

ds
dt
= 1− 1

s

defined on some interval [T,∞), T ≥ 0, s(T )≥ 2, such that

lim
t→∞

(s(t)− R(t))= c.

Proof. Assume first that c> 0. Let s(t)= R(t+c), t ∈ [0,∞). It satisfies the same
ODE with s(0)= R(c) > R(0)= 2. Now

lim
t→∞

(s(t)− R(t))= lim
t→∞

∫ t+c

t
R′(z) dz = lim

t→∞

∫ t+c

t

(
1− 1

R(z)

)
dz = c.

For c < 0, let s(t)= R(t + c), t ∈ [−c,∞). Then s(t) is a positive solution to the
ODE on [−c,∞) with s(−c)= R(0)= 2 and

lim
t→∞

(R(t)− s(t))= lim
t→∞

∫ t

t+c
R′(z) dz = lim

t→∞

∫ t

t+c

(
1− 1

R(z)

)
dz =−c. �

Our next result is a property about uniqueness.

Lemma 3.7. If γt expands to infinity under the flow (1), limt→∞ D(t) = 0 if and
only if γ0 is a circle. Therefore if γ0 is not a circle, D(t) will decrease to a positive
constant as t→∞.

Proof. Assume that limt→∞ D(t) = 0. Then `(θ) = c+ a cos θ + b sin θ in (28),
and by Lemma 3.6 there exists a positive solution s(t) to the ODE on some interval
[T,∞), T ≥ 0, s(T )≥ 2, such that

lim
t→∞
‖u(θ, t)− (s(t)+ a cos θ + b sin θ)‖C1(S1) = 0.

Now if at time T we consider a circle CT centered at (a, b) with radius s(T ) and
evolve it under the flow (1), its support function U (θ, t) will satisfy

U (θ, t)= s(t)+ a cos θ + b sin θ,

(θ, t) ∈ S1
× [T,∞) (note that this U (θ, t) satisfies Equation (10)). By previous

discussions, the radial function r1(σ, t) of the evolving curve γt (with support
function u(θ, t)) and the radial function r2(σ, t) of the evolving circle Ct (with
support function U (θ, t)) on the domain S1

×[T,∞) will satisfy the estimate

(45) lim
t→∞
‖r1(σ, t)− r2(σ, t)‖C1(S1) = 0,

and we can apply Theorem 3 of [Yagisita 2005] to conclude that γt ≡ Ct for all
t ∈ [T,∞). In particular γT is also a circle. But this is impossible unless γ0 is a
circle. �
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Remark 3.8. One can also apply Andrews’ backward uniqueness result [2002],
which follows, to prove the above lemma: Assume v(θ, t) is a smooth solution to
the uniformly parabolic equation

(46) ∂v

∂t
= a(θ, t)vθθ + b(θ, t)vθ + c(θ, t)v, (θ, t) ∈ S1

×[0, T ],

where a, b, c are smooth functions on S1
×[0, T ] with

1
C
≤ a(θ, t)≤ C, (θ, t) ∈ S1

×[0, T ],

for some positive constant C > 0. If v(θ, T )= 0 for all θ ∈ S1, we have v(θ, 0)= 0
for all θ ∈ S1 (in particular, v(θ, t) ≡ 0 for all (θ, t)). Now by (24), in terms
of the variable (σ, τ ) ∈ S1

× [− log 2, 0) in Remark 3.2, the bounded function
A(σ, τ ) = r1(σ, t) − R(t) can be smoothly extended to S1

× [− log 2, 0] even
though the function R(t (τ ))= 1/(1− eτ ) is undefined at τ = 0. The full equation
for (26) is (see the top equation on page 229 of [Yagisita 2005])

(47) ∂A
∂τ
(σ, τ )=

1
C(σ, τ )

Aσσ (σ, τ )+
1

D2(σ, τ )+D(σ, τ )
√

C(σ, τ )
A2
σ (σ, τ )

+
1

C(σ, τ )

[
D(σ, τ )A(σ, τ )− (1− eτ )

( 2
D(σ, τ )

− 1
)

A2
σ (σ, τ )

]
,

where
C(σ, τ )= [A(σ, τ )(1− eτ )+ 1]2+ A2

σ (σ, τ )(1− eτ )2,

D(σ, τ )= A(σ, τ )(1− eτ )+ 1.

At τ = 0, we have C(σ, τ )= D(σ, τ )= 1, which implies that (47) is a uniformly
parabolic equation with smooth coefficients on S1

×[−δ, 0] for some small δ > 0.
Moreover, the smooth function

w(σ, τ) := (r1(σ, t)− R(t))− (r2(σ, t)− R(t)), (σ, τ ) ∈ S1
×[−δ, 0],

satisfies a uniformly parabolic equation of the form

∂w

∂τ
= a(σ, τ )wσσ + b(σ, τ )wσ + c(σ, τ )w

with coefficients smooth on S1
×[−δ, 0], and, by (45), w(σ, 0)= 0 for all σ ∈ S1.

Andrews’ result implies w(σ, τ)≡ 0 and the initial curve γ0 must be a circle.

Lemma 3.9. For any number d ≥ 0 and any small ε > 0, one can construct an
expanding k−1 flow so that its isoperimetric difference D(t) satisfies |D(t)−d|<ε
as long as t is large enough.
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Proof. For any d ≥ 0 one can find a convex closed curve γ with support function
`(θ) such that

d = L2
− 4π A =

(∫ 2π

0
`(θ) dθ

)2

− 2π
∫ 2π

0

(
`2(θ)− (`′(θ))2

)
dθ ≥ 0.

Following the proof of Theorem 4 of [Yagisita 2005], we can obtain the following:
For any smooth function `(θ) defined on S1 and any small δ > 0, there exists a
large time M > 0 such that if T > M and γT is a convex closed curve with support
function R(T )+ `(θ), the support function u(θ, t) of γt (γt is the evolution of γT

under (1) on time interval [T,∞)) will satisfy

(48) sup
t∈[T,∞)

‖u(θ, t)− (R(t)+ `(θ))‖C0(S1) < δ.

This says that γt is close to a parallel curve of γT , which is intuitively correct.
For the isoperimetric difference of γt we need to be careful, because now the

norm in (48) is only in C0 norm [Yagisita 2005, Proof of Theorem 4], and by (11)
we need to know the behavior of uθ (θ, t) in order to control the area. However,
there is a result on page 53 of [Schneider 1993], which says that if two compact
convex sets K1, K2 in R2 have their support functions u1(θ), u2(θ) close to each
other, their Hausdorff distance is also close to each other. In particular, their lengths
and areas are also close to each other. But be careful again that the two families of
curves γt and pt (pt is the parallel curve of γT with support function R(t)+`(θ) for
t ∈ [T,∞)) are expanding to infinity as t→∞, so even if their Hausdorff distance
is less than δ, |D(t)− d| may not be small as t →∞ (however, |D(t)− d| ≤ d
since D(t)≥ 0 is decreasing on [T,∞) with D(T )= d). To overcome this we can
write (48) as

C + `(θ)− δ ≤ u(θ, t)− R(t)+C ≤ C + `(θ)+ δ, (θ, t) ∈ S1
×[T,∞),

where C > 0 is a constant with (recall that |uθθ (θ, t)| is uniformly bounded on
S1
×[T,∞) by [Chow and Tsai 1996])

(49)
(C + `(θ))θθ + (C + `(θ)) > 0,

(u(θ, t)− R(t)+C)θθ + (u(θ, t)− R(t)+C) > 0.

for all (θ, t) ∈ S1
×[T,∞). Equation (49) implies the existence of a convex closed

curve C1 with support function C + `(θ) and a convex closed curve C2(t) with
support function u(θ, t)− R(t)+C , where the support function of C2(t) is close
to the support function of C1 for all t ∈ [T,∞). Moreover, the curves C1 and
C2(t) are both enclosed by two parallel convex curves C± with support functions
C+`(θ)+δ and C+`(θ)−δ, respectively. However, we worry about the situation
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where, when δ is getting smaller and smaller, the constant C may be getting larger
and larger.

We claim that the constant C in (49) can be chosen to be independent of δ. If
we let δ tends to zero, the time T in (48) will tend to infinity and the initial value
u(θ, T ) = R(T )+ `(θ) will also tend to infinity. However, uθ (θ, T ) = `′(θ) and
uθθ (θ, T ) = `′′(θ) are unaffected by T . From the proofs of Proposition 1 and
Lemma 4 in [Chow and Tsai 1996], one can see that |uθ (θ, t)| and |uθθ (θ, t)| are
both uniformly bounded on S1

×[T,∞) and the bounds are independent of T . This,
together with (48), implies that C >−uθθ (θ, t)+ R(t)− u(θ, t) is independent of
T (and δ).

As δ→ 0, the curve C1 is unchanged and the Hausdorff distance between C2(t)
and C1 is getting smaller. We note that the isoperimetric difference of C1 is given
by d and the isoperimetric difference of C2(t) is the same as D(t) of γt . Therefore,
for any small ε > 0, by making δ > 0 as small as possible, one can construct an
expanding k− 1 flow satisfying |D(t)− d|< ε as long as t is large enough. �

Remark 3.10. In the above proof we use the fact that any smooth function h(θ)
defined on S1, satisfying h′′(θ)+ h(θ) > 0 for all θ ∈ S1, is the support function of
some convex closed curve.
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DEMYSTIFYING A DIVISIBILITY PROPERTY OF THE
KOSTANT PARTITION FUNCTION

KAROLA MÉSZÁROS

We prove a family of identities connected to a divisibility property of the
Kostant partition function. A special case of these identities first appeared
in a paper of Baldoni and Vergne. To prove their identities, Baldoni and
Vergne used residue techniques, and called the resulting divisibility prop-
erty “mysterious.” Our proofs are entirely combinatorial and provide a nat-
ural explanation for why divisibility occurs, both in the Baldoni and Vergne
identities and in their generalizations.

1. Introduction

The objective of this paper is to provide a natural combinatorial explanation of a
divisibility property of the Kostant partition function. The question of evaluating
Kostant partition functions has been the subject of much interest, without a satisfac-
tory combinatorial answer. To mention perhaps the most famous such case: it is
known that

K A+n

(
1, 2, . . . , n,−

( n+ 1
2

))
=

n∏
k=1

Ck, where Ck =
1

k+ 1

( 2k
k

)
denotes the Catalan numbers, yet there is no combinatorial proof of this identity!
While endowed with combinatorial meaning, Kostant partition functions were
introduced in and are a vital part of representation theory: weight multiplicities
and tensor product multiplicities can be expressed in terms of the Kostant partition
function. Kostant partition functions also come up in toric geometry and analytic
residue theory.

Given the lack of understanding of the evaluation of the Kostant partition func-
tion, it seems a worthy proposition to provide a simple explanation for certain of
its divisibility properties. We explore divisibility properties of Kostant partition
functions of types An and Cn+1, noting that such properties in types Bn+1 and Dn+1

are easy consequences of the type Cn+1 case. A significant part of the type An

The author is supported by a National Science Foundation Postdoctoral Research Fellowship.
MSC2010: 05E10.
Keywords: Kostant partition function, divisibility, flow.
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family of identities we study first appeared in [Baldoni and Vergne 2008], where
the authors prove the identities using residues, and where they call the divisibility
property “mysterious.” It is our hope that the combinatorial argument we provide
successfully demystifies the divisibility property of the Kostant partition function
and provides a natural explanation for why things happen the way they do.

The outline of the paper is as follows. In Section 2 we define Kostant partition
functions of type An and prove a family of identities, including the Baldoni–Vergne
identities, combinatorially. Our proof is bijective, and as such it also yields an
affirmative answer to a question of Stanley [2000] regarding a possible bijective
proof of a special case of the Baldoni–Vergne identities. In Section 3 we define
Kostant partition functions of type Cn+1, relate them to flows, and show how to
modify our proof of the identities from Section 2 to obtain their analogues for type
Cn+1.

2. A family of Kostant partition function identities

In this section we prove a family of Kostant partition function identities exhibiting
divisibility properties. We start by proving Baldoni–Vergne identities, our proof of
which clearly points to several generalizations of these identities. We provide some
of these generalizations in this section, and some in the next.

The Baldoni–Vergne identities. Before stating the Baldoni–Vergne identities, we
need a few definitions. Throughout this section the graphs G we consider are on the
vertex set [n+ 1], possibly with multiple edges, but no loops. Denote by mi j the
multiplicity of edge (i, j), i < j , in G. To each edge (i, j), i < j , of G, associate
the positive type An root ei − e j , where ei is the i-th standard basis vector. Let
{{α1, . . . , αN }} be the multiset of vectors corresponding to the multiset of edges of
G as described above. Note that N =

∑
1≤i< j≤n+1 mi j .

The Kostant partition function KG evaluated at the vector a ∈ Zn+1 is defined as

(1) KG(a)= #
{
(bi )i∈[N ]

∣∣∣∣ ∑
i∈[N ]

biαi = a and bi ∈ Z≥0

}
.

That is, KG(a) is the number of ways to write the vector a as a nonnegative linear
combination of the positive type An roots corresponding to the edges of G, without
regard to order. Note that in order for KG(a) to be nonzero, the partial sums of the
coordinates of a have to satisfy a1+ · · ·+ ai ≥ 0, i ∈ [n], and a1+ · · ·+ an+1 = 0.

We now proceed to state and prove Theorem 1, which first appeared in [Baldoni
and Vergne 2008]. Baldoni and Vergne gave a proof of it using residues, and
called the result “mysterious”. We provide a natural combinatorial explanation
of the result. Our explanation also answers a question of Stanley [2000] in the
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affirmative, regarding a possible bijective proof of a special case of the Baldoni–
Vergne identities.

For brevity, we write G− e, or G−{e1, . . . , ek}, to mean a graph obtained from
G with the edge e, or the edges e1, . . . , ek , deleted.

Theorem 1 [Baldoni and Vergne 2008]. Given a connected graph G on the vertex
set [n+ 1] with mn−1,n = mn−1,n+1 = mn,n+1 = 1, and such that

m j,n−1+m j,n +m j,n+1

m j,n−1
= c for all j ∈ [n− 2],

for some constant c independent of j , we have

(2) KG(a)=
(

a1+ · · ·+ an−2

c
+ an−1+ 1

)
KG−(n−1,n)(a),

for any a =
(
a1, . . . , an,−

∑n
i=1 ai

)
∈ Zn+1.

Before proceeding to the formal proof of Theorem 1 we outline it, to fully expose
the underlying combinatorics. We introduce the notation

(3) Q(a) :=
a1+ · · ·+ an−2

c
+ an−1+ 1

for the factor in (2). Rephrasing Equation (1), KG(a) counts the number of flows
fG = (bi )i∈N on G satisfying∑

i∈[N ]

biαi = a and bi ∈ Z≥0.

In the proof of Theorem 1, we introduce the concept of partial flows fH , about
which we prove two key statements:

• The elements of the set of partial flows are in bijection with the flows on
G−(n−1, n) that the Kostant partition function KG−(n−1,n)(a) counts. That is,

# partial flows= KG−(n−1,n)(a).

• The elements of the multiset of partial flows fH — whose cardinality is Q(a)
times the cardinality of the set of partial flows — are in bijection with the flows
on G that the Kostant partition function KG(a) counts. That is,

Q(a) (# partial flows)= KG(a).

From these two statements we see that the two Kostant partition functions KG(a)
and KG−(n−1,n)(a) are connected by

KG(a)= Q(a)KG−(n−1,n)(a),

which is Equation (2).
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Proof of Theorem 1. Let {{α1, . . . , αN }} be the multiset of vectors corresponding to
the edges of G. Let αN = en−1− en , αN−1 = en−1− en+1, and αN−2 = en − en+1.
Then (2) can be rewritten as

(4) #
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
= Q(a) #

{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
,

where Q(a) is defined in (3).
We proceed to prove the equality (4) bijectively. The key concept we use is that

of a partial flow, which we now define.
Consider a flow fH = (bi )i∈[N−3] (bi ∈ Z≥0) on the edges of the graph

H := G−{(n−1, n), (n−1, n+1), (n, n+1)}.

We call fH partial if

(5)
N−3∑
i=1

biαi = (a1, . . . , an−2, xn−1, xn, xn+1),

for some xn−1, xn, xn+1 ∈ Z satisfying xn−1 ≤ an−1 and xn ≤ an .
Note that a given partial flow fH = (bi )i∈[N−3] can be extended uniquely to a flow

fG−{(n−1,n)}= (bi )i∈[N−1] (bi ∈Z≥0) on G−{(n−1, n)} such that
∑N−1

i=1 biαi = a.
Furthermore, each such flow arises from a uniquely determined partial flow. Denote
by f the map that takes a partial flow fH into a flow fG−{(n−1,n)} as just described.
See Figure 1 for an example. The observations above imply:

Claim 1. The map f establishes a bijection between the set of partial flows fH on
H and the set of flows on G−{(n− 1, n)} such that

∑N−1
i=1 biαi = a. In symbols,

(6) #
{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
=

∑
fH

1,

where the summation runs over all partial flows fH .

2 3

1

1 0

0 2

2 3

1

1 0

0 2

3

1

f

Figure 1. Here G is the complete graph on 5 vertices and a =
(4, 3,−1, 1,−7). The flows are written immediately below the
corresponding edges. On the left is a partial flow fH and on the
right is its image under f .
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Note that the left-hand side of (6) is the same as the cardinality on the right-hand
side of (4).

Given a partial flow fH , denote by Yi ( fH ), for i ∈ {n− 1, n, n+ 1}, the total
inflow into vertex i ∈ {n− 1, n, n+ 1} in H , that is, the sum of all the flows bi on
edges of H incident to i ∈ {n− 1, n, n+ 1}. Note that a partial flow fH can be
extended in Yn−1( fH )+ an−1+ 1 ways to a flow fG = (bi )i∈[N ] (bi ∈ Z≥0) of G
such that

∑N
i=1 biαi = a. Furthermore, given a flow fG = (bi )i∈[N ] (bi ∈Z≥0) such

that
∑N

i=1 biαi = a, there is a unique partial flow fH = (bi )i∈[N−3] from which
it can be obtained. Therefore, the above establishes a map g which is a bijection
between the multiset of partial flows M such that each partial flow fH appears
exactly Yn−1( fH )+an−1+1 times in M, and the (multi)set of flows fG = (bi )i∈[N ]

(bi ∈ Z≥0) on G such that
∑N

i=1 biαi = a. See Figure 2 for an example. We thus
obtain

(7) #
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
=

∑
fH

(
Yn−1( fH )+ an−1+ 1

)
= #M,

where the second summation runs over the set of partial flows fH .

2 3

1

1 0

0 2
2 3

1

1 0

0 2

2

11

2 3

1

1 0

0 2

3

10

2 3

1

1 0

0 2

1

12

2 3

1

1 0

0 2

0

13

g

Figure 2. Again G is the complete graph on 5 vertices and a =
(4, 3,−1, 1,−7). The flows are written immediately below the
corresponding edges. On the left is a partial flow fH and on the
right are the Yn−1( fH )+ an−1 + 1 = 4 images under g of the 4
copies of fH appearing in M.
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Claim 2. The map g just described establishes a bijection between the multiset M of
partial flows fH = (bi )i∈[N−3] and the (multi)set of flows fG = (bi )i∈[N ] (bi ∈ Z≥0)

on G such that
∑N

i=1 biαi = a. Moreover,

(8) #M= Q(a)
∑

fH

1,

where the summation runs over all partial flows fH .

We already showed that g is a bijection; there remains to show (8). Now, by
assumption we have

(9)
m j,n−1+m j,r +m j,n+1

m j,n−1
= c,

where c is independent of j ∈ [n− 2]; hence

(10) c
∑

fH

Yn−1( fH )=
∑

fH

(
Yn−1( fH )+ Yn( fH )+ Yn+1( fH )

)
=

∑
fH

(a1+ · · ·+ an−2),

that is,

(11)
∑

fH

Yn−1( fH )=
∑

fH

a1+ · · ·+ an−2

c
.

Adding an−1+ 1 to both summands and recalling (3) and the second equality in (7)
yields (8), completing the proof of Claim 2.

In light of (4) it is clear that Claims 1 and 2 together provide a bijective proof of
Theorem 1. In terms of equations this can also be seen as follows. Rewrite (7) as

(12) #
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
= Q(a)

∑
fH

1

= Q(a) #
{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
,

where the first equality uses (7) and (8), and the second equality uses (6). �

Further Kostant partition function identities. Several generalizations are sug-
gested by our proof of the Baldoni–Vergne identities. Here we present an immediate
one, Theorem 2; to ensure clarity we include its proof, which follows that of
Theorem 1. For brevity, we do not explicitly state the analogues of Claims 1 and 2
from the proof of Theorem 1, though it is easy to obtain them from our proof. In the
next section we present further generalizations of other types, but we omit the proofs.
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Theorem 2. Let G be a connected graph on the vertex set [n + 1]. Given k ≤ n,
suppose the graph S = (V (S), E(S)) defined by

V (S)= {k, k+ 1, . . . , n, n+ 1} ⊂ [n+ 1]

and

E(S)= {(i, j) ∈ E(G) | i < j, i ∈ V (S)}

satisfies these conditions: that

• outdegS( j) = 2 and indegS( j) = 0, for some k ≤ j ≤ n, and outdegS(i) = 1
for k ≤ i ≤ n, i 6= j .

• For some constant c independent of l ,

n+1∑
i=k

ml,i

ml, j
= c for all l ∈ [k− 1].

Let ( j, z) be one of the outgoing edges from j in S. Then

(13) KG(a)= Q′(a)KG−( j,z)(a),

for any a=
(
a1, . . . , an,−

∑n
i=1 ai

)
∈Zn+1, where Q′(a)= a1+· · ·+ak−1

c
+a j+1.

The most important cases of Theorem 2 are for k ≥ n− 1, since for k < n− 1
several of the edges of G can be “contracted” and reduced to the case k ≥ n− 1.
For k ≥ n− 1 we obtain four interesting cases from Theorem 2 depending on the
form of the graph S and the edge ( j, z). If we take

V (S)= {n−1, n, n+1} and E(S)= {(n−1, n), (n−1, n+1), (n, n+1)}

and ( j, z)= (n− 1, n), then Theorem 2 specializes to the original Baldoni–Vergne
identities, while other choices of S and ( j, z) lead to new identities.

Proof of Theorem 2. Let {{α1, . . . , αN }} be the multiset of vectors corresponding to
the edges of G such that the multiset of vectors corresponding to the edges of S are
{{αN − (n+ 1− k), . . . , αN }}. Also, let αN correspond to the edge ( j, z).

Consider a flow fH = (bi )i∈[N−(n+2−k)] (bi ∈ Z≥0) of the edges of the graph
H := ([n+ 1], E(G)\E(S)). We call fH partial if

N−(n+2−k)∑
i=1

biαi = (a1, . . . , ak−1, xk, xk+1, . . . , xn+1),

for some xi ∈ Z, k ≤ i ≤ n+ 1 satisfying xi ≤ ai , for k ≤ i ≤ n.
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A given partial flow fH = (bi )i∈[N−(n+2−k)], it can be extended uniquely to a
flow fG−{( j,z)} = (bi )i∈[N−1] (bi ∈ Z≥0) on G−{( j, z)} such that

∑N−1
i=1 biαi = a.

Furthermore, this correspondence is a bijection. Therefore,

(14) #
{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
=

∑
fH

1,

where the summation runs over all partial flows fH .
Given a partial flow fH in H , we denote by Yi ( fH ), where i ∈{k, k+1, . . . , n+1},

the total inflow into vertex i , that is, the sum of all the flows bi on edges of H
incident to i . The partial flow fH can be extended in Y j ( fH )+ a j + 1 ways to a
flow fG = (bi )i∈[N ] (bi ∈ Z≥0) of G such that

∑N
i=1 biαi = a. Furthermore, given

a flow fG = (bi )i∈[N ] (bi ∈ Z≥0) such that
∑N

i=1 biαi = a, there is a unique partial
flow fH = (bi )i∈[N−(n+2−k)] from which it can be obtained. Therefore,

(15) #
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
=

∑
fH

(
Y j ( fH )+ a j + 1

)
,

where the summation runs over all partial flows fH .
By assumption, we have

n+1∑
i=k

ml,i

ml, j
= c,

where c is independent of l ∈ [k− 1]; hence

c
∑

fH

Y j ( fH )=
∑

fH

n+1∑
i=k

Yi ( fH )=
∑

fH

(a1+ · · ·+ ak−1),

that is,

(16)
∑

fH

Y j ( fH )=
∑

fH

a1+ · · ·+ ak−1

c
.

Thus, (15) can be rewritten as

#
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
=

∑
fH

(
a1+ · · ·+ ak−1

c
+ a j + 1

)

= Q′(a)
∑

fH

1= Q′(a) #
{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
,

where the first equality uses (15) and (16), and the last equality uses (14). �
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3. Type Cn+1 Kostant partition functions and the Baldoni–Vergne identities

We now show two generalizations of Theorem 1 in the type Cn+1 case. We first
give the necessary definitions and explain the notion of flow in the context of signed
graphs. Throughout this section, the graphs G on the vertex set [n+1] we consider
are signed, that is there is a sign ε ∈ {+,−} assigned to each of its edges, with
possible multiple edges, and all loops labeled positive. Denote by (i, j,−) and
(i, j,+), i ≤ j , a negative and a positive edge, respectively. Denote by mε

i j the
multiplicity of edge (i, j, ε) in G, i ≤ j , ε ∈ {+,−}. To each edge (i, j, ε), i ≤ j ,
of G, associate the positive type Cn+1 root v(i, j, ε), where v(i, j,−)= ei−e j and
v(i, j,+)=ei+e j . Let {{α1, . . . , αN }} be the multiset of vectors corresponding to the
multiset of edges of G as described above. Note that N =

∑
1≤i< j≤n+1(m

−

i j +m+i j ).
The Kostant partition function KG evaluated at the vector a ∈ Zn+1 is defined as

KG(a)= #
{
(bi )i∈[N ]

∣∣∣∣ ∑
i∈[N ]

biαi = a and bi ∈ Z≥0

}
.

That is, KG(a) is the number of ways to write the vector a as a nonnegative linear
combination of the positive type Cn+1 roots corresponding to the edges of G,
without regard to order.

Just like in the type An case, we would like to think of the vector (bi )i∈[N ] as a
flow. For this we here give a precise definition of flows in the type Cn+1 case, of
which type An is of course a special case.

Let G be a signed graph on the vertex set [n + 1]. Let {{e1, . . . , eN }} be the
multiset of edges of G, and {{α1, . . . , αN }} the multiset of vectors corresponding
to the multiset of edges of G. Fix an integer vector a = (a1, . . . , an, an+1) ∈ Zn+1.
A nonnegative integer a-flow fG on G is a vector fG = (bi )i∈[N ] (bi ∈ Z≥0) such
that for all 1≤ i ≤ n+ 1, we have

(17)
∑
e∈E

inc(e,v)=−

b(e)+ av =
∑
e∈E

inc(e,v)=+

b(e)+
∑

e=(v,v,+)

b(e),

where b(ei )= bi , inc(e, v)=− if edge e = (g, v,−), g < v, and inc(e, v)=+ if
e = (g, v,+), g < v, or e = (v, j, ε), v < j , and ε ∈ {+,−}.

Call b(e) the flow assigned to edge e of G. If the edge e is negative, one can
think of b(e) units of fluid flowing on e from its smaller to its bigger vertex. If the
edge e is positive, then one can think of b(e) units of fluid flowing away both from
e’s smaller and bigger vertex to infinity. Edge e is then a “leak” taking away 2b(e)
units of fluid.

From the above explanation it is clear that if we are given an a-flow fG such that∑
e=(i, j,+),i≤ j b(e)= y, then a=

(
a1, . . . , an, 2y−

∑n
i=1 ai

)
. It is then a matter of

checking the definitions to see that for a signed graph G on the vertex set [n+1] and
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vector a =
(
a1, . . . , an, 2y−

∑n
i=1 ai

)
∈ Zn+1, the number of nonnegative integer

a-flows on G is equal to KG(a).
Thinking of KG(a) as the number of nonnegative integer a-flows on G, there is

a straightforward generalization of Theorem 1 in the type Cn+1 case:

Theorem 3. Given a connected signed graph G on the vertex set [n + 1] with
m−n−1,n = m−n−1,n+1 = m−n,n+1 = 1, m+j,n−1 = m+j,n = m+j,n+1 = 0, for j ∈ [n + 1],
and such that

m−j,n−1+m−j,n +m−j,n+1

m−j,n−1
= c for all j ∈ [n− 2],

for some constant c independent of j , we have

(18) KG(a)= Q′′(a)KG−(n−1,n)(a)

for any a =
(
a1, . . . , an, 2y−

∑n
i=1 ai

)
∈ Zn+1, where

Q′′(a)=
a1+ · · ·+ an−2− 2y

c
+ an−1+ 1.

The proof of Theorem 3 proceeds analogously to that of Theorem 1. Namely,
define partial flows fH = (bi )i∈[N−3] on

H := G−{(n− 1, n,−), (n− 1, n+ 1,−), (n, n+ 1,−)}

such that
N−3∑
i=1

biαi = (a1, . . . , an−2, xn−1, xn, xn+1),

for some xn−1, xn, xn+1 ∈ Z, such that xn−1 ≤ an−1, xn ≤ an and the sum of flows
on positive edges is y.

Then, one can prove:

• The elements of the set partial flows are in bijection with the nonnegative
integer a-flows on G− (n− 1, n). That is,

# partial flows= KG−(n−1,n)(a).

• The elements of the multiset of partial flows fH , whose cardinality is Q′′(a)
times the cardinality of the set of partial flows, are in bijection with the
nonnegative integer a-flows on G. That is,

Q′′(a) (# partial flows)= KG(a).

Thus,
KG(a)= Q′′(a)KG−(n−1,n)(a).
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We do not have to require that only negative edges are incident to the vertices
n− 1, n, n+ 1 in G, as the following theorem shows. The proof is analogous to
earlier ones.

Theorem 4. Given a connected signed graph G on the vertex set [n + 1] with
m−n−1,n = m−n−1,n+1 = m−n,n+1 = 1, m+i, j = 0, for i, j ∈ {n− 1, n, n+ 1}, and such
that

mε
j,n−1+mε

j,r +mε
j,n+1

mε
j,n−1

= c for all j ∈ [n− 2] and ε ∈ {+,−},

for some constant c independent of j , we have

(19) KG(a)=
(

a1+ · · ·+ an−2− 2y
c

+ an−1+ 1
)

KG−(n−1,n)(a)

for any a =
(
a1, . . . , an, 2y−

∑n
i=1 ai

)
∈ Zn+1.

Of course, Theorem 2 also has type Cn+1 generalizations and variations. We
invite the reader to write these out and check each step of the proof of Theorem 1
and see how they can be adapted.
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EXCEPTIONAL LIE ALGEBRAS,
SU(3), AND JORDAN PAIRS

PIERO TRUINI

A simple unifying view of the exceptional Lie algebras is presented. The
underlying Jordan pair content and role are exhibited. Each algebra con-
tains three Jordan pairs sharing the same Lie algebra of automorphisms
and the same external su(3) symmetry. Eventual physical applications and
implications of the theory are outlined.

1. Introduction

The main purpose of this paper is to exhibit a unifying view of all exceptional Lie
algebras, which is also very intuitive from the point of view of elementary particle
physics. The result is represented by the root diagram in Figure 1.

Figure 1. A unifying view of the exceptional Lie algebra roots.

It is a very simple, highly intuitive unifying view of all exceptional Lie algebras
and we will use it repeatedly to unfold the largest algebra e8. The picture shows the
projection of the roots of the exceptional Lie algebras on a su(3) plane, recognizable
by the dots forming the external hexagon, and it exhibits the Jordan pair content of

MSC2010: primary 17B25; secondary 17C40.
Keywords: exceptional Lie algebras, e8, Jordan pairs, magic square.
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each exceptional Lie algebra. There are three Jordan pairs (Jn
3, Jn

3), each of which
lies on an axis symmetrically with respect to the center of the diagram. Each pair
doubles a Jordan algebra Jn

3 with involution (the conjugate representation Jn
3), which

is the algebra of 3× 3 Hermitian matrices over H, where H = R,C,Q,C (real,
complex, quaternion, and octonion numbers) for n= 1, 2, 4, 8. We get f4, e6, e7,
and e8 for n= 1, 2, 4, 8, respectively (g2 can be also represented in the same way,
with the Jordan algebra reduced to a single element). The three Jordan algebras (and
their conjugates) globally behave like a 3 (and a 3)-dimensional representation of
the outer su(3). The algebra denoted by gn

0 in the center (plus the Cartan generator
associated with the axis along which the pair lies) is the algebra of the automorphism
group of the Jordan pair (the structure group of the corresponding Jordan algebra).
In the case of e8, the algebra g8

0 is e6, described by a similar diagram, and we can
iterate the process. What we eventually end up with is a decomposition of e8 entirely
given in terms of su(3)’s and Jordan pairs (that we associate to particle–antiparticle
pairs): three pairs (J8

3, J8
3) for three colors of quark–antiquarks, plus three pairs

(J2
3, J2

3), in the colorless g8
0 = e6, for three families of leptons–antileptons.

The interest of physicists in the exceptional Lie algebras, and e8 in particular, is
a long-standing tradition, starting from the pioneering work of Gürsey [Frampton
et al. 1980] on grand unification, and continuing with [Green and Schwarz 1984;
Cremmer 1982; Truini and Biedenharn 1982; Candelas et al. 1985; Gross 1986;
Ferrara and Kallosh 1996a; 1996b; Ferrara and Günaydin 1998]. In the effort of
unifying all interactions in a consistent quantum theory that includes gravity, the
most successful model of string theory is based on e8; an alternative theory known
as loop quantum gravity (see [Rovelli 2004] for an excellent and comprehensive
review) has also led towards the exceptional algebras, and e8 in particular [Lisi et al.
2010].

There is a wide consensus in both mathematics and physics on the appeal of
the largest exceptional Lie algebra e8, considered beautiful by many in spite of
its complexity. The best synthesis of this was stated by B. Kostant:1 “It is easy
to arrive at the feeling that a final understanding of the universe must somehow
involve E(8), or otherwise put, nature would be foolish not to utilize E(8).”

Kostant defines e8 as “a symphony of 2, 3, 5.” In the more modest view of the
exceptional algebras I present here the numbers 1, 2, and 3 play the central role:
they govern the structure. Number 1 is the whole, the universe of the theory: a Lie
algebra. Number 2 stands for pair, and we view it as a particle–antiparticle duality
represented by Jordan pairs. Number 3 is the number of colors and the number of
families: each Jordan pair occurs three times, in a su(3) symmetry. That is all you
need in order to build e8, as we are going to show.

1Quoted by Benjamin Wallace-Wells in “Surfing the Universe”, The New Yorker, 21 July 2008.
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2. Jordan pairs

In this section we review the concept of a Jordan pair [Loos 1975] (see also
[McCrimmon 2004] for an enlightening overview). Jordan algebras have traveled a
long journey since their appearance in the 30s [Jordan et al. 1934]. The modern
formulation [Jacobson 1966] involves a quadratic map Ux y (like xyx for associative
algebras) instead of the original symmetric product x ◦ y = xy+ yx . The quadratic
map and its linearization Vx,yz = (Ux+z − Ux − Uz)y (like xyz + zyx in the
associative case) reveal the mathematical structure of Jordan algebras much more
clearly, through the notion of inverse, inner ideal, generic norm, etc. The axioms
are:

(2-1) U1 = Id., Ux Vy,x = Vx,yUx , UUx y =UxUyUx .

The quadratic formulation led to the concept of Jordan triple systems [Meyberg
1970], an example of which is a pair of modules represented by rectangular matrices.
There is no way of multiplying two matrices x and y, say n × m and m × n,
respectively, by means of a bilinear product. But one can do it using a product
like xyx , quadratic in x and linear in y. Notice that, like in the case of rectangular
matrices, there needs not be a unity in these structures. The axioms are in this case:

(2-2) Ux Vy,x = Vx,yUx , VUx y,y = Vx,Uy x , UUx y =UxUyUx .

Finally, a Jordan pair is just a pair of modules (V+, V−) acting on each other
(but not on themselves) like a Jordan triple:

(2-3)

Uxσ Vy−σ ,xσ = Vxσ ,y−σUxσ ,

VUxσ y−σ ,y−σ = Vxσ ,Uy−σ xσ ,

UUxσ y−σ =UxσUy−σUxσ ,

where σ =± and xσ ∈ V+σ , y−σ ∈ V−σ .
Jordan pairs are strongly related to the Tits–Kantor–Koecher construction of Lie

algebras [Tits 1962; Kantor 1964; Koecher 1967] (see also the interesting relation
to Hopf algebras [Faulkner 2000]):

(2-4) L= J ⊕ str(J )⊕ J ,

where J is a Jordan algebra and str(J ) = L(J )⊕Der(J ) is the structure algebra
of J [McCrimmon 2004]; L(x) is the left multiplication in J : L(x)y = x ◦ y;
and Der(J ) = [L(J ), L(J )] is the algebra of derivations of J (the algebra of the
automorphism group of J ) [Schafer 1949; 1966].

In the case of (complex) exceptional Lie algebras this construction applies to
e7, with J = J8

3, the 27-dimensional exceptional Jordan algebra of 3× 3 Hermitian
matrices over the octonions, and str(J )= e6⊗C (where C is the complex field). The
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algebra e6 is called the reduced structure algebra of J , str0(J ), which is namely the
structure algebra with the generator corresponding to multiplication by a complex
number taken away: e6 = L(J0)⊕Der(J ), with J0 denoting the traceless elements
of J .

The Tits–Kantor–Koecher construction can be generalized as follows: if L is a
three-graded Lie algebra,

(2-5) L= L−1⊕ L0⊕L1, [Li ,L j ] ⊂ Li+ j ,

so that [Li ,L j ] = 0 whenever |i + j | > 1, then (L1,L−1) forms a Jordan pair,
with the Jacobi identity forcing the elements of the pair to act on each other like
in a Jordan triple system. The link with the Tits–Kantor–Koecher construction
is obtained by letting J = L1 and J = L−1. The structure group of J is the
automorphism group of the Jordan pair (J, J ) and the trilinear product Vxσ ,y−σ zσ is

Vxσ ,y−σ zσ = [[xσ , y−σ ], zσ ].

3. The Freudenthal–Tits magic square

The theory of exceptional Lie algebras has had a major advance with the development
of two related objects: the Tits construction and the Freudenthal–Tits magic square
[Tits 1955; Freudenthal 1959].

The Freudenthal–Tits magic square is a table of Lie algebras related to both
Jordan algebras and Hurwitz algebras H, namely the algebras of real (R), complex
(C), quaternion (Q), and octonion or Cayley (C) numbers. In particular the Jordan
algebras involved in the magic square are the algebras of 3× 3 Hermitian matrices
over H:

(3-1)

α a b̄
ā β c
b c̄ γ

 , α, β, γ ∈ C; a, b, c ∈H.

We denote them by Jn
3 where n = 1, 2, 4, 8 for H = R,C,Q,C, respectively. In

this paper only complex Lie algebras are considered. Therefore each algebra H is
over the complex field and the a→ ā conjugation in (3-1) changes the signs of the
imaginary units of H but does not conjugate the imaginary unit of the underlying
complex field. The Freudenthal–Tits magic square is shown in Table 1.

The way the magic square is constructed is due to Tits:

(3-2) L= Der(H)⊕ (H0⊗ J0)⊕Der(J).

Here the subscript 0 stands for traceless. Der(H) is the algebra of derivations of H,
which is nothing for H= R,C, whereas Der(Q)= a1 and Der(C)= g2.
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H \ J J1
3 J2

3 J4
3 J8

3

R a1 a2 c3 f4
C a2 a2⊕ a2 a5 e6
Q c3 a5 d6 e7
C f4 e6 e7 e8

Table 1. The Freudenthal–Tits magic square.

We also have the following tight link between the entries of the magic square
and Jordan structures.

The Lie algebras gI in the first row of the magic square are the algebras of
derivations of the Jordan algebra in the same column (the corresponding group is
the automorphism group of the Jordan algebra):

gI = Der(J), namely:

a1 = Der(J1
3), a2 = Der(J2

3), c3 = Der(J4
3), f4 = Der(J8

3).

The Lie algebras gII in the second row are the reduced structure algebras of the
Jordan algebra in the same column

gII = str0(J), namely:

a2 = str0(J1
3), a2⊕ a2 = str0(J2

3), a5 = str0(J4
3), e6 = str0(J8

3).

The Lie algebras gIII in the third row are three graded and can be written via the
Tits–Kantor–Koecher construction (2-4) or in terms of generalized 2× 2 matrices
[Truini et al. 1986]:

gIII = J⊕ (gII⊗C)⊕ J, namely:

c3 = J1
3⊕ (a2⊕C)⊕ J1

3, a5 = J2
3⊕ (a2⊕ a2⊕C)⊕ J2

3,

d6 = J4
3⊕ (a5⊕C)⊕ J4

3, e7 = J8
3⊕ (e6⊕C)⊕ J8

3.

In our opinion the most natural way of extending a similar analysis to the fourth
row is the one described in this paper and represented in Figure 1 or in the expression
(4-1) in the next section.

4. The Jordan pairs inside the exceptional Lie algebras

In this section we work with the roots of the exceptional Lie algebras and postpone
the discussion on explicit representations of the generators to the next section. The
notation for the explicit set of roots we use, [Bourbaki 1968] is shown in Table 2 in
the Appendix.
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Figure 2. Roots of g2.

The roots can be placed, case by case, as in Figure 1, where they are shown by
their projections on the plane of an a2 subalgebra (we use the standard notation a2
for the complexification of su(3)). Notice that g2 itself, as shown in Figure 2, has a
root diagram represented by the same dots appearing in Figure 1.

The root diagrams of f4, e6, e7, and e8 are as in Figure 3. The notation for the
Jordan algebras in the figure is the same used in Table 1 for the Freudenthal–Tits
magic square: Jn

3 , n= 1, 2, 4, 8 is the Jordan algebra of 3× 3 Hermitian matrices
over R, C, Q, and C respectively. The algebra gn

0 , n = 1, 2, 4, 8, is a2, a2⊕ a2,
a5, and e6, respectively; gn

0 ⊕C is the algebra of the automorphism group of each
Jordan pair Vn

= (Jn
3, Jn

3). We associate roots to Jordan pairs and we check that

Figure 3. Roots of f4, e6, e7, and e8, for n=1, 2, 4, 8, respectively,
projected on the plane 5.
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Figure 4. Roots of the exceptional Lie algebras with gII and gIII highlighted.

the projection of these roots lie along an axis, symmetrically with respect to the
center. The C in gn

0 ⊕C stands for the complex field and represents the action on
Vn (multiplication by a complex number) of the Cartan generator associated with
that axis.

If we write Ln for f4, e6, e7, and e8, n= 1, 2, 4, 8, we get the unifying expression

(4-1) Ln
= a2⊕ gn

0 ⊕ 3× (Jn
3, Jn

3), where gn
0 = str0(Jn

3).

This is not only a unifying view of the exceptional Lie algebras, but also, in our
opinion, a natural way of looking at the fourth row of the magic square. Notice that
gn

0 is the Lie algebra in the second row (gII), at the same column of Ln and that
gn

0 ⊕C⊕Vn is the Lie algebra in the third row (gIII), same column, for any of the
three Jordan pairs Vn in Ln (Figure 4).

We explicitly show in the Appendix the roots associated with a Jordan algebra
in Figure 3. In particular we will pick the one whose projection on the plane
5 is 1

3(k2 + k3 − 2k1) (see Figure 2 for this vector), that is, the highest weight
in the 3-dimensional representation of su(3) ∼ a2. We will refer to this Jordan
algebra as the highest-weight (HW) Jn

3 . The other Jordan algebras are obtained by
a permutation of indexes and their conjugate ones by a change of sign.

Let us explain why we say that certain roots correspond to a Jordan pair. The
reason lies in the Tits–Kantor–Koecher construction (2-4), which is related to the
third row of the Freudenthal–Tits magic square. There is only one way of realizing
the embedding gII ⊂ gIII ⊂ Ln so that the (Jn

3, Jn
3) modules for gII lie on parallel

spaces at the same distance along a fixed axis. This is precisely the way we will
describe the Jordan pair content of the algebras and this shows the uniqueness of
the construction. We know from the three grading structure of gIII that the pair
(Jn

3, Jn
3) is indeed a Jordan pair and that str(Jn

3)= gII⊕C is the Lie algebra of the
automorphism group of the Jordan pair. This proves that the Jordan structures we
have referred to so far are indeed so.
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In the Appendix, the four exceptional algebras f4, e6, e7, and e8 are examined
case by case. For each we show:

(1) the roots associated with the HW Jordan algebra Jn
3 ,

(2) the roots associated with gn
0 = gII, and

(3) the nested Jordan pairs.

4.1. The geometry of the Jordan pair V and of gIII = gII ⊕ C ⊕ V. The root
vectors of the HW Jn

3 all lie on a (r−2)-dimensional space 6+, where r is the rank
of the exceptional Lie algebra. The space 6+ is parallel to the (r − 2)-dimensional
space 60 on which the gn

0 roots lie, and to the (r − 2)-dimensional space 6− on
which the roots of the Jn

3 opposite to the HW Jn
3 lie. Both spaces 6± have the same

distance
√

6
3 from 60, but lie on opposite sides with respect to it.

This is shown in Figure 5, in the case of f4. The two J1
3 form a Jordan pair of

conjugate a2-representations (6, 6). The roots on the three planes form the root
diagram of c3.

This Jordan pair is clearly visible in the figure. The Lie algebra of the auto-
morphism group of this pair is a2⊕C where C is the complex linear span of the
Cartan generator associated with the axis along the vector 1

3 (k2+ k3− 2k1) which
is precisely the direction of the Jordan pair in Figure 3. All the points of the HW J1

3
(respectively, J1

3, opposite to it with respect to the center of Figure 3) project on the
point 1

3 (k2+ k3− 2k1) (respectively, − 1
3 (k2+ k3− 2k1)) in the plane of Figure 3.

There is only one way of embedding a c3 subalgebra within f4 so that the (6, 6)
modules for a2 lie on parallel planes at the same distance along a fixed axis. This
is precisely the way we have described above and this shows its uniqueness. We
know from the three grading structure of c3 that the pair (J1

3, J1
3) is indeed a Jordan

Figure 5. Root digram of c3 showing a2 and the Jordan pair (6, 6).
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pair and that str(J) (= a2⊕C in this case) is the Lie algebra of the automorphism
group of the Jordan pair.

By a cyclic permutation of the indexes of k1, k2, and k3 we obtain an analogous
result for the other two Jordan pairs, all sharing the same a2 roots for the algebra
g1

0, but with different orientations of the axis defining C along the vectors 1
3 (k1+

k3− 2k2) and 1
3 (k1+ k2− 2k3). We get in four dimensions three copies of c3 all

sharing the same a2. All the spaces spanned by the three Jordan pairs are parallel to
the space 60, and all at the same distance ±

√
6

3 from it. Notice that in r dimensions
there are an infinite number of (r − 2)-dimensional spaces parallel to a given one,
all at the same distance from it.

We get exactly the same feature for the other exceptional Lie algebras, with the
Lie algebras of the second and third rows of the magic square playing the same role
as for f4.

5. Representations

I briefly sketch in this section a possible representation of the e8 algebra which
exhibits its Jordan pair content.

The way I would represent e8 is a development of the representation of e7 through
generalized 2× 2 matrices, shown in [Truini et al. 1986]. The starting point of that
paper is the representation of the quaternion algebra through Pauli matrices, which
leads directly to the three grading of e7. In the case of e8 a suitable representation
of the octonions is via the Zorn matrices [Zorn 1933; Loos et al. 2008], which
exhibit the (3, 3) structure that we can extend to the Jordan pair content of e8 and
to the action on the (3, 3) modules of the external a2 in Figure 3.

The guidelines go as follows:

• Represent the octonions as Zorn matrices.

• Extend the Zorn matrices to represent Der(C)= g2.

• Combine the extended Zorn matrices with the Tits construction (3-2).

• Decompose the representation of e6 to finally get e8 in terms of Jordan pairs
and a2’s only.

If a ∈ C we write a = a0 +
∑7

k=1 akuk where a` ∈ C for ` = 0, . . . , 7 and
u1, . . . , u7 are the octonionic imaginary units.

Let us denote by i the imaginary unit in C. We introduce two idempotent elements

ρ± =
1
2 (1± iu7)

and six nilpotent elements

ε±k = ρ
±uk, k = 1, 2, 3.
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The Zorn representation of a ∈ C is:

(5-1) a = α+ρ++α−ρ−+
∑

k

(α+k ε
+

k +α
−

k ε
−

k )↔

[
α+ A+

A− α−

]
,

where A± ∈ C3 have vector components α±k , k = 1, 2, 3, and the octonionic multi-
plication is a generalization of matrix multiplication:

(5-2) ab↔
[
α+ A+

A− α−

] [
β+ B+

B− β−

]
=

[
α+β++ A+ · B− α+B++β−A++ A−× B−

α−B−+β+A−+ A+× B+ α−β−+ A− · B+

]
,

with A± · B∓ =−α±k β
∓

k and where A, B→ A× B is the standard vector product
in C3.

The next step is to write the Lie algebra g2 using an extension of the Zorn matrices
and their multiplication rule with an a2 matrix replacing α+. This representation
shows g2 as a2 plus its modules (3, 3).

Finally, let me outline how the Tits construction fits into this picture. The idea is
to write

(5-3) e8 = Der(C)⊕C0⊗ J8
0⊕Der(J8)= L0⊕

∑
±k

L±k, k = 1, 2, 3,

where

L0= D7⊕iu7⊗J8
0⊕Der(J8) and L±k = d±k D±k ⊕α

±

k ε
±

k ⊗J8
0, d±k , α

±

k ∈C.

Here J8
≡ J8

3 and J8
0 is a traceless J8

3 matrix; D7 = a2 is the subalgebra of
derivations leaving the imaginary unit u7 fixed; and D±k =±

3
2 Diu7,ε

±

k
is a derivation:

Da,b c = 1
3 [[a, b], c] − (a, b, c), (a, b, c)= (ab)c− a(bc).

We identify a⊗ x with az ⊗ x , where az is the Zorn matrix representation of a
and Der±k with the corresponding Zorn matrix representation of ε±k . We use the
complex parameters d±k in order to provide the trace to J0.

The chain of implications, starting from the Tits construction, would be like this:

(5-4) e8 = Der(C)⊕C0⊗ J8
0⊕Der(J8)

= ac
2⊕α

±

k ε
±

k ⊗ J8
0⊕ d±k Der±k ⊕(iu7)⊗ J8

0⊕Der(J8)

= ac
2⊕α

±

k ε
±

k ⊗ J8
⊕Der(C)⊕C0⊗ J2

0⊕Der(J2)

= ac
2⊕α

±

k ε
±

k ⊗ J8
⊕ af

2⊕α
±

k ε
±

k ⊗ J2
⊕ (iu7)⊗ J2

0⊕Der(J2)

= ac
2⊕ af

2⊕ ag1
2 ⊕ ag2

2 ⊕ 3× (J8, J8
)⊕ 3× (J2, J2

).

Work is still in progress along these lines and will appear in a forthcoming paper.
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6. Elementary particle physics

If we look at the decomposition (5-4) (see also (A.7) in the Appendix) we are led
to interpret the labels c as color and f as flavor. In this interpretation the three pairs
(J8

3, J8
3) accommodate the quarks in three colors of particles–antiparticles, whereas

the three pairs (J2
3, J2

3) sitting in the colorless g8
0 accommodate the three families of

leptons–antileptons. Including spin, each particle must appear with four different
degrees of freedom: left (up and down) and right (up and down), except, possibly,
for the neutrino, which could be a Majorana neutrino and be only left-handed. We
can therefore put six (quarks, antiquarks) in a (say) blue (J8

3, J8
3). We can make

them coincide with three octonions: one for blue up–down quarks, one for blue
charm–strange quarks, one for blue top–bottom quarks. We are left with three extra
degrees of freedom. In the same fashion, we can put a family of leptons–antileptons
pairs in (J2

3, J2
3) by letting the six off-diagonal degrees of freedom of be the electron

and a Majorana neutrino, and analogously for the families of the muon and τ leptons.
Again we are left with three extra degrees of freedom, which reduce to only one in
the case where right-handed neutrinos are included.

Let us review the explicit form of the roots (see the Appendix) according to this
interpretation.

Quarks of color c= 1, 2, 3 (corresponding antiquarks have reversed signs):

−kc± k j , j = 4, . . . , 8, −kc+ k1+ k2+ k3,

−kc+
1
2 (k1+ k2+ k3± k4± k5± k6± k7± k8) (even # of + signs).

Leptons in the family f= 4, 5, 6 (corresponding antileptons have reversed signs):

−k f ± k j , j = 7, 8, −k f + k4+ k5+ k6,

−k f +
1
2 [±(k1+ k2+ k3)+ k4+ k5+ k6± k7± k8] (even # of + signs).

ac
2: ±(ki − k j ), i < j = 1, 2, 3.

af
2: ±(ki − k j ), i < j = 4, 5, 6.

ag1
2 : ±(k7+ k8), ± 1

2 (k1+ k2+ k3+ k4+ k5+ k6− k7− k8)±
1
2 (k1+ k2+ k3+ k4+

k5+ k6+ k7+ k8).

ag2
2 : ±(k7− k8), ± 1

2 (−k1− k2− k3+ k4+ k5+ k6− k7+ k8)±
1
2 (−k1− k2− k3+

k4+ k5+ k6+ k7− k8).

What physics should a theory with an e8 symmetry describe? Certainly a very
high-energy physics, far beyond our present experience and our experimental reach.
It could relate to a string theory, like the heterotic one, since we are dealing
with a complex Lie algebra hence an e8 × e8 algebra over R. It could extend to
supersymmetry, although the e8 symmetry is so beautiful as it stands that one
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Figure 6. An elementary interaction, viewed as a Feynman diagram.

should force such an extension into the theory: e8, in the view I am presenting here,
shows particle–antiparticle pairs, the Jordan pairs, in the right number of colors and
families, plus their symmetries, which in turn are generated by the pairs themselves,
through the trilinear map zσ → Vxσ ,y−σ zσ . Besides, another peculiarity contributes
to the beauty of e8: its lowest-dimensional irreducible representation is the adjoint
representation.

My personal point of view is that, at such a high energy, at or beyond the Planck
scale, the picture of spacetime has to be radically changed. I can hardly make any
sense of the fact that such an energetic particle is sitting on a background spacetime,
if I think that general relativity taught us that spacetime is in fact dynamical. I
would rather view that particle as feeling only (quantum) interactions, including
one that leads to gravity, to be accommodated within ag1

2 ⊕ ag2
2 . I would still view

an elementary interaction being described by an elementary Feynman diagram
involving the trilinear map, as depicted in Figure 6, but with no question of point or
extended particle, simply because the underlying spacetime geometry is not there:
there is only a, let us say, background independent spectral theory.

In this view the classical spacetime is a byproduct of the interactions, obtained
by taking very rough approximations. It is as far from the interactions exchanged
by elementary particles at the Planck scale, as the Planck scale is far from our
experience.

The aim of developing along these lines a physical theory that could not possibly
rely on any direct confirmation, is to find a consistent quantum theory of gravity
together with the other known basic interactions. As Carlo Rovelli says [2004]:
“the difficulty is not to discriminate among many complete and consistent quantum
theories of gravity. We would be content with one.”

This is, of course, far beyond the scope of the present paper, since no physics
has been spoken here besides these mere speculations.

Appendix

The explicit set of roots we use is shown in Table 2 [Bourbaki 1968]; {ki , i =
1, . . . , 8} denotes an orthonormal basis in R8.
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L Roots {ki , i = 1, . . . 8} an orthonormal basis in R8 # of roots

g2 12
(ki − k j ), i 6= j = 1, 2, 3, 6
±

1
3 (−2ki + k j + kl), i 6= j 6= l = 1, 2, 3, 6

f4 48
±ki , i = 1, . . . , 4, 8
±ki ± k j , i 6= j = 1, . . . , 4, 4×

(4
2

)
= 24

1
2 (±k1± k2± k3± k4) 24

= 16

e6 72
±ki ± k j , i 6= j = 1, . . . , 5, 4×

(5
2

)
= 40

1
2 (±k1± k2± k3± k4± k5±

√
3k6)

∗ 25
= 32

∗ odd number of + signs

e7 126
±
√

2k7, 2
±ki ± k j , i 6= j = 1, . . . , 6, 4×

(6
2

)
= 60

1
2 (±k1± k2± k3± k4± k5± k6±

√
2k7)

∗ 26
= 64

∗ even number of + 1
2

e8 240
±ki ± k j , i 6= j = 1, . . . , 8, 4×

(8
2

)
= 112

1
2 (±k1± k2± k3± k4± k5± k6± k7± k8)

∗ 27
= 128

∗ even number of + signs

Table 2. The roots of the exceptional Lie algebras.

A.1 f4.

A.1.1 The roots associated with the HW J1
3.

(A.1) −k1, −k1± k4,
1
2 (−k1+ k2+ k3± k4), k2+ k3.

A.1.2 The roots associated with gII = g1
0.

(A.2) ±k4, ±
1
2 (k1+ k2+ k3± k4).

A.1.3 Nested Jordan pairs. If we dig inside g1
0 we find another Jordan pair plus

the Lie algebra of its automorphism group: these are a (2, 2) of a1 plus a1 ⊕C
making up, all together, a2.

A.2 e6.
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A.2.1 The roots associated with the HW J2
3.

(A.3)

−k1± k4, −k1± k5, k2+ k3,

1
2 (−k1+ k2+ k3+ k4− k5−

√
3k6),

1
2 (−k1+ k2+ k3+ k4+ k5+

√
3k6),

1
2 (−k1+ k2+ k3− k4+ k5−

√
3k6),

1
2 (−k1+ k2+ k3− k4− k5+

√
3k6).

A.2.2 The roots associated with gII = g2
0.

a(1)2 :

± (k4+ k5),

±
1
2 (k1+ k2+ k3− k4− k5−

√
3k6),

±
1
2 (k1+ k2+ k3+ k4+ k5−

√
3k6).

a(2)2 :

± (k4− k5),

±
1
2 (k1+ k2+ k3− k4+ k5+

√
3k6),

±
1
2 (k1+ k2+ k3+ k4− k5+

√
3k6).

A.2.3 Nested Jordan pairs. If we dig inside g2
0 we find another Jordan pair plus

the Lie algebra of its automorphism group: these are two replicas of a (2, 2) of a1
plus a1⊕C making up, all together, a2⊕ a2.

A.3 e7.
A.3.1 The roots associated with the HW J4

3.

(A.4)

−k1± k4, −k1± k5, −k1± k6, k2+ k3,

1
2 (−k1+ k2+ k3− k4− k5− k6±

√
2k7),

1
2 (−k1+ k2+ k3− k4+ k5+ k6±

√
2k7),

1
2 (−k1+ k2+ k3+ k4− k5+ k6±

√
2k7),

1
2 (−k1+ k2+ k3+ k4+ k5− k6±

√
2k7).

A.3.2 The roots associated with gII = g4
0.

±k4± k5, ±k4± k6, ±k5± k6, ±
√

2k7,

±
1
2 (k1+ k2+ k3± k4± k5± k6±

√
2k7) (even number of + 1

2 ).
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A.3.3 Nested Jordan pairs. If we dig inside g4
0= a5 we find the Jordan pair (J2

3, J2
3)

= (3×3, 3×3) plus the Lie algebra of its automorphism group a2⊕ a2⊕C described
in the previous case of e6.

A.4 e8.

A.4.1 The roots associated with the HW J8
3.

(A.5)
−k1± k j , j = 4, . . . , 8, k2+ k3,

1
2 (−k1+ k2+ k3± k4± k5± k6± k7± k8) (even number of + signs).

A.4.2 The roots associated with gII = g8
0. The 72 roots of g8

0 = e6 are

(A.6)
±ki ± k j , i, j = 4, . . . , 8,

±
1
2
(k1+ k2+ k3± k4± k5± k6± k7± k8) (even number of + signs).

A.4.3 Nested Jordan pairs. If we dig inside g8
0 = e6 we find three Jordan pairs,

each of the type (J2
3, J2

3)= (3×3, 3×3), plus the Lie algebra of the automorphism
group of each of them a2⊕ a2⊕C described in the previous case of e6.

We thus identify four different a2’s within e8 plus six Jordan pairs. Giving
different superscripts to the four a2’s we have:

(A.7)

e8 = ac
2⊕ 3× (J8

3, J8
3)⊕ g8

0

= ac
2⊕ 3× (J8

3, J8
3)⊕ af

2⊕ 3× (J2
3, J2

3)⊕ g2
0

= ac
2⊕ 3× (J8

3, J8
3)⊕ af

2⊕ 3× (J2
3, J2

3)⊕ ag1
2 ⊕ ag2

2 .
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LOWER ESTIMATE OF MILNOR NUMBER AND
CHARACTERIZATION OF ISOLATED HOMOGENEOUS

HYPERSURFACE SINGULARITIES

STEPHEN S.-T. YAU AND HUAIQING ZUO

Let f : (Cn, 0) → (C, 0) be a germ of a complex analytic function with
an isolated critical point at the origin. Let V = { z ∈ Cn : f (z) = 0 }. A
beautiful theorem of Saito [1971] gives a necessary and sufficient condition
for V to be defined by a weighted homogeneous polynomial. It is a natural
and important question to characterize (up to a biholomorphic change of
coordinates) a homogeneous polynomial with an isolated critical point at
the origin. For a two-dimensional isolated hypersurface singularity V , Xu
and Yau [1992; 1993] found a coordinate-free characterization for V to be
defined by a homogeneous polynomial. Lin and Yau [2004] and Chen, Lin,
Yau, and Zuo [2001] gave necessary and sufficient conditions for 3- and 4-
dimensional isolated hypersurface singularities with pg ≥ 0 and pg > 0,
respectively. However, it is quite difficult to generalize their methods to give
characterization of homogeneous polynomials. In 2005, Yau formulated the
Yau Conjecture 1.1: (1) Let µ and ν be the Milnor number and multiplicity
of (V, 0), respectively. Thenµ≥ (ν−1)n, and the equality holds if and only if
f is a semihomogeneous function. (2) If f is a quasihomogeneous function,
then µ= (ν−1)n if and only if f is a homogeneous polynomial after change
of coordinates. In this paper we solve part (1) of Yau Conjecture 1.1 for
general n. We introduce a new method, which allows us to solve the part (2)
of Yau Conjecture 1.1 for n = 5 and 6. As a result we have shown that for
n= 5 or 6, f is a homogeneous polynomial after a biholomorphic change of
coordinates if and only if µ = τ = (ν − 1)n. As a by-product we have also
proved Yau Conjecture 1.2 in some special cases.

1. Introduction

Let f : (Cn, 0)→ (C, 0) be the germ of a complex analytic function with an isolated
critical point at the origin. Let V = { z ∈ Cn

: f (z)= 0 }. It is a natural question to
ask when V is defined by a weighted homogeneous polynomial or a homogeneous

Dedicated to Professor Banghe Li on the occasion of his 70th birthday.
MSC2010: 32S25.
Keywords: Homogeneous singularities.
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polynomial up to biholomorphic change of coordinates. Recall that the multiplicity
of the singularity V is defined to be the order of the lowest nonvanishing term in the
power series Taylor expansion of f at 0, and the Milnor number µ and the Tjurina
number τ of the singularity (V, 0) are defined respectively by

µ= dim C{z1, z2, . . . , zn}/( fz1, . . . , fzn ),

τ = dim C{z1, z2, . . . , zn}/( f, fz1, . . . , fzn ).

The following theorem gives a necessary and sufficient condition for V to be
defined by a weighted homogeneous polynomial:

Theorem 1.1 [Saito 1971]. The function f is a weighted homogeneous polynomial
after a biholomorphic change of coordinates if and only if µ= τ .

Let π : (M, A)→ (V, 0) be a resolution of singularity with exceptional set
A = π−1(0). The geometric genus pg of the singularity (V, 0) is the dimension
of H n−2(M,O) and is independent of the resolution M . Xu and Yau [1993] gave
necessary and sufficient conditions for a 2-dimensional V to be defined by a
homogeneous polynomial.

Theorem 1.2 [Xu and Yau 1993]. Let (V, 0) be a 2-dimensional isolated hypersur-
face singularity defined by a holomorphic function f (z1, z2, z3)= 0. Let µ be the
Milnor number, τ the Tjurina number, pg the geometric genus, and ν the multiplicity
of the singularity. Then f is a homogeneous polynomial after a biholomorphic
change of variables if and only if µ= τ and µ− ν+ 1= 6pg.

Based on above theorem, a conjecture was made by Yau in 2005 as follows:

Yau Conjecture 1.1 [Lin et al. 2006b]. Let f : (Cn, 0)→ (C, 0) be a holomorphic
germ defining an isolated hypersurface singularity V = { z : f (z)= 0 } at the origin.
Let µ and ν be the Milnor number and multiplicity of (V, 0), respectively. Then

(1-1) µ≥ (ν− 1)n,

and equality holds if and only if f is a semihomogeneous function (i.e., f = fν + g,
where fν is a nondegenerate homogeneous polynomial of degree ν and g consists
of terms of degree at least ν + 1) after a biholomorphic change of coordinates.
Furthermore, if f is a quasihomogeneous function, i.e., f ∈ (∂ f/∂z1, . . . , ∂ f/∂zn),
then the equality in (1-1) holds if and only if f is a homogeneous polynomial after
a biholomorphic change of coordinates.

Yau Conjecture 1.2 [Chen et al. 2011]. Let f : (Cn, 0)→ (C, 0) be a weighted
homogeneous polynomial with an isolated singularity at the origin. Let µ, pg,
and ν be the Milnor number, geometric genus, and multiplicity of the singularity
V = { z : f (z)= 0 }. Then

µ− p(ν)≥ n! pg,
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where p(ν)= (ν− 1)n − ν(ν− 1) . . . (ν− n+ 1), and equality holds if and only if
f is a homogeneous polynomial after a biholomorphic change of coordinates.

These conjectures are sharp estimates and have some important applications
in geometry. The Yau conjectures were proved only for very low dimensional
singularities. For Yau Conjecture 1.1, Lin, Wu, Yau, and Luk proved the following
two theorems:

Theorem 1.3 [Lin et al. 2006b]. Let f : (C2, 0)→ (C, 0) be a germ of a holomor-
phic function defining an isolated plane curve singularity V ={ z ∈C2

: f (z)= 0 } at
the origin. Let µ and ν be the Milnor number and multiplicity of (V, 0), respectively.
Then

µ≥ (ν− 1)2.

Furthermore, if V has at most two irreducible branches at the origin, or if f is a
quasihomogeneous function, then equality holds if and only if f is a homogeneous
polynomial after a biholomorphic change of coordinates.

Theorem 1.4 [Lin et al. 2006b]. Let f : (Cn, 0)→ (C, 0) be a germ of a holomor-
phic function defining an isolated hypersurface singularity V = { z ∈Cn

: f (z)= 0 }
at the origin. Let µ, ν, and τ = dim C{z1, . . . , zn}/( f, ∂ f/∂z1, . . . , ∂ f/∂zn) be the
Milnor number, multiplicity, and Tjurina number of (V, 0), respectively. Suppose
µ= τ and n is either 3 or 4. Then

µ≥ (ν− 1)n,

and equality holds if and only if f is a homogeneous polynomial after a biholomor-
phic change of coordinates.

For Yau Conjecture 1.2, Lin, Tu, and Yau have the following theorem:

Theorem 1.5 [Lin and Yau 2004; Lin et al. 2006a]. Let (V, 0) be a 3-dimensional
isolated hypersurface singularity defined by a weighted homogeneous polynomial
f (x, y, z, w)= 0. Let µ be the Milnor number, pg the geometric genus, and ν the
multiplicity of the singularity. Then

µ− (2ν3
− 5ν2

+ 2ν+ 1)≥ 4! pg,

and equality holds if and only if f is a homogeneous polynomial after a biholomor-
phic change of coordinates.

Remark. The above theorem is proved in [Lin and Yau 2004] with pg > 0. For
pg = 0, the theorem is proved in [Lin et al. 2006a].

Corollary 1.1. Let (V, 0) be a 3-dimensional isolated hypersurface singularity
defined by a polynomial f (x, y, z, w) = 0. Let µ, pg, ν, and τ be the Milnor
number, geometric genus, multiplicity, and Tjurina number of the singularity,
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respectively. Then f is a homogeneous polynomial after a biholomorphic change of
coordinates if and only if µ= τ and µ− (2ν3

− 5ν2
+ 2ν+ 1)= 4! pg.

Recently, Chen, Lin, Yau, and Zuo [Chen et al. 2011] generalized the above
theorem to any 4-dimensional isolated hypersurface singularity with an additional
assumption pg > 0.

Theorem 1.6 [Chen et al. 2011]. Let (V, 0) be a 4-dimensional isolated hypersur-
face singularity defined by a weighted homogeneous polynomial f (x, y, z, w, t)=0.
Let µ be the Milnor number, pg the geometric genus, and ν the multiplicity of the
singularity. If pg > 0, then

µ− [(ν− 1)5+ ν(ν− 1)(ν− 2)(ν− 3)(ν− 4)] ≥ 5! pg,

and equality holds if and only if f is a homogeneous polynomial after a biholomor-
phic change of coordinates.

Corollary 1.2. Let (V, 0) be a 4-dimensional isolated hypersurface singularity
defined by a polynomial f (x, y, z, w, t) = 0. Let µ, pg, ν, and τ be the Milnor
number, geometric genus, multiplicity, and Tjurina number of the singularity,
respectively. Moreover, if pg > 0, then f is a homogeneous polynomial after a
biholomorphic change of coordinate if and only if µ= τ and

µ− [(ν− 1)5+ ν(ν− 1)(ν− 2)(ν− 3)(ν− 4)] = 5! pg.

The purpose of this paper is to prove the following results:

Proposition A. Let f : (Cn, 0)→ (C, 0) be a holomorphic germ defining an isolated
hypersurface singularity V = { z : f (z) = 0 } at the origin. Let µ and ν be the
Milnor number and multiplicity of (V, 0), respectively. Then

µ≥ (ν− 1)n,

and equality holds if and only if f is a semihomogeneous function (i.e., f = fν + g,
where f is a nondegenerate homogeneous polynomial of degree ν and g consists of
terms of degree at least ν+ 1) after a biholomorphic change of coordinates.

Theorem B. Let f : (Ck, 0)→ (C, 0), where k is either 5 or 6, be a weighted
homogeneous polynomial with an isolated singularity at the origin. Let µ and ν
be the Milnor number and multiplicity of the singularity V = { z : f (z) = 0 },
respectively. Then

µ≥ (ν− 1)k,

and equality holds if and only if f is a homogeneous polynomial after a biholomor-
phic change of coordinates.
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Theorem C. Let f : (C5, 0)→ (C, 0) be a weighted homogeneous polynomial
with an isolated singularity at the origin. Let µ, pg, and ν be the Milnor number,
geometric genus, and multiplicity of the singularity V = { z : f (z)= 0 }. Then

µ− p(ν)≥ 5! pg,

where p(ν)= (ν−1)5−ν(ν−1)(ν−2)(ν−3)(ν−4), and equality holds if and only
if f is a homogeneous polynomial after a biholomorphic change of coordinates.

Theorem D. Let f : (C6, 0)→ (C, 0) be a weighted homogeneous polynomial with
an isolated singularity at the origin. Let µ, pg, and ν be the Milnor number, geo-
metric genus, and multiplicity of the singularity V = { z : f (z)= 0 }. If pg = 0, then

µ− p(ν)≥ 6! pg,

where p(ν)= (ν−1)6−ν(ν−1)(ν−2)(ν−3)(ν−4)(ν−5) (which equals 0), and
equality holds if and only if f is a homogeneous polynomial after a biholomorphic
change of coordinates.

Corollary E. Let f : (Ck, 0)→ (C, 0), where k is either 5 or 6, be a polynomial
with an isolated singularity at the origin. Let µ, τ , and ν be the Milnor number,
Tjurina number, and multiplicity of the singularity V = { z : f (z)= 0 }, respectively.
Then f is a homogeneous polynomial after a biholomorphic change of coordinates
if and only if µ= τ = (ν− 1)k .

In Section 2, we recall the necessary materials needed to prove the main theorems.
In Section 3, we prove the main theorems.

2. Preliminary

In this section, we recall some known results that are needed to prove the main
theorems. Let f (z1, . . . , zn) be a germ of an analytic function at the origin such that
f (0)= 0. Suppose f has an isolated critical point at the origin. It can be developed
in a convergent Taylor series f (z1, . . . , zn)=

∑
aλzλ, where zλ= zλ1

1 . . . zλn
n . Recall

that the Newton boundary 0( f ) is the union of compact faces of 0+( f ), where
0+( f ) is the convex hull of the union of subsets {λ+Rn

+
} for λ such that aλ 6= 0. Let

0−( f ), the Newton polyhedron of f , be the cone over 0( f ) with cone point at 0.
For any closed face 1 of 0( f ), we associate the polynomial f1(z)=

∑
λ∈1 aλzλ.

We say that f is nondegenerate if f1 has no critical point in (C∗)n for any1∈0( f ),
where C∗=C−{0}. We say that a point p of the integral lattice Zn in Rn is positive
if all coordinates of p are positive. The following beautiful theorem holds:

Theorem 2.1 [Merle and Teissier 1980]. Let (V, 0) be an isolated hypersurface
singularity defined by a nondegenerate holomorphic function f : (Cn, 0)→ (C, 0).
Then the geometric genus pg = #{ p ∈ Zn

∩0−( f ) : p is positive }.
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A polynomial f (z1, . . . , zn) is weighted homogeneous of type (w1, . . . , wn),
where w1, . . . , wn are fixed positive rational numbers, if it can be expressed as a
linear combination of monomials zi1

1 . . . z
in
n for which i1/w1+ · · ·+ in/wn = 1. As

a consequence of the theorem of Merle–Teissier, for isolated singularity defined by
a weighted homogeneous polynomial, computing the geometric genus is equivalent
to counting the number of positive integral points in the tetrahedron defined by
x1/w1+· · ·+xn/wn ≤ 1 and x1≥ 0, . . . , xn ≥ 0. We also need the following result:

Theorem 2.2 [Milnor and Orlik 1970]. Let f (z1, . . . , zn) be a weighted homoge-
neous polynomial of type (w1, . . . , wn) with isolated singularity at the origin. Then
the Milnor number is µ= (w1− 1) . . . (wn − 1).

The following theorem is about the relation of weight and multiplicity:

Theorem 2.3 [Sękalski 2008]. If f is a quasihomogeneous isolated singularity of
type (ω1, . . . , ωn), then mult( f )=min{m ∈ N : m ≥min{ωi : i = 1, . . . , n } }.

There is a lower bound for the pg of a hypersurface singularity:

Theorem 2.4 [Yau 1977]. Let

f (z1, . . . , zn−1, zn)= zm
n + a1(z1, . . . , zn−1)zm−1

n + · · ·+ am(z1, . . . , zn−1)

be holomorphic near (0, . . . , 0). Let di be the order of the zero of ai (z1, . . . , zn−1)

at (0, . . . , 0) with di ≥ i . Let d =min1≤i≤m(di/ i). Suppose that

V = { (z1, . . . , zn) : f (z1, . . . , zn)= 0 },

defined in a suitably small polydisc, has p = (0, . . . , 0) as its only singularity. Let
π : M→ V be resolution of V . Then dim H n−2(M,O) > (m− 1)d − (n− 1).

In the following theorem, it is convenient for us to use another definition of
weight type. Let f ∈ C{z1, . . . , zn} define an isolated singularity at the origin.
Let w = (w1, . . . , wn) be a weight on the coordinates (z1, . . . , zn) by positive
integer numbers wi for i = 1, . . . , n. We have the weighted Taylor expansion
f = fρ + fρ+1 + · · · with respect to w and fρ 6= 0, where fk is a weighted
homogeneous of type (w1, . . . , wn; k) for k ≥ ρ, i.e., fk is linear combination of
monomials zi1

1 . . . z
in
n for which i1w1+ · · ·+ inwn = k. We only use this definition

of weight for the following theorem as well as in the proof of Proposition A. For
any other place we use the previous definition before Theorem 2.2 for weight type.

Theorem 2.5 [Furuya and Tomari 2004]. Let the situation be as above, and let
f ∈ C{z1, . . . , zn} define an isolated singularity at the origin. Then

(2-1) µ( f )≥
(
ρ

w1
− 1

)
. . .
(
ρ

wn
− 1

)
,

and equality holds if and only if fρ defines an isolated singularity at the origin.
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Here we recall that f is called a semiquasihomogeneous function if the initial
term fρ defines an isolated singularity at the origin.

Definition 2.1. Let f, g : (Cn, 0)→ (C, 0) be germs of holomorphic functions
defining the respective isolated hypersurface singularities V f = { z : f (z)= 0 } and
Vg = { z : g(z)= 0 }. Let φ : (Cn, 0)→ (Cn, 0) be a germ of biholomorphic map.

(1) If φ(V f )= Vg, then f is contact equivalent to g.

(2) If g = f ◦φ, then f is right equivalent to g.

The Milnor number is an invariant of contact equivalence [Teissier 1975].

3. Proof of the main theorems

Proof of Proposition A. Let f (z1, . . . , zn) : (C
n, 0)→ (C, 0) be a holomorphic

function with an isolated singularity at the origin. Let µ and ν be the Milnor
number and multiplicity of the singularity V = { z : f (z) = 0 }. By an analytic
change of coordinates, one can assume that the zn-axis is not contained in the
tangent cones of V so that f (0, . . . , 0, zn) 6= 0. By the Weierstrass preparation
theorem, near 0, the germ f can be represented as a product

f (z1, . . . , zn)= u(z1, . . . , zn) g(z1, . . . , zn),

where u(0, . . . , 0) 6= 0, and

g(z1, . . . , zn−1, zn)= zνn + a1(z1, . . . , zn−1)zν−1
n + · · ·+ aν(z1, . . . , zn−1),

where ν is the multiplicity of f (z1, . . . , zn) and ai ∈ (x1, . . . , xn−1)
i for i=1, . . . , ν.

Therefore, f (z1, . . . , zn) is contact equivalent to g(z1, . . . , zn).
Let di be the order of the zero of ai (z1, . . . , zn−1) at (0, . . . , 0), di ≥ i . Let

d =min1≤i≤ν[di/ i], so d ≥ 1. We define a weight w on the new coordinate systems
by w(zn)= d with w(zi )= 1 for 1≤ i ≤ n− 1. Here the definition of weight type
is the same as in Theorem 2.5. With respect to the new weights, zνn has degree dν,
and ai (z1, . . . , zn−1)zν−i

n has degree at least d(ν − i)+ di ≥ dν − di + di = dν.
Thus, the initial term of f (z1, . . . , zn) has the degree ρ = dν. Because the Milnor
number is an invariant under contact equivalence, by (2-1) we have µ = µ(g) ≥
(dν/d − 1)(dν/1− 1) . . . (dν/1− 1)= (ν− 1)(dν− 1)n−1

≥ (ν− 1)n .
Suppose f is a semihomogeneous polynomial. Since the Milnor number of f is

the same as its initial part (see [Arnold 1974]), µ= (ν− 1)n is obvious.
If µ= (ν−1)n , then by µ≥ (ν−1)(dν−1)n−1

≥ (ν−1)n , we have d = 1, and
by the last part of Theorem 2.5, gdν(z1, . . . , zn)= gν(z1, . . . , zn) is a homogeneous
polynomial of degree ν defining an isolated singularity. Hence, f (z1, . . . , zn) is
contact equivalent to a semihomogeneous singularity. �

We prove a lemma that is useful in the proof of Theorem B.
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Lemma 3.1. Let f : (Cn, 0)→ (C, 0) be a weighted homogeneous polynomial of
weight type (w1, . . . , wn) with an isolated singularity at the origin. If wi is not an
integer, zai

i z ji ∈ supp( f ), where ai is a positive integer, ji 6= i , and [wi ]< ν, then
ν = ai + 1 and wi/wji 6= 1.

Proof. Since zai
i z ji ∈ supp( f ), ai/wi + 1/wji = 1. It follows from the fact that wi

is not an integer that wi/wji 6= 1, and ai/wi +1/wji = 1 implies that wi > ai . Since
[wi ] < ν, by Theorem 2.3, we have ν = [wi ] + 1 ≥ ai + 1. By the definition of
multiplicity, we also have ν ≤ ai + 1. Therefore, ν = ai + 1. �

Proof of Theorem B. We shall give a detailed proof for k = 5.
Let f : (C5, 0)→ (C, 0) be a weighted homogeneous polynomial with an isolated

singularity at the origin. Let µ and ν be the Milnor number and multiplicity of the
singularity V ={ z : f (z)= 0 }, respectively. We want to show µ≥ (ν−1)5 and that
the equality holds if and only if f is a homogeneous polynomial. By Proposition A,
it suffices to show that equality holds if and only if f is a homogeneous polynomial.
Set w(zi )= wi for 1≤ i ≤ 5. We assume that 2≤ w1 ≤min{w2, . . . , w5}, where
wi for i = 1, . . . , 5 are positive rational numbers, without loss of generality.

If ν = 2, then the theorem is trivial by the Milnor–Orlik formula (Theorem 2.2).
In the following, we only consider ν ≥ 3 or, equivalently, w1 > 2.

If w1 is an integer, then by Theorem 2.3, ν=w1. Since µ= (w1−1) . . . (w5−1),
µ= (ν−1)5 if and only ifw1=w2=· · ·=w5, i.e., f is an homogeneous polynomial.

If w1 is not an integer, by Theorem 2.3, ν = [w1] + 1, where [w1] denotes the
integer part of w1. We want to show that µ > (ν − 1)5. Since f is an isolated
singularity, for every i ∈ {1, . . . , 5}, either zai

i or zai
i z j is in the support of f ,

where j 6= i and ai is a positive integer. By assumption, w1 is not an integer,
so za1

1 z j1 ∈ supp( f ). By Lemma 3.1, we have ν = a1 + 1. We shall show that
(ν − 1)2 < (w1 − 1)(wj1 − 1). Since a1/w1 + 1/wj1 = 1, a1 = w1 −w1/wj1 and
ν =w1−w1/wj1+1. Therefore, the fraction part of w1 is w1/wj1 . In order to make
the notation simple, we set x =[w1], where x ≥ 2, and y=w1/wj1 , where 0< y< 1,
and then x = ν − 1, w1 = x + y, and wj1 = (x + y)/y. By a simple calculation,
(ν−1)2 < (w1−1)(wj1−1) is the same as x2 < (x+ y−1)((x+ y)/y−1), which
is true for x ≥ 2.

We consider {w1, . . . , w5} \ {w1, wj1}, the set of three rational numbers obtained
from {w1, w2, w3, w4, w5} by removing w1 and wj1 . Without loss of generality,
we assume that w2 ∈ {w1, . . . , w5} \ {w1, wj1} (which is not the empty set) is the
minimal weight in this set.

If w2 is a positive integer, then ν ≤ w2; hence, ν− 1≤ w2− 1. Since w2 is the
minimal weight in the set {w1, . . . , w5} \ {w1, wj1}, we have µ > (ν− 1)5.

If w2 is not a positive integer and [w2] > [w1], then we have ν − 1 < w2 − 1.
The same reason as before gives µ > (ν− 1)5.
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If w2 is not a positive integer and [w2] = [w1], then our goal is to prove that
(ν−1)2 < (w2−1)(wj2 −1), where wj2 depends on w2. Since w2 is not an integer,
there exists a2, a positive integer number such that za2

2 z j2 ∈ supp f , where j2 6= 2.
There are three cases to consider:

Case 1. If j2=1, then za2
2 z1 ∈ supp f . Then a2/w2+1/w1=1, andw2≥w1 implies

a2+ 1/w2 ≤ 1 and w2 ≥ (a2+ 1)≥ ν, which contradicts ν = [w1] + 1= [w2] + 1.
This case cannot happen.

Case 2. If j2 ∈ {1, . . . , 5}\ {1, 2, j1}, then a2/w2+1/wj2 = 1 since za2
2 z j2 ∈ supp f .

We want to show that (ν−1)2<(w2−1)(wj2−1). We have ν≤a2+1, and ν=a1+1
implies a2≥a1. Furthermore, a2=w2−w2/wj2 ≥a1≥ ν−1. Let x =w2/wj2 , so by
Lemma 3.1 we have x 6= 1. Then 0< x < 1, w2≥ ν−1+x , and wj2 ≥ (ν−1+x)/x .
It suffices to show that (ν−1)2 < (ν−1+ x−1)((ν−1+ x)/x−1), which is true
for ν > 2 and 0< x < 1.

Case 3. If j2 = j1, then za2
2 z j1 ∈ supp f . Since f has isolated singularity and both

za1
1 z j1 ∈ supp f and za2

2 z j1 ∈ supp f , then either zb1
1 zb2

2 ∈ supp f , where bi > 0 and
i = 1, 2, or zb1

1 zb2
2 z j12 ∈ supp f , where bi ≥ 0 for i = 1, 2. However, in the latter

case b1 and b2 cannot both equal 0 and j12 ∈ {1, . . . , 5} \ {1, 2, j1}.

Subcase 1. We have zb1
1 zb2

2 ∈ supp f , where bi > 0 for i = 1, 2. In this case, we have
b1/w1+ b2/w2 = 1. Then b1/w2+ b2/w2 ≤ b1/w1+ b2/w2 = 1, which implies
w2 ≥ b1+ b2 ≥ ν, contradicting ν− 1= [w1] = [w2]. This case cannot happen.

Subcase 2. Now we have zb1
1 zb2

2 z j12 ∈ supp f , where bi ≥ 0 for i = 1, 2 and
j12 ∈ {1, . . . , 5} \ {1, 2, j1}. In this case we divide it into three subcases:

(a) If b1 = 0, then zb2
2 z j12 ∈ supp f . This case is same as the previous Case 2.

(b) If b2 = 0, then zb1
1 z j12 ∈ supp f . By Lemma 3.1, we have ν = b1+1. Therefore,

a1= b1. Remember that we also have a1/w1+1/wj1 = 1; thus, wj1 =wj12 . Since we
have proved (ν−1)2 < (w1−1)(wj1−1), then we get (ν−1)2 < (w2−1)(wj12−1).

(c) If b1 6= 0 and b2 6= 0, then b1/w1 + b2/w2 + 1/wj12 = 1, which implies that
(b1 + b2)/w2 + 1/wj12 ≤ 1. Since ν ≤ b1 + b2 + 1 and ν = a1 + 1, a1 ≤ b1 + b2.
Then a1/w2+1/wj12 ≤ 1, so a1 ≤w2−w2/wj12 . Since j12 ∈ {1, . . . , 5} \ {1, 2, j1},
then wj12 ≥ w2. If wj12 = w2, then w2 ≥ a1+w2/wj12 = a1+ 1, which contradicts
[w1]= [w2]= ν−1, sowj12 >w2. Let x =w2/wj12 , so 0< x < 1. Sincew2≥a1+x ,
then wj12 ≥ (a1 + x)/x . We want to show that (ν − 1)2 < (w2 − 1)(wj12 − 1). It
suffices to show that a2

1 < (a1 + x − 1)((a1 + x)/x − 1), which follows from
0< (a1− 1)(1− x), where a1 ≥ 2 and 0< x < 1.

After the above steps, either we finish the proof, or after reordering the subindex,
we have proved (ν− 1)4 < (w1− 1)(w2− 1)(wj1 − 1)(wj2 − 1), where z1, z2, z j1 ,
and z j2 are different variables. There is only one variable left. Without loss of
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generality, we use z3 to denote the remaining variable. We know w3 ≥ w2 ≥ w1,
and w1 and w2 are not positive integers by the previous arguments.

If w3 is a positive integer, or w3 is not a positive integer and [w3]> [w1], then
we have ν ≤ w3 and ν − 1 ≤ w3 − 1. Therefore, µ > (ν − 1)5 in this case. The
proof ends.

Suppose that w3 is not a positive integer and [w3] = [w1]. Since w3 ≥ w1, we
have w3− 1≥ w1− 1. We have already proved (ν− 1)2 < (w1− 1)(wj1 − 1) and
(ν−1)2 < (w2−1)(wj2−1). In order to prove (ν−1)5 <µ, it suffices to show that
(ν−1)3<(w1−1)2(wj1−1). In order to make the notation simple, we set x =[w1],
where x ≥ 2, and y = w1/wj1 , where 0< y < 1. Then x = ν− 1, w1 = x + y, and
wj1 = (x+ y)/y. By simple calculation, (ν−1)3 < (w1−1)2(wj1−1) is equivalent
to x3

≤ (x + y− 1)2((x + y)/y− 1), i.e., x(x − 2)(1− y)+ (y− 1)2 > 0, which
follows from x ≥ 2 and 0< y < 1.

In summary, we have proved (ν − 1)5 = µ if and only if f is a homogeneous
polynomial.

For k=6, using the same argument as k=5, we obtain (ν−1)2<(w1−1)(wj1−1)
and (ν − 1)2 < (w2− 1)(wj2 − 1). Without loss of generality we assume w3 and
w4 are the remaining two weights. Then the same argument as above shows that
(ν − 1)3 < (w1− 1)(wj1 − 1)(w3− 1) and (ν − 1)3 < (w2− 1)(wj2 − 1)(w4− 1).
Thus, we have (ν − 1)6 < (w1− 1) . . . (w6− 1) = µ, which is what we want for
proving (ν− 1)6 = µ if and only if the f is homogeneous polynomial. �

Proof of Theorem C. If pg > 0, it follows from Theorem 1.6.
If pg = 0, then by Theorem 2.4, 0> (ν− 1)d − 4, where d =min1≤i≤ν(di/ i),

and di is the order of the zero of ai (x1, . . . , x4) at (0, . . . , 0) with di ≥ i . Then
ν < 4/d + 1. Since d ≥ 1, ν is an integer of at least 2 for isolated hypersurface
singularities, so 2≤ν≤4. Therefore, p(ν)= (ν−1)5−ν(ν−1) . . . (ν−4)= (ν−1)5.
The theorem is reduced to proving that

µ≥ (ν− 1)5,

and equality holds if and only if f is a homogeneous polynomial after a biholomor-
phic change of coordinates. The proof follows from Theorem B. �

Proof of Theorem D. It follows from the same argument in the proofs of Theorem C
and Theorem B. �

Proof of Corollary E. It follows from Theorem B and Theorem 1.1. �
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